Financial Econometrics - 2023 Lecture Notes

Rauli Susmel
Dept of Finance
Bauer College of Business
University of Houston
© R. Susmel, 2023 - For private use only, not to be modified, posted/shared online without written consent from author.

Lecture 1 - Review of Statistics and Linear Algebra (NOT Covered)

This lecture reviews basic probability concepts, from random variables to the Law of Large Numbers and the Central Limit Theory. In the Appendix, the lecture introduces Linear Algebra and its compact notation.

Random Variable

In probability and statistics, a random variable (RV), or stochastic variable, is described informally as a variable whose values depend on outcomes of an experiment (or phenomenon). An experiment is an act or a process with an unknown outcome. For example, the CEO of Apple announces a new product, the effect on the price of Microsoft is unknown, thus, the price (and return) of Microsoft is a RV.

Examples:

1. We throw two coins and count the number of heads.
2. We define $X=1$ if the economy grows two consecutive quarters and $X=0$, otherwise. (This is an example of a Bernouille (or indicator) RV.)
3. We read comments from IBM's CEO and compute IBM's return.
4. We count the days in a week the stock market has a positive return.
5. We look at a CEO and write his/her highest education degree. $\boldsymbol{\|}$

For some RVs, it is easy to enumerate all possible outcomes. For instance, for the fourth example above: $\{0,1,2,3,4,5\}$. But, some RV, it can be complicated. For example, for the third (IBM) example: $\{(-100 \%, K\}$, where K is a large positive number.

The set of all possible outcomes is called sample space, denoted by Ω.
An event A is a set containing outcomes from the sample space. For example, for the IBM example, the returns are between 2% and 12.5% is an event.

The collection of all possible events is Σ. For example, for the IBM example, $\{(1.1 \%-1.2 \%)$, ($0.02 \%,-0001 \%),(2.0 \%, 12.5 \%),(-5 \%, 5 \%),(-100 \%,-13.95 \%),(0 \%, 350 \%), \ldots\}$

- In general, a RV is a function whose domain is the sample space. It produces numbers. (The name "random variable" is confusing; it is just a function!)

Definitions \& Notation:

Ω : The sample space -the set of possible outcomes from an experiment.
An event A is a set containing outcomes from the sample space.
Σ : The collection of all possible events involving outcomes chosen from Ω. (Formally: Σ is a σ algebra of subsets of the sample space.)
P is a probability measure over Σ. P assigns a number between $[0,1]$ to each event in Σ.

Remarks:

- A random variable is a convenient way to express the elements of Ω as numbers rather than abstract elements of sets.
- A random variable \boldsymbol{X} is a function.
- It is a numerical quantity whose value is determined by a random experiment.
- It takes single elements in outcome set Ω, which can be abstract elements, and maps them to points in R.

Example: We compute the weekly sign of stock returns of two unrelated firms: Positive (U: up) or negative (D: down).

The sample space is $\Omega=\{D D ; D U ; U D ; U U$.
Possible events (A):

- Both firms have the same signed return: $\{\mathrm{U}, \mathrm{U}\} \&\{\mathrm{D}, \mathrm{D}\}$.
- At least one firm has positive returns: $\{\mathrm{U}, \mathrm{U}\} ;\{\mathrm{D}, \mathrm{U}\} \&\{\mathrm{U}, \mathrm{D}\}$.
- The first firm has positive returns: $\{\mathrm{U}, \mathrm{U}\} \&\{\mathrm{U}, \mathrm{D}\}$

Collection of all possible events: $\Sigma=[\Phi,\{U, U\},\{U, D\},\{D, U\},\{D, D\},\{U U, U D\},\{U U, D U\}$, $\{\mathrm{UU}, \mathrm{DD}\},\{\mathrm{DD}, \mathrm{DU}\},\{\mathrm{DD}, \mathrm{UD}\},\{\mathrm{DU}, \mathrm{DD}\},\{\mathrm{UU}, \mathrm{DU}, \mathrm{UD}\},\{\mathrm{UD}, \mathrm{DU}, \mathrm{DD}\},\{\mathrm{UU}, \mathrm{UD}$, DU, DD $\}$]

Define RV: $\mathbf{X}=$ "Number of Up cycles." Recall, \mathbf{X} takes Ω into $\chi, \&$ induces Px from P . Then,

$$
\begin{aligned}
& \chi=\{0 ; 1 ; 2\} \\
& \Sigma_{\chi}=\{\Phi ;\{0\} ;\{1\} ;\{2\} ;\{0 ; 1\} ;\{0 ; 2\} ;\{1 ; 2\} ;\{0 ; 1 ; 2\}\} .
\end{aligned}
$$

Assuming U and D have the same probability, $\mathrm{P}[\mathrm{U}]=\mathrm{P}[\mathrm{D}]=1 / 2$, we define Px :
Prob. of $0 \mathrm{Ups}=\mathrm{Px}[0]=\mathrm{P}[\{\mathrm{DD}\}]=1 / 4$
Prob. of $1 \mathrm{Ups}=\mathrm{Px}[1]=\mathrm{P}[\{\mathrm{UD} ; \mathrm{DU}\}]=1 / 2$
Prob. of $2 \mathrm{Ups}=\mathrm{Px}[2]=\mathrm{P}[\{\mathrm{UU}\}]=1 / 4$
Prob. of 0 or $1 \mathrm{Ups}=\mathrm{P}_{\mathrm{x}}[\{0 ; 1\}]=\mathrm{P}[\{\mathrm{DD} ; \mathrm{UD} ; \mathrm{DU}\}]=3 / 4$
Prob. of 0 or $2 \mathrm{Ups}=\operatorname{Px}[\{0 ; 2\}]=\mathrm{P}[\{D D ; \mathrm{UU}\}]=1 / 2$
Prob. of 1 or $2 \mathrm{Ups}=\operatorname{Px}[\{1 ; 2\}]=\mathrm{P}[\{\mathrm{DU} ; \mathrm{UD} ; \mathrm{DD}\}]=3 / 4$
Prob. of 1,2 , or $3 \mathrm{Ups}=\operatorname{Px}[\{0 ; 1 ; 2\}]=\mathrm{P}[\{D D ; D U ; U D ; U U\}]=1$
Prob. of "nothing" $=\mathrm{P}_{\mathrm{X}}[\Phi]=\mathrm{P}[\Phi]=0$
The empty set is simply needed to complete the σ-algebra (a technical point). Its interpretation is not important since $\mathrm{P}[\Phi]=0$ for any reasonable P .

Technical detail: P is the probability measure over the sample space, Ω, and P_{X} is the probability measure over χ, the range of the random variable.

Example: IBM Returns

We buy an IBM share at USD 120 today and plan to sell the share next week. The return of IBM next week, r_{t}, depends on how the market values IBM next week -this is the experiment.

The sample space is continuous, from -100% (worst case scenario) to potentially a huge undefined positive number. We set $\Omega=\left\{r_{t}: r_{t} \in[-1, K], K>0\right\}$.

Possible events:

- IBM returns are positive.
- IBM returns are higher than 0.5%.
- IBM returns are lower than 10%.
- IBM returns are between -2% and 4%.

The collection of all possible events, Σ, is very, very large. We use a probability distribution, for example, the normal distribution, to describe the likelihood of possible events.

Probability Function \& CDF

Definition - The probability function, $p(x)$, of a RV, X.
For any random variable, X, and any real number, x, we define

$$
p(x)=P[X=x]=P[\{X=x\}],
$$

where $\{X=x\}=$ the set of all outcomes (event) with $X=x$.
Definition - The cumulative distribution function (CDF), $F(x)$, of a RV, X.
For any random variable, X, and any real number, x, we define

$$
F(x)=P[X \leq x]=P[\{X \leq x\}],
$$

where $\{X \leq x\}=$ the set of all outcomes (event) with $X \leq x$.
Example: Two dice are rolled and X is the sum of the two upward faces. Sample space $S=\{$ $2:(1,1), 3:(1,2 ; 2,1), 4:(1,3 ; 3,1 ; 2,2), 5:(1,4 ; 2,3 ; 3,2 ; 4,1), 6,7,8,9,10,11,12\}$.

Graph: Probability function:

$p(2)=P[X=2]=P[\{(1,1)\}]=\frac{1}{36}$
$p(3)=P[X=3]=P[\{(1,2),(2,1)\}]=\frac{2}{36}$
$p(4)=P[X=4]=P[\{(1,3),(2,2),(3,1)\}]=\frac{3}{36}$
$p(5)=\frac{4}{36}, p(6)=\frac{5}{36}, p(7)=\frac{6}{36}, p(8)=\frac{5}{36}, p(9)=\frac{4}{36}$
$p(10)=\frac{3}{36}, p(11)=\frac{2}{36}, p(12)=\frac{1}{36}$
and $p(x)=0$ for all other x

Note: $\{X=x\}=\phi$ for all other x.

Graph: CDF

$$
F(x)=\left\{\begin{array}{cc}
0 & x<2 \\
\frac{1}{36} & 2 \leq x<3 \\
\frac{3}{36} & 3 \leq x<4 \\
\frac{6}{36} & 4 \leq x<5 \\
\frac{10}{36} & 5 \leq x<6 \\
\frac{15}{36} & 6 \leq x<7 \\
\frac{21}{36} & 7 \leq x<8 \\
\frac{26}{36} & 8 \leq x<9 \\
\frac{30}{36} & 9 \leq x<10 \\
\frac{33}{36} & 10 \leq x<11 \\
\frac{35}{36} & 11 \leq x<12 \\
1 & 12 \leq x
\end{array}\right.
$$

PDF for a Continuous RV

Definition: Suppose that X is a random variable. Let $f(x)$ denote a function defined for $-\infty<x<$ ∞ with the following properties:

1. $f(x) \geq 0$
2. $\int_{-\infty}^{\infty} f(x) d x=1$.
3. $P[a \leq X \leq b]=\int_{a}^{b} f(x) d x$

Then, $f(x)$ is called the probability density function (pdf) of X. The random variable X is called continuous.

- PDF

- If X is a continuous random variable with probability density function, $f(x)$, the cumulative distribution function of X is given by:

$$
F(x)=P[X \leq x]=\int_{-\infty}^{x} f(t) d t
$$

- CDF

- Also because of the FTC (fundamental theorem of calculus):

$$
F^{\prime}(x)=\frac{d F(x)}{d x}=f(x)
$$

PDF for a Discrete RV

A random variable X is called discrete if

$$
\sum_{x} p(x)=\sum_{i=1}^{\infty} p\left(x_{i}\right)=1
$$

All the probability is accounted for by values, x, such that $p(x)>0$.

- For a discrete random variable X the probability distribution is described by the probability function $p(x)$, which has the following properties:

1. $0 \leq p(x) \leq 1$
2. $\quad \sum_{i=1}^{N} p\left(x_{i}\right)=1$
3. $P[a \leq X \leq b]=\sum_{a \leq x \leq b} p(x)$

Bernouille and Binomial Distributions

Suppose that we have a Bernoulli trial (an experiment) that has 2 results:

1. Success (S)
2. Failure (F)

Suppose that p is the probability of success (S) and $q=1-p$ is the probability of failure (F). Then, the probability distribution with probability function:

$$
p(x)=P[X=x]= \begin{cases}q & x=0 \\ p & x=1\end{cases}
$$

is called the Bernoulli distribution.

- We observe an independent Bernoulli trial (\mathbf{S}, \mathbf{F}) n times. Let X be the number of successes in the n trials. Then, X has a binomial distribution:

$$
p(x)=P[X=x]=\binom{n}{x} p^{x} q^{n-x} \quad x=0,1,2, \ldots, n
$$

where

1. $p=$ the probability of success (\mathbf{S}), and
2. $q=1-p=$ the probability of failure (\mathbf{F})

Example: If a firm announces profits and they are "surprising," the chance of a stock price, P, increase is 85%. Assume there are $n=20$ (independent) announcements.
Let X be the number of increases in the stock price following surprising announcements in the n $=20$ trials.

$$
\begin{aligned}
p(x)=P[X=x] & =\binom{n}{x} p^{x} q^{n-x} \quad x=0,1,2, \ldots, n \\
& =\binom{20}{x}(.85)^{x}(.15)^{20-x} \quad x=0,1,2, \ldots, 20
\end{aligned}
$$

x	0	1	2	3	4	5
$p(x)$	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
x	6	7	8	9	10	11
$p(x)$	0.0000	0.0000	0.0000	0.0000	0.0002	0.0011
x	12	13	14	15	16	17
$p(x)$	0.0046	0.0160	0.0454	0.1028	0.1821	0.2428
x	18	19	20			
$p(x)$	0.2293	0.1368	0.0388			

The Poisson Distribution

Suppose events are occurring randomly and uniformly in time.

- The events occur with a known average.
- Let X be the number of events occurring (arrivals) in a fixed period of time (time-interval of given length).
- Typical example: $X=$ Number of crime cases coming before a criminal court per year (original Poisson's application in 1838.)
- Then, X will have a Poisson distribution with parameter λ :

$$
p(x)=\frac{\lambda^{x}}{x!} e^{-\lambda} \quad x=0,1,2,3,4, \ldots
$$

- The parameter λ represents the expected number of occurrences in a fixed period of time. The parameter λ is a positive real number.

Example: On average, a trade occurs every 15 seconds. Suppose trades are independent. We are interested in the probability of observing 10 trades in a minute ($\mathrm{X}=10$). A Poisson distribution can be used with $\lambda=4$ (4 trades per minute).

- Poisson probability function

Poisson Distribution: Illustration

Suppose a time interval is divided into n equal parts and that one event may or may not occur in each subinterval.

- - Event occurs
- - Event does not occur
$X=\#$ of events is $\operatorname{Bin}(n, p)$
As $n \rightarrow \infty$, events can occur over the continuous time interval
$X=\#$ of events is $\operatorname{Poisson}(\lambda)$

Poisson Distribution: Comments

- The Poisson distribution arises in connection with Poisson processes - a stochastic process in which events occur continuously and independently of one another.
- It occurs most easily for time-events; such as the number of calls passing through a call center per minute, or the number of visitors passing through a turnstile per hour. However, it can apply to any process in which the mean can be shown to be constant.
- It is used in finance (number of jumps in an asset price in a given interval); market microstructure (number of trades per unit of time in a stock market); sports economics (number of goals in sports involving two competing teams); insurance (number of a given disaster volcano eruptions/hurricanes/floods- per year); etc.

Example: The number of named storms over a period of a year in the Caribbean is known to have a Poisson distribution with $\lambda=13.1$ Determine the probability function of X.
Compute the probability that X is at most 8 .
Compute the probability that X is at least 10 .
Given that at least 10 hurricanes occur, what is the probability that X is at most 15 ?
Solution:

$$
\begin{array}{rlr}
p(x) & =\frac{\lambda^{x}}{x!} e^{-\lambda} & x=0,1,2,3,4, \ldots \\
& =\frac{13 \cdot 1^{x}}{x!} e^{-13.1} & x=0,1,2,3,4, \ldots
\end{array}
$$

x	$p(x)$	x	$p(x)$
0	0.000002	10	0.083887
1	0.000027	11	0.099901
2	0.000175	12	0.109059
3	0.000766	13	0.109898
4	0.002510	14	0.102833
5	0.006575	15	0.089807
6	0.014356	16	0.073530
7	0.026866	17	0.056661
8	0.043994	18	0.041237
9	0.064036	19	0.028432

$$
\begin{aligned}
P[\text { at most } 8] & =P[X \leq 8] \\
& =p(0)+p(1)+\cdots+p(8)=.09527
\end{aligned}
$$

$$
\begin{aligned}
P[\text { at least } 10]=P[X \geq 10] & =1-P[X \leq 9] \\
& =1-(p(0)+p(1)+\cdots+p(9))=.8400
\end{aligned}
$$

$$
\begin{aligned}
P[\text { at most } 15 \mid \text { at least } 10] & =P[X \leq 15 \mid X \geq 10] \\
& =\frac{P[\{X \leq 15\} \cap\{X \geq 10\}]}{P[X \geq 10]}=\frac{P[10 \leq X \leq 15]}{P[X \geq 10]} \\
& =\frac{p(10)+p(11)+\cdots+p(15)}{.8400}=0.708
\end{aligned}
$$

The Normal distribution

A random variable, X, is said to have a normal distribution with mean m and standard deviation s if X is a continuous random variable with probability density function $f(x)$:

$$
f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right]
$$

Normal distribution: Properties

1. Indexed by two parameters: μ (central parameter) \& σ (spread parameter).
2. Symmetric around μ, which is the location of the maximum of $f(x)$.

Check:
$f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right]$
$f^{\prime}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right] *\left[-\frac{(x-\mu)}{\sigma^{2}}\right]=0$
The last equality holds when $\mu=x$. Thus, μ is an extremum point of $f(x)$. Since $f(x)$ is a pdf, it is the mode.
3. The inflection points of $f(x)$ are $\mu-\sigma, \mu+\sigma$. (Check: set $f^{\prime \prime}(x)=0$ and solve for x.)

Normal distribution: Comments

- The normal distribution is often used to describe or approximate any variable that tends to cluster around the mean. It is the most assumed distribution in economics and finance: rates of return, growth rates, IQ scores, observational errors, etc.
- The central limit theorem (CLT) provides a justification for the normality assumption when n is large.

Notation: PDF: $x \sim N\left(\mu, \sigma^{2}\right)$
CDF: $\Phi(x)$

The Expectation of X : $\mathbf{E}(\mathbf{X})$

The expectation operator defines the mean (or population average) of a random variable or expression.

Definition

Let X denote a discrete RV with probability function $p(x)$ (probability density function $f(x)$ if X is continuous) then the expected value of $X, E(X)$ is defined to be:

$$
E(X)=\sum_{x} x p(x)=\sum_{i=1}^{\infty} x_{i} p\left(x_{i}\right)
$$

and if X is continuous with probability density function $f(x)$

$$
E(X)=\int_{-\infty}^{\infty} x f(x) d x
$$

Sometimes we use $\mathrm{E}[$.$] as \mathrm{Ex}[$.$] to indicate that the expectation is being taken over f \mathrm{x}(x) \mathrm{d} x$

Interpretation of $\mathbf{E}(\mathbf{X})$

1. The expected value of $X, E(X)$, is the center of gravity of the probability distribution of X.
2. The expected value of $X, E(X)$, is the long-run average value of X. (To be discussed later: Law of Large Numbers)

E[X]: The Normal Distribution

Suppose X has a Normal distribution with parameters m and s.
Then, $\mathrm{E}[\mathrm{X}]=m$.

Proof:

$$
\begin{aligned}
& f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right] \\
& E(X)=\int_{-\infty}^{\infty} x f(x) d x=\int_{-\infty}^{\infty} x \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right] d x
\end{aligned}
$$

Making the substitution:

$$
z=\frac{x-\mu}{\sigma} \Rightarrow d z=\frac{1}{\sigma} d x \text { and } x=\mu+z \sigma
$$

Then,

$$
\begin{aligned}
E(X) & =\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}}(\mu+z \sigma) e^{-\frac{z^{2}}{2}} d z \\
& =\mu \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}} d z+\frac{\sigma}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} z e^{-\frac{z^{2}}{2}} d z
\end{aligned}
$$

Using the following results:

$$
\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left[-\frac{z^{2}}{2}\right] d z=1 \quad \text { and } \int_{-\infty}^{\infty} z \exp \left[-\frac{z^{2}}{2}\right] d z=0
$$

Thus, $E(X)=\mu$

Let X denote a discrete $R V$ with probability function $p(x)$, then the expected value of $g(X)$, $E[g(X)]$, is defined to be:

$$
E[g(X)]=\sum_{x} g(x) p(x)=\sum_{i=1}^{\infty} g\left(x_{i}\right) p\left(x_{i}\right)
$$

and if X is continuous with probability density function $f(x)$:

$$
E[g(X)]=\int_{-\infty}^{\infty} g(x) f(x) d x
$$

Examples: $\quad g(x)=(x-\mu)^{2} \Rightarrow \mathrm{E}[g(x)]=\mathrm{E}\left[(x-\mu)^{2}\right]$

$$
g(x)=(x-\mu)^{k} \Rightarrow \mathrm{E}[g(x)]=\mathrm{E}\left[(x-\mu)^{k}\right]
$$

Example: Suppose X has a uniform distribution from 0 to b. Then:

$$
f(x)=\left\{\begin{array}{cc}
1 / b & 0 \leq x \leq b \\
0 & x \leq 0, x>b
\end{array}\right.
$$

Find the expected value of $A=X^{2}$.
If X is the length of a side of a square (chosen at random from 0 to b) then A is the area of the square

$$
\begin{aligned}
E\left(X^{2}\right) & =\int_{-\infty}^{\infty} x^{2} f(x) d x=\int_{a}^{b} x^{2} \frac{1}{b-a} d x=\left[\frac{1}{b} \frac{x^{3}}{3}\right]_{0}^{b}=\frac{b^{3}-0^{3}}{3(b)}=\frac{b^{2}}{3} \\
& =1 / 3, \text { the maximum area of the square }
\end{aligned}
$$

Median: Another central measure

A median is the numeric value separating the higher half of a sample, a population, or a probability distribution, from the lower half.

Definition: Median

The median of a random variable \boldsymbol{X} is the unique number m that satisfies the following inequalities:

$$
\mathrm{P}(\boldsymbol{X} \leq m) \geq 1 / 2 \quad \text { and } \quad \mathrm{P}(\boldsymbol{X} \geq m) \geq 1 / 2 .
$$

For a continuous distribution, we have that m solves:

$$
\int_{-\infty}^{m} f_{X}(x) d x=\int_{m}^{\infty} f_{X}(x) d x=1 / 2
$$

Note: If the mean $>$ median $>\boldsymbol{m o d e}(=$ most popular observation), the distribution will be skewed to the right. If the mean $<$ median $<$ mode, the distribution will be skewed to the left.

- Calculation of medians is a popular technique in summary statistics and summarizing statistical data, since it is simple to understand and easy to calculate, while also giving a measure that is more robust in the presence of outlier values than is the mean.

An optimality property

A median is also a central point which minimizes the average of the absolute deviations. That is, a value of c that minimizes

$$
\mathrm{E}(|\mathbf{X}-c|)
$$

is the median of the probability distribution of the random variable \boldsymbol{X}.
Example: Let X have an exponential distribution with parameter λ. The probability density function of X is:

$$
f(x)=\left\{\begin{array}{cc}
\lambda e^{-\lambda x} & x \geq 0 \\
0 & x<0
\end{array}\right.
$$

The median m solves the following integral of X :

$$
\begin{aligned}
& \int_{m}^{\infty} f_{X}(x) d x=1 / 2 \\
& \int_{m}^{m} \lambda e^{-\lambda x} d x=\lambda \int_{m}^{\infty} e^{-\lambda x} d x=-\left.e^{-\lambda x}\right|_{m} ^{\infty}=e^{-\lambda m}=1 / 2
\end{aligned}
$$

That is, $m=\ln (2) / \lambda$.

Moments of Random Variables

The moments of a random variable X are used to describe the behavior of the RV (discrete or continuous).

Definition: $K^{\text {th }}$ Moment
Let X be a RV (discrete or continuous), then the $k^{\text {th }}$ moment of X is:

$$
\mu_{k}=E\left(X^{k}\right)= \begin{cases}\sum_{x} x^{k} p(x) & \text { if } X \text { is discrete } \\ \int_{-\infty}^{\infty} x^{k} f(x) d x & \text { if } X \text { is continuous }\end{cases}
$$

Definition: Central Moments

Let X be a RV (discrete or continuous). Then, the $k^{\text {th }}$ central moment of X is defined to be:

$$
\mu_{k}^{0}=E\left[(X-\mu)^{k}\right]=\left\{\begin{array}{cc}
\sum_{x}(x-\mu)^{k} p(x) & \text { if } X \text { is discrete } \\
\int_{-\infty}^{\infty}(x-\mu)^{k} f(x) d x & \text { if } X \text { is continuous }
\end{array}\right.
$$

where $m=m_{1}=E(X)=$ the first moment of X.

- The central moments describe how the probability distribution is distributed about the center of gravity, m.
- The first central moments is given by:

$$
\mu_{1}^{0}=E[X-\mu]
$$

- The second central moment depends on the spread of the probability distribution of X about m.

It is called the variance of X and is denoted by the symbol $\sigma^{2}=\operatorname{var}(X)$:

$$
\mu_{2}^{0}=E\left[(X-\mu)^{2}\right]=\operatorname{var}(\mathrm{X})=\sigma^{2}
$$

The square root of $\operatorname{var}(\mathrm{X})$ is called the standard deviation of X and is denoted by the symbol $s=$ $\mathrm{SD}(\mathrm{X})$. We also refer to it as volatility:

$$
\sqrt{\mu_{2}^{0}}=\sqrt{E\left[(X-\mu)^{2}\right]}=\sigma
$$

Moments of a RV: Skewness

The third central moment:

$$
\mu_{3}^{0}=E\left[(X-\mu)^{3}\right]
$$

μ_{3}^{0} contains information about the skewness of a distribution.

- A popular measure of skewness:

$$
\gamma_{1}=\frac{\mu_{3}^{0}}{\sigma^{3}}=\frac{\mu_{3}^{0}}{\left(\mu_{2}^{0}\right)^{\frac{3}{2}}}
$$

- Distribution according to skewness:

1) Symmetric distribution

2) Positively (right-) skewed distribution (with mode $<$ median $<$ mean)

3) Negatively (left-) skewed distribution (with mode $>$ median $>$ mean)

- Skewness and Economics
- Zero skew means symmetrical gains and losses.
- Positive skew suggests many small losses and few rich returns.
- Negative skew indicates lots of minor wins offset by rare major losses.
- In financial markets, stock returns at the firm level show positive skewness, but at the aggregate (index) level show negative skewness.
- From horse race betting and from U.S. state lotteries there is evidence supporting the contention that gamblers are not necessarily risk-lovers but skewness-lovers: Long shots are overbet (positive skewness loved!).

Moments of a RV: Kurtosis

The fourth central moment:

$$
\mu_{4}^{0}=E\left[(X-\mu)^{4}\right]
$$

It contains information about the shape of a distribution. The property of shape that is measured by this moment is called kurtosis, usually estimated by κ

$$
\kappa=\frac{\mu_{4}^{0}}{\sigma^{4}} .
$$

- The measure of (excess) kurtosis:

$$
\gamma_{2}=\frac{\mu_{4}^{0}}{\sigma^{4}}-3=\frac{\mu_{4}^{0}}{\left(\mu_{2}^{0}\right)^{2}}-3
$$

Note: We subtract 3, because the kurtosis of the Normal distribution is $\kappa=3$.

- Distributions:

1) Mesokurtic distribution

2) Platykurtic distribution

Moments and Expected Values

Note that moments are defined by expected values. We define the expected value of a function of a continuous RV X, $g(X)$, as

$$
E[g(X)]=\int_{-\infty}^{\infty} g(x) f(x) d x
$$

- If X is discrete with probability function $p(x)$

$$
E[g(X)]=\sum_{x} g(x) p(x)=\sum_{i} g\left(x_{i}\right) p\left(x_{i}\right)
$$

Examples: $\quad g(x)=(x-\mu)^{2} \quad \Rightarrow \mathrm{E}[g(x)]=\mathrm{E}\left[(x-\mu)^{2}\right]$

$$
g(x)=(x-\mu)^{k} \quad \Rightarrow \mathrm{E}[g(x)]=\mathrm{E}\left[(x-\mu)^{k}\right]
$$

- We estimate expected values with sample averages. The Law of Large Numbers (LLN) tells us they are consistent estimators of expected values.

Estimating Moments

We estimate expected values with sample averages. For example, the first moment, the mean, and the second central moment, the variance, are estimated by:

$$
\begin{aligned}
& \bar{X}=\frac{\sum_{i=1}^{N} X_{i}}{N} \\
& s^{2}=\frac{\sum_{i=1}^{N}\left(X_{i}-\bar{X}\right)^{2}}{N-1} \quad\left(N-1 \text { adjustment needed for } \mathrm{E}\left[s^{2}\right]=\sigma^{2}\right)
\end{aligned}
$$

- Besides consistent, they are both are unbiased estimators of their respective population moments (unbiased = "on average, I get the population parameter"). That is,

$$
\begin{array}{ll}
\mathrm{E}[\bar{X}]=\mu & \text { "population parameter" } \\
\mathrm{E}\left[s^{2}\right]=\sigma^{2} &
\end{array}
$$

The Law of Large Numbers (LLN)

Long history: Gerolamo Cardano (1501-1576) stated it without proof. Jacob Bernoulli published a rigorous proof in 1713.

Theorem (Weak LLN)

Let X_{1}, \ldots, X_{N} be n mutually independent random variables each having mean μ and a finite variance σ^{2}-i.e, the sequence $\left\{x_{N}\right\}$ is i.i.d.
Let $\bar{X}=\frac{\sum_{i=1}^{N} X_{i}}{N}$.
Then, for any $\delta>0$ (no matter how small)

$$
P[|\bar{X}-\mu|<\delta]=P[\mu-\delta<\bar{X}<\mu+\delta] \rightarrow 1, \quad \text { as } N \rightarrow \infty
$$

- There are many variations of the LLN. It is a general result: A sample average as the sample size goes to infinite tends to its expected value. Also written as:

$$
\bar{X}_{N} \xrightarrow{\mathrm{p}} \mu . \quad \text { (convergence in probability) }
$$

The Central Limit Theorem (CLT)

The Central Limit Theorem (CLT) states conditions for the sequence of RV $\left\{x_{N}\right\}$ under which the mean or a sum of a sufficiently large number of x_{i} 's will be approximately normally distributed.

Let $X_{1}, X_{2}, \ldots, X_{N}$ be a sequence of $i . i . d$. RVs with finite mean μ, and finite variance σ^{2}. Then, as N increases, \bar{X}_{N}, the sample mean, approaches the normal distribution with mean μ and variance σ^{2} / N.

This theorem is sometimes stated as:

$$
\frac{\sqrt{N}(\bar{X}-\mu)}{\sigma} \xrightarrow{d} N(0,1)
$$

where \xrightarrow{d} means "the limiting distribution (asymptotic distribution) is" (or convergence in distribution).

- Many version of the CLT. Two versions are commonly used in economics and finance:
- The one above is the Lindeberg-Lévy CLT, with $\left\{x_{\mathrm{N}}\right\}$ are i.i.d., with finite μ and finite σ^{2}.
- The other one is the Lindeberg-Feller CLT. It requires $\left\{x_{\mathrm{N}}\right\}$ are independent, with finite μ_{i}, $\sigma_{\mathrm{i}}{ }^{2}<\infty, \mathrm{S}_{\mathrm{n}}=\Sigma_{\mathrm{i}} x_{i}, \mathrm{~S}_{\mathrm{n}}{ }^{2}=\Sigma_{\mathrm{i}} \sigma_{\mathrm{i}}{ }^{2}$ and for $\varepsilon>0$,

$$
\lim _{n \rightarrow \infty} \frac{1}{s_{n}^{2}} \sum_{i=1}^{n} \int_{\left|x_{i}-\mu_{i}\right\rangle ə S_{n}}\left(x_{i}-\mu_{i}\right)^{2} f\left(x_{i}\right) d x=0
$$

Note:
Lindeberg-Levy assumes random sampling -observations are i.i.d., with the same mean and same variance.
Lindeberg-Feller allows for heterogeneity in the drawing of the observations --through different variances. The cost of this more general case: More assumptions about how the $\left\{x_{\mathrm{N}}\right\}$ vary.

- The CLT gives only an asymptotic distribution. We usually take it as an approximation for a finite number of observations. In these cases, the notation goes from \xrightarrow{d} to \xrightarrow{a}.

Technical Note: The Berry-Esseen theorem (Berry-Esseen inequality) attempts to quantify the rate at which the convergence to normality takes place.

$$
\left|F_{n}(x)-\Phi(x)\right| \leq \frac{C \rho}{\sigma^{3} n^{1 / 2}}
$$

where $\rho=\mathrm{E}(|X|)<\infty$ and C is a constant (best current $\mathrm{C}=0.7056$).

Asymptotic Distribution

An asymptotic distribution is a hypothetical distribution that is the limiting distribution of a sequence of distributions.

We will use the asymptotic distribution as a finite sample approximation to the true distribution of a RV when N-i.e., the sample size- is large.

Practical question: When is N large?

Sampling Distributions

All statistics, $\mathrm{T}(X)$, are functions of RVs and, thus, they have a distribution. Depending on the sample, we can observe different values for $\mathrm{T}(X)$, thus, the finite sample distribution of $\mathrm{T}(X)$ is called the sampling distribution.

For the sample mean, \bar{X}, if the X_{i} 's are normally distributed, then the sampling distribution is normal with mean μ and variance σ^{2} / N. Or

$$
\bar{X} \sim \mathrm{~N}\left(\mu, \sigma^{2} / N\right)
$$

Then, $\mathrm{E}[\bar{X}]=\mu$

$$
\operatorname{Var}[\bar{X}]=\sigma^{2} / N \quad \Rightarrow \text { variance of sample mean decreases as } \mathrm{N} \text { increases! }
$$

The SD of the sampling distribution is called the standard error (SE). Then, $\operatorname{SE}(\bar{X})=\sigma / \operatorname{sqrt}(N)$.
We usually associate the standard error with the precision of the estimate. That is, the precision of the estimation of the mean increases as N increases.

- Below, we show the sampling distribution for the sample mean of a normal population for different sample sizes (N).

Note: As $N \rightarrow \infty, \bar{X} \rightarrow \mu \quad$-i.e., the distribution becomes a spike at μ !

Note: If the data is not normal, the CLT is used to approximate the sampling distribution by the asymptotic one, usually, after some manipulations. Again, in those cases, the notation goes from \xrightarrow{d} to \xrightarrow{a}.

- For the sample variance σ^{2}, if the X_{i} 's are normally distributed, then the sampling distribution is derived from this result:

$$
(N-1) s^{2} / \sigma^{2} \sim \chi_{N-1}^{2}
$$

It can be shown that a random variable that follows a χ_{v}^{2} distribution has a variance equal to 2 times the degrees of freedom $\left(=2^{*} v\right)$. Then,

$$
\operatorname{Var}\left[(N-1) s^{2} / \sigma^{2}\right]=2 *(N-1) \quad \Rightarrow \operatorname{Var}\left[s^{2}\right]=2 * \sigma^{4} /(N-1)
$$

Then, $\operatorname{SE}\left(s^{2}\right)=\operatorname{SD}\left(s^{2}\right)=\sigma^{2} * \sqrt{2 /(N-1)]}$.
Note: If the data is not normal (\& N is large), the CLT can be used to approximate the sampling distribution by the asymptotic one:

$$
s^{2} \xrightarrow{a} \mathrm{~N}\left(\sigma^{2}, \sigma^{4} *(\kappa-1) / N\right)
$$

where $\kappa=\frac{\mu_{4}^{0}}{\sigma^{4}} \quad$ (recall when data is normal, $\kappa=3$).
Remark: The precision of the estimation increases as N increases.
This remark is especially relevant in Finance, where we derive relations between expected returns and risk factors, like market risk or volatility. As we gather more data, expected returns and the volatility of returns will be more precisely estimated.

Hypothesis Testing

A statistical hypothesis test is a method of making decisions using experimental data. A result is called statistically significant if it is unlikely to have occurred by chance.

- These decisions are made using (null) hypothesis tests. A hypothesis can specify a particular value for a population parameter, say $q=q 0$. Then, the test can be used to answer a question like:

Assuming q_{0} is true, what is the probability of observing a value for the (test) statistic used that is at least as big as the value that was actually observed?

- Uses of hypothesis testing:
- Check the validity of theories or models.
- Check if new data can cast doubt on established facts.
- In general, there are two kinds of hypotheses:
(1) About the form of the probability distribution

Example: Is the random variable normally distributed?
(2) About the parameters of a distribution function

Example: Is the mean of a distribution equal to 0 ?

- The second class is the traditional material of econometrics. We may test whether the effect of income on consumption is greater than one, or whether the size coefficient on a CAPM regression is equal to zero.
- Hypothesis testing involves the comparison between two competing hypothesis (sometimes, they represent partitions of the world).
- The null hypothesis, denoted H_{0}, is sometimes referred to as the maintained hypothesis.
- The alternative hypothesis, denoted H_{1}, is the hypothesis that will be considered if the null hypothesis is "rejected."

Idea: We collect a sample of data $X=\left\{X_{1}, \ldots, X_{N}\right\}$. We construct a statistic $\mathrm{T}(X)=f(X)$, called the test statistic. Now we have a decision rule:

- If $T(X)$ is contained in space R, we reject H_{0} (\& we learn).
- If $T(X)$ is in the complement of $R\left(R^{\mathrm{C}}\right)$, we fail to reject H_{0}.

Note: $T(X)$, like any other statistic, is a RV. It has a distribution.
Example: Suppose we want to test if the mean of IBM annual returns, $\mu_{\text {IBм }}$ is 10%. That is, H_{0} : $\mu_{\text {IBM }}=10 \%$.

From the population, we get a sample: $\left\{X_{1962}, X_{1963}, \ldots, X_{N=2020}\right\}$, with $\mathrm{N}=59$. We use $T(X)=\bar{X}$, which is unbiased, consistent, and, assuming X is normally distributed, we know its distribution, $\bar{X} \sim \mathrm{~N}\left(\mu, \sigma^{2} / N\right)$.

Now, we need to determine the rejection region, R, such that if

$$
T(X)=\bar{X} \notin\left[T_{L B}, T_{U B}\right] \quad \Rightarrow \text { Reject } \mathrm{H}_{0}: \mu_{\mathrm{IBM}}=10 \%
$$

That is,

$$
\mathrm{R}=\left[\bar{X}<T_{L B}, T_{U B}>\bar{X}\right]
$$

Rejection Region

- Q: How do we determine $T_{L B}$ and $T_{U B}$ and, thus, make a decision?

Q: How do we determine $T_{L B}$ and $T_{U B}$ and, thus, make a decision? As shown below, we use the distribution of \bar{X}, which is derived under H_{0}.

Note: In the Graph above, the blue area gives us the associated probability with R. That is, the probability, under H_{0}, that the observed $T(X)=\bar{X}$ falls in the rejection region. The blue are is called the significance level.

Hypothesis Testing: Steps

We present the classical approach, a synthesized approach, known as significance testing. It relies on Fisher's p-value: the probability, of observing a result at least as extreme as the test statistic, under H_{0}.

We follow these steps:
Step 1. Identify $\mathrm{H}_{0} \&$ decide on a significance level $(\alpha \%)$ to compare your test results.
Step 2. Determine the appropriate test statistic $\mathrm{T}(X)$ and its distribution under the assumption that H_{0} is true.

Step 3. Calculate $T(X)$ from the data.
Step 4. Decision Rule:
Reject H_{0} if the p-value is sufficiently small, that is, we consider $\mathrm{T}(X)$ in R (we learn). Otherwise, we reach no conclusion (no learning).

- Q: What p-value is "sufficiently small" as to warrant rejection of H_{0} ?

Rule: If p-value $<\alpha$ (say, $5 \%) \Rightarrow$ test result is significant: Reject H_{0}.
If the results are "not significant," no conclusions are reached (no learning here). Go back gather more data or modify model.

- The father of this approach, Ronald Fisher, favored 5% or 1%.

Example: From the U.S. Jury System
H_{0} : The defendant is not guilty
H_{1} : The defendant is guilty
In statistics we learn when we reject. In this case, we learn a defendant is guilty when the jury finds the defendant guilty, by rejecting H_{0}.

Example: From the U.S. Jury System
Step 1. Identify $\mathrm{H}_{0} \&$ decide on a significance level ($\alpha \%$)
H_{0} : The defendant is not guilty
H_{1} : The defendant is guilty
Significance level $\alpha=$ "beyond reasonable doubt," presumably small level.
Step 2. After judge instructions, each juror forms an "innocent index" $\mathrm{T}(X)$.
Step 3. Through deliberations, jury reaches a conclusion $\mathrm{T}(X)=\sum_{i=1}^{12} \mathrm{~T}(X)_{i}$.
Step 4. Decision Rule:
If p-value of $\mathrm{T}(X)<\alpha \Rightarrow$ Reject H_{0}. That is, guilty!
If p-value of $\mathrm{T}(X)>\alpha \Rightarrow$ Fail to reject H_{0}. That is, non-guilty.
Alternatively, we build a rejection region around H_{0}.
Note: Mistakes are made. We want to quantify these mistakes.

- Failure to reject H_{0} does not necessarily mean that the defendant is not guilty, or rejecting H_{0} does not mean necessarily the defendant is guilty. Type I error and Type II error give us an idea of both mistakes.

Definition: Type I and Type II errors
A Type I error is the error of rejecting H_{0} when it is true. A Type II error is the error of "accepting" H_{0} when it is false (that is, when H_{1} is true).

Notation: \quad Probability of Type I error: $\alpha=\mathrm{P}\left[\mathrm{X} \in R \mid \mathrm{H}_{0}\right.$ is true $]$
Probability of Type II error: $\beta=\mathrm{P}\left[\mathrm{X} \in R^{C} \mid \mathrm{H}_{1}\right.$ is true $]$

	State of World	
Decision	H_{0} true	H_{1} true (H0 false)
Cannot reject ("accept") H_{0}	Correct decision	Type II error
Reject H_{0}	Type I error	Correct decision

Need to control both types of error:

$$
\begin{aligned}
& \alpha=\mathrm{P}\left[\text { rejecting } \mathrm{H}_{0} \mid \mathrm{H}_{0} \text { is true }\right] \\
& \beta=\mathrm{P}\left[\text { not rejecting } \mathrm{H}_{0} \mid \mathrm{H}_{1} \text { is true }\right]
\end{aligned}
$$

Example: From the U.S. Jury System
Type I error is the error of finding an innocent defendant guilty.
Type II error is the error of finding a guilty defendant not guilty.

- In general, we think Type I error is the worst of the two errors, we try to minimize the error of sending to jail an innocent person.

Actually, we would like Type I error to be zero. However, the only way to do this (100% of innocent defendants are found not guilty) is to never reject H_{0}. Then, we maximize Type II error.

- There is a clear trade-off between both errors. Traditional view: Set Type I error equal to a small number (defined in the U.S. court system as "beyond reasonable doubt") and design a test that minimizes Type II error.

The usual tests (t-tests, F-tests, Likelihood Ratio tests) incorporate this traditional view.
Example: We want to test if the mean is equal to $\mu 0$. Then,

1. $\mathrm{H}_{0}: \mu=\mu 0$.
$\mathrm{H}_{1}: \mu \neq \mu_{0}$.
2. Appropriate $\mathrm{T}(X)$: t-test (based on σ unknown and estimated by s).

Determine distribution of $\mathrm{T}(X)$ under H_{0}. Sampling distribution of \bar{X}, under H_{0} :

$$
\bar{X} \sim \mathrm{~N}\left(\mu 0, \sigma^{2} / N\right)
$$

Then, distribution of $\mathrm{T}(X)$ under H_{0} :

$$
\mathrm{t}=\frac{\bar{X}-\mu_{0}}{s / \sqrt{N}} \sim t_{N-1} \quad-\text { when } N>30, \mathrm{t} \sim \mathrm{~N}(0,1) .
$$

3. Compute $\mathrm{t}, \hat{\mathrm{t}}$, using \bar{X}, μ_{0}, s, and N. Get p-value $(\hat{\mathrm{t}})$.
4. Rule: Set an α level. If p-value $(\hat{\mathrm{t}})<\alpha \quad \Rightarrow$ Reject $\mathrm{H}_{0}: \mu=\mu_{0}$.

Alternatively, if $|\hat{\mid}|>t_{N-1, \alpha / 2}(=1.96$, if $\alpha=.05) \quad \Rightarrow$ Reject $\mathrm{H}_{0}: \mu=\mu_{0}$.

Technical Note 1: In step 2, the distribution of the t-test, t, is exact only if $\{X\}$ follows a normal distribution, otherwise, the distribution is asymptotic (for this we need a large N); that is

$$
\mathrm{t}=\frac{\bar{X}-\mu_{0}}{s / \sqrt{N}} \xrightarrow{d} \mathrm{~N}(0,1)
$$

Technical Note 2: In step 2, we determine the distribution of t , by using the sampling distribution of \bar{X} under H_{0}. If H_{0} is not true, suppose $\mu=\mu_{1}$, then

$$
\bar{X} \sim \mathrm{~N}\left(\mu_{1}, \sigma^{2} / N\right)
$$

and, thus, t is distributed $\mathrm{N}(0,1)$ only under H_{0}, since only under H_{0} the $\mathrm{E}\left[\bar{X}-\mu_{0}\right]=0$.

Lecture 1 - Appendix: Review of Linear Algebra

A Matrix

A matrix is a set of elements, organized into rows and columns

- a and d are the diagonal elements.
- b and c are the off-diagonal elements.
- Matrices are like plain numbers in many ways: they can be added, subtracted, and, in some cases, multiplied and inverted (divided).

Example:

$$
\boldsymbol{A}=\left[\begin{array}{ll}
a_{11} & a_{21} \\
a_{12} & a_{22}
\end{array}\right] ; \quad b=\left[\begin{array}{lll}
b_{1} & b_{2} & b_{3}
\end{array}\right] .
$$

Dimensions of a matrix: numbers of rows by numbers of columns. The Matrix \mathbf{A} is a 2×2 matrix, b is a 1×3 matrix.

A matrix with only 1 column or only 1 row is called a vector.
If a matrix has an equal numbers of rows and columns, it is called a square matrix. Matrix \mathbf{A}, above, is a square matrix.

Usual Notation: \quad Upper case letters $\quad \Rightarrow$ matrices
Lower case $\quad \Rightarrow$ vectors

Matrices - Information

Information is described by data. A tool to organize the data is a list, which we call a vector. Lists of lists are called matrices. That is, we organize the data using matrices.

We think of the elements of \mathbf{X} as data points ("data entries", "observations"), in economics, we usually have numerical data.

We store the data in rows. In a $T x k$ matrix, \mathbf{X}, over time we build a database:

$$
X=\left[\begin{array}{ccc}
x_{11} & \cdots & x_{k 1} \\
\vdots & \ddots & \vdots \\
x_{1 T} & \cdots & x_{k T}
\end{array}\right]
$$

- Once the data is organized in matrices it can be easily manipulated: multiplied, added, etc. (this is what Excel does).
- In econometrics, we have a model $y=f\left(x_{1}, x_{2}, \ldots, x_{k}\right)$, which we want to estimate. We collect data, say $T($ or $N)$ observations, on a dependent variable, \mathbf{y}, and on k explanatory variables, \mathbf{X}.
- Under the usual notation, vectors will be column vectors: \mathbf{y} and $\boldsymbol{x}_{\boldsymbol{k}}$ are $T \mathrm{x} 1$ vectors:

$$
\begin{array}{ll}
\mathbf{y}=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{T}
\end{array}\right] \quad \& \quad \boldsymbol{x}_{j}=\left[\begin{array}{c}
x_{j 1} \\
\vdots \\
x_{j T}
\end{array}\right] j=1, \ldots, k \\
\mathbf{X} \text { is a } T \mathrm{x} k \text { matrix: } & \boldsymbol{X}=\left[\begin{array}{ccc}
x_{11} & \cdots & x_{k 1} \\
\vdots & \ddots & \vdots \\
x_{1 T} & \cdots & x_{k T}
\end{array}\right]
\end{array}
$$

Its columns are the $k T \mathrm{x} 1$ vectors $\boldsymbol{x}_{\boldsymbol{j}}$. It is common to treat $\boldsymbol{x}_{\boldsymbol{I}}$ as vector of ones, í.

Special Matrices - Identity and Null

- Identity Matrix: A square matrix with 1's along the diagonal and 0's everywhere else. Similar to scalar " 1 ."

$$
I=\left[\begin{array}{ccc}
1 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 1
\end{array}\right]
$$

- Null matrix: A matrix in which all elements are 0 's. Similar to scalar " 0 ."

$$
\mathbf{0}=\left[\begin{array}{ccc}
0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0
\end{array}\right]
$$

- Both are diagonal matrices \Rightarrow off-diagonal elements are zero.

Note: Both are examples of symmetric and idempotent matrices. As we will see later:

- Symmetric: $\quad \mathrm{A}=\mathrm{A}^{\mathrm{T}}$
- Idempotent: $A=A^{2}=A^{3}=\ldots$

Elementary Row Operations

Elementary row operations:

- Switching: Swap the positions of two rows
- Multiplication: Multiply a row by a non-zero scalar
- Addition: Add to one row a scalar multiple of another.
- An elementary matrix is a matrix which differs from the identity matrix by one single elementary row operation.
- If the matrix subject to elementary row operations is associated to a system of linear equations, then these operations do not change the solution set. Row operations can make the problem easier.
- Elementary row operations are used in Gaussian elimination to reduce a matrix to row echelon form.

Matrix multiplication: Details

Multiplication of matrices requires a conformability condition

- The conformability condition for multiplication is that the column dimensions of the lead matrix \mathbf{A} must be equal to the row dimension of the lag matrix \mathbf{B}.
- If \mathbf{A} is an $(m \times n)$ and \mathbf{B} an $(n \times p)$ matrix (\mathbf{A} has the same number of columns as \mathbf{B} has rows), then we define the product of $\mathbf{A B}$. $\mathbf{A B}$ is $(m \times p)$ matrix with its $i k^{\text {th }}$ element is $c_{i k}=\sum_{j=1}^{n} a_{i j} b_{j k}$.

Example: Suppose we have a 1×2 vector a, and a 2×3 matrix B. What are the dimensions of the product: $a^{*} \mathrm{~B}$?

$$
\left.\begin{array}{rl}
a B & =\left[a_{11} a_{12}\right]\left[\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23}
\end{array}\right]=c=\left[\begin{array}{lll}
c_{11} & c_{12} & c_{13}
\end{array}\right] \\
& =\left[a_{11} b_{11}+a_{12} b_{21}\right.
\end{array} a_{11} b_{12}+a_{12} b_{22} \quad a_{11} b_{13}+a_{12} b_{23}\right] . ~ \$
$$

Dimensions: $a(1 \times 2), \mathrm{B}(2 \times 3) \Rightarrow \mathrm{c}(1 \times 3)$.
Example: We want to multiply $\mathbf{A}(2 \times 2)$ and $\mathbf{B}(2 \times 2)$, where \mathbf{A} has elements $a_{i j}$ and \mathbf{B} has elements $b_{j k}$. Recall the $i k^{\text {th }}$ element is

$$
\begin{gathered}
c_{i k}=\sum_{j=1}^{n=2} a_{i j} b_{j k} \\
\mathbf{A}=\left[\begin{array}{cc}
2 & 1 \\
7 & 9
\end{array}\right] \\
\mathbf{B}=\left[\begin{array}{ll}
1 & 0 \\
2 & 3
\end{array}\right] \\
\mathbf{C}=\left[\begin{array}{ll}
2 & 1 \\
7 & 9
\end{array}\right] *\left[\begin{array}{ll}
1 & 0 \\
2 & 3
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{4}=2 * 1+1 * 2 & \mathbf{3}=2 * 0+1 * 3 \\
\mathbf{2 5}=7 * 1+9 * 2 & \mathbf{2 7}=7 * 0+9 * 3
\end{array}\right] \\
C_{2 x 2}=A_{2 \times 2} * B_{2 \times 2}
\end{gathered}
$$

Dimensions: $A(2 \times 2), \mathrm{B}(\mathbf{2} \times 2) \Rightarrow \mathrm{C}(2 \times 2)$, a square matrix. ब

Example: We want to multiply $\mathbf{X}(2 \times 2)$ and $\boldsymbol{\beta}(2 \times 1)$, where \mathbf{X} has elements $x_{i j}$ and \mathbf{b} has elements β_{j} :

$$
\mathbf{X}=\left[\begin{array}{ll}
x_{11} & x_{21} \\
x_{12} & x_{22}
\end{array}\right] \quad \& \quad \beta=\left[\begin{array}{l}
\beta_{1} \\
\beta_{2}
\end{array}\right]
$$

We compute

$$
y=\mathbf{X} \boldsymbol{\beta}
$$

Recall the $i^{\text {th }}$ element is

$$
y_{i}=\sum_{j=1}^{n=2} x_{i j} \beta_{j}
$$

Then,

$$
\boldsymbol{y}=\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{ll}
x_{11} & x_{21} \\
x_{12} & x_{22}
\end{array}\right] *\left[\begin{array}{l}
\beta_{1} \\
\beta_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{11} \beta_{1}+x_{21} \beta_{2} \\
x_{12} \beta_{1}+x_{22} \beta_{2}
\end{array}\right]
$$

Dimensions: $\mathbf{X}(2 \times 2), \boldsymbol{\beta}(2 \times 1) \Rightarrow \boldsymbol{y}(2 \times 1)$, a row vector. $\boldsymbol{\|}$

Transpose Matrix

The transpose of a matrix \mathbf{A} is another matrix \mathbf{A}^{T} (also written \mathbf{A}^{\prime}) created by any one of the following equivalent actions:
-write the rows (columns) of \mathbf{A} as the columns (rows) of \mathbf{A}^{T}

- reflect \mathbf{A} by its main diagonal to obtain \mathbf{A}^{T}

Formally, the (i, j) element of \mathbf{A}^{T} is the (j, i) element of \mathbf{A} :

$$
\left[\boldsymbol{A}^{\mathrm{T}}\right]_{i j}=[\boldsymbol{A}]_{j i}
$$

Example: $\quad A=\left[\begin{array}{rrr}3 & 8 & -9 \\ 1 & 0 & 4\end{array}\right] \Rightarrow A^{\prime}=\left[\begin{array}{rr}3 & 1 \\ 8 & 0 \\ -9 & 4\end{array}\right]$. व

- Results:
- If \mathbf{A} is a $m \times n$ matrix $\quad \Rightarrow \mathbf{A}^{\mathrm{T}}$ is a $n \times m$ matrix.
- ($\left.\mathbf{A}^{\prime}\right)^{\prime}=\mathbf{A}$
- Conformability changes unless the matrix is square.
- (AB)' = $\mathbf{B}^{\prime} \mathbf{A}^{\prime}$

Example: In econometrics, an important matrix is $\mathbf{X}^{\prime} \mathbf{X}$. Recall \mathbf{X} :

$$
X=\left[\begin{array}{ccc}
x_{11} & \cdots & x_{k 1} \\
\vdots & \ddots & \vdots \\
x_{1 T} & \cdots & x_{k T}
\end{array}\right] \quad \text { a }(T \mathrm{x} k) \text { matrix }
$$

Then,

$$
\boldsymbol{X}^{\prime}=\left[\begin{array}{ccc}
x_{11} & \cdots & x_{1 T} \\
\vdots & \ddots & \vdots \\
x_{k 1} & \cdots & x_{k T}
\end{array}\right] \quad \text { a }(k x T) \text { matrix. ब }
$$

Basic Operations

Addition, Subtraction, Multiplication

$$
\begin{array}{ll}
{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]+\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]=\left[\begin{array}{ll}
a+e & b+f \\
c+g & d+h
\end{array}\right]} & \text { Just add elements } \\
{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]-\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]=\left[\begin{array}{ll}
a-e & b-f \\
c-g & d-h
\end{array}\right]} & \text { Just subtract elements } \\
{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]=\left[\begin{array}{ll}
a e+b g & a f+b h \\
c e+d g & c f+d h
\end{array}\right]} & \text { Multiply each row by each column and add } \\
k\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
k a & k b \\
k c & k d
\end{array}\right] & \text { Multiply each row by each column and add }
\end{array}
$$

Example:

$$
\begin{aligned}
{\left[\begin{array}{ll}
2 & 1 \\
7 & 9
\end{array}\right]+\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right] } & =\left[\begin{array}{cc}
5 & 2 \\
7 & 11
\end{array}\right] & & \text { Addition } \\
A_{2 \times 2}+B_{2 \times 2} & =C_{2 \times 2} & & \\
{\left[\begin{array}{ll}
2 & 1 \\
7 & 9
\end{array}\right]-\left[\begin{array}{ll}
1 & 0 \\
2 & 3
\end{array}\right] } & =\left[\begin{array}{ll}
1 & 1 \\
5 & 6
\end{array}\right] & & \text { Subraction } \\
A_{2 x 2}-B_{2 \times 2} & =C_{2 \times 2} & & \\
{\left[\begin{array}{rr}
2 & 1 \\
7 & 9
\end{array}\right] *\left[\begin{array}{ll}
1 & 0 \\
2 & 3
\end{array}\right] } & =\left[\begin{array}{cc}
4 & 3 \\
25 & 27
\end{array}\right] & & \text { Multiplication } \\
A_{2 x 2} * B_{2 x 2} & =C_{2 x 2} & & \\
\frac{1}{8}\left[\begin{array}{ll}
2 & 4 \\
6 & 1
\end{array}\right] & =\left[\begin{array}{cc}
1 / 4 & 1 / 2 \\
3 / 4 & 1 / 8
\end{array}\right] & & \text { Scalar multiplication. } \mathbb{l}
\end{aligned}
$$

Basic Matrix Operations: $\varepsilon^{\prime} \varepsilon$

In Least Squares (LS) estimation, we minimize a sum of square errors (ε_{i} for $=1,2, \ldots, T$):

$$
\mathrm{S}\left(x_{i}, \boldsymbol{\beta}\right)=\sum_{i=1}^{T} \varepsilon_{i}^{2}
$$

Let $\boldsymbol{\varepsilon}$ be the $T \mathrm{x} 1$ vector of errors. We use linear algebra to write the sum of squares of its elements as (dot product of $2 T \times 1$ vectors):

$$
\mathrm{S}\left(x_{i}, \boldsymbol{\beta}\right)=\sum_{i=1}^{T} \varepsilon_{i}^{2}=\boldsymbol{\varepsilon}^{\prime} \boldsymbol{\varepsilon}
$$

Check:

$$
\boldsymbol{\varepsilon}^{\prime} \boldsymbol{\varepsilon}=\left[\begin{array}{lll}
\varepsilon_{1} & \varepsilon_{2} \ldots . & \varepsilon_{T}
\end{array}\right] *\left[\begin{array}{c}
\varepsilon_{1} \\
\vdots \\
\varepsilon_{T}
\end{array}\right]=\left[\varepsilon_{1}^{2}+\varepsilon_{2}^{2}+\ldots .+\varepsilon_{T}^{2}\right]=\sum_{i=1}^{T} \varepsilon_{i}^{2}
$$

Thus, if we define $\boldsymbol{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$, LS estimation picks $\boldsymbol{\beta}$ to minimize:

$$
S\left(x_{i}, \boldsymbol{\beta}\right)=\varepsilon^{\prime} \varepsilon=(\boldsymbol{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\boldsymbol{y}-\mathbf{X} \boldsymbol{\beta}) .
$$

Basic Matrix Operations: $\mathbf{X}^{\prime} \mathbf{X}$

A special matrix in econometrics, $\mathbf{X}^{\prime} \mathbf{X}$ (a $k x k$ matrix):
$\operatorname{Recall} \mathbf{X}(T \mathrm{x} k): \boldsymbol{X}=\left[\begin{array}{ccc}x_{11} & \cdots & x_{k 1} \\ \vdots & \ddots & \vdots \\ x_{1 T} & \cdots & x_{k T}\end{array}\right] \& \boldsymbol{X}^{\prime}=\left[\begin{array}{ccc}x_{11} & \cdots & x_{1 T} \\ \vdots & \ddots & \vdots \\ x_{k 1} & \cdots & x_{k T}\end{array}\right]$

$$
\begin{aligned}
& \boldsymbol{X}^{\prime} \boldsymbol{X}=\left[\begin{array}{ccc}
\sum_{i=1}^{T} x_{1 i}^{2} & \cdots & \sum_{i=1}^{T} x_{1 i} x_{k i} \\
\vdots & \ddots & \vdots \\
\sum_{i=1}^{T} x_{k i} x_{1 i} & \cdots & \sum_{i=1}^{T} x_{k i}^{2}
\end{array}\right]= \\
& \quad=\sum_{i=1}^{T}\left[\begin{array}{ccc}
x_{1 i}^{2} & \cdots & x_{1 i} x_{k i} \\
\vdots & \ddots & \vdots \\
x_{k i} x_{1 i} & \cdots & x_{k i}^{2}
\end{array}\right]= \\
& \quad=\sum_{i=1}^{T}\left[\begin{array}{c}
x_{1 i} \\
\vdots \\
x_{k i}
\end{array}\right]\left[\begin{array}{lll}
x_{1 i} & \cdots & x_{k i}
\end{array}\right]=\sum_{i=\mathbf{1}}^{T} \boldsymbol{x}_{\boldsymbol{i}} \boldsymbol{x}_{\boldsymbol{i}}{ }^{\prime}
\end{aligned}
$$

Basic Matrix Operations: í'X

Recall i is a column vector of ones (in this case, a Tx1 vector):

$$
i=\left[\begin{array}{c}
1 \\
1 \\
\ldots \\
1
\end{array}\right]
$$

Given $\mathrm{X}(T \mathrm{x} k)$, then $\mathbf{i}^{\prime} \mathbf{X}$ is a $1 \mathrm{x} k$ vector:

$$
\mathfrak{i}^{\prime} \boldsymbol{X}=\left[\begin{array}{lll}
\mathbf{1} & \ldots & \mathbf{1}
\end{array}\right]\left[\begin{array}{ccc}
x_{11} & \cdots & x_{k 1} \\
\vdots & \ddots & \vdots \\
x_{1 T} & \cdots & x_{k T}
\end{array}\right]=\left[\begin{array}{llll}
\sum_{t=1}^{T} \boldsymbol{x}_{1 t} & \ldots & \sum_{t=1}^{T} \boldsymbol{x}_{k t}
\end{array}\right]
$$

Note: If x_{1} is a vector of ones (representing a constant in the linear classical model), then:

$$
\mathbf{i}^{\prime} \mathbf{x}_{1}=\sum_{t=\mathbf{1}}^{T} \boldsymbol{x}_{\mathbf{1} t}=\sum_{t=\mathbf{1}}^{T} \mathbf{1}=T \quad \text { ("dot product") }
$$

Inverse of a Matrix

Identity matrix: $\mathbf{A I}=\mathbf{A}$

$$
I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Notation: $\mathbf{I}_{\mathbf{j}}$ is a $j \times j$ identity matrix.
Given $\mathbf{A}(m \times n)$, the matrix $\mathbf{B}(n \times m)$ is a right-inverse for \mathbf{A} iff $\mathbf{A B}=\mathbf{I}_{\mathbf{m}}$

Given $\mathbf{A}(m \times n)$, the matrix $\mathbf{C}(m \times n)$ is a left-inverse for \mathbf{A} iff $\mathbf{C A}=\mathbf{I}_{\mathbf{n}}$

Theorem: If $\mathbf{A}(m \mathrm{x} n)$, has both a right-inverse \mathbf{B} and a left-inverse \mathbf{C}, then $\mathbf{C}=\mathbf{B}$.
Proof:
We have $\quad \mathbf{A B}=\mathbf{I}_{\mathbf{m}}$ and $\mathbf{C A}=\mathbf{I}_{\mathbf{n}}$.
Thus,

$$
\begin{aligned}
& \mathbf{C}(\mathbf{A B})=\mathbf{C} \mathbf{I}_{\mathbf{m}}=\mathbf{C} \quad \text { and } \mathbf{C}(\mathbf{A B})=(\mathbf{C A}) \mathbf{B}=\mathbf{I}_{\mathbf{n}} \mathbf{B}=\mathbf{B} \\
& \Rightarrow \mathbf{C}(n \times m)=\mathbf{B}(m \times n)
\end{aligned}
$$

Note:

- This matrix is unique. (Suppose there is another left-inverse \mathbf{D}, then $\mathbf{D}=\mathbf{B}$ by the theorem, so $\mathbf{D}=\mathbf{C}$).
- If \mathbf{A} has both a right and a left inverse, it is a square matrix. It is usually called invertible. We say "the matrix \mathbf{A} is non-singular."
- Inversion is tricky:
$(\mathbf{A B C})^{-1}=\mathbf{C}^{-1} \mathbf{B}^{-1} \mathbf{A}^{-1}$
Theorem: If $\mathbf{A}(m \times n)$ and $\mathbf{B}(n \times p)$ have inverses, then $\mathbf{A B}$ is invertible and $(\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1}$ Proof:
We have $\quad \mathbf{A A}^{-1}=\mathbf{I}_{\mathbf{m}}$ and $\mathbf{A}^{-1} \mathbf{A}=\mathbf{I}_{\mathbf{n}}$

$$
\mathbf{B B}^{-1}=\mathbf{I}_{\mathbf{n}} \text { and } \mathbf{B}^{-1} \mathbf{B}=\mathbf{I}_{\mathbf{p}}
$$

Thus,
$\mathbf{B}^{-1} \mathbf{A}^{-1}(\mathbf{A B})=\mathbf{B}^{-1}\left(\mathbf{A}^{-1} \mathbf{A}\right) \mathbf{B}=\mathbf{B}^{-1} \mathbf{I}_{\mathbf{n}} \mathbf{B}=\mathbf{B}^{-1} \mathbf{B}=\mathbf{I}_{\mathbf{p}}$
(AB) $\mathbf{B}^{-1} \mathbf{A}^{-1}=\mathbf{A}\left(\mathbf{B B}^{-1}\right) \mathbf{A}^{-1}=\mathbf{A} \mathbf{I}_{\mathbf{n}} \mathbf{A}^{-1}=\mathbf{A} \mathbf{A}^{-1}=\mathbf{I}_{\mathbf{m}}$
$\Rightarrow \mathbf{A B}$ is invertible and $(\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1}$
Note: It is not possible to divide one matrix by another. That is, we can not write A/B. For two matrices \mathbf{A} and \mathbf{B}, the quotient can be written as $\mathbf{A B}^{-1}$ or $\mathbf{B}^{-1} \mathbf{A}$.

- In general, in matrix algebra $\mathbf{A B}^{-1} \neq \mathbf{B}^{-1} \mathbf{A}$.

Thus, writing A / B does not clearly identify whether it represents $\mathbf{A B}-1$ or $\mathbf{B}-1 \mathbf{A}$.
We'll say \mathbf{B}^{-1} post-multiplies $\mathbf{A}\left(\right.$ for $\left.\mathbf{A B}^{-1}\right)$ and \mathbf{B}^{-1} pre-multiplies $\mathbf{A}\left(\right.$ for $\left.\mathbf{B}^{-1} \mathbf{A}\right)$

Transpose and Inverse Matrix

$(\mathbf{A}+\mathbf{B})^{\prime}=\mathbf{A}^{\prime}+\mathbf{B}^{\prime}$
If $\mathbf{A}^{\prime}=\mathbf{A}$, then \mathbf{A} is called a symmetric matrix.

Theorems:

- Given two conformable matrices \mathbf{A} and \mathbf{B}, then $(\mathbf{A B})^{\prime}=\mathbf{B}^{\prime} \mathbf{A}^{\prime}$
- If \mathbf{A} is invertible, then $\left(\mathbf{A}^{-1}\right)^{\prime}=\left(\mathbf{A}^{\prime}\right)^{-1}$ (and \mathbf{A}^{\prime} is also invertible).

Properties of Symmetric Matrices
 Definition:

If $\mathbf{A}^{\prime}=\mathbf{A}$, then \mathbf{A} is called a symmetric matrix.

- In many applications, matrices are often symmetric. For example, in statistics the correlation matrix and the variance covariance matrix.
- Symmetric matrices play the same role as real numbers do among the complex numbers.
- We can do calculations with symmetric matrices like with numbers: for example, we can solve $\mathbf{B}^{2}=\mathbf{A}$ for \mathbf{B} if \mathbf{A} is symmetric matrix ($\& \mathbf{B}$ is square root of A.) This is not possible in general.

Theorems:

- If \mathbf{A} and \mathbf{B} are $n \times n$ symmetric matrices, then $(\mathbf{A B})^{\prime}=\mathbf{B A}$
- If \mathbf{A} and \mathbf{B} are $n \times n$ symmetric matrices, then $(\mathbf{A}+\mathbf{B})^{\prime}=\mathbf{B}+\mathbf{A}$
- If \mathbf{C} is any $n \mathrm{x} n$ matrix, then $\mathbf{B}=\mathbf{C}^{\prime} \mathbf{C}$ is symmetric.
- (Spectral decomposition) If \mathbf{A} is $n \times n$ symmetric matrix, then it can be diagonalized as $\mathbf{B}=\mathbf{X}^{-1} \mathbf{A} \mathbf{X}$, with an orthogonal \mathbf{X}.
- Useful symmetric matrices:

$$
\mathbf{V}=\mathbf{X}^{\prime} \mathbf{X}
$$

$$
\mathbf{P}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}, \quad \mathbf{P}: \text { Projection matrix }
$$

$$
\mathbf{M}=\mathbf{I}-\mathbf{P}=\mathbf{I}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}, \quad \mathbf{M}: \text { Residual maker }
$$

$$
\operatorname{Var}[\mathbf{b}]=\boldsymbol{\sigma}^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \quad \text { OLS Variance of } \mathbf{b}
$$

Application 1: Linear System

There is a functional form relating a dependent variable, y, and k explanatory variables, \mathbf{X}. The functional form is linear, but it depends on k unknown parameters, β. The relation between y and \mathbf{X} is not exact. There is an error, $\boldsymbol{\varepsilon}$. We have T observations of y and \mathbf{X}.

Then, the data is generated according to:

$$
y_{i}=\sum_{j=1}^{k} x_{j i} \beta_{j}+\varepsilon_{i} \quad i=1,2, \ldots, T .
$$

Or using matrix notation:

$$
\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}
$$

where $\mathbf{y} \& \varepsilon$ are (Tx1); \mathbf{X} is $(T \mathrm{x} k)$; and β is ($k \mathrm{x} 1)$.
We will call this relation data generating process (DGP).
The goal of econometrics is to estimate the unknown vector $\boldsymbol{\beta}$.

- Assume an economic model as system of linear equations with:
a_{ij} parameters, \quad where $i=1, . ., m$ rows, $j=1, . ., \mathrm{n}$ columns
X_{i} endogenous variables (n),
d_{i} exogenous variables and constants (m).

$$
\left\{\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=d_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=d_{2} \\
\vdots \vdots \vdots \vdots \vdots \\
\vdots \quad \vdots \quad \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}=d_{m}
\end{array}\right.
$$

We can write this system using linear algebra notation: $\mathbf{A x}=\boldsymbol{d}$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\cdots \\
x_{n}
\end{array}\right]} \\
& \mathbf{A}=\left(\begin{array}{c}
\mathbf{d}_{\mathbf{1}} \\
\cdots \\
\mathbf{d}_{\mathbf{m}}
\end{array}\right] \mathbf{d}=\text { column vector } \\
& \mathbf{x}=\text { column vector }
\end{aligned}
$$

- Summary: System of linear equations:

$$
\mathbf{A x}=d
$$

where
$\mathbf{A}=(m \times n)$ matrix of parameters
$\mathbf{x}=$ column vector of endogenous variables ($n \times 1$)
$\boldsymbol{d}=$ column vector of exogenous variables and constants ($m \times 1$)
Solve for x *.

- Questions:
- For what combinations of \mathbf{A} and \boldsymbol{d} there will zero, one, many or an infinite number of solutions?
- How do we compute (characterize) those sets of solutions?

Theorem: Given $\mathbf{A}(m \times n)$ invertible. Then, the equation $\mathbf{A x}=\boldsymbol{d}$ has one and only one solution for every $\boldsymbol{d}(m \mathrm{x} 1)$. That is, there is a unique x^{*}.

$$
\Rightarrow \mathbf{x}^{*}=\mathbf{A}^{-1} \boldsymbol{d}
$$

Linear dependence and Rank: Example

A set of vectors is linearly dependent if any one of them can be expressed as a linear combination of the remaining vectors; otherwise, it is linearly independent.

- Formal definition: Linear independence (LI)

The set $\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{k}\right\}$ is called a linearly independent set of vectors iff

$$
c_{1} \boldsymbol{u}_{1}+c_{2} \boldsymbol{u}_{2}+\ldots+c_{k} \boldsymbol{u}_{k}=\mathbf{0} \quad \Rightarrow c_{1}=c_{2}=\ldots=c_{k}=0 .
$$

Notes:

- Dependence prevents solving a system of equations. More unknowns than independent equations.
- The number of linearly independent rows or columns in a matrix is the rank of a matrix $(\operatorname{rank}(\mathbf{A}))$.

Examples:

(1) $\quad v_{1}^{\prime}=\left[\begin{array}{ll}5 & 12\end{array}\right]$
$v_{2}^{\prime}=\left[\begin{array}{ll}10 & 24\end{array}\right]$

$$
\begin{aligned}
& \boldsymbol{A}=\left[\begin{array}{cc}
5 & 10 \\
12 & 24
\end{array}\right]=\left[\begin{array}{l}
v_{1}^{\prime} \\
v_{2}^{\prime}
\end{array}\right] \quad(\text { a } 2 \times 2 \text { matrix }) \\
& 2 v_{1}^{\prime}-v_{2}^{\prime}=0 \quad \Rightarrow \operatorname{rank}(\boldsymbol{A})=1 \quad \Rightarrow \text { cannot invert } \boldsymbol{A}
\end{aligned}
$$

(2) $v_{1}=\left[\begin{array}{l}2 \\ 7\end{array}\right] ; v_{2}=\left[\begin{array}{l}1 \\ 8\end{array}\right] ; v_{3}=\left[\begin{array}{l}4 \\ 5\end{array}\right]$;

$$
\left.\begin{array}{l}
A=\left[\begin{array}{lll}
2 & 1 & 4 \\
7 & 8 & 5
\end{array}\right] \\
3 v_{1}^{\prime}-2 v_{2}^{\prime}=\left[\begin{array}{ll}
6 & 21
\end{array}\right]-\left[\begin{array}{ll}
2 & 16
\end{array}\right] \\
\quad=\left[\begin{array}{ll}
4 & 5
\end{array}\right]=v_{3}^{\prime}
\end{array}\right\} .
$$

A matrix \mathbf{A} has full row rank when each of the rows of the matrix are linearly independent and full column rank when each of the columns of the matrix are linearly independent. For a square matrix these two concepts are equivalent and we say matrix \mathbf{A} has full rank.

Determinant Test

We can check if a matrix square matrix A has full rank, that is, all its rows/columns are linearly independent by computing the determinant. If a square matrix \mathbf{A} has full rank, it is invertible. That is, the determinant of a square matrix \mathbf{A} detects whether \mathbf{A} is invertible:

If $\operatorname{det}(\mathbf{A})=0$ then \mathbf{A} is not invertible (equivalently, the rows/columns of \mathbf{A} are linearly dependent).

Lecture 2 - Introduction: Review, Returns and Data

- All the information and material is on my webpage:
https://www.bauer.uh.edu/rsusmel/4397/4397.htm
- Textbook:

Required: Introductory Econometrics for Finance, Cambridge University Press; 4th edition or older, by Chris Brooks.

Recommended: R Guide for Introductory Econometrics for Finance, written by Chris Brooks. You can download it from my homepage (pdf format). It's also available for free through Amazon (kindle format).

- Install R in your machine. Many students strongly prefer R Studio. Both will do fine. We will run programs and do some simple programing.
- Two midterms and a final (optional paper for MBA/MS class). There is a project in between midterms.
- Three homework: Two before first Midterm and one before second Midterm.

This Class

This is an applied technical class, with some econometric theory and many stats concepts, followed by related financial applications.

- We will review many math and statistical topics.
- Some technical material may be new to you, for example Linear Algebra. The new material is introduced to simplify the exposition of the main concepts. You will not be required to have a deep understanding of the new material, but you should be able to follow the intuition behind it.
- This is not a programming class, but we will use R to do computation and to estimate models. I will cover some of the basics in class. But, the more you know, the more comfortable you will be running the programs.
- For some students, the class will be dry ("He fried my brain," a student recently wrote.)

- Main Topics

We will go over a lot of statistics and math tools: tests of hypothesis, bootstrap, linear regression, time series modeling, etc. But keep in mind that the goal of this class is to use statistical tools to understand financial issues. In this class we will try to answer the following questions:

- How do we measure returns and risks of financial assets?
- Can we estimate expected returns with precision? What about the variance of returns?
- Is the equity risk premium (excess returns of stocks over bonds) too high?
- Can we explain asset returns?
- How can one explain variations in stock returns across various stocks?
- Is the CAPM a good model? What about the Fama-French factor models?
- Do we need normality to test financial economics hypothesis or models?
- How do we incorporate structural breaks in our models? Do we have to do it?
- Are asset returns predictable? In the short run? In the long run?
- How do we select a model to forecast asset returns?
- Are markets efficient?
- Does the risk of an asset vary with time? What are the implications? How can one model timevarying risk?

- Topics Not Covered

This course provides an introduction to the basics of financial econometrics, focusing on estimation of linear models and analysis of time series. There are many more topics in financial econometrics that we will not cover, among them:

- Credit risk management and probability of default
- Interest rate models and term structure models
- Analyzing high-frequency data and modeling market microstructure
- Estimating models for options
- Multivariate time series models
- Technical methods such as state-space models and the Kalman filter, Markov processes, copulae, nonparametric methods, etc.

What is Econometrics?

Ragnar Frisch, Econometrica Vol. 1 No. 1 (1933), defined the field:
"Experience has shown that each of these three view-points, that of statistics, economic theory, and mathematics, is a necessary, but not by itself a sufficient, condition for a real understanding of the quantitative relations in modern economic life.

It is the unification of all three aspects that is powerful. And it is this unification that constitutes econometrics."

Financial Econometrics is applied econometrics to financial data. That is, we study the statistical tools that are needed to analyze and address the specific types of questions and modeling challenges that appear in analyzing financial data.

Always keep in mind that almost in all cases, financial data is not "experimental data." We have no control over the data. We have to learn how to deal with the usual problems in financial data.

Typical applications of econometric tools to finance:

- Describe data. For example, expected returns \& volatility.
- Test hypothesis. For example, are stocks riskier than bonds?
- Build and test models. For example, the different Fama-French factor Models.

In general, in finance we deal with trade-off. The usual trade-off: Risk \& Return. Then:

- How do we measure risk and return?
- Can we predict them?
- How do we measure the trade-off?
- How much should I be compensated for taking a given risk?

Thus, we will be concerned with quantifying rewards and risks associated with uncertain outcomes.

- Trade-off application: Fund Management

A fund manager has to allocate money across potentially many different investment alternatives to form portfolios.

At the time of the investment, the fund manager does not know what the return will be on each investment opportunity. (As we will see soon, returns are random variables.)

However, the fund manager can still make good investment decisions.
Q: How? By quantifying the uncertainty associated with all the investment alternatives. For this purpose, the fund manager needs a model for the returns of all the different investment alternatives.

From the model, the fund manager gets expected returns, variances \& covariances. Using these pieces of information, the fund manager builds a portfolio.

This Lecture

In the first part of the lecture, we review some of the concepts discussed in Lecture 1 (sample statistics, distributions, random variables, descriptive statistics, etc.). In the second part, we go over returns, yields and, then, we start to apply statistical concepts to financial data. We also start to introduce R concepts and to write some R programs.

Review - Population and Sample

Definition: Population
A population is the totality of the elements under study. We are interested in learning something about this population.

Examples: Number of alligators in Texas, percentage of unemployed workers in cities in the U.S., the total return of all stocks in the U.S., the 10-year Japanese government bond yield from 1960-2023. \mid

A Random Variable (RV) X defined over a population is called the population RV. The population RV generates the data. We call the population RV the "Data Generating Process," or DGP.

Usually, the population is large, making a complete enumeration of all the values in the population impractical or impossible. Thus, the descriptive statistics describing the population i.e., the population parameters- will be considered unknown.

Typical situation in statistics: we want to make inferences about an unknown population parameter θ using a sample -i.e., a small collection of observations from the general population $\left\{X_{1}, X_{2}, \ldots, X_{N}\right\}$.

We summarize the information in the sample with a statistic, which is a function of the sample. That is, any statistic summarizes the data, or reduces the information in the sample to a single number. To make inferences, we use the information in the statistic instead of the entire sample.

Get a statistic and Make inferences ("learn")

Definition: Sample
The sample is a (manageable) subset of elements of the population.
Example: The total returns of the stocks on the S\&P 500 index. \mathbb{T}
Samples are collected to learn about the population. The process of collecting information from a sample is referred to as sampling.

Definition: Random Sample

A random sample is a sample where the probability that any individual member from the population being selected as part of the sample is exactly the same as any other individual member of the population.

Example: The total returns of the stocks on the S\&P 500 index is not a random sample. $\boldsymbol{\top}$
In mathematical terms, given a random variable X with distribution F, a random sample of length N is a set of N independent, identically distributed (i.i.d.) random variables with distribution F.

We will estimate population parameters using sample analogues: mean, sample mean; variance, sample variance; $\boldsymbol{\beta}, \mathbf{b}$; etc.

- In general, in finance and economics, we do not deal with random samples. The collected observations will have issues that make the sample not a truly random sample.

Review - Samples and Types of Data

The samples we collect to learn about the population by computing sample statistics are classified in three groups:

- Time Series Data: Collected over time on one or more variables, with a particular frequency of observation. For example, we record for 10 years the monthly S\&P 500 returns, or 10' IBM returns.
Usual notation: $x_{t}, \quad t=1,2, \ldots, T$.
- Cross-sectional Data: Collected on one or more variables collected at a single point in time. For example, today we record all closing returns for the members of the S\&P 500 index.
Usual notation: $x_{i}, \quad i=1,2, \ldots, N$.
- Panel Data: Cross-sectional Data collected over time. For example, the CRSP database collects daily prices of all U.S. traded stocks since 1962.
Usual notation: $x_{i, t}, \quad i=1,2, \ldots, N \& t=1,2, \ldots, T$.
The different types of data will present different problems; for example, autocorrelated data is a common problem in time series.

Review - Sample Statistic

A statistic (singular) is a single measure of some attribute of a sample (for example, its arithmetic mean value). It is calculated by applying a function (statistical algorithm) to the values of the items comprising the sample, which are known together as a set of data.

Definition: Statistic
A statistic is a function of the observable random variable(s), which does not contain any unknown parameters.

Examples: Sample mean (\bar{X}), sample variance $\left(s^{2}\right)$, minimum, median, $\left(x_{1}+x_{N}\right) / 2$, etc. $\boldsymbol{\top}$
Note: A statistic is distinct from a population parameter. A statistic will be used to estimate a population parameter. In this case, the statistic is called an estimator.

Review - Population and Sample

Sample Statistics are used to estimate population parameters.
Example: \bar{X} is an estimate of the population mean, μ. $\mathbb{\|}$
Notation: Population parameters: Greek letters (μ, σ, θ, etc.)
Estimators: A hat over the Greek letter ($\widehat{\theta}$).
Suppose we want to learn about the mean of IBM annual returns, $\mu_{\text {IBM }}$. From the population, we get a sample: $\left\{X_{1962}, X_{1963}, \ldots, X_{n=2023}\right\}$. Then, we compute a statistic, \bar{X}. As we will see later, on average \bar{X} is a good estimator of μ.

The definition of a sample statistic is very general. For example, $\left(x_{1}+x_{N}\right) / 2$ is by definition a statistic; we could claim that it estimates the population mean of the variable X. However, this is probably not a good estimate.

We would like our estimators to have certain desirable properties.

Review - Sample Statistic

Some simple properties for estimators:

- An estimator $\hat{\theta}$ is unbiased estimator of θ if $\mathrm{E}[\hat{\theta}]=\theta$.
- An estimator is most efficient if the variance of the estimator is minimized.
- An estimator is BUE, or Best Unbiased Estimate, if it is the estimator with the smallest variance among all unbiased estimates.
- An estimator is consistent if as the sample size, n, increases to $\infty, \hat{\theta}_{\mathrm{n}}$ converges to θ. We write

$$
\hat{\theta}_{\mathrm{n}} \xrightarrow{p} \theta . \quad \text { (A LLN is behind this result.) }
$$

- An estimator is asymptotically normal if as the sample size, n, increases to $\infty, \hat{\theta}_{\mathrm{n}}$, often standardized or transformed, converges in distribution to a Normal distribution. We write

$$
\hat{\theta}_{\mathrm{n}} \xrightarrow{d} \mathrm{~N}\left(\theta, \operatorname{Var}\left(\hat{\theta}_{\mathrm{n}}\right)\right) . \quad \text { (A CLT is behind this result.) }
$$

Review - PDF for a Continuous RV

Definition: Suppose that X is a random variable. Let $f(x)$ denote a function defined for $-\infty<x<$ ∞ with the following properties:

1. $f(x) \geq 0$
2. $\int_{-\infty}^{\infty} f(x) d x=1$.
3. $P[a \leq X \leq b]=\int_{a}^{b} f(x) d x$

Then, $f(x)$ is called the probability density function (pdf) of X. The RV X is called continuous. We use the pdf to describe the behavior of X.

Analogous definition applies for a discrete RV, where the notation uses $p(x)$ instead and the summation sign replaces the integral.

The pdf is non-negative and integrates to $\int_{-\infty}^{\infty} f(x) d x=1$.

Remark: We use the pdf to describe the behavior of the RV (discrete or continuous).

Review - Popular PDFs: Normal Distribution

A RV X is said to have a normal distribution with parameters μ (mean) and σ^{2} (variance) if X is a continuous RV with $\operatorname{pdf} f(x)$:

$$
f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right]
$$

Note: Described by two parameters: μ and σ^{2}. We write $X \sim N\left(\mu, \sigma^{2}\right)$
When $\mu=0$ and $\sigma^{2}=1$, we call the distribution standard normal. We write $X \sim \mathrm{~N}(0,1)$. This is the distribution that is tabulated.

The normal distribution is often used to describe or approximate any variable that tends to cluster around the mean. It is the most assumed distribution in economics and finance: rates of return, growth rates, IQ scores, observational errors, etc.

The central limit theorem (CLT) provides a justification for the normality assumption when the sample size, n, is large.

Notation: \quad PDF: $X \sim N\left(\mu, \sigma^{2}\right)$
CDF: $\Phi(x)$

Review - Popular PDFs: Gamma Distribution

Let the continuous RV X have density function):

$$
f(x)=\left\{\begin{array}{cc}
\frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x} & x \geq 0 \\
0 & x<0
\end{array}\right.
$$

where $\alpha, \lambda>0$ and $\Gamma(\alpha)$ is the gamma function evaluated at α.
Then, X is said to have a Gamma distribution with parameters α and λ, denoted as $X \sim$ $\operatorname{Gamma}(\alpha, \lambda)$ or $\Gamma(\alpha, \lambda)$.

It is a family of distributions, with special cases:

- Exponential Distribution, or $\operatorname{Exp}(\lambda): \alpha=1$.
- Chi-square Distribution, or $\chi_{\nu}^{2}: \alpha=\nu / 2$ and $\lambda=1 / 2$.

The Chi-square distribution, χ_{ν}^{2}, will appear a lot in this class, since it is derived from a sum of independent square standard normals. It is the distribution of many popular test statistics. Below we plot the Chi-square distribution with parameter v, which we refer as degrees of freedom:

Review - Popular PDFs: Other Distributions

Other distributions that we will use in this class: the t -distribution and the F-distribution.
The t-distribution is the ratio of a standard normal and the square root of a Chi-squared distribution, divided by its degrees of freedom. That is, let $\mathrm{Y} \sim \mathrm{N}(0,1)$ and $\mathrm{W} \sim \chi_{\nu}^{2}$, then

$$
\mathrm{t}=\frac{Y}{\sqrt{W / v}} \sim t_{v} .
$$

The t-distribution is indexed by its degrees of freedom. It looks like a normal distribution, but with thicker tails. As v increases, the t -distribution converges to a standard normal distribution.

The F-distribution is the ratio of two independent Chi-squared distributions, divided by their degrees of freedom. That is, let $Z_{1} \sim \chi_{\nu_{1}}^{2}$ and $Z_{2} \sim \chi_{\nu_{2}}^{2}$, then

$$
\mathrm{F}=\frac{Z_{1} / v_{1}}{Z_{2} / v_{2}} \sim F_{v_{1}, v_{2}}
$$

The F distribution is indexed by two degrees of freedom, informally referred as "numerator and denominator degrees of freedom."

We will use both distributions in the context of testing null hypothesis.
Note: $\mathrm{t}^{2} \sim F_{1, v}$.

Review - CDF for a Continuous RV

If X is a continuous random variable with probability density function, $f(x)$, the cumulative distribution function (CDF) of X is given by:

$$
F(x)=P[X \leq x]=\int_{-\infty}^{x} f(t) d t
$$

Note: The FTC (fundamental theorem of calculus) implies:

$$
F^{\prime}(x)=\frac{d F(x)}{d x}=f(x)
$$

Review - The Empirical Distribution

The empirical distribution (ED) of a dataset is simply the distribution that we observe in the data.
The ED is a discrete distribution that gives equal weight to each data point, assigning a $1 / N$ probability to each of the original N observations.

We form a cumulative distribution function, F^{*}, that is a step function that jumps up by $1 / N$ at each of the N data point:

$$
F^{*}(x)=\sum_{i=1}^{N} I\left(x_{i} \leq x\right),
$$

where $I($.$) is the indicator function:$

$$
\begin{array}{ll}
I\left(x_{i} \leq x\right)=1, & \text { if } x_{i} \leq x \\
I\left(x_{i} \leq x\right)=0, & \text { if } x_{i}>x
\end{array}
$$

Example: We throw 100 times two dice and sum the results. The CDF is given below:

In general, we use a histogram to describe the ED of a dataset. $\mathbb{\|}$
Important result: Let F be the true distribution of the data and F^{*} be the ED of the data. As $N \rightarrow \infty$, the Law of large numbers (LLN) tells us that F^{*} becomes a good approximation of F.

Review - Histogram of a RV

Recall that a histogram is an approximate representation of the distribution of numerical data.
Example: We use a histogram to estimate the distribution of a RV. Let $X=$ Percentage changes in the CHF/USD exchange rate $=e_{f}$ and for MSCI USA Index returns.

Data: For the CHF/USD exchange rate, we have monthly data from January 1971 to June 2020 ($N=595$ observations) and for the MSCI USA returns we have monthly data from January 1970 to June 2020 ($N=607$).

Note: We overlay a Normal density (blue line) over the histogram. ब

Review - Moments of Random Variables

The moments of a random variable X are used to describe the behavior of the RV (discrete or continuous).

Definition: $K^{\text {th }}$ Moment
Let X be a RV (discrete or continuous), then the $k^{\text {th }}$ moment of X is:

$$
\mu_{k}=E\left(X^{k}\right)= \begin{cases}\sum_{x} x^{k} p(x) & \text { if } X \text { is discrete } \\ \int_{-\infty}^{\infty} x^{k} f(x) d x & \text { if } X \text { is continuous }\end{cases}
$$

Definition: Central Moments
Let X be a RV (discrete or continuous). Then, the $k^{\text {th }}$ central moment of X is defined to be:

$$
\mu_{k}^{0}=E\left[(X-\mu)^{k}\right]=\left\{\begin{array}{cc}
\sum_{x}(x-\mu)^{k} p(x) & \text { if } X \text { is discrete } \\
\int_{-\infty}^{\infty}(x-\mu)^{k} f(x) d x & \text { if } X \text { is continuous }
\end{array}\right.
$$

where $\mu=\mu_{1}=E(X)=$ the first moment of X.
The central moments describe how the probability distribution is distributed about the center of gravity, m.

The first central moments is given by:

$$
\mu_{1}^{0}=E[X-\mu]
$$

The second central moment depends on the spread of the probability distribution of X about m . It is called the variance of X and is denoted by the symbol $\sigma^{2}=\operatorname{var}(X)$:

$$
\mu_{2}^{0}=E\left[(X-\mu)^{2}\right]=\operatorname{var}(\mathrm{X})=\sigma^{2}
$$

The square root of $\operatorname{var}(\mathrm{X})$ is called the standard deviation of X and is denoted by the symbol $s=$ $\mathrm{SD}(\mathrm{X})$. We also refer to it as volatility:

$$
\sqrt{\mu_{2}^{0}}=\sqrt{E\left[(X-\mu)^{2}\right]}=\sigma
$$

Review - Moments of a RV: Skewness

The third central moment:

$$
\mu_{3}^{0}=E\left[(X-\mu)^{3}\right]
$$

μ_{3}^{0} contains information about the skewness of a distribution. We use skewness as a gauge of symmetry. If $\mu_{3}^{0}=0$ the distribution is symmetric; otherwise, asymmetric.

A popular measure of skewness:

$$
\gamma_{1}=\frac{\mu_{3}^{0}}{\sigma^{3}}=\frac{\mu_{3}^{0}}{\left(\mu_{2}^{0}\right)^{\frac{3}{2}}}
$$

- Distribution according to skewness:

1) Symmetric distribution

2) Positively (right-) skewed distribution (with mode $<$ median $<$ mean)

3) Negatively (left-) skewed distribution (with mode $>$ median $>$ mean)

- Skewness and Economics

For changes in asset prices:

- Zero skew means symmetrical gains and losses -i.e., extreme values tend to occur on both sides of the curve on similar proportions.
- Positive skew suggests many small losses and few rich returns -i.e., extreme values tend to occur in the right tail
- Negative skew indicates a lot of minor wins offset by rare major losses -i.e., extreme values tend to occur in the left tail.

In financial markets, stock returns at the firm level show positive skewness, but at the aggregate (index) level show negative skewness.

From horse race betting and from U.S. state lotteries there is evidence supporting the contention that gamblers are not necessarily risk-lovers but skewness-lovers: Long shots are overbet (positive skewness loved!).

Review - Moments of a RV: Kurtosis

The fourth central moment:

$$
\mu_{4}^{0}=E\left[(X-\mu)^{4}\right]
$$

It contains information about the shape of a distribution. The property of shape that is measured by this moment is called kurtosis, usually estimated by κ :

$$
\kappa=\frac{\mu_{4}^{0}}{\sigma^{4}} .
$$

Kurtosis measures how much weight there is in the tails of the distribution relative to the middle (we call this a measure of the "fatness" of the tails). We usually compare the kurtosis of a series relative to the kurtosis of a normal distribution, which is equal to 3 . We measure the "excess" fatness of the tail over the normal curve. That is, the measure of (excess) kurtosis:

$$
\gamma_{2}=\frac{\mu_{4}^{0}}{\sigma^{4}}-3=\frac{\mu_{4}^{0}}{\left(\mu_{2}^{0}\right)^{2}}-3
$$

- Distributions:

1) Mesokurtic distribution

2) Platykurtic distribution

3) Leptokurtic distribution (usual shape for asset returns)

- Positive excess kurtosis, $\gamma_{2}>0$, is the norm for financial returns. Below I simulate a series with $\mu=0, \sigma=1$, zero skewness \& kurtosis $=6\left(\gamma_{2}=3\right)$, overlaid with a standard normal distribution. Fat tails are seen on both sides of the distribution.

Review - Moments and Expected Values

Note that moments are defined by expected values. We define the expected value of a function of a continuous RV X, $g(X)$, as

$$
E[g(X)]=\int_{-\infty}^{\infty} g(x) f(x) d x
$$

If X is discrete with probability function $p(x)$

$$
E[g(X)]=\sum_{x} g(x) p(x)=\sum_{i} g\left(x_{i}\right) p\left(x_{i}\right)
$$

Examples: $\quad g(x)=(x-\mu)^{2} \Rightarrow \mathrm{E}[g(x)]=\mathrm{E}\left[(x-\mu)^{2}\right]$

$$
g(x)=(x-\mu)^{k} \Rightarrow \mathrm{E}[g(x)]=\mathrm{E}\left[(x-\mu)^{k}\right] . \boldsymbol{\top}
$$

We estimate expected values with sample averages. As we will see below, the Law of Large Numbers (LLN) tells us they are consistent estimators of expected values.

Review - Estimating Moments

We estimate expected values with sample averages. For example, the first moment, the mean, and the second central moment, the variance, are estimated by:

$$
\begin{aligned}
& \bar{X}=\frac{\sum_{i=1}^{N} x_{i}}{N} \\
& s^{2}=\frac{\sum_{i=1}^{N}\left(X_{i}-\bar{X}\right)^{2}}{N-1}
\end{aligned} \quad\left(N-1 \text { adjustment needed for } \mathrm{E}\left[s^{2}\right]=\sigma^{2}\right)
$$

They are both unbiased estimators of their respective population moments (unbiased = "on average, I get the population parameter"). That is,

$$
\begin{array}{ll}
\mathrm{E}[\bar{X}]=\mu & " \mu \text { is the population parameter of interest" } \\
\mathrm{E}\left[s^{2}\right]=\sigma^{2} & " \sigma^{2} \text { is population parameter of interest" }
\end{array}
$$

Review - Law of Large Numbers (LLN)

Long history: Gerolamo Cardano (1501-1576) stated it without proof. Jacob Bernoulli published a rigorous proof in 1713.

Theorem (Weak LLN)

Let X_{1}, \ldots, X_{N} be N mutually independent random variables each having mean m and a finite s i.e, the sequence $\left\{X_{N}\right\}$ is i.i.d.

Let $\bar{X}=\frac{\sum_{i=1}^{N} X_{i}}{N}$.
Then, for any $\delta>0$ (no matter how small)

$$
P[|\bar{X}-\mu|<\delta]=P[\mu-\delta<\bar{X}<\mu+\delta] \rightarrow 1, \quad \text { as } N \rightarrow \infty
$$

There are many versions of the LLN. It is a general result: A sample average as the sample size goes to infinite tends to its expected value. Also written as:

$$
\bar{X}_{N} \xrightarrow{\mathrm{p}} \mu . \quad \text { (convergence in probability) }
$$

Review - Central Limit Theorem (CLT)

Let $X_{1}, X_{2}, \ldots, X_{N}$ be a sequence of i.i.d. RVs with finite mean m, and finite variance s^{2}. Then as N increases, \bar{X}_{N}, the sample mean, approaches the normal distribution with mean μ and variance s^{2} / N.

This theorem is sometimes stated as

$$
\frac{\sqrt{N}(\bar{X}-\mu)}{\sigma} \xrightarrow{d} N(0,1)
$$

where \xrightarrow{d} means "the limiting distribution (asymptotic distribution) is" (or convergence in distribution).

Many versions of the CLT. This one is the Lindeberg-Lévy CLT.
The CLT gives only an asymptotic distribution. We usually take it as an approximation for a finite number of observations. In these cases, the notation goes from \xrightarrow{d} to \xrightarrow{a}.

Review - Sampling Distributions

All statistics, $\mathrm{T}(X)$, are functions of RVs and, thus, they have a distribution. Depending on the sample, we can observe different values for $\mathrm{T}(X)$, thus, the finite sample distribution of $\mathrm{T}(X)$ is called the sampling distribution.

- For the sample mean, \bar{X}, if the X_{i} 's are normally distributed, then the sampling distribution is normal with mean μ and variance σ^{2} / N. Or

$$
\bar{X} \sim \mathrm{~N}\left(\mu, \sigma^{2} / N\right)
$$

Note: If the data is not normal, the CLT is used to approximate the sampling distribution by the asymptotic one, usually after some manipulations. Again, in those cases, the notation goes from \xrightarrow{d} to \xrightarrow{a}.

The SD of the sampling distribution is called the standard error (SE). Then, $\operatorname{SE}(\bar{X})=\sigma / \operatorname{sqrt}(N)$.
Example: We plot a Sampling Distribution for the sample mean, \bar{X}, of a normal population, as a function of the sample size (N). For this purpose, we generate 10,000 samples from a $\mathrm{N}(2,4)$ population. We plot the distribution of \bar{X} for three sizes of $N=10,60 \& 200$:

$N=60$

$N=200$

Note: As $N \rightarrow \infty, \bar{X} \rightarrow \mu \quad-i . e .$, the distribution becomes a spike at $\mu=2!$ 【

- For the sample variance σ^{2}, if the X_{i} 's are normally distributed, then the sampling distribution is derived from this result:

$$
(N-1) s^{2} / \sigma^{2} \sim \chi_{N-1}^{2}
$$

We use the properties of a χ_{k}^{2} to derive the mean $\&$ variance of s^{2} :
Property 1. Let $Z \sim \chi_{k}^{2}$. Then, $\mathrm{E}[Z]=k$.
Property 2. Let $Z \sim \chi_{k}^{2}$. Then, $\operatorname{Var}[Z]=2 * k$.
Application: $(N-1) s^{2} / \sigma^{2} \sim \chi_{N-1}^{2}$
From Property 1: $\mathrm{E}\left[(N-1) s^{2} / \sigma^{2}\right]=N-1$

$$
\Rightarrow \mathrm{E}\left[s^{2}\right]=\sigma^{2}
$$

From Property 2: $\operatorname{Var}\left[(N-1) s^{2} / \sigma\right]=2^{*}(N-1)$

$$
\begin{aligned}
& \Rightarrow \operatorname{Var}\left[s^{2}\right]=2 * \sigma^{4} /(N-1) \\
& \Rightarrow \operatorname{SE}\left(s^{2}\right)=\operatorname{SD}\left(s^{2}\right)=\sigma^{2} * \operatorname{sqrt}[2 /(N-1)]
\end{aligned}
$$

Summary for s^{2} :
Sampling distribution: $\quad(N-1) s^{2} / \sigma^{2} \sim \chi_{N-1}^{2}$.

Mean:

$$
\begin{aligned}
& \mathrm{E}\left[s^{2}\right]=\sigma^{2} \\
& \operatorname{Var}\left[s^{2}\right]=2 * \sigma^{4} /(N-1)
\end{aligned}
$$

Variance:
Note: If the data is not normal (\& N is large), the CLT can be used to approximate the sampling distribution by the asymptotic one:

$$
s^{2} \xrightarrow{a} \mathrm{~N}\left(\sigma^{2}, \sigma^{4} *(\kappa-1) / N\right)
$$

where $\kappa=\frac{\mu_{4}^{0}}{\sigma^{4}} \quad$ (recall when data is normal, $\kappa=3$).
Example: We plot a Sampling Distribution for the sample variance, s^{2}, of a normal population, as a function of the sample size (N). Above, we generated 10,000 samples from a $\mathrm{N}(2,4)$ population. Now, we plot the distribution of s^{2} for three sizes of $N=10,60 \& 200$:

Note: As $N \rightarrow \infty$, the distribution of s^{2} looks more Normal - the CLT at work! ©

Review - Estimating Moments in R

First, we need to import the data. In R, we use the read function, usually followed by the type of data we are importing. Below, we import a comma separated values (csv) file with monthly data for the S\&P Composite Index (P), Dividends (D), Earnings (E), CPI, Long interest rates (Long_i), and some transformations of the data (Real Prices, Real Dividends, Real Returns, etc). We use the read.csv function:

Sh_da <- read.csv("https://www.bauer.uh.edu/rsusmel/4397/Shiller_2021_m_data.csv", head=TRUE, sep=",")

To check the names of the variables we imported, we use the names() function. It describes the headers of the file imported (41 headers):

```
> names(Sh_da)
\begin{tabular}{lll} 
[1] "Date" & "P" & "D" \\
[8] "Real_P" & "Real_D" & "CPI"
\end{tabular} \begin{tabular}{c} 
"Fraction"
\end{tabular} "Long_i"
```

The summary() function provides some stats of variables imported:
> summary(Sh_da)

Date	P	D	E	CPI
in. :1871	Min. : 2.73	in.	Min.	Min. : 6.28
1st Qu.:1908	1st Qu.: 7.89	1st Qu.: 0.420	1st Qu.: 0.56	1st Qu.: 10.19
Median :1946	Median : 17.35	Median : 0.870	Median : 1.45	Median : 20.30
Mean :1946	Mean : 321.51	Mean : 6.732	Mean : 15.15	Mean : 62.0
3rd Qu.:1983	3rd Qu.: 163.25	3rd Qu.: 7.053	3rd Qu.: 14.71	3rd Qu.:101.25
Max. :2021	Max. :4358.13	Max. :59.680	Max. :139.47	Max. :270.80

- Second, we extract from the imported data, Sh_da, the column corresponding to the i_10 and for, later use, the S\&P 500 Index (SP):That is, we extract from Sh_da, the column corresponding to the 10-year interest rate (Long_i) and, for later use, the S\&P Composite Index (P):

```
SP <- Sh_da$P
```

i_10<- Sh_da\$Long_i \# Extract Long_i = Interest rates
$\overline{\mathrm{N}}<-$ length $(\mathrm{SP}) \quad$ \# Length of data

- Then, we estimate the sample moments for.

```
x<- i_10
n<- length(x)
ml<- sum(x)/n
m2<- sum((x-m1)^2)/n
m3<- sum((x-m1)^3)/n
m4<- sum((x-ml)^4)/n
b1<-m3/m2^(3/2)
b2<-(m4/m2^2)
s2 <- sum((x-m1)^2)/(n-1)
sd_s <- sqrt(s2)
```

- R output:
$>\mathrm{ml}$
[1] 4.509972
> s2
[1] 5.306247
$>$ sd_s \# Sample SD (2.30\% annual)
[1] 2.303529
> b1 \# Sample Skewness
[1] 1.795057
> b2 \# Sample Kurtosis
[1] 6.751023
- Table 2.A presents a summary of the moments:

Table 2.A - 10-year Bond Rate ("Long interest Rate"): (1871: February - 2021: September)

Statistic	e_{f}
Mean	4.51
Median	3.82
Maximum	15.32
Minimum	0.62
Std. Dev.	$\mathbf{2 . 3 0}$
Skewness	1.7951
Kurtosis	6.7510

Interest rates are right skewed and have kurtosis greater than 3, pointing out to non-normality of data ("fatter tails"):

$$
\Rightarrow \gamma_{2}=\frac{\mu_{4}^{0}}{\sigma^{4}}-3=3.7510 . \mathbb{\square}
$$

Returns

Returns have better statistical properties than prices, as we will mention below, returns have a well-defined (long-run) mean and variance, while asset prices, in general, do not. Thus, financial models tend to focus on returns. The return is the profit rate of holding an asset from time $t-1$ to t.

We define net or simple (total) return, R_{t}, as:

$$
R_{t}=\frac{\left(P_{t}-P_{t-1}\right)+D_{t}}{P_{t-1}}=\text { capital gain }+ \text { dividend yield }
$$

where $P_{t}=$ Stock price or Value of investment at time t
$D_{t}=$ Dividend or payout of investment at time t
Note: This is the return from time $\mathrm{t}-1$ to time t . To be very explicit we can write this as $R_{t-1, \mathrm{t}}$.
Then, the gross (total) return is given by:

$$
R_{t}+1=\frac{P_{t}+D_{t}}{P_{t-1}}
$$

In general, when the word "total return" is used in the definition, it means "returns including dividends." Sometimes, total returns are also called "overall returns."

If $D_{t}=0$, the total return is just the capital gain. In this situation, it is common to just use the word returns.

- There is another commonly used definition of return, the \log return, r_{t}, defined as the \log of the gross return:

$$
r_{t}=\log \left(1+R_{t}\right)=\log \left(P_{t}+D_{t}\right)-\log \left(P_{t-1}\right)
$$

Note: When the values are small $(-0.1$ to +0.1$)$, the two returns are approximately the same: $r_{t} \approx$ R_{t}. In general -i.e., when returns are not small, $\mathrm{r}_{\mathrm{t}}<R_{t}$.

Derivation:

Recall: $\ln (1)=0, \& \frac{\delta \ln (x)}{\delta x}=\frac{1}{x}$.
Now do a $1^{\text {st }}$-order Taylor expansion around x_{0} to get

$$
\log (x) \approx \log \left(x_{0}\right)+\left.\frac{\delta \log (x)}{\delta x}\right|_{x_{0}} *\left(x-x_{0}\right)=\log \left(x_{0}\right)+\frac{1}{x_{0}}\left(x-x_{0}\right)
$$

Thus, expanding around $x_{0}=1$, we have for $x \approx 1$:

$$
\log (x) \approx 0+\frac{1}{1}(x-1)=x-1
$$

Set $x=\left(1+R_{t}\right)$ to get the result.
The log return is also called continuously compounded return.
When returns are small, say for daily or weekly data, the numerical differences between simple and compounded returns are very small.

In this class, we will use log returns.
Example: We estimate sample averages for $\mathrm{e}_{\mathrm{f}}=\log$ returns for the CHF/USD. Note that there is no dividends or payouts for holding currency. That is, in this case, returns = capital gains.

PPP_da <-
read.csv("https://www.bauer.uh.edu/rsusmel/4397/ppp_2020_m.csv",head=TRUE,sep=",")
x_chf $<-$ PPP_da\$CHF_USD

- Now, we define $\mathrm{e}_{\mathrm{f}}=\boldsymbol{\operatorname { l o g }}$ returns $(\approx \%$ changes) for the CHF/USD.

T<- length(x_chf)
e_chf $<-\log \left(x _c h f[-1] / x _c h f[-T]\right)$

- Then, we estimate the sample moments for.
x <- e_chf
$\mathrm{N}<-$ length (x)
$\mathrm{ml}<-\operatorname{sum}(\mathrm{x}) / \mathrm{N}$
\# Size of series read (T or N notation is OK)
\# Log returns

> \# Series to be analyzed
> \# Number of observations
> \# Mean (\bar{X})

$$
\begin{aligned}
& \mathrm{m} 2<-\operatorname{sum}\left((\mathrm{x}-\mathrm{m} 1)^{\wedge} 2\right) / \mathrm{N} \\
& \mathrm{~m} 3<-\operatorname{sum}\left((\mathrm{x}-\mathrm{m})^{\wedge} 3\right) / \mathrm{N} \\
& \mathrm{~m} 4<-\operatorname{sum}\left((\mathrm{x}-\mathrm{m} 1)^{\wedge} 4\right) / \mathrm{N} \\
& \mathrm{~b} 1<-\mathrm{m} 3 / \mathrm{m} 2^{\wedge}(3 / 2) \\
& \mathrm{b} 2<-\left(\mathrm{m} 4 / \mathrm{m} 2^{\wedge} 2\right) \\
& \mathrm{s} 2<-\operatorname{sum}\left((\mathrm{x}-\mathrm{m} 1)^{\wedge} 2\right) /(\mathrm{N}-1) \\
& \text { sd_s }<-\operatorname{sqrt}(\mathrm{s} 2)
\end{aligned}
$$

- R output:
$>\mathrm{ml}$
[1] -0.002550636
$>\mathrm{s} 2$
[1] 0.001115257
> sd_s
[1] 0.03339546
$>$ b1
[1] -0.06733514
$>$ b2
[1] 4.621602
\# Used in denominator of both
\# For numerator of S
\# For numerator of K
\# Sample Skewness (γ_{1})
\# Sample Kurtosis (γ_{2})
\# Sample Variance (s^{2})
\# Sample SD (s)
- Summary of moments of $\mathrm{e}_{\mathrm{f}}=\%$ changes in the CHF/USD exchange rate (1971:Jan 2020:Jun):

Statistic	e_{f}
Mean	-0.002551
Median	-0.001431
Maximum	0.145542
Minimum	-0.145639
Std. Dev.	0.033395
Skewness	-0.067335
Kurtosis	4.621602

Small mean (-0.25\%), slight negative skewness, kurtosis greater than 3, pointing out to fatter tails:

$$
\Rightarrow \gamma_{2}=\frac{\mu_{4}^{0}}{\sigma^{4}}-3=1.62 . \mathbb{\square}
$$

Portfolio Returns

For portfolios, the simple rate of return has an advantage: The rate of return on a portfolio is the portfolio of the rates of return.

Let $V_{P, t}$ be the value of a portfolio at time t .

$$
V_{P, t}=\sum_{i=1}^{N} N_{i} P_{i, t}
$$

where N_{i} is the investment in asset i, which has a value $P_{i, t}$ at time t . Then, the return is:

$$
R_{P, t}=\frac{V_{P, t}-V_{P, t-1}}{V_{P, t-1}}=\frac{\sum_{i=1}^{N} N_{i} P_{i, t}-\sum_{i=1}^{N} N_{i} P_{i, t-1}}{\sum_{i=1}^{N} N_{i} P_{i, t-1}}=\sum_{i=1}^{N} w_{i} r_{i, t}
$$

where w_{i} is the portfolio weight in asset i.
This relationship does not hold for log returns because the \log of a sum is not the sum of the logs.

Multi-period holding return

To simplify notation, include dividends into prices. That is,

$$
P_{d, t+1}=P_{t+1}+D_{t}
$$

The two-period holding return is:

$$
R_{t, t+2}=\frac{P_{d, t+2}}{P_{d, t}}-1=\frac{P_{d, t+2}}{P_{d, t+1}} * \frac{P_{d, t+1}}{P_{d, t}}-1=\left(1+R_{t+1, t+2}\right) *\left(1+R_{t, t+1}\right)-1
$$

Or

$$
1+R_{t, t+2}=\left(1+R_{t+1, t+2}\right)\left(1+R_{t, t+1}\right)
$$

For small returns, we can use the log approximation:

$$
r_{t, t+2} \approx r_{t, t+1}+r_{t+1, t+2}
$$

The k-period gross holding return $\left(1+R_{t, t+k}\right)=\prod_{j=0}^{k-1}\left(1+R_{t+j, t+j+1}\right)$
Or with the \log approximation: $r_{t, t+k}=\sum_{j=0}^{k-1} r_{t+j, t+j+1}$
If the (expected) returns are equal, that is, $R_{t+j, t+j+1}=R$. Then, the \log approximation produces:

$$
r_{t, t+k}=\sum_{j=0}^{k-1} r_{t+j, t+j+1}=k * r
$$

If the returns, $R_{t+j, t+j+1}$, are independent (covariance is 0) and with a constant variance equal to σ_{r}^{2} (a constant), then under the log approximation

$$
\operatorname{Var}\left(r_{t, t+k}\right)=\sum_{j=0}^{k-1} \operatorname{var}\left(r_{t+j, t+j+1}\right)=k * \sigma_{r}^{2}
$$

Then, the SD is equal to

$$
\mathrm{SD}\left(r_{t, t+k}\right)=\sqrt{k * \sigma_{r}^{2}}=\sqrt{k} * \sigma_{r}
$$

Real returns

We will deflate values by a Price Index, for example the CPI. Then,

$$
\text { Real Price }{ }_{\mathrm{t}}=P_{t}^{\text {real }}=\frac{P_{t}}{C P I_{t}}
$$

Then, the real return becomes:

$$
R_{t}^{\text {real }}=\frac{P_{t}^{\text {real }}}{P_{t-1}^{\text {real }}}-1=\frac{\frac{P_{t}}{C P I_{t}}}{\frac{P_{t-1}}{C P I_{t-1}}}-1=\frac{P_{t}}{P_{t-1}} * \frac{C P I_{t-1}}{C P I_{t}}-1=\frac{\left(1+R_{t}\right)}{(1+\pi)}-1
$$

where π_{t} is the inflation rate at time t .
The log approximation (for small returns) produces

$$
r_{t}^{r e a l} \approx r_{t}-\pi_{t}
$$

Example: Below, we plot the long-run S\&P Composite Index monthly data, nominal and real. Data taken from Robert Shiller's website (1871:Jan - 2021: Sep).

Sh_da <- read.csv("http://www.bauer.uh.edu/rsusmel/4397/Shiller_2021_m_data.csv", head=TRUE, sep=",")
SP <- Sh_da\$P \# Extract SP = S\&P Composite series
D $<-$ Sh_da\$D \# Extract D = S\&P Dividends series
CPI $<-$ Sh_da\$CPI
R_SP $<-\overline{\text { Sh_da\$Real_P }}$
\# Extract CPI = Price Index series
\# Extract R_SP = Real S\&P500 series
i_10<- Sh_da\$Long_i
\# Extract Long_i = Interest rates
$\operatorname{lr}<-\log (\mathrm{SP}[-1] / \mathrm{SP}[-\mathrm{T}]) \quad$ \# Define log returns
lr R $<-\log \left(\mathrm{R} _\right.$SP[-1]/R_SP[-T]) \# Define log Real returns
plot(SP, col="blue",ylab ="S\&P Index", type="1", xlab ="Date")
lines(R_SP, col="red")
title("S\&P Composite Index: Nominal \& Real (1871-2021)")
legend("topleft", legend = c("Nominal", "Real"),
lwd = 3, col = c("blue", "red"))

R Note: A more elegant plot, with dates, can be done with the package ggplot2. You need to install it first with install.packages("ggplot2"). Then, you need to call it, with:
library (ggplot2)

```
\(\operatorname{ggplot}\left(\right.\) data \(=\operatorname{Sh} \_\)da, \(\operatorname{aes}(\mathrm{x}=\) Date \(\left.)\right)+\)
    geom_line(aes(y = SP, color = "Nominal")) +
    geom_line(aes(y = R_SP, color = "Real")) +
    scale_colour_manual("",
                        breaks = c("Nominal", "Real"),
                        values = c("Nominal"="blue", "Real"="red")) +
    scale_y_continuous("S\&P Index", limits = c(0,4500)) +
    labs(title = "S\&P Composite Index: Nominal and Real",
        subtitle = "Period: January 1871: September 2021")
```


Long-run S\&P 500 monthly log returns, from Robert Shiller's website (1871:Jan -2020: Sep; $T=N=1805$).
$\mathrm{T}<$ - length(SP)
\# Define \log (percent) changes
$\operatorname{lr}<-\log (\mathrm{SP}[-1] / \mathrm{SP}[-\mathrm{T}]) \quad$ \# log capital gains
$\operatorname{lr}_{-} \mathrm{t}<-\log (\mathrm{SP}[-1]+\mathrm{D}[-1] / 12)-\log (\mathrm{SP}[-\mathrm{T}])$ \# \log (total) returns, includes dividends
$\mathrm{I}<-\log (\mathrm{CPI}[-1] / \mathrm{CPI}[-\mathrm{T}]) \quad$ \# Log Inflation rate

Prices have a clear trend, returns do not. In statistics, we prefer to work with data with no trends, like returns; they have better properties, for example, a well defined long-run mean (expected value).

Distribution of S\&P 500 monthly log returns

Note: We observe slight negative skewness -left tail events are more common (steeper) than right tail events and fatter tails than the normal distribution. These two features are part of the "stylized facts" for stock (index) returns.

Example: Table 2.B reports univariate statistics for Shiller's monthly S\&P 500 returns (total, capital gains \& real) and U.S. inflation.

Table 2.B-S\&P Composite Returns (Total, Capital Gains and Real) and Inflation Rate: (1871: February - 2021: September)

	Total Return	Capital Gains	Inflation	Real Total Return
Mean	0.007378	0.003801	0.001707	0.005615
Median	0.009928	0.006756	0.001432	0.009367
Maximum	0.414151	0.407459	0.068054	0.421504
Minimum	-0.30365	-0.30753	-0.06805	-0.30364
Std. Dev.	0.040455	0.040650	$\mathbf{0 . 0 1 0 3 4 4}$	$\mathbf{0 . 0 4 0 7 2 6}$
Skewness	-0.47050	-0.51512	-0.14404	-0.36439
Kurtosis	14.61046	14.35809	9.81997	14.33933
Jarque-Bera	10205.0	$\mathbf{9 7 8 2 . 2}$	3504.3	9719.3
P-value (JB)	$2.2 \mathrm{e}-16$	$2.2 \mathrm{e}-16$	$2.2 \mathrm{e}-16$	$2.2 \mathrm{e}-16$

Monthly total returns are slightly (left-) skewed (\& median > mean), and with "fat tails"-i.e., kurtosis is higher than 3.

- Check some results from log approximation:

$$
\begin{align*}
& r_{t}^{\text {real }} \approx r_{t}-\pi_{t} \quad(\text { for small } \% \text { changes }) \tag{1}\\
& 0.005615 \approx 0.007378-0.001707=0.005671
\end{align*}
$$

(2) Multiperiod return: $k=12$-i.e., from monthly to annual,

- annual return $=0.007378 * 12=0.088531$
- annual SD $=\mathbf{0 . 0 4 0 4 5 5} * \operatorname{sqrt}(12)=0.14014$

Note: Compounding the return: $(1+0.007378)^{\wedge} 12-1=0.0922$.
According to the annualized numbers from the above Table, since 1871, the average total stock market return has been $\mathbf{8 . 8 5 \%}$ per year. II

Returns: Sample Moments - Changing Frequency

Assuming independence of returns and constant moments, we can use the log returns to easily change frequencies for the mean and variance of returns.

Suppose we have compounded data in base frequency b (say, monthly), but we are interested in compounded data in frequency q (say, annual). The approximation formulas for mean and standard deviation (SD) are:

$$
\begin{aligned}
& q \text {-frequency mean }=b \text {-freq mean } * q / n \\
& q \text {-freq SD }=b \text {-freq SD } * \sqrt{ }(q / b) \quad \Rightarrow q \text {-freq Variance }=\operatorname{sqrt}(q \text {-freq SD })
\end{aligned}
$$

Example: Using the data from the previous table we calculate the weekly mean and standard deviation for returns ($b=30, q=7$).

- weekly return $=0.007378 *(7 / 30)=0.00172 \quad(0.172 \%)$
- weekly $\mathrm{SD}=\mathbf{0 . 0 4 0 4 5 5} * \operatorname{sqrt}(7 / 30)=0.01954 \quad(1.95 \%)$

Note: de-compounding the return: $(1+0.007378)^{\wedge}(7 / 30)=0.00172 . ~ \llbracket$

Returns: Sampling Distribution

Recall that the sampling distribution of the sample mean is:

$$
\bar{X} \sim \mathrm{~N}\left(\mu, \sigma^{2} / N\right)
$$

Example: Before, using monthly S\&P $500 \log$ returns ($N=1805$), we got:
Estimated Monthly mean return $=\bar{X}=0.007378$
Estimated $\operatorname{Var}(\bar{X})=s^{2} / \boldsymbol{N}=\mathbf{0 . 0 4 0 4 5 5}{ }^{2} / \mathbf{1 8 0 5}=9.067075 \mathrm{e}-07$
The SD of the monthly mean (also called the Standard Error, SE):

$$
\begin{aligned}
& \text { S.E. }(\bar{X})=\operatorname{sqrt}(9.067075 \mathrm{e}-07)=0.000952(\text { or } 0.095 \%) . \\
& \Rightarrow \bar{X} \sim \mathrm{~N}\left(0.007378, .00095^{2}\right)
\end{aligned}
$$

Note: Compared to returns, expected returns, estimated by the sample mean, are more precisely estimated (0.1% vs 4.05%). Not surprised, the sampling distribution of the mean shrinks towards the population mean as N increases. If

Yields

Consider an n-period discount bond. Time is measured in years. Today is t. Bond (asset) pays F_{t+n} dollars n years from now, at $t+n$.
$F_{t+n}=$ Face value (value at time $t+n$).
$P_{t}=$ Market price of the bond.
$r_{n, t}=$ Yield to maturity (YTM) at time t for a maturity of n years.
$n=$ Maturity of bond

$$
\mathrm{P}_{\mathrm{t}}=\frac{F_{t+n}}{\left(1+r_{n, t}\right)^{n}}
$$

Interpretation: If our initial capital, P_{t} dollars, is invested today at the interest rate $r_{n, t}$ for n years compounded annually, then, at time $t+n$, the payoff is F_{t+n}.

YTM, $r_{n, t}$, is a raw number. 4% at an annual rate is 0.04 .

Continuous Compounding

More generally, suppose an investment is compounded m times per n years; where m is number of times return (yield) is compounded, for example, $m=4$ for quarterly, $m=12$ for monthly, $m=$ ∞ for continuous compounding. Then, the market price of the bond is:

$$
\begin{array}{ll}
& P_{t}=\frac{F_{t+n}}{\left(1+\frac{r_{t}}{m}\right)^{m n}} \\
\text { As } m \rightarrow \infty, & F_{t+n}=P_{t}\left(1+\frac{r_{t}}{m}\right)^{m n} \rightarrow P_{t} e^{r n}
\end{array}
$$

where we used

$$
\lim _{m \rightarrow \infty}\left(1+\frac{x}{m}\right)^{m n}=e^{x n}
$$

Then,

$$
P_{t}=e^{-r_{t} n} F_{t+n}
$$

- Suppose the continuously compounded bond at maturity pays $\$ 1\left(=F_{t+n}\right)$ and the remaining duration is D units of time. Then,

$$
\mathrm{P}_{\mathrm{t}}=e^{-r_{t} D} \$ 1
$$

Then, the \log return per year is:

$$
\log \left(P_{t+1}\right)-\log \left(P_{t}\right)=\mathrm{D}\left(r_{t}-r_{t+1}\right)
$$

where we ignore that D has one unit of time less at time $\mathrm{t}+1$. That is, the daily return of a bond is the change of yields multiplied by its duration.

- Now, suppose we invest P_{0} in a bond with continuous compounding at an annual rate r. Then, the value of the investment at year t is:

$$
\mathrm{V}_{\mathrm{t}}=P_{0} e^{r t}
$$

The log return (\log of gross return) per year is r :

$$
\log \left(\mathrm{V}_{\mathrm{t}+1}\right)-\log \left(\mathrm{V}_{\mathrm{t}}\right)=r
$$

The simple annual interest rate r quoted in the market is the annual log return if the interest is compounded continuously.

The effective annual interest rate, r^{a}, is simple the annual rate of return:

$$
\left(1+r^{a}\right)^{n}=\left(1+\frac{r}{m}\right)^{m n} \quad \Rightarrow \quad r^{a}=\left(1+\frac{r}{m}\right)^{m}-1
$$

Example: Table 2.C reports descriptive statistics for monthly long-run S\&P 500 (blue) returns and 10-year bond (red) rates, from Robert Shiller's website. Interest Returns are reported annually.

Table 2.C - S\&P Composit Returns \& 10-year Bond Rates (1871-2021)

	Total Return	10-year Interest Rates
Mean	0.007378	$\mathbf{0 . 0 4 5 1 1}$
Median	0.009928	0.0382
Maximum	0.414151	0.1532
Minimum	-0.30365	0.0062
Std. Dev.	$\mathbf{0 . 0 4 0 4 5 5}$	$\mathbf{0 . 0 2 3 0 4}$
Skewness	-0.47050	1.79664
Kurtosis	14.61046	6.75173
Jarque-Bera	$\mathbf{1 0 2 0 5 . 0}$	$\mathbf{2 0 2 9 . 7}$
P-value (JB)	$2.2 \mathrm{e}-16$	$2.2 \mathrm{e}-16$

We plot long-run S\&P returns (blue) and 10-year Bond interest rates (red) data.

Note: Interest rates have a lower monthly mean $(0.003759=0.04511 / 12), \&$ lower volatility and kurtosis than stock returns.

We plot the histogram for bond rates, with a normal curve (in blue) for comparison purposes

Returns: Expected Returns \& The Equity Risk Premium

As mentioned above, returns are not very precisely estimated. They have a large variance. Things get better for expected returns, which are estimated by the sample mean, since the S.E. of the sample mean gets smaller with N. That expected returns are better estimated that returns is a good property for financial models, since expected returns are a key component of every valuation model.

The expected return on any investment can be written as the sum of a risk-free rate and a risk premium to compensate for the risk of the investment. A key element in equity valuation models is the risk premium that investors demand to hold "average (equity) risk" or market (equity) risk, which in turn affects the prices of all risky investments.

The difference between the expected risky market return and a risk-free rate is called the equity risk premium or ERP:

$$
\mathrm{ERP}=\mathrm{E}\left[\left(r_{m}-r_{f}\right)\right],
$$

where $\mathrm{E}\left[r_{m}\right]$ is the expected return on a well-diversified market portfolio and r_{f} is the risk-free rate. It is common to find that the ERP changes over time. In this case, we write the ERP at time $t+k, E R P_{t+k}$, as:

$$
E R P_{t+k}=E_{t}\left[\left(r_{m}-r_{f}\right)_{t+k}\right]
$$

where the subscript t means the expectations for period $t+k$ are taken at time t.
In standard macroeconomic-finance models, the ERP is determined by the aggregate risk aversion of investors and the volatility of equity markets. The ERP drives expectations of future equity market returns. It is an input in equilibrium asset pricing models like the capital asset pricing model (CAPM) and multi-factor models, like the Fama-French 3-factor model.

Returns: Expected Returns \& The ERP - Components

To calculate the ERP we need r_{f}, and $\mathrm{E}\left[r_{m}\right]$.
(1) The risk-free rate. The risk-free rate, r_{f}, is approximated by the mean yield of government securities, typical examples, the 3-month U.S. Treasury bill or the 10-year U.S. Treasury bond. In general, given the upward sloping terms structure, using the T-bill rate will give result in a higher $\mathrm{E}\left[\left(r_{m}-r_{f}\right)\right]$.

The risk-free rate used to compute the ERP has to be consistent with the risk-free rate used to compute expected returns. If we are estimating the cost of capital for a project that is expected to last 10 years, r_{f} is approximated by the yield of 10 -year government securities, for example, 10year Treasury bonds.
(2) Expected Market Return. To determine $\mathrm{E}\left[r_{m, t}\right]$ we need to determine the Market Portfolio.

Q: What is the Market Portfolio? In theory, it represents the universe of risky assets. In practice it represents the universe of traded equities, not just domestic, but in the world. Returns on this equity market portfolio should be measured free of survivor bias. .

In general, we approximate ("proxy") the Market Portfolio, with a well-diversified equity index. Also, in general, market-weighted indexes are preferred. For example, the S\&P 500 Index, the MSCI World Index, or the Weighted Average of CRSP returns.

Q: How do we calculate $\mathrm{E}\left[r_{m, t}\right]$?
There are three different ways to compute $\mathrm{E}\left[r_{m, t}\right]$:

1) Surveys. Usually an average of ERPs provided by individual investors, institutional investors, managers and, even, academics.
2) Historical data. Expectations are computed using past data. This is the most popular approach. For example, compute $\mathrm{E}\left[r_{m, t}\right]$ with sample averages of market returns, \bar{X}. As we have seen above, if we use this approach, it pays to use as much data as possible -more data, lower S.E. We think of $\mathrm{E}\left[r_{m, t}\right]$ as a long-run average of market returns. Robert Shiller's website has U.S. market equity returns from 1871, but if we think that the ERP is time varying, for example we consider the stock market in 1871 and in 2021 are very different, it may be better to use a shorter period, for example, 50 years or, may be shorter period, 20 years to compute the ERP.
3) Forward-looking data. We derive an (implied) ERP using market prices, for example, market indexes, options \& futures on market indexes, etc. Of course, we also need a model (a formula) that extracts the ERP from market prices.

Returns: Expected Returns \& The ERP - The Equity Risk Premium Puzzle

Once we determine $\mathrm{E}\left[r_{m, t}\right]$ and the risk-free rate, we are ready to calculate the ERP. But, keep in mind that we make decisions along the way.

For example, using Shiller's monthly data, with 150 years of data, we produce an estimate of the $\mathrm{ERP}=\mathrm{E}\left[\left(r_{m}-r_{f}\right)\right]$. Decisions made: computation of returns (log returns); method of computing

ERP (Historical data); sample period (1871-2021); market portfolio (S\&P Composite Index); risk-free rate (10-year U.S. bond rate). Then,

$$
\begin{aligned}
& \text { Annualized Market return }=0.007378 * 12=0.088536 \\
& \text { Annualized risk-free rate }=0.04511 \\
& E R P=\mathbf{0 . 0 8 8 5 3 6}-\mathbf{0 . 0 4 5 1 1}=\mathbf{0 . 0 4 3 4 2 6}
\end{aligned}
$$

Many economists would consider this estimate of the ERP "too high." Why is 4.34% too high? Using standard macroeconomic (neoclassical) models, the degree of risk aversion to justify it is unreasonable high, between 30 and 50, while a reasonable degree of risk aversion is no larger than 10 .

A too high (for economic models) ERP was first reported by Mehra and Prescott (1985), which they estimated around $\mathbf{6 \%}$. According to their calibration of their "standard" model, the ERP should be, at most, 1%. Mehra and Prescott (1985) labeled the incompatibility of theory \& observed data the equity risk premium puzzle.

There have been many attempts to explain the puzzle: statistical artifact (survivor bias); disaster insurance (peso problem/sample period), transaction costs \& taxation, model's preferences, behavioral issues (mainly, myopic loss aversion \& overreactions).

Damodaran (2021), who produces an annual update of the literature and the numbers, said in overview of the possible explanations:
"It is true that historical risk premiums are higher than could be justified using conventional utility models for wealth. However, that may tell us more about the dangers of using historical data and the failures of classic utility models than they do about equity risk premiums."

Returns: Expected Returns \& The ERP - Wide Range

Is it $\mathbf{4 \%}$ or $\mathbf{6 \%}$? It turns out that even with $\mathbf{1 0 0 +}$ years of data for developed markets there is no consensus on an ERP. Different choices in how to compute the ERP produce different estimates. For example, for the U.S. market, considered one of the best in terms of quality of data, Duarte and Rosa (2015) list over 20 approaches ("models") to estimate the ERP in the U.S.

With 1960-2013 data, $\mathrm{D} \& \mathrm{R}$ (2015) report estimates from $\mathbf{- 0 . 4 \%}$ to $\mathbf{1 3 . 1} \%$, with a $\mathbf{5 . 7 \%}$ average for all models. A wide range! This wide range is consistent with the reported averages for developed markets that we present below in Tables 2.D and 2.E.

In Table 2.D, using $\mathbf{5 0}$ years of monthly return data of log returns for some developed markets, we report mean equity annualized returns (in USD), the annualized standard deviation of returns (in USD) and the annualized ERP, which, again, is defined as the expected market excess return over the risk-free rate.

There is a wide range of ERP estimates from $\mathbf{0 . 8 8 \%}$ (Italy) to $\mathbf{1 1 . 5 6 \%}$ (HK), using the sample mean return for the MSCI country index (in USD) and the average U.S. T-Bill rate for the period $(\approx \mathbf{4 . 5 0 \%})$. The World Index, a weighted average of all equity markets, has an ERP equal to
3.17\%, where the EAFE (Europe, Australia and the Far East) Index has a slightly lower ERP, 3.06\%.

Table 2.D - MSCI Index USD Equity Returns and ERP: (1970-2021)

Market $(N=620)$	Equity Return	Standard Deviation	ERP
U.S.	8.31	15.01	3.82
Canada	7.95	19.21	3.46
France	8.80	21.95	4.31
Germany	8.80	21.48	4.31
Italy	5.37	$\mathbf{2 5 . 2 5}$	0.88
Switzerland	10.34	$\mathbf{1 7 . 6 4}$	5.85
U.K.	7.37	21.20	2.88
Japan	9.56	20.46	5.06
Hong Kong	$\mathbf{1 6 . 0 6}$	$\mathbf{3 3 . 2 3}$	$\mathbf{1 1 . 5 6}$
Singapore	11.71	27.48	7.22
Australia	7.35	23.42	2.73
		$\mathbf{1 4 . 5 4}$	
World	7.66	16.64	3.06
EAFE	7.69		

In Table 2.E, using 34 years of monthly return data or less, we report ERP (annualized) estimates for some emerging markets (in USD), where we observe a big dispersion of estimates, with higher mean returns, but also, higher standard deviations.

Table 2.E - MSCI Index USD Equity Returns and ERP: (1987* - 2021)

Market (N)	Equity Return	Standard Deviation	ERP
Argentina (404)	24.21	51.49	19.72
Brazil (404)	22.23	47.67	$\mathbf{1 7 . 7 4}$
Mexico (404)	17.67	29.26	13.18
Poland (344)	15.88	43.24	11.39

Russia (320)	21.09	47.54	$\mathbf{1 6 . 6 0}$
India (344)	$\mathbf{1 2 . 1 0}$	28.35	7.60
China (344)	4.90	31.94	0.41
Korea (404)	11.75	34.08	0.726
Thailand (404)	11.58	32.24	6.06
Egypt (320)	11.61	31.69	8.62
South Africa (344)	9.47	26.31	4.98
	$\mathbf{7 . 6 6}$	$\mathbf{1 4 . 5 4}$	$\mathbf{3 . 1 7}$
World (620)	8.85	23.13	4.36
EM Asia			

- We use the SE as a measure of precision of an estimate. For the sample mean, \bar{X}, we have:
S.E. $(\bar{X})=s / \sqrt{N}$

Using the previous data, we calculate the S.E. (\bar{X}) for several markets:
U.S. : 15.01/sqrt(620/12) $=2.0882 \%$

Germany: 21.48/sqrt(620/12) $=2.9883 \%$
Singapore: $27.48 /$ sqrt $(620 / 12)=3.8231 \%$
Hong Kong: 33.23/sqrt(620/12) $=4.6230 \%$
Brazil: $47.67 /$ sqrt(404/12) $=8.2157 \%$
Russia: 47.54/sqrt(320/12) $=9.2061 \%$
India: $28.35 /$ sqrt $(344 / 12)=5.2950 \%$
China: 31.94/sqrt(344/12) $=5.9654 \%$
A big difference in precision between Developed and Emerging Markets.
Note: Notice the effect of N. Hong Kong has a larger SD than India and China, but more observations make the mean estimate more precise.

Returns: Risk-Return - The Sharpe Ratio

The most commonly cited statistics that provides a measure of the risk-return trade-off for an asset is the Sharpe ratio (SR), the ratio of the excess expected return of an asset to its risk, measured by its return volatility (SD). We estimate the SR of asset i with

$$
\widehat{S R}=\frac{\widehat{\mu}_{\mathrm{i}}-\mathrm{r}_{\mathrm{f}}}{s_{i}}
$$

where $\hat{\mu}_{\mathrm{i}}$ is the sample mean (\bar{X}) return of asset i, r_{f} is the risk-free rate and s_{i} is the SD of the return of asset i.

Interpretation: A 1\% change in risk, increases excess returns by SR\%.
The higher the SR, the better the risk-return trade-off. That is, if we compare assets, the asset with the higher SR provides the better trade-off.

Using the previous data, we calculate the SR for several markets:

U.S.:	$0.0382 / .1501=0.254497$
Switzerland:	$0.0585 / 17.64=0.3316$
Hong Kong:	$0.1156 / .3323=0.3479$
Russia:	$0.1660 / .4754=0.3492 \quad \Longleftarrow$ Best trade-off?
India:	$0.0760 / .2835=0.2681$.

Review - Hypothesis Testing

A statistical hypothesis test is a method of making decisions using experimental data. A result is called statistically significant if it is unlikely to have occurred by chance.

These decisions are made using (null) hypothesis tests. A hypothesis can specify a particular value for a population parameter, say $q=q$. Then, the test can be used to answer a question like:

Assuming q_{0} is true, what is the probability of observing a value for the (test) statistic used that is at least as big as the value that was actually observed?

Uses of hypothesis testing:

- Check the validity of theories or models.
- Check if new data can cast doubt on established facts.

Testing involves the comparison between two competing hypothesis (sometimes, they represent partitions of the world).

- The null hypothesis, denoted H_{0}, is sometimes referred to as the maintained hypothesis.
- The alternative hypothesis, denoted H_{1}, is the hypothesis that will be considered if the null hypothesis is "rejected."

Idea: We collect a sample of data $X=\left\{X_{1}, X_{2}, \ldots, X_{N}\right\}$. We construct a statistic $\mathrm{T}(X)=f(X)$, called the test statistic. Now we have a decision rule:

- If $T(X)$ is contained in space R, we reject H_{0} (\& we learn).
- If $T(X)$ is in the complement of $R\left(R^{\mathrm{C}}\right)$, we fail to reject H_{0}.

Note: $T(X)$, like any other statistic, is a RV. It has a distribution. We will use the distribution of $T(X)$ to determine R.

Example: Suppose we want to test if the mean of IBM annual returns, $\mu_{\text {IBм }}$ is 10%. That is, H_{0} : $\mu_{\text {IBM }}=10 \%$.

From the population, we get a sample: $\left\{X_{1962}, X_{1963}, \ldots, X_{N=2020}\right\}$, with $N=59$. We use $T(X)=\bar{X}$, which is unbiased, consistent, and, assuming X is normally distributed, we know its distribution, $\bar{X} \sim \mathrm{~N}\left(\mu, \sigma^{2} / N\right)$.

Now, we need to determine the rejection region, R, such that if

$$
T(X)=\bar{X} \notin\left[T_{L B}, T_{U B}\right] \quad \Rightarrow \text { Reject } \mathrm{H}_{0}: \mu_{\mathrm{IBM}}=10 \% .
$$

That is,

$$
\mathrm{R}=\left[\bar{X}<T_{L B}, T_{U B}>\bar{X}\right] . \boldsymbol{\|}
$$

Q: How do we determine $T_{L B}$ and $T_{U B}$ and, thus, make a decision? As shown below, we use the distribution of \bar{X}, which is derived under H_{0}. In practice, we try to avoid a true H_{0}. We set the probability of rejecting a true $\mathrm{H}_{0}\left(=\mathrm{P}\left[R \mid H_{0}\right]\right)$ equal to a small number.

Note: In the Graph below, the blue area gives us the associated probability with R. That is, the probability, under H_{0}, that the observed $T(X)=\bar{X}$ falls in the rejection region. The blue are is called the significance level, usually denoted by α.

Review - Hypothesis Testing: p-value and steps

We present the classical approach, a synthesized approach, known as significance testing. It relies on Fisher's p-value:
p-value is the probability of observing a result at least as extreme as the test statistic, under H_{0}.

Example: Suppose $T(X) \sim \chi_{2}^{2}$. We compute $\widehat{T(X)}=7.378$. Then,
p-value $(\widehat{T(X)}=7.378)=1-\operatorname{Prob}[T(X)<7.378]=0.025$
Chi-square Distribution (df=2): P-value.

R Note: We compute the p-value using $\operatorname{pchisq}(q, d f)$, which computes the CDF at value q of a Chi-square distribution with $d f$ degrees of freedom. Then,

```
> pchisq(q=7.378,df=2) # Prob[T(X)<7.378]
0.975003
p_val <- 1-pchisq(q=7.378,df=2) # p-value (\widehat{T(X)}=7.378)=1-\operatorname{Prob}[T(X)<7.378]
> p_val
[1] 0.02499699. |
```

Using the distribution of the test statistic $\mathrm{T}(X)$ under the null hypothesis, Fisher's significance testing approach determines a rejection region, based on the significance level ($\alpha \%$).

We follow these steps:

1. Identify $\mathrm{H}_{0} \&$ decide on a significance level $\left(\alpha \%=\mathrm{P}\left[R \mid H_{0}\right]\right)$ to compare your test results.
2. Determine the appropriate test statistic $\mathrm{T}(X)$ and its distribution under the assumption that H_{0} is true.
3. Calculate $\mathrm{T}(X)$ from the data.
4. Rule: Reject H_{0} if the p-value is "sufficiently small," then, we consider $\mathrm{T}(X)$ in R (we learn). Otherwise, we reach no conclusion (no learning).

Note: In Step 4, setting $\alpha \%$ is equivalent to setting R.

- Q: What p-value is "sufficiently small" as to warrant rejection of H_{0} ?

Rule: If p-value $<\alpha$ (say, $5 \%) \quad \Rightarrow$ test result is significant: Reject H_{0}.
If p-value $>\alpha \quad \Rightarrow$ test results are "not significant." No conclusions are reached (no learning here). Go back and gather more data or modify model.

The father of this approach, Ronald Fisher, favored 5% or 1%.
Example: From the U.S. Jury System
H_{0} : The defendant is not guilty.
H_{1} : The defendant is guilty. \mathbb{I}
In statistics, we learn when we reject. In this case, we learn a defendant is guilty when the jury finds the defendant guilty, by rejecting H_{0}.

Example: From the U.S. Jury System

1. Identify $\mathrm{H}_{0} \&$ decide on a significance level ($\alpha \%$)
H_{0} : The defendant is not guilty
H_{1} : The defendant is guilty
Significance level $\alpha=$ "beyond reasonable doubt," presumably, a small level.
2. After judge instructions, each juror forms an "innocent index" $\mathrm{T}(X)$.
3. Through deliberations, jury reaches a conclusion $\mathrm{T}(X)=\sum_{i=1}^{12} \mathrm{~T}(X)_{i}$.
4. Rule: If p-value of $\mathrm{T}(X)<\alpha \quad \Rightarrow$ Reject H_{0}. That is, guilty!

If p-value of $\mathrm{T}(X)>\alpha \quad \Rightarrow$ Fail to reject H_{0}. That is, non-guilty.
Alternatively, we build a rejection region around H 0 . $\|$
Note: Mistakes are made. We want to quantify these mistakes.
Failure to reject H_{0} does not necessarily mean that the defendant is not guilty, or rejecting H_{0} does not mean necessarily the defendant is guilty. Type I error and Type II error give us an idea of both mistakes.

Definition: Type I and Type II errors
A Type I error is the error of rejecting H_{0} when it is true. A Type II error is the error of "accepting" H_{0} when it is false (that is, when H_{1} is true).

Notation: \quad Probability of Type I error: $\alpha=\mathrm{P}\left[\mathrm{X} \in R \mid \mathrm{H}_{0}\right]$
Probability of Type II error: $\beta=\mathrm{P}\left[\mathrm{X} \in R^{C} \mid \mathrm{H}_{1}\right]$
We call $1-\beta$ the power of the test - i.e., the probability of rejecting a false null hypothesis.
Example: From the U.S. Jury System
Type I error is the error of finding an innocent defendant guilty. Type II error is the error of finding a guilty defendant not guilty.

	State of World	
Decision	H_{0} true ("not guilty")	H_{1} true ("guilty")
Cannot reject H_{0}	Correct decision	Type II error
Reject H_{0}	Type I error	Correct decision

Note: We usually think that we learn when we reject H_{0}. Note that some "learning" comes from Type I error-i.e., from false positives. $\|$

In general, we think Type I error is the worst of the two errors: We try to minimize the error of sending to jail an innocent person.

Actually, we would like Type I error to be zero. However, the only way to do this (100% of innocent defendants are found not guilty) is to never reject H_{0}. Then, we maximize Type II error.

There is a clear trade-off between both errors. Traditional view: Set Type I error equal to a small number (defined in the U.S. court system as "beyond reasonable doubt") and design a test that minimizes Type II error.

The usual tests (t-tests, F-tests, Likelihood Ratio tests) incorporate this traditional view.
Example: We want to test if the mean is equal to μ_{0}, against the alternative hypothesis of different than μ_{0}.Then,

1. $\mathrm{H}_{0}: \mu=\mu_{0}$.
$\mathrm{H}_{1}: \mu \neq \mu_{0}$.
Notice that we have a double sided alternative, which creates a rejection region on both sides of the distribution of $\mathrm{T}(X)$.
2. Appropriate $\mathrm{T}(X)$: t-test (based on σ unknown and estimated by s).

Determine distribution of $\mathrm{T}(X)$ under H_{0}. Sampling distribution of \bar{X}, under H_{0} :

$$
\bar{X} \sim \mathrm{~N}\left(\mu_{0}, \sigma^{2} / N\right)
$$

Then, distribution of $\mathrm{T}(X)$ under H_{0} :

$$
\mathrm{t}=\frac{\bar{X}-\mu_{0}}{s / \sqrt{N}} \sim t_{N-1} \quad \quad-\text { when } N>30, \mathrm{t} \sim \mathrm{~N}(0,1)
$$

3. Compute t , $\hat{\mathrm{t}}$, using \bar{X}, μ_{0}, s, and N. Since it is a double sided t -test, we look at $|\hat{\mathfrak{t}}|$. Then, get p value $(|\hat{t}|)$.
$\begin{aligned} \text { 4. Rule: Set } \alpha \text { level. If } p \text {-value }(|\hat{t}|)<\alpha & \Rightarrow \text { Reject } H_{0}: \mu=\mu_{0} . \\ \text { Alternatively, if }|\hat{t}|>t_{N-1,1-\alpha / 2}(=1.96, \text { if } \alpha=.05) & \Rightarrow \text { Reject } H_{0}: \mu=\mu_{0} \cdot \|\end{aligned}$

Notice the alternative Rule; it sets a Rejection region:

$$
\mathrm{R}=\left[|\hat{\mathrm{t}}|>t_{N-1,1-\alpha / 2}\right]
$$

If $\alpha=5 \%$ and $N>30$, then $t_{N>30, .025}=-1.96 \& t_{N>30,975}=1.96(\approx 2)$. (The distribution is symmetric, that is, $\left.-t_{N>30, .025}=t_{N>30, .975}=1.96\right)$.

Technical Note 1: In step 2, the distribution of the t -statistic, t , is exact if $\{X\}$ follows a normal distribution, otherwise, the distribution is asymptotic (for this we need a large N); that is

$$
\mathfrak{t}=\frac{\bar{X}-\mu_{0}}{s / \sqrt{N}} \xrightarrow{d} \mathrm{~N}(0,1) .
$$

Technical Note 2: In step 2, we determine the distribution of \mathfrak{t}, by using the sampling distribution of \bar{X} under H_{0}. If H_{0} is not true, say $\mu=\mu_{1}$. then

$$
\bar{X} \sim \mathrm{~N}\left(\mu_{1}, \sigma^{2} / N\right)
$$

thus, t is distributed $\mathrm{N}(0,1)$ only under H_{0}, since only under H_{0} the $\mathrm{E}\left[\bar{X}-\mu_{0}\right]=0$.

Review - Hypothesis Testing: Examples

Example 1: We want to test if the monthly mean total return of the $\mathrm{S} \& \mathrm{P} 500$ is equal to zero using $\alpha=.05$. We use the $\mathbf{S \&} \mathbf{P} 500$ monthly returns (1871-2021) with the following mean and variance: $\bar{X}=0.007378, s=0.04046, N=1805$.

1. $\mathrm{H}_{0}: \mu=0$.

$$
\left(\mu_{0}=0\right)
$$

$\mathrm{H}_{1}: \mu \neq 0$.
2. $\mathrm{t}=\frac{\bar{X}-\mu_{0}}{s / \sqrt{N}}$
3. $\quad \hat{\mathrm{t}}=\frac{0.007378}{0.04046 / \sqrt{1805}}=7.7478 \&$ \&-value $(|\hat{\mathrm{t}}|)=9.325873 \mathrm{e}-15 \quad$-multiply by $2 p$-value $(\hat{\mathrm{t}})$.
4. Rule: p-value $(|\hat{\mid}|)=9.325873 \mathrm{e}-15<\alpha=.05 \quad \Rightarrow$ Reject $\mathrm{H}_{0}: \mu=0$.

Alternatively, $|\hat{\mathfrak{t}}=7.7478|>t_{1789,025}=1.96 \quad \Rightarrow$ Reject $\mathrm{H}_{0}: \mu=0$.
Conclusion: S\&P 500 monthly mean total returns are not equal to zero.

- Computation in R, using our previous extracted variables, SP \& D:
$\mathrm{T}<-$ length(SP)
$\operatorname{lr} r_{-}<-\log (\operatorname{SP}[-1]+\mathrm{D}[-1] / 12)-\log (\mathrm{SP}[-\mathrm{T}])$ \# Define \log total returns
$\mathrm{x}<-\mathrm{lr}_{-} \mathrm{t}$ \# Series to be analyzed
$\mathrm{N}<-$ length(x) \# Number of observations
$\mathrm{m} 1<-\operatorname{sum}(\mathrm{x}) / \mathrm{N}$
\# Mean
$\mathrm{s} 2<-\operatorname{sum}\left((\mathrm{x}-\mathrm{m} 1)^{\wedge} 2\right) /(\mathrm{N}-1) \quad$ \# Sample Variance
sd_s $<-$ sqrt(s2) \# Sample SD
$\mathrm{tl}<-\mathrm{ml} /(\mathrm{sd}$ _s/sqrt(N)) \# t-test
$>\mathrm{tl}$
[1] 7.747794
p_val <- $(1-\operatorname{pnorm}(\mathrm{t} 1)) * 2 \quad$ \# p-value of a two sided test, $|\mathrm{t}| .=>$ Multiply by 2
> p_val
[1] 9.325873e-15
$\underline{\mathrm{R}}$ Note: We find the $t_{1789,025}$ using qt $(p, d f)$, which gives the quantile of the t -distribution with $d f$ degrees of freedom. That is,

$$
\begin{equation*}
\#=(-1) * q t(.025,1789) \text { by symmetry. } \tag{.975,1789}
\end{equation*}
$$

[1] 1.961291
\# Check result with pt $(q, d f)$
$>\operatorname{pt}(\mathrm{q}=1.96, d f=1789)$
[1] 0.9749246. $\quad \Rightarrow 1-\mathrm{pt}(\mathrm{q}=1.96, d f=1789) \approx 0.025$. ब

Q: How do we calculate the p-value? Recall, it is the probability of observing a result at least as extreme as the test statistic, under H_{0}.

In this case, we know that under $\mathrm{H}_{0}: \mu=0$, the t -stat is well approximated by a $\mathrm{N}(0,1)$ distribution (since $N>30$). Then, we use the R function pnorm to calculate the cumulative standard normal value up to 7.7478 , and then subtract it from 1 :
p_val_1<-1 - pnorm(7.7478)
$>$ p_val_1 * 2
[1] 9.325873e-15
\# p-value of (one-sided) t_test
\# Multiply by 2 since it is a double sided test

The observed $t(\hat{\mathfrak{t}}=7.7478)$ is outside the non-rejection region $\left(R^{C}\right)$ built around H_{0} : (-1.96, 1.96).

$$
\Rightarrow \text { Rejection region }=\mathrm{R}=([-\infty,-1.96] \mathrm{U}[1.96, \infty]) .9
$$

Distribution of Mean Standardized S\&P 500 Returns: 95% C.I.

Note: : p-value $(|\hat{\mathrm{t}}|)=p$-value $(3.7121) * 2$
(double-sided test multiply by 2). $\boldsymbol{\top}$

Example 2: We want to test if monthly S\&P 500 total returns (1871-2021) follow a normal distribution using $\alpha=.05$. If the distribution is normal, skewness is zero and kurtosis is equal to 3 (or excess kurtosis equals 0). The estimated moments are: $\widehat{\gamma_{1}}=-\mathbf{0 . 4 7 0 5}, \widehat{\gamma_{2}}=(14.6105-3)=$ $11.6105, \& N=1805$.

1. $\quad \mathrm{H}_{0}$ (Data is normal): $\gamma_{1}=\frac{\mu_{3}^{0}}{\sigma^{3}}=0$ and $\gamma_{2}=\frac{\mu_{4}^{0}}{\sigma^{4}}-3=0$.
H_{1} (Data is not normal): $\gamma_{1} \neq 0$ and/or $\gamma_{2} \neq 0$.
2. Appropriate $\mathrm{T}(X)$: the Jarque-Bera test (JB), $\quad \mathrm{JB}=\frac{N}{6} *\left(\gamma_{1}^{2}+\frac{\gamma_{2}{ }^{2}}{4}\right)$

Under $\mathrm{H}_{0}, \mathrm{JB} \xrightarrow{d} \chi_{2}^{2}$ (chi-square distribution with 2 degrees of freedom)
3. $\widehat{\mathrm{JB}}=\frac{1805}{6} *\left[(-\mathbf{0 . 4 7 0 5})^{2}+\frac{(11.6105)^{2}}{4}\right]=\mathbf{1 0 , 2 0 4 . 8 9}$
4. Rule: $\quad p$-value $(\widehat{\mathrm{JB}}=\mathbf{1 0 , 2 0 4 . 9}) \approx 0<\alpha=.05 \Rightarrow$ Reject H_{0}.

Alternatively, compare $\widehat{\mathrm{JB}}$ to the $\chi_{2,95}^{2}$ value ($\chi_{2,95}^{2}=5.991$). That is,

$$
\widehat{\mathrm{JB}}>\chi_{2,95}^{2} \quad \Rightarrow \text { Reject } \mathrm{H}_{0} . \text { (A strong rejection!) }
$$

Chi-square Distribution (df=2): One-sided 95\% C.I.

Conclusion: We strongly reject H_{0}. That is, monthly S\&P 500 returns are not normally distributed. \boldsymbol{q}

Review - Confidence Intervals (C.I.)

When we estimate parameters with an estimator, $\hat{\theta}$, we get a a point estimate for θ, meaning that $\hat{\theta}$ is a single value in R^{k}. For example, in the previous example, we get $\bar{X}=0.003571$.

Broader concept: Estimate a set C_{n}, a collection of values in R^{k}. For example, for $\bar{X}=\{0.00155$, $0.00554\}$.

It is common to focus on intervals $\mathrm{C}_{\mathrm{n}}=\left[\mathrm{L}_{n} ; \mathrm{U}_{\mathrm{n}}\right]$, called an interval estimate for θ. The goal of C_{n} is to contain the true population value, θ. We want to see $\theta \in \mathrm{C}_{\mathrm{n}}$, with high probability.

Technical detail: Since C_{n} is a function of the data, it is a RV and, thus, it has a pdf associated with it. The coverage probability of the interval $\mathrm{C}_{\mathrm{n}}=\left[\mathrm{L}_{n} ; \mathrm{U}_{n}\right]$ is $\operatorname{Prob}\left[\theta \in \mathrm{C}_{n}\right]$.

Intervals estimates C_{n} provide an idea of the uncertainty in the estimation of θ : The wider the interval C_{n}, the more uncertain we are about our estimate, $\hat{\theta}$.

Interval estimates C_{n} are called confidence intervals (C.I.) as the goal is to set the coverage probability to equal a pre-specified target, usually 90% or $95 \% . C_{n}$ is called a $(1-\alpha) \%$ C.I.

When we know the distribution for the point estimate, it is straightforward to construct a C.I. For example, if the distribution of $\hat{\theta}$ is normal, then a $(1-\alpha) \%$ C.I. is given by:

$$
\mathrm{C}_{\mathrm{n}}=\left[\widehat{\theta}+z_{\alpha / 2} * \text { Estimated } \operatorname{SE}(\widehat{\theta}), \hat{\theta}+z_{1-\alpha / 2} * \text { Estimated } \operatorname{SE}(\hat{\theta})\right],
$$

where $z_{1-\alpha / 2}$ is the $100^{*}(1-\alpha / 2)$ percentile of the standard normal distribution. (Recall that the normal distribution is symmetric, thus $z_{\alpha / 2}=-z_{1-\alpha / 2}$). This C.I. is symmetric around $\hat{\theta}$. Its length is proportional to $\operatorname{SE}(\hat{\theta})$.

If the data follows a Normal distribution, then for the sample mean a $(1-\alpha) \%$ C.I. is given by:

$$
\mathrm{C}_{\mathrm{n}}=\left[\bar{X}-z_{1-\alpha / 2} * \mathrm{SD}(\bar{X}), \bar{X}+z_{1-\alpha / 2} * \mathrm{SD}(\bar{X})\right]
$$

The size of the symmetric C.I. depends on the $\mathrm{SD}(=\mathrm{SE})$. The higher SD, the wider the C.I.
Example: Two 95\% C.I. for the mean, with two different SD $(=1,2)$, are plotted below. (Recall: $z_{1-.05 / 2}=1.96$).

Example: We estimate a 95% C.I. for the monthly total mean return of the S\&P 500. The sampling distribution of the sample mean (assuming normality) is $\bar{X} \sim \mathrm{~N}\left(\mu, \sigma^{2} / N\right)$, then, a (1$\alpha) \%$ C.I. is given by:

$$
\mathrm{C}_{\mathrm{n}}=\left[\bar{X}-z_{1-\alpha / 2} * \mathrm{SD}(\bar{X}), \bar{X}+z_{1-\alpha / 2} * \mathrm{SD}(\bar{X})\right] \Rightarrow \text { The higher SD, the wider the C.I. }
$$

Then,

$$
\begin{aligned}
\mathrm{C}_{\mathrm{n}} & =[0.00738-1.96 *(0.04046 / \sqrt{1805}), 0.00738+1.96 *((0.04046 / \sqrt{1805})] \\
& =[0.005511,0.00924]=[0.55 \%, 0.92 \%] .
\end{aligned}
$$

Returns
By looking at the 95% C.I., we can reject the null hypothesis that monthly S\&P 500 total returns are 0 , since 0% is outside the 95% C.I. But, the C.I is wide, even after 150 years of data.

Conclusion: Reject $\mathrm{H}_{0}: \mu=0$, since 0 is outside the observed 95% C.I.
Note: Using the above confidence interval, we can also reject that monthly excess returns are equal to $0.0833 \%(=1 \% / 12)$. Recall that Mehra \& Prescott (1983) reported that the ERP is too high since in their calculation the annualized equilibrium ERP is equal to 1%. .

Example: We want to estimate a 95% C.I. for the variance of monthly S\&P Composite mean total return. Assuming normality, the sample variance is distributed: $(N-1) s^{2} / \sigma^{2} \sim \chi_{N-1}^{2}$.

To derive a $(1-\alpha) \%$ C.I. for the variance, we rewrite the standard confidence interval for a chisquared variable:

$$
\mathrm{P}\left(\chi_{v, \alpha / 2}^{2}<\chi_{v}^{2}<\chi_{v, 1-\alpha / 2}^{2}\right)=\mathrm{P}\left(\chi_{v, \alpha / 2}^{2}<(N-1) s^{2} / \sigma^{2}<\chi_{v, 1-\alpha / 2}^{2}\right)=1-\alpha
$$

After some easy algebra, we derive:

$$
\mathrm{P}\left[(N-1) s^{2} / \chi_{v, 1-\alpha / 2}^{2}<\sigma^{2}<(N-1) s^{2} / \chi_{v, \alpha / 2}^{2}\right]=1-\alpha .
$$

Note: This C.I. is not symmetric. But, as the degrees of freedom get large, the χ_{N-1}^{2} starts to look like the normal distribution and, thus, CIs will look more symmetric.

From the χ_{1789}^{2} distribution, we get: $\chi_{1804,025}^{2}=1688.2 \& \chi_{1804,975}^{2}=1923.7$. (You get these values in R with $\mathrm{qchisq}(.025, \mathrm{df}=\mathrm{N}-1) \& \mathrm{qchisq}(.975, \mathrm{df}=\mathrm{N}-1)$, respectively.)

Taking square root above delivers a 95% C.I. for σ : $\Rightarrow 95 \%$ C.I. for σ is given by $(3.918 \%, 4.182 \%)$.

The C.I. is quite compact around the sample point estimate. Compared to the mean, σ is measured with accuracy.

Note: Usually N is large $(N>30)$. We can use the normal approximation to calculate CIs for the population σ. For the S\&P data, we estimate the S.E. for the sample SD:

$$
\mathrm{SE}(s)=s / \sqrt{2 *(N-1)}=0.04046 / \mathrm{sqrt}(2 * 1804)=0.000673(\text { or } .067 \%)
$$

A $95 \% \mathrm{CI}$ for σ is given by

$$
(4.046 \% \pm 1.96 * .067 \%)=(3.914 \%, 4.178 \%) . \quad(\text { Very close! }) \text { ब }
$$

C.I. Application: Using the ED - The Bootstrap

In the previous examples, we assumed that we knew the distribution of the data: Stock returns follow a normal distribution. What happens when the data follows an unknown distribution, F ?

We still can use the sample mean, \bar{X}, or the sample variance, s^{2}, as estimates of μ and σ^{2}, since the LLN tell us that they are both consistent estimators. If we have a "large" dataset -i.e., large N - we can use the CLT to justify a C.I based on a normal distribution.

But, when we have an unknown distribution F and we do not have a large enough N or we suspect the normal approximation is not a good one, we still can build a C.I. for any statistic using a new method: a bootstrap.

Bootstrapping is the practice of estimating the properties of an estimator -say, its variance- by measuring those properties when sampling from an approximating distribution (the bootstrap $D G P)$.

That is, it is necessary to estimate a bootstrap DGP from which to draw the simulated samples. The DGP that generated the original data is unknown, and so it cannot be used to generate simulated data.
\Rightarrow The bootstrap DGP estimates the unknown true DGP.
Idea: We use the data at hand -the empirical distribution (ED)- to estimate the variation of statistics that are themselves computed from the same data. Recall that, for large samples, the ED approximates the CDF very well.

The empirical bootstrap is a statistical technique, easy to implement, that takes advantage of today's modern computers, by resampling from the ED. Bootstrapping uses the ED -i.e., sampleas if it were the true CDF.

- Suppose we have a sample with N observations drawn from $F(x)$:

$$
\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}
$$

From the ED, F^{*}, we sample ("resample") with replacement N observations:

$$
\left\{x_{1}^{*}=x_{2}, x_{2}^{*}=x_{4}, x_{3}^{*}=x_{4}, \ldots, x_{N}^{*}=x_{N-8}\right\}
$$

This is an empirical bootstrap sample, which is a resample of the same size N as the original data, drawn from F^{*}.

For any statistic θ computed from the original sample data, we can define a statistic θ^{*} by the same formula, but computed instead using the resampled data. Then,

$$
\left\{x_{1}^{*}=x_{2}, x_{2}^{*}=x_{4}, x_{3}^{*}=x_{4}, \ldots, x_{N}^{*}=x_{N-8}\right\} \Rightarrow \hat{\theta}_{1}^{*}
$$

θ^{*} is computed by resampling the original data; we can compute many θ^{*} by resampling many times from F^{*}. Say, we resample $\theta^{*} B$ times.

We have a collection of estimated θ^{*} :

$$
\left\{\hat{\theta}_{1}^{*}, \hat{\theta}_{2}^{*}, \hat{\theta}_{3}^{*}, \ldots, \widehat{\theta}_{B}^{*}\right\}
$$

From this collection of $\hat{\theta}^{*}$'s, we can compute the mean, the variance, skewness, draw a histogram, etc., and confidence intervals. From this collection of $\widehat{\theta}^{*}$'s, we learn about the behavior of statistic θ.

Example: We are interested in estimating the variance of monthly S\&P 500 returns. We have already estimated it, using Shiller's data: ($\mathbf{0 . 0 4 0 4 6})^{2}$. We also estimated a 95% C.I. based on the normal distribution, but, we are not sure it is a reliable C.I. since we already know that monthly returns are not normally distributed.

We use a bootstrap to study the distribution of the sample variance.

- Randomly construct a sequence of B samples (all with $N=1,871$). Say, $\mathrm{B}_{1}=\left\{x_{1}, x_{2}, x_{6}, x_{6}, x_{6}, x_{6}, x_{16}, \ldots, x_{1458}, x_{1758}, x_{1859}\right\} \quad \Rightarrow \widehat{\theta}_{1}^{*}=s_{1}^{2}$
$\mathrm{B}_{2}=\left\{x_{5}, x_{7}, x_{8}, x_{9}, x_{21}, x_{21}, x_{26}, \ldots, x_{1661}, x_{1663}, x_{1870}\right\} \quad \Rightarrow \hat{\theta}_{2}^{*}=s_{2}^{2}$
$\mathrm{B}_{\mathrm{B}}=\left\{x_{2}, x_{3}, x_{8}, x_{11}, x_{21}, x_{21}, x_{22}, \ldots, x_{1805}, x_{1805}, x_{1806}\right\} \quad \Rightarrow \hat{\theta}_{B}^{*}=s_{B}^{2}$
We have a collection of estimated sample variances:

$$
\left\{s_{1}^{2}, s_{2}^{2}, s_{3}^{2}, \ldots, s_{B}^{2}\right\} .
$$

From this collection of s^{2} 's, we can compute the mean, the variance, skewness, draw a histogram, etc., and confidence intervals. From this collection of s^{2} 's, we learn about σ^{2}. \mathbb{I}

- Bootstrap Steps:

1. From the original sample, draw a random sample with size N.
2. Compute statistic θ from the resample in $1: \hat{\theta}_{1}^{*}$.
3. Repeat steps $1 \& 2 B$ times \Rightarrow Get B statistics: $\left\{\hat{\theta}_{1}^{*}, \hat{\theta}_{2}^{*}, \hat{\theta}_{3}^{*}, \ldots, \hat{\theta}_{B}^{*}\right\}$
4. Compute moments; draw histograms; etc. for these B statistics.

Using the histogram or the sorted $\left\{\hat{\theta}_{1}^{*}, \widehat{\theta}_{2}^{*}, \widehat{\theta}_{3}^{*}, \ldots, \hat{\theta}_{B}^{*}\right\}$, we can build a $(1-\alpha) \%$ C.I. Using the histogram, the lower bound leaves $\alpha / 2 \%$ of the $\hat{\theta}^{*}$ to the right and $(1-\alpha / 2) \%$ of the $\hat{\theta}^{*}$ to the left.

Example: We construct a 95% C.I. for the variance of S\&P 500 returns. (You need to install R package resample, using the install.packages() function.)

Sh_da <- read.csv("https://www.bauer.uh.edu/rsusmel/4397/Shiller_2020data.csv", head=TRUE, sep=",")
SP <- Sh_da\$P
T <- length(SP)
$\operatorname{lr}<-\log ($ SP[-1]/SP[-T] $)$
lr_var <- var(lr)
T_s <- length (lr)
sim_size $<-1000 \quad \# B=$ size of bootstrap
library(resample) \# call library resample data_star <- sample(lr, T_s*sim_size, replace=TRUE) \# create B resamples of size T_s boot_sample <- matrix(data_star, nrow= T_s, ncol=sim_size) \# organize resamples in matrix boots_vars <- colVars(boot_sample) \# compute the variance for each bootsrap sample
$\mathrm{q}<-$ quantile(boots_vars, $\mathrm{c}(0.025,0.975)$) \# Find the 0.025 and 0.975 quantile for q ci <- lr_var - c(q[1], q[2])
cat("Confidence interval: ",ci, " $\backslash \mathrm{n} "$) \# Print C.I using cat
$>$ lr_var
[1] 0.001637
$>\mathrm{ci}$
97.5\% 2.5\%
0.0013766640 .001909769
> cat("Confidence interval: ", ci, "\n")
Confidence interval: 0.0013766640 .001909769
$>$
Or, taking square roots above, we can get a 95% CI for σ : ($3.71 \%, 4.37 \%$). $\boldsymbol{\|}$

- Results (bootstrap principle):

1. With a large enough B, the LLN allows us to use the $\hat{\theta}^{*}$'s to estimate the distribution of $\widehat{\theta}$, $F(\hat{\theta})$.
2. The variation in $\hat{\theta}$ is well approximated by the variation in $\hat{\theta}^{*}$.

Result 2 is the one that we use to estimate the size of a C.I.
Technical Note: The bootstrap delivers consistent results only.

C.I. Application: The Bootstrap Percentile Method

There are many ways to construct a C.I. using bootstrapping. The easier one is the one described above. Just use the distribution of the $\hat{\theta}^{*}$'s to compute directly a C.I. This is the bootstrap percentile method.

The percentile method uses the distribution of $\hat{\theta}^{*}$ as an approximation to the distribution of $\hat{\theta}$. It is very simple, but not as appealing, since comparing differences tends to work better.

Example: (Continuation of previous example.) We construct a 95\% C.I. for the variance of S\&P 500 returns. Using the boot.ci function, with type=perc, from boot package (install boot first, using the install.packages() function and then call library(boot) before you use it):

```
library(boot)
boot.samps <- boot(data=lr, statistic=var_p, R=sim_size) # resampling and 者 estimation
boot.ci(boot.samps, type = "perc")
> boot.ci(boot.samps, type = "perc")
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates
```

CALL:
boot.ci(boot.out = boot.samps, type = "perc")
Intervals :
Level Percentile
95\% (0.0014, 0.0020)
Calculations and Intervals on Original Scale

- Draw a Histogram to Check Distribution of $\hat{\theta}^{*}$ (=boot.samps\$t).
$>$ hist(boot.samps\$t, breaks=12, main="Histogram for Boostrapped Variances", xlab="Bootstrapped Variances")

- Check results by sorting boot.samps\$t.
$>$ new $<-$ sort(boot.samps\$t)
$>$ new[25] \# CI's Lower Bound
[1] 0.001398215
> new[975] \# CI's Upper Bound
[1] 0.001955096
Or for σ, taking square root of the above bounds, the $95 \% \mathrm{CI}$ is given by $(3.74 \%, 4.42 \%)$.
$>$ new $<-$ sort(boot.samps\$t)
$>$ new[25] \# CI's Lower Bound
[1] 0.001398215
> new[975] \# CI's Upper Bound
[1] 0.001955096
Or for σ, the $95 \% \mathrm{CI}$ is given by ($\mathbf{3 . 7 4 \%}, 4.42 \%$). \boldsymbol{q}

C.I. Application: The Empirical Bootstrap

The percentile method uses the distribution of $\hat{\theta}^{*}$ as an approximation to the distribution of $\hat{\theta}$. It is very simple, but there are more appealing methods. In general, a bootstrap based on comparing differences is sounder. This is the key to the empirical bootstrap.

To build a C.I. for θ, we use $\hat{\theta}$, computed from the original sample. As in the previous C.I.'s, we want to know how far is $\hat{\theta}$ from θ. For this, we would like to know the distribution of

$$
q=\hat{\theta}-\theta .
$$

If we knew the distribution of $q=\hat{\theta}-\theta$, we build a $(1-\alpha) \%$ C.I., by finding the critical values $q_{\alpha / 2} \& q_{(1-\alpha / 2)}$ to have:

$$
\operatorname{Pr}\left(q_{\alpha / 2} \leq \hat{\theta}-\theta \leq q_{(1-\alpha / 2)} \mid \theta\right)=1-\alpha
$$

Or, after some manipulations:

$$
\operatorname{Pr}\left(\hat{\theta}-q_{\alpha / 2} \geq \theta \geq \hat{\theta}-q_{(1-\alpha / 2)} \mid \theta\right)=1-\alpha,
$$

which gives a $(1-\alpha) \%$ C.I.:

$$
\mathrm{C}_{\mathrm{n}}=\left[\hat{\theta}-q_{(1-\alpha / 2)}, \hat{\theta}-q_{\alpha / 2}\right]
$$

We do not know the distribution of q, but we can use the bootstrap to estimate it with

$$
q^{*}=\hat{\theta}^{*}-\hat{\theta}
$$

and then to get $q_{\alpha / 2}^{*} \& q_{(1-\alpha) / 2}^{*}$:

$$
\mathrm{C}_{\mathrm{n}}=\left[\hat{\theta}-q_{(1-\alpha) / 2}^{*}, \hat{\theta}-q_{\alpha / 2}^{*}\right]
$$

This C.I. is called the pivotal C.I.
Intuition: The distribution of $\hat{\theta}$ is 'centered' at θ, while the distribution of $\theta *$ is centered at $\hat{\theta}$. If there is a significant separation between $\hat{\theta}$ and θ, these two distributions will also differ significantly.

On the other hand, the distribution of $q=\hat{\theta}-\theta$ describes the variation of $\hat{\theta}$ about its center. Similarly, the distribution of $q^{*}=\theta^{*}-\widehat{\theta}$ describes the variation of θ^{*} about its center.

Then, even if the centers are quite different, the two variations about the centers can be approximately equal.

Example: (Continuation of previous example.) We want to estimate a 95\% C.I. for the variance of monthly returns of the $\mathrm{S} \& \mathrm{P} 500$. (You need to install R package resample, using the install.packages() function.)

```
sim_size <- 1000 # B = size of bootstrap
library(resample) # call library resample
data_star <- sample(lr, T_s * sim_size, replace=TRUE) # create B resamples of size T_s
boot_sample <- matrix(data_star, nrow=T_s, ncol=sim_size) # organize resamples in matrix
boots_vars <- colVars(boot_sample) # variance for each bootstrap sample
q_star <- boots_vars - lr_var # Compute q* for each bootstrap sample
q<- quantile(q_star, c(0.025, 0.975)) # Find the 0.025 & 0.975 quantile for q*
ci <- lr_var -c(q[2], q[1])
cat("Confidence interval: ",ci, "\n")
> lr_var
[1] 0.001637
> ci
    97.5% 2.5%
0.001376664 0.001909769
> cat("Confidence interval: ",ci, "\n")
```

Confidence interval: 0.0013766640 .001909769
>
Or for σ, the $95 \% \mathrm{CI}$ is given by $(3.71 \%, 4.37 \%)$.
Note: We got very similar results to the percentile bootstrap. ब
Example: Now, we construct the same 95\% C.I. for the variance of monthly S\&P 500 returns but using the R package boot. You need to install package first, using the install.packages() function.

library(boot)

\# function to obtain the variance from the data
var_p $<$ - function(data, i) $\{$
d <-data[i]
return($\operatorname{var}(\mathrm{d})$)
\}
boot.samps <- boot(data=lr, statistic=var_p, $\mathrm{R}=$ sim_size) \# resampling and θ^{*} estimation boot.ci(boot.samps, type = "basic") \# boot computes the CI with type=basic.
> boot.ci(boot.samps, type = "basic")
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates
CALL:
boot.ci(boot.out = boot.samps, type = "basic")
Intervals :
Level Basic
95\% (0.0014, 0.0019)
Calculations and Intervals on Original Scale

- Check results using previous step-by-step process:
q_star $<$ - boot.samps $\$ t-$ lr_var $\# q^{*}=\theta^{*}-\hat{\theta}$
q_ad $<-$ sort(q_star) \# sort q^{*}
$>$ lr_var - q_ad[975] \# CI's Lower Bound
[1] $\mathbf{0 . 0 0 1 3 5 7 7 9 3}$
$>$ lr_var - q_ad[25] \# CI's Upper Bound
[1] 0.001914674
We can transform this CI for the variance into a CI for the SD:
> sqrt(lr_var - q_ad[975])
[1] 0.03684825
> sqrt(lr_var - q_ad[25])
[1] 0.04375699

A $95 \% \mathrm{CI}$ for σ is given by $(3.68 \%, 4.38 \%)$, wider than the CI assuming a Normal distribution for returns. \mathbb{I}

Note that we can also gauge the uncertainty of the estimation of θ by computing the sample standard error, $\operatorname{SE}\left(\hat{\theta}^{*}\right)$. (Recall we call the standard deviation of an estimator its standard error.):

- Steps

1. Computing the sample variance:

$$
\operatorname{Var}\left(\hat{\theta}^{*}\right)=\frac{1}{B-1} \sum_{i=i}^{B}\left(\hat{\theta}_{i}^{*}-\bar{\theta}^{*}\right)^{2}
$$

where $\bar{\theta}^{*}=\frac{1}{B} \sum_{i=i}^{B} \hat{\theta}_{i}^{*}$.
2. Estimate the S.E. of $\hat{\theta}^{*}: \quad \operatorname{SE}\left(\hat{\theta}^{*}\right)=\operatorname{sqrt}\left[\operatorname{Var}\left(\hat{\theta}^{*}\right)\right]$.

C.I. Application: The Parametric Bootstrap Method

If we assume the data is from a parametric model (say, from a Normal or a Gamma distribution), we can use the parametric bootstrap to access the uncertainty (variance, C.I.) of the estimated parameter. In a parametric bootstrap, we generate bootstrap samples from the assumed distribution, based on moments computed from the sample. We do not use the ED.

Suppose we have a sample with N observations drawn from $F(x ; \theta)$:

$$
\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{\mathrm{N}}\right\}
$$

In the parametric bootstrap, we know $F(x ; \theta)$, the distribution of x, but we do not know its parameters. Suppose there is only one unknown parameter, θ (say, the variance). From the sample, we compute $\hat{\theta}$, the estimator of θ. Then, we bootstrap from $\mathrm{F}(x ; \hat{\theta})$ and proceed as before to form a C.I..

- Steps:

1. Draw B samples of size N from $\mathrm{F}(x ; \hat{\theta})$.
2. For each bootstrap sample, $\left\{x_{1}^{*}, x_{2}^{*}, x_{3}^{*}, \ldots, x_{N}^{*}\right\}$, calculate $\hat{\theta}^{*} . \quad \Rightarrow \operatorname{Get} B \hat{\theta}^{*}$.
3. Estimate a C.I. using the previous methods.

Example: Suppose S\&P 500 monthly returns follow a $\mathrm{N}\left(0, \sigma^{2}\right)$. We estimate σ^{2} with $s^{2}=$ 0.04046^{2}.
$>$ lr_var
[1] 0.001637

```
x <- rnorm(T_s*sim_size, mean=0, sd=lr_sd) # generate normal data
boot_sample <- matrix(x, nrow=T_s, ncol=sim_size) # organize simulated data
boots_vars <- colVars(boot_sample) # compute variances
q_star <- boots_vars - lr_var
q <- quantile(q_star, c(0.025, 0.975))
ci <- lr_var - c(q[2], q[1])
>ci
    97.5% 2.5%
```

Or for σ, the $95 \% \mathrm{CI}$ is given by $(3.94 \%, 4.20 \%)$. Very close to the C.I.'s we obtained before assuming a Normal distribution for returns. Not a surprise! ๆ

Note: In the previous example, to gauge the uncertainty of the estimation of s^{2}, we can also compute the sample standard error, $\operatorname{SE}\left(s^{2}\right)$.

- Steps

1. Draw B samples of size N from a $\mathrm{N}\left(0, s^{2}\right) \quad \Rightarrow$ Get $B s^{2^{*}}$.
2. Estimate the variability of s^{2} by computing the sample variance

$$
\operatorname{Var}\left(s^{2}\right)=\frac{1}{B-1} \sum_{i=i}^{B}\left(s_{i}^{2 *}-s_{B}^{2}\right)^{2},
$$

where $s_{B}^{2}=\frac{1}{B} \sum_{i=i}^{B} s_{i}^{2 *}$.
3. Estimate the S.E. of $s^{2}: \quad \operatorname{SE}\left(s^{2}\right)=\operatorname{sqrt}\left[\operatorname{Var}\left(s^{2}\right)\right]$.

Remark: An important difference between the nonparametric and parametric bootstrap procedures is that in the nonparametric procedure, only values of the original sample appear in the bootstrap samples. In the parametric bootstrap, the range of values in the bootstrap sample is the entire support of $F(x ; \theta)$. In the parametric bootstrap of the above example, the values in the bootstrap sample could be any value between negative and positive infinity.

C.I. Application: Bootstrapping - Why?

Question: Why do we need a bootstrap?

- Sample sizes are "small" and asymptotic assumptions do not apply
- DGP assumptions are violated.
- Distributions are complicated.

Usually, we would not use a bootstrap to compute C.I.'s for the mean; in general, the normal distribution works well, as long as N is large enough. The bootstrap is used to generate standard errors for estimates of other statistics where the normal distribution is not a good approximation. A typical example is the median, where for non-normal underlying distributions the SE of the median is complicated to compute.

Efron (1979) is the seminal paper. But, the related literature is older. It became popular in the 1980's due to the explosion of computer power.

Disadvantages and Advantages:

- Disadvantage: Only consistent results, no finite sample results.
- Advantage: Simplicity.

C.I. Application: Value-at-Risk

What is the most an investor can lose with a particular investment over a given time framework? Or, what is the worst case scenario? Value-at-Risk (VaR) provides one answer to this question: It gives a (lower) bound with a probability attached to it.

So far, we have measured risk of an asset/investment with its volatility.
Volatility is calculated including positive (right tail) and negative (left tail) returns. Investors, however, love the right tail of the returns distribution, but dislike the other tail. Value-at-Risk (VaR) focuses on the left tail.

VaR gives a formal definition of "worst case scenario" for an asset over a period of time.
VaR: Maximum expected amount (loss) in a given time interval within a (one-sided) $(1-\alpha) \%$ C.I.:

$$
\operatorname{VaR}(1-\alpha)=\text { Amount exposed } *(1+\text { worst } \% \text { change scenario in C.I. })
$$

It is common to express the "expected loss" relative to today's expected value of asset/investment:

$$
\operatorname{VaR}-m e a n(1-\alpha)=\operatorname{VaR}-E[A m o u n t \text { exposed }]
$$

There are different ways to compute the worst case scenario within a time interval. We go over two approaches:

- Assuming a probability distribution (normal, in our case).
- Using the empirical distribution (a bootstrap, using the past).

Example: Let $\alpha=.05$
$\mathrm{VaR}=$ Amount exposed * ($1+$ worst change scenario in 97.5% C.I. $)$.
$\operatorname{VaR}-$ mean $(97.5 \%)=\operatorname{VaR}-\mathrm{E}[$ Amount exposed $]$.

VaR: One-sided 97.5\% C.I.

$\operatorname{VaR}(97.5 \%)$: Minimum Amount within C.I. VaR-mean(97.5\%). ब

C.I. Application: Range Estimates \& VaR for Transaction Exposure - Normal

When a company is involved with transactions denominated in foreign currency (FC), it is exposed to currency risk. Transaction exposure (TE) provides a simple measure of this exposure:
$\mathrm{TE}_{\mathrm{t}}=$ Value of a fixed future transaction in $\mathrm{FC} * S_{t}$
where S_{t} is the exchange rate expressed as units of domestic currency (USD for us) per unit of FC (say, EUR).

Example: A Swiss company, Swiss Cruises, sells packages in USD.
Amount = USD 1 million.
Payment: 30 days.
$S_{t}=0.92 \mathrm{CHF} / \mathrm{USD}$

$$
\Rightarrow \mathbf{T E}_{\mathrm{t}}=\mathbf{U S D} 1 \mathbf{M}^{*} * 0.92 \mathrm{CHF} / \mathrm{USD}=\mathbf{C H F} \mathbf{0 . 9 2 M} .
$$

If S_{t} is described by a Random Walk, then TE_{t} is a forecast of the value of the transaction in 30 days $\left(\mathrm{TE}_{\mathrm{t}+30}\right)$. $\boldsymbol{\|}$

Swiss Cruises wants a measure of the uncertainty related to the amount to receive in CHF in 30 days, since $\mathrm{S}_{\mathrm{t}+30}$ is unknown.

We can use a range to quantify this uncertainty; we want to say

$$
\mathrm{TE}_{\mathrm{t}+30} \in\left[\mathrm{TE}_{\mathrm{LB}}, \mathrm{TE}_{\mathrm{UB}}\right] . \quad \text { with high probability. }
$$

To determine this range for TE, we assume that (log) changes in $S_{t}, e_{f, t}$, are normally distributed: $e_{f, t} \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$.

Then, we build a $(1-\alpha) \%$ interval around the mean: $\left[\mu \pm \mathrm{z}_{1-\alpha / 2} * \sigma\right]$.
Usual α 's in interval calculations: $\quad \alpha=.05 \Rightarrow|z .025|=1.96(\approx 2)$

$$
\alpha=.02 \Rightarrow\left|\mathrm{z}_{.01}\right|=2.33
$$

As usual, we estimate (μ, σ) using (\bar{X}, s). ब
Example: Range estimate based on a Normal distribution.
Assume Swiss Cruises believes that CHF/USD monthly changes ($\mathrm{e}_{\mathrm{f}, \mathrm{t}}$) follow a normal distribution. Swiss Cruises estimates the mean and variance using the last 15 years of data:
$\bar{X}=$ Monthly mean $=-0.00152 \approx-0.15 \%$
$\mathrm{s}^{2}=$ Monthly variance $=0.001014 \quad(\Rightarrow s=0.03184$, or $3.18 \%)$
$e_{f, t} \sim \mathrm{~N}\left(-0.00152,0.03184^{2}\right), \quad e_{f, t}=$ CHF/USD monthly log changes.
Swiss Cruises constructs a 95% CI for CHF/USD monthly changes.
Recall that a 95% C.I. for $\mathrm{e}_{\mathrm{f}, \mathrm{t}+30}$ (which applies to any t) is given by:

$$
e_{f, t} \in[-0.00152 \pm 1.96 * 0.03184]=[-0.06393 ; 0.06089]
$$

Based on this range for $\mathrm{e}_{\mathrm{f}, \mathrm{t}}$, we build a 95% C.I. for $\mathrm{S}_{\mathrm{t}+30}$ and, then, for $\mathrm{TE}_{\mathrm{t}+30}$ (= USD 1M * S_{t+30}).

$$
e_{f, t+30} \in[-0.00152 \pm 1.96 * 0.03184]=[-0.06393 ; 0.06089] .
$$

Now, we derive a range for S_{t+30} :
(A) Upper bound
$S_{t+30, U B}=S_{t} *\left(1+\mathrm{e}_{\mathrm{f}, \mathrm{t}, \mathrm{UB}}\right)=0.92 \mathrm{CHF} / \mathrm{USD} *(1+0.06089)=0.97602 \mathrm{CHF} / \mathrm{USD}$
(B) Lower bound

$$
\begin{gathered}
\left.\left.S_{t+30, L B}=S_{t} *\left(1+e_{f, t, L B}\right)\right)=0.92 \mathrm{CHF} / \mathrm{USD} *(1+(-0.06393))\right]=0.86118 \mathrm{CHF} / \mathrm{USD} \\
\Rightarrow S_{t+30} \in[=0.86118 \mathrm{CHF} / \mathrm{USD} ; 0.97602 \mathrm{CHF} / \mathrm{USD}] .
\end{gathered}
$$

Finally, we derive the bounds for the TE:
(A) Upper bound (with $S_{t+30, U B}=0.97602 \mathrm{CHF} / \mathrm{USD}$)

TEub: USD 1M * [0.97602 CHF/USD] = CHF 976,019.
(B) Lower bound (with $\mathrm{S}_{\mathrm{t}+30, \mathrm{LB}}=0.86118 \mathrm{CHF} / \mathrm{USD}$)

$$
\begin{array}{rl}
\text { TELB: USD } 1 \mathrm{M} & *[0.86118 \mathrm{CHF} / \mathrm{USD}]=\text { CHF 861,184. } \\
& \Rightarrow \mathrm{TE}_{\mathrm{t}+30} \in[\mathrm{CHF} \mathbf{0 . 8 6 1 M} ; \text { CHF } \mathbf{0 . 9 7 6 M}] . ~ ๆ
\end{array}
$$

- The lower bound, for a receivable, represents the worst case scenario within the interval in 30 days. That is, this is the VaR:
$\mathrm{VaR}=$ Amount exposed $*(1+$ worst $\%$ change scenario in C.I. $)$
$=\mathbf{T E}_{\mathbf{t}} *\left(1+e_{f, t, L B}\right)$

$\operatorname{VaR}(97.5 \%)$: Minimum revenue within a 97.5% C.I.

It is common to express the "expected loss" relative to today's expected value of transaction (or asset):

Or just

$$
\begin{aligned}
\mathrm{VaR}-\mathrm{mean} & =\mathrm{VaR}-\mathbf{T E}_{\mathbf{t}}=\mathbf{T E}_{\mathbf{t}} *\left(1+e_{f, t, L B}\right)-\mathbf{T E}_{\mathbf{t}} \\
& =\mathbf{T E}_{\mathbf{t}} * e_{f, t, L B}
\end{aligned}
$$

VaR-mean $=$ Amount exposed $*$ worst case scenario
The minimum revenue to be received by SC in the next 30 days, within a $97.5 \% \mathrm{CI}$.

$$
\begin{aligned}
\operatorname{VaR}(97.5 \%) & =\text { CHF 0.92M } *[1+(-0.00152-1.96 * 0.03184)] \\
& =\text { CHF } 0.8612 \mathrm{M} .
\end{aligned}
$$

Interpretation of VaR: If SC expects to cover expenses with this USD 1M inflow, the maximum amount in CHF to cover, within a 97.5% one-sided CI, should be CHF 0.8612M.

Relative to today's valuation (or expected valuation, according to RWM), the maximum expected loss in 30 days within a 97.5% one-sided C.I. is:

VaR-mean (.975) = CHF 0.8612M - CHF 0.92M $=$ CHF -0.0927M.
Note that we can also compute the VaR-mean as:

$$
\begin{aligned}
\operatorname{VaR}-m e a n(.975) & =\text { CHF 1.45M } *(-0.00152-1.96 * 0.03184) \\
& =\text { CHF } \mathbf{- 0 . 0 5 8 8 M} . ~ \text { ब }
\end{aligned}
$$

Technically speaking, the VaR is a quantile, where a quantile is the fraction of observations that lie below a given value (in this case the VaR).

Example: In the previous example, the 0.025 quantile (or 2.5% quantile) for expected loses is CHF -0.0588M.

Note: We could have used a different quantile -i.e. a different significant level- to calculate the VaR , for example $1 \%(\Rightarrow \mathrm{z} .01=2.33)$. Then,

$$
\begin{aligned}
& \operatorname{VaR}(99 \%)=\text { CHF } 0.92 \mathrm{M} *[1+(-0.00152-2.33 * 0.03184)] \\
&=\text { CHF } 0.8503 \mathrm{M} \text { (A more conservative bound.) } \\
& \Rightarrow \operatorname{VaR}-\mathrm{mean}(.99)=\text { CHF } 0.8503 \mathrm{M}-\text { CHF } 0.92 \mathrm{M}=\text { CHF }-\mathbf{0 . 0 6 9 7 M .} .
\end{aligned}
$$

Interpretation of VaR-mean: Relative to today's valuation (or expected valuation, according to RWM), the maximum expected loss with a 99% "chance" is CHF $\mathbf{- 0 . 0 6 9 7 M}$.

Note: As the C.I. gets wider, Swiss Cruises can spend less CHF on account of the USD 1M receivable. \mathbb{I}

C.I. Application: Range Estimates \& VaR for TE - Bootstrap

VaR is a statistic -a function of the data. We can do an empirical bootstrap to calculate the mean, SE (=SD), C.I., etc.

Example: We want to calculate the average $\operatorname{VaR}(97.5 \%)$ and its S.E., using all CHF/USD data from 1990:Jan - 2020:Sep. Then,

S <- chfusd\$CHF_USD	\# Extract CHF_USD column of the data
T <- length(S)	\# Check total T (1971:1 to 2020:9)
Tstart <- 229	\# Start of sample period: 1990:1
SP <- S[Tstart: T]	\# FX rate during relevant period (1990:1 on)
T <- length(SP)	
$\mathrm{Val}<-1000000$	\# Value of transaction in FC (in M)
S_0 <- S[T]	\# FX Rate at T (Today's S_t)
e_f $<-\log (\mathrm{SP}[-1] / \mathrm{SP}[-\mathrm{T}])$	\# Log changes in FX Rate
T_s <- length(e_f)	
alpha <- . 05	\# Specify alpha level for VaR
T_s_low <- round(T_s*alpha/2)	\# Obs corresponding to alpha/2*T_s
TE_o <-Val*S_0*(1+e_f)	\# calculate Original TE values
STE_o <- sort(TE_o)	\# sort Original TE
VaR_o <-STE_o[T_s_low]	\# Original VaR
> VaR_o	
[1] 860293	

\# function to obtain VaR from the data
varisk $<$ - function(data, i) \{

$$
\mathrm{d}<- \text { data[i] }
$$

$\mathrm{TE}<-\mathrm{Val}{ }^{*} \mathrm{~S} _0 *(1+\mathrm{d}) \quad$ \# calculate R TE values
STE $<-\operatorname{sort}(\overline{T E})$
\# sort TE
VaR <- STE[T_s_low]

```
return(VaR)
}
library(boot)
sim_size <- }100
boot.samps <- boot(data=e_f, statistic=varisk, R=sim_size)
> boot.samps
ORDINARY NONPARAMETRIC BOOTSTRAP
```


Call:

$\operatorname{boot}\left(\operatorname{data}=\mathrm{e} _\mathrm{f}\right.$, statistic $=$ varisk, $\mathrm{R}=$ sim_size $)$

Bootstrap Statistics :
original bias std. error
t1* 8602931929.3054870 .733
> boot.ci(boot.samps, type = "basic") \# boot computes the CI.
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates
CALL:
boot.ci(boot. out = boot.samps, type = "basic")
Intervals :
Level Basic
95\% (849352, 867587)
$>$ mean(boot.samps\$t)
[1] 862222.3
$>$ sd(boot.samps\$t)
[1] 4870.733
hist(boot.samps\$t, xlab="VaR (in CHF)", breaks=30)

Bootstrap estimated $\operatorname{VaR}(97.5 \%)=$ CHF 0.8622M. ब

C.I. Application: Performance Evaluation

In the 1990s, Bankers Trust evaluated traders based on a risk-adjusted performance measure called RAROC: Risk-adjusted return on capital.

RAROC $=$ Profits/Capital-at-Risk
RAROC adjusts profits taking into account the exposure of the bank, called capital-at-risk. BT defined this exposure as the amount of capital needed to cover 99% of the maximum expected loss over a year.

That is, capital-at-risk is the worst loss within one-sided 99\% C.I. We called this VaRmean(99\%).

The rationale for this measure: BT needs to hold enough cash to cover 99% of possible losses.
Example: Ranking two traders I and II, dealing in different markets.

	Segment	Profits (in USD, annualized)	Position (in USD)	Volatility (annualized)
Trader I	Futures stock indices	$\mathbf{3 . 3} \mathbf{M}$	$\mathbf{4 5} \mathbf{M}$	$\mathbf{2 1 \%}$
Trader II	FX Market	$\mathbf{3 . 0} \mathbf{M}$	$\mathbf{5 8} \mathbf{M}$	$\mathbf{1 4 \%}$

To calculate RAROC, we calculate the VaR-mean(99\%) -i.e., worst possible loss in a 99% CI.

Assuming normality for profits with mean equal to zero (not important, since all traders are evaluated using the same mean). Then, (since $\alpha=.01 \Rightarrow \mathbf{Z}_{.01}=2.33$):

VaR-mean $(99 \%)=$ Amount exposed $*$ worst case scenario

$$
=\text { Position } * \mathrm{z}_{\mathrm{L} .01} * \text { Volatility }
$$

Since $\alpha=.01 \Rightarrow \mathrm{Z} .01=2.33$.
(1) Calculate VaR-mean (99\%) for each trader (under normal distribution)

Trader I: USD 45M * 2.33 * 0.21 = USD 22,018,500.
Trader II: USD 58M * 2.33 * $\mathbf{0 . 1 4}=$ USD 18,919,600.
(2) Calculate RAROC:

Trader I: \quad RAROC $=$ USD 3.3M /USD 22,018,500 $=.1499$.
Trader II: \quad RAROC $=$ USD $3.0 \mathrm{M} / \mathrm{USD} 18,919,600=.1586$.
Conclusion: Once adjusted for risk, Trader II provided a better return. ब

Lecture 3 - Least Squares

So far, we have focused on one RV at a time, say stock returns, and learning about its distribution, for example, using descriptive statistics. In econometrics, we are more interested in describing or measuring the expected effect of a tax on consumption or the expected effect of education on an employee's salary or a CEO's compensation.

That is, we usually care about a functional relation between y, the dependent variable, and x, a set of explanatory variables.

In this lecture, we linearly relate y to $x \&$ an error term, ε :

$$
y_{i}=\alpha+\beta x_{i}+\varepsilon_{i}, \quad i=1,2, \ldots ., N,
$$

where $\alpha \& \beta$ are parameters to be estimated and ε, the error term or disturbance, has zero mean and constant variance, σ^{2}. That is, ε is a RV with $\mathrm{E}\left[\varepsilon_{i}\right]=0 \& \operatorname{Var}\left[\varepsilon_{i}\right]=\sigma^{2}$.

We think of ε as the effect of individual variation that have not been "controlled for" with x. The disturbance ε_{i} is part of the model. Even if we know that the relation between y and x is linear and we also know $\alpha \& \beta$ with certainty -i.e, no need to estimate them- we still would not be able to compute y with 100% accuracy.

We call the above equation the Data Generating Process (DGP), that is, the data we observe (y_{i} and x_{i}) are generated following this equation.

Given the always present uncertainty, we focus on expected values. Then, under the assumption $\mathrm{E}\left[\varepsilon_{i}\right]=0$, we have:

$$
\mathrm{E}\left[y_{i}\right]=\alpha+\beta \mathrm{E}\left[x_{i}\right] .
$$

We have a linear relation between the expected value of y and the expected value of x.
Example: The CAPM posits a relation between the excess return of asset $i, \mathrm{r}_{\mathrm{i}, \mathrm{t}}-\mathrm{r}_{\mathrm{f}}$, and the excess return of the market, $\mathrm{r}_{\mathrm{m}, \mathrm{t}}-\mathrm{r}_{\mathrm{f}}$. In equilibrium, the CAPM states:

$$
\mathrm{E}\left[\left(\mathrm{r}_{\mathrm{i}, \mathrm{t}}-\mathrm{r}_{\mathrm{f}}\right)\right]=\beta_{\mathrm{i}} \mathrm{E}\left[\left(\mathrm{r}_{\mathrm{m}, \mathrm{t}}-\mathrm{r}_{\mathrm{f}}\right)\right],
$$

where β_{i} is the sensitivity of asset i to market risk.
The previous mathematical structure allows us to estimate $\beta_{\text {IBM }}$ and also test the CAPM for asset $i=\mathrm{IBM}$. Define
$y=$ excess returns for IBM
$x=$ excess returns for the market (the "Market").
We express the underlying relation behind the CAPM as:

$$
y_{t}=\alpha+\beta x_{t}+\varepsilon_{t}, \quad \mathrm{t}=1,2, \ldots ., T,
$$

where $\alpha \& \beta$ are parameters to be estimated and ε is the error term with $E[\varepsilon]=0 \& \operatorname{Var}[\varepsilon]=\sigma^{2}$.
Taking expectations:

$$
\mathrm{E}\left[y_{t}\right]=\alpha+\beta \mathrm{E}\left[x_{t}\right] .
$$

Then, once we estimate $\alpha \& \beta$, we can compute the expected excess return for IBM. We can also test the CAPM for IBM, since according to the CAPM $\alpha=0$. That is, we test: $\mathrm{H}_{0}: \alpha=0$ vs $\mathrm{H}_{1}: \alpha$ $\neq 0$. \|

To gain intuition and easy interpretation of the model, it is useful to think of x as given or predetermined (realized before y) variable. Then, we can express the relation between $y \& x$, in terms of the conditional expectation of y, conditioning on the predetermined value of x :

$$
\mathrm{E}\left[y_{i} \mid x_{i}\right]=\alpha+\beta x_{i} . \quad \text { ("Regression equation") }
$$

The conditional expectation of y is what we model; in general, based on finance theory or the experience of the practitioner. To be technically precise, for the regression equation we require $\mathrm{E}\left[\varepsilon_{i} \mid x_{i}\right]=0$.

Note: We started with: $\quad y_{i}=\alpha+\beta x_{i}+\varepsilon_{i}$
which can be converted to: $\quad y_{i}=\mathrm{E}\left[y_{i} \mid x_{i}\right]+\varepsilon_{i}$
That is, y_{i} is what we model plus something unexpected, a surprise.

- In the CAPM example above, we have that IBM excess returns are only related to ("explained by") the market excess returns. This is a one variable model.

But, we could have used more explanatory variables, for example the 3 factors in the standard Fama-French (1993) model: Excess market returns (market factor), SMB (size factor), and HML (book-to-market factor). This represents a multivariate model for IBM returns:

$$
y_{i}=\alpha+\beta_{1} x_{1, i}+\beta_{2} x_{2, i}+\beta_{3} x_{3, i}+\varepsilon_{i}
$$

- Though not necessary correct, we usually think of y as the endogenous variable and x as the exogenous variable, determined "outside" the model. (If x is not endogenous, we have a lot of issues that will force us to change the model or the way we estimate the model.)
- The goal of this lecture is to learn how to estimate the population parameters $\alpha \& \beta$ and, at the same time, learn the properties of estimators.

Technical Note: We can study the joint distribution of $y \& x, f(x, y)$ and describe the joint behavior in terms of expectations, conditional expectations, correlations, etc. For example, assuming joint normality for $y \& x$, we can derive the conditional expectation of y, given x :

$$
\mathrm{E}\left[y_{i} \mid x_{i}\right]=\alpha+\beta x_{i},
$$

which gives a functional (\& linear) relation between $y \& x$.
Thus, in a joint normality context, we can study the effect of a change in x on y. Moreover, after a lot of manipulations and applying statistical definitions, we get a formula to estimate $\alpha \& \beta$ in terms of moments of $y \& x$.

Then, why do we need other methods to estimate $\alpha \& \beta$? Two things to consider:

1) In general, assuming joint normality is not realistic in economics and finance.
2) In many situations, we think of the explanatory variable, x, as control, not necessarily as RV.

Remark: Without making any reference to a joint distribution, we will derive the formulas to estimate parameters in a linear relation.

LS Estimation - OLS

Old method: Gauss $(1795,1801)$ used it in astronomy.
Idea: We relate a dependent variable y to a set of k explanatory variables \boldsymbol{x}. This function depends on unknown parameters, $\boldsymbol{\theta}$, which we want to estimate. The relation between \boldsymbol{y} and \boldsymbol{x} is not exact. There is an error, ε. We have T observations of \boldsymbol{y} and \boldsymbol{x}.

The model is:

$$
y_{i}=f\left(x_{1, i}, x_{2, i}, \ldots, x_{k, i} ; \boldsymbol{\theta}\right)+\varepsilon_{i}, \quad i=1,2, \ldots ., T .
$$

If the functional form is known, we estimate the parameters $\boldsymbol{\theta}$ by minimizing a sum of squared errors:

$$
\min _{\theta}\left\{\mathrm{S}\left(x_{1, i}, x_{2, i}, \ldots, x_{k, i} ; \boldsymbol{\theta}\right)=\sum_{i}^{T} \varepsilon_{i}^{2}=\sum_{i}^{T}\left(y_{i}-f\left(x_{1, i}, x_{2, i}, \ldots, x_{k, i} ; \boldsymbol{\theta}\right)\right)^{2}\right\}
$$

The estimator obtained is called the Least Squares (LS) estimator.
LS is a general estimation method. It can be applied to almost any function.
The functional form, $f\left(x_{i}, \boldsymbol{\theta}\right)$, is dictated by theory or experience. In this class, we mainly work with the linear case:

$$
f\left(x_{i}, \boldsymbol{\theta}\right)=\beta_{1} x_{1, i}+\beta_{2} x_{2, i}+\beta_{3} x_{3, i}+\ldots+\beta_{k} x_{k, i} .
$$

Now, we estimate the vector $\boldsymbol{\theta}=\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{k}\right\}$ by minimizing

$$
\mathrm{S}(\boldsymbol{x}, \boldsymbol{\theta})=\sum_{i}^{T} \varepsilon_{i}^{2}=\sum_{i}^{T}\left(y_{i}-\beta 1 x_{1, i}-\beta 2 x_{2, i}-\cdots-\beta k x_{k, i}\right)^{2}
$$

In this case, we call this estimator the Ordinary Least Squares (OLS) estimator. (Ordinary $=$ Linear functional form.)

Notation: In lecture 2, we used ${ }^{\wedge}$ over the estimator of the parameter of interest. For example, $\hat{\boldsymbol{\theta}}$ is the estimator of the parameter $\boldsymbol{\theta}$. Sometimes, to emphasize the method of estimation, we add to the estimated parameter the initials of the method used, say $\hat{\theta}_{L S}$.

For historical reasons, in the linear model, \mathbf{b} is popularly used to denote the OLS estimator of $\boldsymbol{\beta}$.
Example 1: We want to study the effect of the tech boom (x) on the San Francisco housing market (y). We rely on a simple linear model, with only one explanatory variable, the tech boom variable. That is,

$$
y_{i}=\alpha+\beta x_{i}+\varepsilon_{i} .
$$

In this model, we are interested in estimating β, our parameter of interest. β measures the marginal effect of x on y. We can use the estimate of β to check if the high tech boom has a positive effect on SF housing prices. In this case we test:
H_{0} (No or Negative effect): $\beta \leq 0$.
H_{1} (Positive effect): $\beta>0$.
We have monthly data on SF Housing Prices and a Tech Indicator, developed by the Federal Reserve. We transform the data in percentage changes. Below, we plot the data: SF House Prices vs Tech Indicator (both in \% changes).

SF House Prices \& Tech Indicator

Example 2: We want to study the effect of a CEO's education (x) on a firm's CEO's compensation (y). We build a CEO's compensation model including a CEO's education (x) and other "control variables" (W: experience, gender, etc.), controlling for other features that make one CEO's compensation different from another. That is,

$$
y_{i}=f\left(x_{i}, \mathbf{W}_{\mathrm{i}}, \boldsymbol{\theta}\right)+\varepsilon_{i}, \quad \mathrm{i}=1,2, \ldots, T .
$$

The term ε_{i} represents the effects of individual variation that have not been controlled for with \mathbf{W}_{i} or x_{i} and $\boldsymbol{\theta}$ is a vector of parameters.

Usually, $f(x, \theta)$ is linear. Then, the compensation model becomes:

$$
y_{i}=\alpha+\beta x_{i}+\gamma_{1} \mathrm{~W}_{1, \mathrm{i}}+\gamma_{2} \mathrm{~W}_{2, \mathrm{i}}+\ldots+\varepsilon_{i}
$$

Again, in this model, we are interested in the estimation of β, our parameter of interest, which measures the effect of a CEO's education on a CEO's compensation. We can use the estimate of β to check if CEO's education has a positive effect on CEO's compensation. In this case we test: H_{0} (No or Negative effect): $\beta \leq 0$. H_{1} (Positive effect): $\beta>0$. $\boldsymbol{\|}$

LS Estimation - General Functional Form

We start with a general functional form, $f\left(x_{i}, \boldsymbol{\theta}\right)$, where $\boldsymbol{\theta}$ is a vector of k parameters.
The general model:

$$
y_{i}=f\left(x_{i}, \boldsymbol{\theta}\right)+\varepsilon_{i}
$$

We want to estimate k parameters.
Objective function:

$$
\begin{aligned}
\mathrm{S}\left(x_{\mathrm{i}}, \boldsymbol{\theta}\right) & =\sum_{i}^{T} \varepsilon_{i}^{2}=\sum_{i}^{T}\left\{y_{i}-f\left(x_{i}, \boldsymbol{\theta}\right)\right\}^{2} \\
& =\left(y_{1}-f\left(x_{1}, \boldsymbol{\theta}\right)\right\}^{2}+\left(y_{2}-f\left(x_{2}, \boldsymbol{\theta}\right)\right\}^{2}+\ldots+\left(y_{T}-f\left(x_{T}, \boldsymbol{\theta}\right)\right\}^{2}
\end{aligned}
$$

- We minimize $\mathrm{S}\left(x_{\mathrm{i}}, \boldsymbol{\theta}\right)$ with respect to $\boldsymbol{\theta}$. That is,

$$
\begin{gathered}
\qquad \min \theta\left\{\mathrm{S}\left(x_{\mathrm{i}}, \boldsymbol{\theta}\right)=\sum_{i}^{T} \varepsilon_{i}^{2}=\sum_{i}^{T}\left\{y_{i}-f\left(x_{i}, \boldsymbol{\theta}\right)\right\}^{2}\right\} \\
\Rightarrow \frac{\partial S\left(x_{i}, \boldsymbol{\theta}\right)}{\partial \theta}=2\left\{y_{1}-f\left(x_{1}, \boldsymbol{\theta}\right)\right\}\left(-f^{\prime}\left(x_{1}, \boldsymbol{\theta}\right)\right)+\cdots+2\left\{y_{T}-f\left(x_{T}, \boldsymbol{\theta}\right)\right\}\left(-f^{\prime}\left(x_{T}, \boldsymbol{\theta}\right)\right) \\
\left.\qquad=-2 \sum_{i}^{T}\left\{y_{i}-f\left(x_{i}, \boldsymbol{\theta}\right)\right\} f^{\prime}\left(x_{i}, \boldsymbol{\theta}\right)\right\} \\
\text { f.o.c. } \left.\Rightarrow-2 \sum_{i}^{T}\left\{y_{i}-f\left(x_{i}, \hat{\boldsymbol{\theta}}_{L S}\right)\right\} f^{\prime}\left(x_{i}, \hat{\boldsymbol{\theta}}_{L S}\right)\right\}=0 \\
\left.\Rightarrow \sum_{i}^{T}\left\{y_{i}-f\left(x_{i}, \hat{\boldsymbol{\theta}}_{L S}\right)\right\} f^{\prime}\left(x_{i}, \hat{\boldsymbol{\theta}}_{L S}\right)\right\}=0
\end{gathered}
$$

Suppose we have q elements in $\boldsymbol{\theta}$, the f.o.c.'s have set up a $q \times q$ system of equations. This system of equations is called the normal equations. The solution to the normal equation, $\hat{\boldsymbol{\theta}}_{L S}$, is the Least Squares estimator.

We do not always can solve analytically the normal equations. Two cases:

- When $f\left(x_{i}, \boldsymbol{\theta}\right)$ is linear, we have an analytic, explicit solution, the OLS estimator, $\widehat{\boldsymbol{\theta}}_{\text {OLS }}=\mathbf{b}$.
- When $f\left(x_{i}, \boldsymbol{\theta}\right)$ is non-linear, we do not have an explicit solution for $\hat{\boldsymbol{\theta}}_{L S}$. The system, however, can be solved numerically. In this case, the estimator is usually referred as Non-linear Least Squares estimator, $\widehat{\boldsymbol{\theta}}_{N L L S}$.

The estimator $\hat{\boldsymbol{\theta}}_{L S}$ is a function of the data $\left(\mathrm{y}_{\mathrm{i}}, x_{\mathrm{i}}\right)$.

OLS Estimation - One Variable Model

One explanatory variable in a linear model:

$$
f\left(x_{\mathrm{i}}, \theta\right)=\beta_{1}+\beta_{2} x_{\mathrm{i}}
$$

Linear Model: $\quad y_{i}=\beta_{1}+\beta_{2} x_{i}+\varepsilon_{i}$
We have two parameters to estimate.
Objective function:

$$
\begin{aligned}
\mathrm{S}\left(\boldsymbol{x} ; \beta_{1}, \beta_{2}\right) & =\sum_{i}^{T} \varepsilon_{i}^{2}=\sum_{i}^{T}\left(y_{i}-\beta_{1}-\beta_{2} x_{i}\right)^{2} \\
& =\left\{y_{1}-\beta_{1}-\beta_{2} x_{1}\right)^{2}+\left\{y_{2}-\beta_{1}-\beta_{2} x_{2}\right)^{2}+\ldots+\left\{y_{T}-\beta_{1}-\beta_{2} x_{T}\right)^{2}
\end{aligned}
$$

First, we take first derivatives:

$$
\begin{array}{ll}
\left(\beta_{1}\right): & 2 \sum_{i}^{T}\left(y_{i}-\beta_{1}-\beta_{2} x_{i}\right)(-1) \\
\left(\beta_{2}\right): & 2 \sum_{i}^{T}\left(y_{i}-\beta_{1}-\beta_{2} x_{i}\right)\left(-x_{i}\right)
\end{array}
$$

Second, we set the f.o.c. and get the normal equations (2 equations, 2 unknowns):

$$
\begin{array}{lll}
\left(\beta_{1}\right): 2 \sum_{i}^{T}\left(y_{i}-b_{1}-b_{2} x_{i}\right)(-1)=0 & \Rightarrow \sum_{i}^{T}\left(y_{i}-b_{1}-b_{2} x_{i}\right)=0 \\
\left(\beta_{2}\right): 2 \sum_{i}^{T}\left(y_{i}-b_{1}-b_{2} x_{i}\right)\left(-x_{i}\right)=0 & \Rightarrow \sum_{i}^{T}\left(y_{i} x_{i}-b_{1} x_{i}-b_{2} x_{i}^{2}\right)=0 \tag{2}
\end{array}
$$

Now, we solve for $b_{1} \& b_{2}$, the OLS estimators:
From (1): $\quad \sum_{i}^{T} y_{i}-\sum_{i}^{T} \mathrm{~b}_{1}-\mathrm{b}_{2} \sum_{i}^{T} x_{i}=0$

$$
\Rightarrow \sum_{i}^{T} y_{i}-T \mathrm{~b}_{1}-\mathrm{b}_{2} \sum_{i}^{T} x_{i}=0 \quad \Rightarrow \mathrm{~b}_{1}=\bar{y}-\mathrm{b}_{2} \bar{x}
$$

From (2): $\quad \sum_{i}^{T} y_{i} x_{i}-\left(\bar{y}-\mathrm{b}_{2} \bar{x}\right) \sum_{i}^{T} x_{i}-\mathrm{b}_{2} \sum_{i}^{T} x_{i}^{2}=0$

$$
\Rightarrow \sum_{i}^{T} y_{i} x_{i}-\bar{y} \sum_{i}^{T} x_{i}-\mathrm{b}_{2}\left(\sum_{i}^{T} x_{i}^{2}-\bar{x} \sum_{i}^{T} x_{i}\right)=0 \quad \Rightarrow \mathrm{~b}_{2}=\frac{\sum_{i}^{T}\left(y_{i}-\bar{y}\right) x_{i}}{\sum_{i}^{T}\left(x_{i}-\bar{x}\right) x_{i}}
$$

or, more elegantly,

$$
\mathrm{b}_{2}=\frac{\sum_{i}^{T}\left(y_{i}-\bar{y}\right)\left(x_{i}-\bar{x}\right)}{\sum_{i}^{T}\left(x_{i}-\bar{x}\right)^{2}}=\frac{\operatorname{cov}\left(y_{i}, x_{i}\right)}{\operatorname{var}\left(x_{i}\right)}
$$

Note that we need $\operatorname{var}\left(x_{i}\right) \neq 0$ to get b_{2}.

- Interpretation of coefficients
- bl estimates the constant of the regression, the value of y_{i}, when x_{i} equals to 0 .
- b_{2} estimates the slope of the regression, the marginal effect -i.e., the first derivative of y_{i} with respect to x_{i} :

$$
\frac{\delta y_{i}}{\delta x_{i}}=\beta_{2}
$$

That is, if x increases by one unit (say, 1%), then, y is estimated to increase by b_{2} units (say, $\mathrm{b}_{2} \%$).

- Conditional Prediction

Suppose analysts estimate that x_{i} will be $\mathbf{z} \%$, then, you estimate (or predict, given the $\mathbf{z} \%$ value of x_{i}) yi:

$$
\operatorname{Predicted}\left[y_{i} \mid x_{i}=\mathbf{z} \%\right]=\mathrm{b}_{1}+\mathrm{b}_{2} * \mathbf{z} .
$$

OLS Estimation - One Variable Model: CAPM

As mentioned in the introduction, a typical finance application of a one variable linear model is the CAPM. Recall that the (Sharpe-Litner) CAPM, in equilibrium, implies:

$$
\mathrm{E}\left[\left(r_{i, t}-r_{f}\right)\right]=\beta_{\mathrm{i}} \mathrm{E}\left[\left(r_{m, t}-r_{f}\right)\right],
$$

where
$r_{i, t}=$ return on asset i at time t.
$r_{f}=$ return of riskless asset at time t.
$r_{m, t}=$ return on the market portfolio at time t.
$\beta_{\mathrm{i}}=$ asset i 's sensitivity to market (systematic) risk.
Note: The market portfolio in the CAPM represents wealth. All wealth. We need to include not only all stocks, but all bonds, real estate, privately held capital, publicly held capital (roads, universities, etc.), and human capital in the world. (Easy to state, but complicated to form.) In general, we proxy the Market Portfolio, with a well-diversified index, that only includes equities, like the S\&P 500 Index, or the MSCI World Index.

The CAPM is a particular case of what in financial theory we call "factor models." Factors represent the systematic component that drives the cross-section of returns over time; they can be observed or unobserved. For example, a k-factor model for returns is given by:

$$
r_{i, t}=\alpha+\beta_{1} f_{1, t}+\beta_{2} f_{2, t}+\ldots+\beta_{\mathrm{k}} f_{k, t}+\varepsilon_{i, t}
$$

where $f_{j, t}$ is the j (common) factor at time t, and constant over i, and $\varepsilon_{i, t}$ represents the idiosyncratic component of asset i.

Thus, we think of returns as driven by common or systematic factors (undiversifiable) and idiosyncratic factors (diversifiable in large portfolios.) Thus, in equilibrium, investors get compensated only for the systematic risk they take.

The CAPM has only one factor: market excess returns ("the market"). The higher the exposure to this factor -i.e., β_{i}, the higher the expected compensation.

- A linear data generating process (DGP) consistent with the CAPM is:

$$
\left(r_{i, t}-r_{f}\right)=\alpha_{\mathrm{i}}+\beta_{\mathrm{i}}\left(r_{m, t}-r_{f}\right)+\varepsilon_{i, t}, \quad i=1, . ., N \& t=1, \ldots, T
$$

where
α_{i} and β_{i} are the coefficients to be estimated by LS.
$\operatorname{Cov}\left(r_{m, t}, \varepsilon_{i, t}\right)=0 \quad$-i.e., market returns are exogenous.
If $\beta_{\mathrm{i}}=0$, asset i is not exposed to market risk. Thus, the investor is not compensated with a higher return than r_{f}.

If $\beta_{\mathrm{i}}>0$, asset i is exposed to market risk \& $r_{i, t} \geq r_{f}$, provided that $\mathrm{E}\left[\left(r_{m, t}-r_{f}\right)\right]>0$.
If $\beta_{\mathrm{i}}>1\left(\beta_{\mathrm{i}}<1\right)$, asset i is "riskier"" ("safer") than the market. That is, the expected return for asset i is higher (lower) than the expected return for the market. For $\beta_{\mathrm{i}}>1$, we have

$$
\mathrm{E}\left[\left(r_{i, t}-r_{f}\right)\right]>\beta_{\mathrm{i}} \mathrm{E}\left[\left(r_{m, t}-r_{f}\right)\right] \quad \text {-higher compensation for higher risk. }
$$

If $\alpha_{i}>0$, then asset i has higher expected returns than what is expected in equilibrium -i.e., what the CAPM implies.

- Then, in our linear model let y_{i} represent IBM excess returns $\left(r_{I B M, t}-r_{f}\right)$ at time t and let x_{i} represent Market excess returns (say, $r_{m, t}-r_{f}$) at time t. Then, b_{2} estimates IBM's beta in the CAPM.

Then, $\mathrm{b}_{2}\left(=\hat{\beta}_{C A P M}\right)$ estimates the stock's beta in the CAPM; in the IBM case, we have :

$$
\mathrm{b}_{2}=\widehat{\beta}_{I B M}=\frac{\operatorname{cov}\left(r_{I B M, t}-r_{f}, r_{m, t}-r_{f}\right)}{\operatorname{var}\left(r_{m, t}-r_{f}\right)}
$$

That is, the CAPM β is the ratio of a covariance over a variance.
Recall that the CAPM β measures a stock's risk in relation to the risk (volatility) of the market. That is, we think of β as a measure of the relative risk exposure of holding a particular stock (IBM, in this case) in relation to the market.

- Interpretation of coefficients
- b1 estimates the constant of the regression: IBM excess returns in excess of Market excess returns. In the CAPM, it should be $0\left(=\alpha_{i}\right)$.
- b_{2} estimates the slope of the regression. In the CAPM: $\beta_{i=I B M}$

$$
\frac{\delta y_{i}}{\delta x_{i}}=\beta_{i=I B M} \Rightarrow \text { estimated by } \mathrm{b}_{2}
$$

That is, if Market excess returns increases by one 1% (unit), then we estimate that IBM excess returns are expected to increase by $\mathrm{b}_{2} \%$ (b_{2} units). The $\beta_{\text {IBM }}$ also tells us if IBM is riskier ($\beta_{\text {IBM }}$ $>1)$ or safer $\left(\beta_{\text {IBM }}<1\right)$ than the market.

- Conditional Prediction

Suppose analysts estimate that Market excess returns will be $\mathbf{1 0 \%}$, then, we estimate (or predict, given the $\mathbf{1 0 \%}$ value for Market excess returns):

$$
\text { Predicted }\left[\left(r_{I B M, t}-r_{f}\right) \mid\left(r_{m, t}-r_{f}\right)=10 \%\right]=\mathrm{b}_{1}+\mathrm{b}_{2} * .10
$$

We will call the Predicted $y_{i}=\hat{y}_{i}=$ fitted value.
Example: We estimate the CAPM for IBM returns using $\operatorname{lm} \mathrm{R}$ function.

- Import data with read function

SFX_da <- read.csv("https://www.bauer.uh.edu/rsusmel/4397/Stocks_FX_1973.csv", head=TRUE, sep=",")

- Extract variables from imported data
x_ibm <- SFX_da\$IBM

```
x_Mkt_RF <- SFX_da\$Mkt_RF \# extract Market excess returns (in \%)
x_RF <- SFX_da\$RF \# extract Risk-free rate (in \%)
```

- Define log returns \& adjust size of variables accordingly
$\mathrm{T}<-$ length(x_ibm) \# sample size
$1 r _i b m<-\log \left(x _i b m[-1] / x _i b m[-T]\right) \quad$ \# create $\operatorname{IBM} \log$ returns (in decimal returns)
Mkt_RF <- x_Mkt_RF[-1]/100 \# Adjust sample size to (T-1) by removing $1^{\text {st }}$ obs
$\mathrm{RF}<-\mathrm{x} _$RF[-1]/100 \# Adjust sample size and use decimal returns.
- Define excess returns and estimate CAPM with 1 lm function. Then, print results to screen with summary function:
ibm_x $<-$ lr_ibm RF
fit_ibm_capm <-lm(ibm_x \sim Mkt_RF)
summary(fit_ibm_capm)

\# IBM excess returns

\# lm (=linear model) package
\# print lm results
> summary(fit_ibm_capm)
Call:
$\operatorname{lm}\left(\right.$ formula $=\mathrm{ibm} _\mathrm{x} \sim \mathrm{Mkt}$ RF)

Residuals:
Min 1Q Median 3Q Max
$-0.314401-0.031692-0.0005370 .0314470 .248201$
Coefficients:

	Estimate	Std. Error	t value $\operatorname{Pr}(>\|t\|)$		
(Intercept)	$-\mathbf{0 . 0 0 5 7 9 1}$	0.002487	-2.329	$0.0202 *$	$\mathrm{~b}_{1}=-0.005791$
xMkt_RF	$\mathbf{0 . 8 9 5 7 7 4}$	0.053867	16.629	$<2 \mathrm{e}-16 * * *$	$\mathrm{~b}_{2}=0.895774$

Signif. codes: 0 '***' $0.001^{\text {'**' } 0.01^{\prime *}} 0.05^{\prime} .{ }^{\prime} 0.1^{\prime}{ }^{\prime} 1$
Residual standard error: 0.05887 on 567 degrees of freedom
Multiple R-squared: 0.3278, Adjusted R-squared: 0.3266
F-statistic: 276.5 on 1 and 567 DF, p-value: $<2.2 \mathrm{e}-16$
Interpretation of b_{1} and b_{2} :
$\mathrm{b}_{1}=$ constant. The additional IBM return, after excess market returns are incorporated, is $\mathbf{0 . 5 8 \%}$ (under the CAPM, b_{1} should be close to 0).
$\mathrm{b}_{2}=$ slope. It is the marginal effect. If market excess returns increase by 1%, IBM excess returns increase by $.90 \%$. The estimate of the CAPM $\beta<1$, implying that IBM is less volatile ("safer") than the market.

Unconditional (average) Expected IBM excess returns

We observed an average excess market monthly return in the sample: 0.0056489 .
Then, the expected IBM excess monthly return in the sample was:

$$
-0.005791+0.895774 * 0.0056489=-0.000731(0.07 \%) .
$$

Conditional prediction of IBM excess returns:

Suppose market excess returns are expected to be 1% next month, then we predict next month IBM excess returns:

$$
-0.005791+0.895774 * .1=0.00317(0.32 \%) .
$$

Note: According to the CAPM, IBM excess monthly returns should have been:

- IBM excess returns $(I B M)=0.895774 *$ mean $\left(M k t _R F\right)$

$$
=0.895774 * 0.0056489=0.0050601
$$

But, in the sample, we observed

- IBM excess returns $=$ mean $\left(\mathrm{ibm}_{-} \mathrm{x}\right)=\mathbf{- 0 . 0 0 0 7 3 1 4 1}$.

That is, IBM underperformed relative to the CAPM. q

LS Estimation - Application 1: The CAPM \& The Cost of Equity

As mentioned in Chapter 2, the ERP is central to many financial theories, for example, as illustrated above the CAPM uses the ERP as an input to price assets. The CAPM states that, in equilibrium, the expected excess return for asset i is proportional to the expected market excess return or expected market risk premium $(E R P)$, given by $\mathrm{E}\left[\left(r_{m, t}-r_{f}\right)\right]$. That is:

$$
\mathrm{E}\left[\left(r_{i, t}-r_{f}\right)\right]=\beta_{\mathrm{i}} \mathrm{E}\left[\left(r_{m, t}-r_{f}\right)\right] .
$$

In equilibrium, the cost of equity, k_{e}, is equal to the required (expected) rate of return a firm has to pay to investors/shareholders. Firms need to calculate the cost of equity to estimate the cost of capital, k, which is used to discount the cash flows of a firm or a firm's project. According to the weighted average cost of capital (WACC) method, k_{c} is given by:

$$
k_{c}=\frac{D}{D+E} k_{d}(1-t)+\frac{E}{D+E} k_{e}
$$

where E represents total equity, D is total Debt, t is the effective tax rate and k_{d} is the cost of debt.

Firms routinely use expected returns to calculate the cost of equity. For example, using the CAPM we have:

$$
k_{e}=r_{f}+\beta_{\mathrm{i}} \mathrm{E}\left[\left(r_{m, t}-r_{f}\right)\right] .
$$

Thus, in this case, in order to compute k_{e}, a firm needs to determine β_{i}, the risk-free rate, r_{f}, and the Market Portfolio, usually, a local market index, like the S\&P 500 or the Nikkei 225, or a global index like the MSCI World Index.

Example: Suppose IBM wants to determine its cost of equity. IBM decides to use the CAPM, with a U.S. ERP and U.S r_{f}.
Data:
Estimated $\beta_{\mathrm{IBM}}=0.895774 \approx 0.90$
Risk-free rate, $r_{f}=4.50 \%$
$\mathrm{ERP}=\mathrm{E}\left[\left(r_{m, t}-r_{f}\right)\right]=0.0382$

$$
k_{e, I B M}=r_{f}+\beta_{\mathrm{iBM}} \mathrm{E}\left[\left(r_{m, t}-r_{f}\right)\right]=\mathbf{0 . 0 4 5}+0.90 * 0.0382=\mathbf{0 . 0 7 9 3 8}
$$

The required (or expected) rate of return for IBM investors is $\mathbf{7 . 9 3 8 \%}$. This is what IBM will use as k_{e} to determine its cost of capital and, therefore, discount the cash flows associated with new projects.

Note: If IBM decides to use the MSCI World Index as the benchmark for the Market Porfolio, then,

$$
k_{e, I B M}=r_{f}+\beta_{\mathrm{iBM}} \mathrm{E}\left[\left(r_{m, t}-r_{f}\right)\right]=\mathbf{0 . 0 4 5}+0.90 * 0.0317=0.07353
$$

a smaller number, which would produce a smaller cost of capital and, thus, increase the NPV of IBM or an IBM's project! ©

Q: Which one should a firm use: a Domestic-based ERP or a World-based ERP? It depends on the view that a company has regarding capital markets. If capital markets are integrated (or if the shareholders are world-wide diversified) the appropriate equity risk premium should reflect a world benchmark (say, MSCI World Index), $\left(r_{m, t}-r_{f}\right)$ w. But, if markets are segmented (or if the shareholders hold domestic portfolios), then the appropriate equity risk premium should be based on a domestic benchmark (say, the MSCI US Index for U.S. companies), $\left(r_{m, t}-r_{f}\right)_{\text {D }}$. The risk-free rate should also be adjusted accordingly. Then, using the CAPM we have:

- World CAPM: $\quad k_{\mathrm{e}}=k_{\mathrm{e}, \mathrm{W}}=r_{f, \mathrm{~W}}+\beta_{\mathrm{W}} \mathrm{E}\left[\left(r_{m, t}-r_{f}\right) \mathrm{w}\right]$
- Domestic CAPM: $\quad k_{\mathrm{e}}=k_{\mathrm{e}, \mathrm{D}}=r_{f, \mathrm{D}}+\beta_{\mathrm{D}} \mathrm{E}\left[\left(r_{m, t}-r_{f}\right)_{\mathrm{D}}\right]$

The difference between these two models can be considerable. In our previous example we have a $\mathbf{0 . 5 8 5} \%$ difference. According to Bruner et al. (2008), on average, there is a $\mathbf{5 . 5 5 \%}$ absolute difference for emerging markets and a $\mathbf{3 . 5 8 \%}$ absolute difference for developed markets.

LS Estimation - Application 2: Hedging

In the linear model, we can estimate the optimal hedge ratio using a regression. To see this, we derive the optimal hedge ratio for a position in foreign currency (FC).

Notation:
S_{t} : Exchange rate at time t . We use direct quotations, that is, DC units per unit of FC , say $\mathrm{S}_{\mathrm{t}}=$ 1.30 USD/GBP.
$\mathrm{F}_{\mathrm{t}, \mathrm{T}}$: Forward/Futures price at time t with a T maturity.
n_{s} : Number of units of foreign currency held.
n_{f} : Number of futures foreign exchange units held (opposite position).
$\pi_{\mathrm{h}, \mathrm{t}}$: Uncertain) profit of the hedger at time t .
$\Delta \mathrm{X}$: Change in $\mathrm{X}\left(=\mathrm{X}_{\mathrm{t}}-\mathrm{X}_{\mathrm{t}-1}\right)$
$h=$ hedge ratio $=\left(n f f_{f} / n_{\mathrm{s}}\right)=$ Number of futures per spot in position.
We want to calculate h^{*} (optimal h): We minimize the variability of $\pi_{\mathrm{h}, \mathrm{t}}$.

$$
\pi_{\mathrm{h}, \mathrm{~T}}=\Delta \mathrm{S}_{\mathrm{t}} n_{\mathrm{s}}+\Delta \mathrm{F}_{\mathrm{t}, \mathrm{~T}} n_{\mathrm{f}} \quad\left(\mathrm{Or}, \pi_{\mathrm{h}, \mathrm{~T}} / n_{\mathrm{s}}=\Delta \mathrm{S}_{\mathrm{t}}+h \Delta \mathrm{~F}_{\mathrm{t}, \mathrm{~T} .}\right)
$$

We want to select h to minimize:

$$
\begin{aligned}
\operatorname{Var}\left(\pi_{\mathrm{h}, \mathrm{~T}} / n_{\mathrm{s}}\right) & =\operatorname{Var}\left(\Delta \mathrm{S}_{\mathrm{T}}\right)+h^{2} \operatorname{Var}\left(\Delta \mathrm{~F}_{\mathrm{t}, \mathrm{~T}}\right)+2 h \operatorname{Covar}\left(\Delta \mathrm{~S}_{\mathrm{T},} \Delta \mathrm{~F}_{\mathrm{t}, \mathrm{~T}}\right) \\
& =\sigma \mathrm{s}^{2}+h^{2} \sigma_{\mathrm{F}}^{2}+2 h \sigma \mathrm{SF}
\end{aligned}
$$

f.o.c.

$$
\begin{gathered}
2 h^{*} \sigma_{\mathrm{F}}{ }^{2}+2 * \sigma_{\mathrm{SF}}=0 \\
\Rightarrow h^{*}=-\sigma_{\mathrm{SF}} / \sigma_{\mathrm{F}}^{2}
\end{gathered}
$$

Note: A covariance over a variance. It can be estimated by LS:

$$
\Delta \mathrm{S}_{\mathrm{t}}=\beta_{1}+\beta_{2} \Delta \mathrm{~F}_{\mathrm{t}, \mathrm{~T}}+\varepsilon_{\mathrm{t}} \quad \Rightarrow \mathrm{~b}_{2} \text { estimates } h^{*} .
$$

Example: In March, we are long a GBP 1M position. We are uncertain about S_{t} in the next 90 days. We hedge this position using June GBP futures (size of contract = GBP 62,500). We want to determine \boldsymbol{h}^{*}.

Get Data (S_{t} and $\mathrm{F}_{\mathrm{t}, 90 \text {-days }}$, for say 10 years). Do a regression.

$$
\Delta \mathrm{S}_{\mathrm{t}}=\beta_{1}+\beta_{2} \Delta \mathrm{~F}_{\mathrm{t}, \mathrm{~T}}+\varepsilon_{\mathrm{t}}
$$

Suppose we estimate this regression:

$$
\begin{aligned}
\Delta \mathrm{S}_{\mathrm{t}}=. & 001+.82 \Delta \mathrm{~F}_{\mathrm{t}, \mathrm{~T}}, \\
& \Rightarrow h^{*}=-.82 .
\end{aligned}
$$

Now, we determine the number of June GBP futures contracts:
$\Rightarrow n_{\mathrm{f}} /$ size of the contract $=h * n_{\mathrm{s}} /$ size of the contract $=$
$=-.82 * 1,000,000 / 62,500=-13.12 \approx 13$ contracts sold! $\mathbb{}$!

LS Estimation - Multivariate OLS

The CAPM is a particular case of what in financial theory is called "factor models." Factors represent the systematic component that drives the cross-section of returns over time; they can be observed or unobserved. For example, a k-factor model for returns is given by:

$$
r_{i, t}=\alpha+\beta_{1} f_{1, t}+\beta_{2} f_{2, t}+\ldots+\beta_{k} f_{k, t}+\varepsilon_{i, t}
$$

where $f_{j, t}$ is the j (common) factor at time t, and constant over i, and $\varepsilon_{i, t}$ represents the idiosyncratic component of asset i.

Thus, we think of returns as driven by common or systematic factors (undiversifiable) and idiosyncratic factors (diversifiable in large portfolios.) Thus, in equilibrium, investors get compensated only for the systematic risk they take.

The CAPM has only one factor: market excess returns ("the market"). The higher the exposure to this factor -i.e., β_{i}, the higher the expected compensation.

LS is a general estimation method. It allows any functional form for the relation between y_{i} and x_{i}. and it allows y_{i} to be related to many explanatory variables, like the above mentioned multifactor models for excess returns.

In this lecture, we cover the case where $f\left(x_{i}, \theta\right)$ is linear. We assume a linear system with k independent variables and T observations. That is,

$$
y_{i}=\beta_{1} x_{1, i}+\beta_{2} x_{2, i}+\ldots+\beta_{k} x_{k, i}+\varepsilon_{i}, \quad i=1,2, \ldots ., T
$$

The whole system (for all i) is:

$$
\begin{gathered}
y_{1}=\beta_{1} x_{11}+\beta_{2} x_{21}+\ldots+\beta_{k} x_{k 1}+\varepsilon_{1} \\
y_{2}=\beta_{1} x_{12}+\beta_{2} x_{22}+\ldots+\beta_{k} x_{k 2}+\varepsilon_{2} \\
\ldots \ldots{ }_{n} \ldots . \quad \ldots \\
y_{T}=\beta_{1} x_{1 T}+\beta_{2} x_{2 T}+\ldots+\beta_{k} x_{k T}+\varepsilon_{T}
\end{gathered}
$$

It is cumbersome and complicated to write the whole system. Using linear algebra, we can rewrite the system in a more compact and simplify derivations.

For example, after some definitions, we can write the whole system as:

$$
y=X \beta+\varepsilon
$$

Linear Algebra: Brief Review - Matrix

Life (\& notation) becomes easier with linear Algebra. Concepts:

- Matrix.

A matrix is a set of elements, organized into rows and columns
Columns
Rows $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$

- $a \& d$ are the diagonal elements.
$\cdot b \& c$ are the off-diagonal elements.
Matrices are like plain numbers in many ways: they can be added, subtracted, and, in some cases, multiplied and inverted (divided).

Linear Algebra: Matrices and Vectors

Examples:

$$
A=\left[\begin{array}{ll}
a_{11} & a_{21} \\
a_{12} & a_{22}
\end{array}\right] ; \quad b=\left[\begin{array}{lll}
b_{1} & b_{2} & b_{3}
\end{array}\right] .
$$

Dimensions of a matrix: numbers of rows by numbers of columns. The Matrix \mathbf{A} is a 2×2 matrix, b is a 1×3 matrix.

A matrix with only 1 column or only 1 row is called a vector.
If a matrix has an equal numbers of rows and columns, it is called a square matrix. Matrix \mathbf{A}, above, is a square matrix.

Usual Notation: \quad Upper case letters $\quad \Rightarrow$ matrices
Lower case $\quad \Rightarrow$ vectors

Linear Algebra: Matrices - Information

Information is described by data. A tool to organize the data is a list, which we call a vector. Lists of lists are called matrices. That is, we organize the data using matrices.

We think of the elements of \mathbf{X} as data points ("data entries", "observations"), in economics, we usually have numerical data.

We store the data in rows. In a $T x k$ matrix, \mathbf{X}, over time we build a database:

$$
\boldsymbol{X}=\left[\begin{array}{cccc}
x_{11} & x_{21} & \cdots & x_{k 1} \\
\vdots & \vdots & \ddots & \vdots \\
x_{1 T} & x_{2 T} & \cdots & x_{k T}
\end{array}\right]
$$

Once the data is organized in matrices it can be easily manipulated: multiplied, added, etc. (This is what Excel does).

Linear Algebra: Matrices in Econometrics

In econometrics, we have a model $y=f\left(x_{1}, x_{2}, \ldots, x_{k}\right)$, which we want to estimate. We collect data, say T (or N) observations, on a dependent variable, \mathbf{y}, and on k explanatory variables, \mathbf{X}.

Under the usual notation, vectors will be column vectors: \mathbf{y} and $\mathbf{x}_{\mathbf{k}}$ are $T \mathrm{x} 1$ vectors:

$$
\mathbf{y}=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{T}
\end{array}\right] \quad \& \quad \boldsymbol{x}_{j}=\left[\begin{array}{c}
x_{j 1} \\
\vdots \\
x_{j T}
\end{array}\right] \quad j=1, \ldots, k
$$

\mathbf{X} is a $T \mathrm{x} k$ matrix: $\quad \boldsymbol{X}=\left[\begin{array}{cccc}x_{11} & x_{21} & \cdots & x_{k 1} \\ \vdots & \vdots & \ddots & \vdots \\ x_{1 T} & x_{2 T} & \cdots & x_{k T}\end{array}\right]$
Its columns are the $k T \mathbf{x} 1$ vectors $\mathbf{x}_{\mathbf{j}}$. It is common to treat \mathbf{x}_{1} as vector of ones, í.
In general, we import matrices (information) to our programs.
Example: In R, we use the read function, usually followed by the type of data we are importing. Below, we import a comma separated values (csv) file with monthly CPIs and exchange rates for 20 different countries, then we use the read.csv function:
PPP_da <-
read.csv("https://www.bauer.uh.edu/rsusmel/4397/ppp_2020_m.csv",head=TRUE,sep=",")
The names() function describes the headers of the file imported (41 headers):
$>$ names(PPP_da)
[1] "Date" "BG_CPI" "IT_CPI" "GER_CPI" "UK_CPI"
[6] "SWED_CPI" "DEN_CPI" "NOR_CPI" "IND_CPI" "JAP_CPI"
[11] "KOR_CPI" "THAI_CPI" "SING_CPI" "MAL_CPI" "KUW_CPI"
[16] "SUAD_CPI" "CAN_CPI" "MEX_CPI" "US_CPI" "EGY_CPI" [...]
The summary() function provides some stats of variables imported:
> summary(PPP_da)
Date BG_CPI IT_CPI GER_CPI
1/15/1971: 1 Min. : 19.77 Min. : 5.90 Min. : 31.20
1/15/1972: 1 1st Qu.: 49.32 1st Qu.: 32.25 1st Qu.: 57.17
1/15/1973: 1 Median: 69.91 Median: 67.30 Median: 75.30
1/15/1974: 1 Mean : 67.92 Mean : 60.14 Mean : 72.29
1/15/1975: 1 3rd Qu.: 89.40 3rd Qu.: 89.65 3rd Qu.: 91.17
1/15/1976: 1 Max. :109.71 Max. :103.50 Max. :106.60
(Other) :588
We extract a variable from the matrix by the name of file followed by $\$$ and the header of variable:
$>x$ _chf <- PPP_da\$CHF_USD \# extract CHF/USD exchange rate data
We can transform the vector x _chf. For example, for $\%$ changes:
$\mathrm{T}<$ - length(x_chf) \# length of CHF/USD exchange rate data
lr_chf $<-\log \left(x_{-} c h f[-1] / x _c h f[-T]\right)$ \# create log returns (changes) for the CHF/USD. ब

Linear Algebra: Special Matrices

- Identity Matrix, I: A square matrix with 1's along the diagonal and 0's everywhere else. Similar to scalar "1." \mathbf{A} *I = A

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

- Null matrix, 0: A matrix in which all elements are 0's. Similar to scalar "0." $\mathbf{A}^{*} \mathbf{0}=\mathbf{0}$

$$
\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Both are diagonal matrices $\quad \Rightarrow$ off-diagonal elements are zero.
Both are examples of symmetric and idempotent matrices. As we will see later:

$$
\begin{aligned}
& \text { - Symmetric: } \mathbf{A}=\mathbf{A}^{\mathrm{T}} \\
& \text { - Idempotent: } \mathbf{A}=\mathbf{A}^{2}=\mathbf{A}^{3}=\ldots
\end{aligned}
$$

Linear Algebra: Multiplication

We want to multiply two matrices: $\mathbf{A}^{*} \mathbf{B}$. But, multiplication of matrices requires a conformability condition.

Conformability condition: The column dimensions of the lead matrix A must be equal to the row dimension of the lag matrix \mathbf{B}.

If \mathbf{A} is an $(m \times n)$ and \mathbf{B} an $(\boldsymbol{n} \times p)$ matrix (\mathbf{A} has the same number of columns as \mathbf{B} has rows), then we define the product of $\mathbf{A B} . \mathbf{A B}=\mathbf{C}$ is $(m \times p)$ matrix with its $i k$-th element is $c_{i k}=\sum_{j=1}^{n} a_{i j} b_{\boldsymbol{j} k}$

Q : What are the dimensions of the vector, matrix, and result?

$$
\begin{aligned}
& a B=\left[a_{11} a_{12}\right]\left[\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23}
\end{array}\right]=c=\left[\begin{array}{lll}
c_{11} & c_{12} & c_{13}
\end{array}\right] \\
& =\left[\begin{array}{lll}
a_{11} b_{11}+a_{12} b_{21} & a_{11} b_{12}+a_{12} b_{22} & a_{11} b_{13}+a_{12} b_{23}
\end{array}\right]
\end{aligned}
$$

Dimensions: $a(1 \times 2), \mathrm{B}(\mathbf{2} \times 3) \Rightarrow \mathrm{c}(1 \times 3)$

Example 1: We want to multiply $\mathbf{A}(2 \times 2)$ and $\mathbf{B}(2 \times 2)$, where \mathbf{A} has elements $a_{i j}$ and \mathbf{B} has elements $b_{j k}$. Recall the $i k^{t h}$ element is $\sum_{j=1}^{n=2} a_{i j} b_{j k}$

$$
\begin{aligned}
\mathbf{A} & =\left[\begin{array}{ll}
2 & 1 \\
7 & 9
\end{array}\right] \\
\mathbf{B} & =\left[\begin{array}{ll}
1 & 0 \\
2 & 3
\end{array}\right]
\end{aligned}
$$

$\mathbf{C}=\left[\begin{array}{ll}2 & 1 \\ 7 & 9\end{array}\right] *\left[\begin{array}{ll}1 & 0 \\ 2 & 3\end{array}\right]=\left[\begin{array}{cc}\mathbf{4}=2 * 1+1 * 2 & \mathbf{3}=2 * 0+1 * 3 \\ \mathbf{2 6}=7 * 1+9 * 2 & \mathbf{2 7}=7 * 0+9 * 3\end{array}\right]$
$C_{2 x 2}=A_{2 x 2} * B_{2 x 2}$
Dimensions: $A(2 \times 2), \mathrm{B}(2 \times 2) \Rightarrow \mathrm{C}(2 \times 2)$, a square matrix. ब

Example 2: We want to multiply $\mathbf{X}(2 \times 2)$ and $\mathbf{b}(2 \times 1)$, where \mathbf{X} has elements $x_{i j}$ and $\boldsymbol{\beta}$ has elements β_{j} :

$$
\mathbf{X}=\left[\begin{array}{ll}
x_{11} & x_{21} \\
x_{12} & x_{22}
\end{array}\right] \quad \& \quad \beta=\left[\begin{array}{l}
\beta_{1} \\
\beta_{2}
\end{array}\right]
$$

We compute

$$
y=X \beta
$$

Recall the i-th element is

$$
y_{i}=\sum_{j=1}^{n=2} x_{i j} \beta_{j}
$$

Then,

$$
\boldsymbol{y}=\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{ll}
x_{11} & x_{21} \\
x_{12} & x_{22}
\end{array}\right] *\left[\begin{array}{l}
\beta_{1} \\
\beta_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{11} \beta_{1}+x_{21} \beta_{2} \\
x_{12} \beta_{1}+x_{22} \beta_{2}
\end{array}\right]
$$

Dimensions: $\mathbf{X}(2 \times 2), \boldsymbol{\beta}(2 \times 1) \Rightarrow \boldsymbol{y}(2 \times 1)$, a row vector. $\mathbb{\top}$

Linear Algebra: Transpose

The transpose of a matrix \mathbf{A} is another matrix \mathbf{A}^{T} (also written \mathbf{A}^{\prime}) created by any one of the following equivalent actions:
-write the rows (columns) of \mathbf{A} as the columns (rows) of \mathbf{A}^{T}

- reflect \mathbf{A} by its main diagonal to obtain \mathbf{A}^{T}

Example: $\quad A=\left[\begin{array}{rrr}3 & 8 & -9 \\ 1 & 0 & 4\end{array}\right] \Rightarrow A^{\prime}=\left[\begin{array}{rr}3 & 1 \\ 8 & 0 \\ -9 & 4\end{array}\right]$. ब
Some transpose results:

- If \mathbf{A} is a $m \times n$ matrix $\Rightarrow \mathbf{A}^{\mathrm{T}}$ is a $n \times m$ matrix.
- $\left(\mathbf{A}^{\prime}\right)^{\prime}=\mathbf{A}$
- Conformability changes unless the matrix is square.
- $(\mathbf{A B})^{\prime}=\mathbf{B}^{\prime} \mathbf{A}^{\prime}$

Example: In econometrics, an important matrix is $\mathbf{X}^{\prime} \mathbf{X}$. Recall \mathbf{X} (usually, the matrix of k independent variables):

$$
\boldsymbol{X}=\left[\begin{array}{cccc}
x_{11} & x_{21} & \cdots & x_{k 1} \\
x_{12} & x_{22} & \cdots & x_{k 2} \\
\vdots & \vdots & \ddots & \vdots \\
x_{1 T} & x_{2 T} & \cdots & x_{k T}
\end{array}\right] \quad \text { a }(T \mathrm{x} k) \text { matrix }
$$

Then,

$$
\boldsymbol{X}^{\prime}=\left[\begin{array}{cccc}
x_{11} & x_{12} & \cdots & x_{1 T} \\
x_{21} & x_{22} & \cdots & x_{2 T} \\
\vdots & \vdots & \ddots & \vdots \\
x_{k 1} & x_{k 2} & \cdots & x_{k T}
\end{array}\right] \quad \text { a }(k x T) \text { matrix }
$$

Linear Algebra: Math Operations

Addition, Subtraction, Multiplication

- Addition: Just add elements

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]+\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]=\left[\begin{array}{ll}
a+e & b+f \\
c+g & d+h
\end{array}\right]
$$

- Subtraction: Just subtract element

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]-\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]=\left[\begin{array}{ll}
a-e & b-f \\
c-g & d-h
\end{array}\right]
$$

- Multiplication: Multiply each row by each column and add

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]=\left[\begin{array}{ll}
a e+b g & a f+b h \\
c e+d g & c f+d h
\end{array}\right]
$$

- Scalar Multiplication: Multiply each element by the scalar, k

$$
k\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
k a & k b \\
k c & k d
\end{array}\right]
$$

Examples:

Addition: $\quad\left[\begin{array}{ll}2 & 1 \\ 7 & 9\end{array}\right]+\left[\begin{array}{cc}3 & 1 \\ 0 & 2\end{array}\right]=\left[\begin{array}{cc}5 & 2 \\ 7 & 11\end{array}\right]$

$$
A_{2 x 2}+B_{2 x 2}=C_{2 x 2}
$$

Subtraction:

$$
\left[\begin{array}{ll}
2 & 1 \\
7 & 9
\end{array}\right]-\left[\begin{array}{ll}
1 & 0 \\
2 & 3
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
5 & 6
\end{array}\right]
$$

Multiplication: $\quad\left[\begin{array}{ll}2 & 1 \\ 7 & 9\end{array}\right] \times\left[\begin{array}{ll}1 & 0 \\ 2 & 3\end{array}\right]=\left[\begin{array}{cc}4 & 3 \\ 26 & 27\end{array}\right]$

$$
A_{2 x 2} \times B_{2 x 2}=C_{2 x 2}
$$

Scalar Multiplication: $\quad \frac{1}{8}\left[\begin{array}{ll}2 & 4 \\ 6 & 1\end{array}\right]=\left[\begin{array}{ll}1 / 4 & 1 / 2 \\ 3 / 4 & 1 / 8\end{array}\right] \cdot$ ब

Linear Algebra: Math Operations - $X^{9} \mathbf{X}$

A special matrix in econometrics, $\mathbf{X}^{\prime} \mathbf{X}$ (a $k x k$ matrix). First, we look at this matrix for the simple case, with $k=2$:

$$
\begin{aligned}
\boldsymbol{X}(T \mathrm{x} 2) & =\left[\begin{array}{cc}
x_{11} & x_{21} \\
x_{12} & x_{22} \\
\vdots & \vdots \\
x_{1 T} & x_{2 T}
\end{array}\right] \& \boldsymbol{X}^{\prime}=\left[\begin{array}{llll}
x_{11} & x_{12} & \cdots & x_{1 T} \\
x_{21} & x_{22} & \cdots & x_{2 T}
\end{array}\right] \\
\boldsymbol{X}^{\prime \prime} \boldsymbol{X}(2 \mathrm{x} 2) & =\left[\begin{array}{cc}
\sum_{i=1}^{T} x_{1 i}^{2} & \sum_{i=1}^{T} x_{2 i} x_{1 i} \\
\sum_{i=1}^{T} x_{1 i} x_{2 i} & \sum_{i=1}^{T} x_{2 i}^{2}
\end{array}\right]=\sum_{i=\mathbf{1}}^{T}\left[\begin{array}{cc}
x_{1 i}^{2} & x_{2 i} x_{1 i} \\
x_{2 i} x_{1 i} & x_{2 i}^{2}
\end{array}\right] \\
& =\sum_{i=\mathbf{1}}^{T}\left[\begin{array}{l}
x_{1 i} \\
x_{2 i}
\end{array}\right]\left[\begin{array}{ll}
x_{1 i} & x_{2 i}
\end{array}\right] \\
& =\sum_{i=\mathbf{1}}^{T} \boldsymbol{x}_{i} \boldsymbol{x}_{i}{ }^{\prime}
\end{aligned}
$$

For the general case, with k explanatory variables, we have $\mathbf{X}^{\prime} \mathbf{X}$ (a $k x k$ matrix):

$$
\begin{aligned}
\boldsymbol{X}(T \mathrm{x} k) & =\left[\begin{array}{cccc}
x_{11} & x_{21} & \cdots & x_{k 1} \\
x_{12} & x_{22} & \cdots & x_{k 2} \\
\vdots & \vdots & \ddots & \vdots \\
x_{1 T} & x_{2 T} & \cdots & x_{k T}
\end{array}\right] \& X^{\prime}=\left[\begin{array}{cccc}
x_{11} & x_{12} & \cdots & x_{1 T} \\
x_{21} & x_{22} & \cdots & x_{2 T} \\
\vdots & \vdots & \ddots & \vdots \\
x_{k 1} & x_{k 2} & \cdots & x_{k T}
\end{array}\right] \\
\boldsymbol{X}^{\prime \prime} \boldsymbol{X}(k \mathrm{x} k) & =\left[\begin{array}{cccc}
\sum_{i=1}^{T} x_{1 i}^{2} & \sum_{i=1}^{T} x_{1 i} x_{2 i} & \cdots & \sum_{i=1}^{T} x_{1 i} x_{k i} \\
\sum_{i=1}^{T} x_{2 i} x_{1 i} & \sum_{i=1}^{T} x_{2 i}^{2} & \cdots & \sum_{i=1}^{T} x_{2 i} x_{k i} \\
\vdots & \vdots & \ddots & \vdots \\
\sum_{i=1}^{T} x_{k i} x_{1 i} & \sum_{i=1}^{T} x_{k i} x_{2 i} & \cdots & \sum_{i=1}^{T} x_{k i}^{2}
\end{array}\right]= \\
& =\sum_{i=1}^{T}\left[\begin{array}{ccc}
x_{1 i}^{2} & \cdots & x_{1 i} x_{k i} \\
\vdots & \ddots & \vdots \\
x_{k i} x_{1 i} & \cdots & x_{k i}^{2}
\end{array}\right]=\sum_{i=1}^{T}\left[\begin{array}{c}
x_{1 i} \\
\vdots \\
x_{k i}
\end{array}\right]\left[\begin{array}{lll}
x_{1 i} & \cdots & x_{k i}
\end{array}\right] \\
& =\sum_{i=1}^{T} \boldsymbol{x}_{i} \boldsymbol{x}_{i}{ }^{\prime}
\end{aligned}
$$

Linear Algebra: Math Operations - i' \mathbf{X}

Recall \mathbf{u} is a column vector of ones (in this case, a Tx1 vector):

$$
\mathbf{i}=\left[\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right]
$$

Given $\mathbf{X}(T \mathrm{x} k)$, then $\mathbf{i}^{\prime} \mathbf{X}$ is a $1 \mathrm{x} k$ vector:

$$
\mathbf{i}^{\prime} \boldsymbol{X}=\left[\begin{array}{lll}
1 & \ldots & 1
\end{array}\right]\left[\begin{array}{ccc}
x_{11} & \cdots & x_{k 1} \\
\vdots & \ddots & \vdots \\
x_{1 T} & \cdots & x_{k T}
\end{array}\right]=\left[\begin{array}{lll}
\sum_{t=1}^{T} \boldsymbol{x}_{1 t} & \ldots & \sum_{t=1}^{T} \boldsymbol{x}_{k t}
\end{array}\right]
$$

Note: If \mathbf{x}_{1} is a vector of ones (representing a constant in the linear classical model), then:

$$
\mathbf{i}^{\prime} \mathbf{x}_{1}=\sum_{t=\mathbf{1}}^{T} x_{1 t}=\sum_{t=\mathbf{1}}^{T} 1=T \quad(\text { dot product, "•") }
$$

Linear Algebra: Inverse of a Matrix

Identity matrix: $\mathbf{A I}=\mathbf{A}, \quad$ where $I_{j}=\left[\begin{array}{cccc}1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & 1\end{array}\right]$
Notation: $\mathbf{I}_{\mathbf{j}}$ is a $j \times j$ identity matrix.

- Given $\mathbf{A}(m \times n)$, the matrix $\mathbf{B}(n \times m)$ is a right-inverse for \mathbf{A} iff $\mathbf{A B}=\mathbf{I}_{\mathbf{m}}$
- Given $\mathbf{A}(m \times n)$, the matrix $\mathbf{C}(n \times m)$ is a left-inverse for \mathbf{A} iff $\mathbf{C A}=\mathbf{I}_{\mathbf{n}}$
- Theorem: If $\mathbf{A}(m \times n)$, has both a right-inverse \mathbf{B} and a left-inverse \mathbf{C}, then $\mathbf{C}=\mathbf{B}=\mathbf{A}^{-1}$

Note:

- If A has both a right and a left inverse, it is a square matrix ($m=n$). It is usually called invertible. We say "the matrix \mathbf{A} is non-singular."
- This matrix, \mathbf{A}^{-1}, is unique.
- If $\operatorname{det}(\mathbf{A}) \neq 0 \Rightarrow \mathbf{A}$ is non-singular.

Linear Algebra: Symmetric Matrices

Definition:
If $\mathbf{A}^{\prime}=\mathbf{A}$, then \mathbf{A} is called a symmetric matrix.
In many applications, matrices are often symmetric. For example, in statistics the correlation matrix and the variance covariance matrix.

Symmetric matrices play the same role as real numbers do among the complex numbers.

We can do calculations with symmetric matrices like with numbers: for example, we can solve $\mathbf{B}^{2}=\mathbf{A}$ for \mathbf{B} if \mathbf{A} is symmetric matrix ($\& \mathbf{B}$ is square root of \mathbf{A}.) This is not possible in general. $\mathbf{X}^{\prime} \mathbf{X}$ is symmetric. It plays a very important role in econometrics.

Linear Algebra: Operations in \mathbf{R}

Many ways to create a vector (c, 2:7, seq, rep, etc) or a matrix (\mathbf{c}, cbind, rbind). We use $\mathbf{c}($), the combine function:

```
vl<-c(1,3,8) # a (3x1) vector (vectors are usually treated as a column list)
>v1
[1]138
```

A $<-\operatorname{matrix}(\mathrm{c}(1,2,3,7,8,9)$, ncol $=3) \quad$ \# a (2×3) matrix
$>$ A
[,1] [,2] [,3]
$[1] \quad 1 \quad 3 \quad$,
$\begin{array}{llll}{[2,]} & 2 & 7 & 9\end{array}$
$\mathrm{B}<-\operatorname{matrix}(\mathrm{c}(1,3,1,1,2,0)$, nrow $=3)$
$>$ B
[,1] [,2]
[1,] $1 \quad 1$
$[2] \quad 3 \quad$,
[3,] 10

- Now, we use rbind to create A and cbind to create B
$\mathrm{v} 1<-\mathrm{c}(1,3,8) \quad$ \# a (3x1) vector
$\mathrm{v} 2<-\mathrm{c}(2,7,9)$
A $<-\operatorname{rbind}(\mathrm{v} 1, \mathrm{v} 2)$
$>$ A \# a (2x3) matrix
[,1] [,2] [,3]
$\begin{array}{llll}\mathrm{v} 1 & 1 & 3 & 8\end{array}$
$\begin{array}{llll}\text { v2 } & 2 & 7 & 9\end{array}$
$\mathrm{v} 3<-\mathrm{c}(1,3,1)$
$\mathrm{v} 4<-\mathrm{c}(1,2,0)$
B $<-$ cbind $(\mathrm{v} 3, \mathrm{v} 4)$
$>$ B \# a (3x2) matrix
v3 v4
[1,] 11
[2,] 32
[3,] 10
- Matrix addition/subtraction: +/- -element by element.
- Matrix multiplication: \%*\%

C $<-\mathrm{A} \% * \% \mathrm{~B}$
\# A is 2×3; B is $3 \times 2 \Rightarrow \mathrm{C}$ is 2×2
[1,] $18 \quad 7$
$\begin{array}{lll}{[2,]} & 32 & 16\end{array}$

- Scalar multiplication: *
$>2 * \mathrm{C}$
\# elementwise multiplication of C by scalar 2
[,1] [,2]
[1,] 3614
[2,] $64 \quad 32$
Note: Usually, matrices will be data-i.e., read as input.
- Dot product " \cdot " is a function that takes pairs of vectors, with same length, and produces a number. For vectors $\mathbf{c} \& \mathbf{z}$, it is defined as:

$$
\boldsymbol{c} \cdot \boldsymbol{z}=c_{1} * z_{1}+c_{2} * z_{2}+\ldots+c_{n} * z_{n}=\sum_{i=1}^{n} c_{i} z_{i}
$$

- Dot product with 2 vectors: $\mathrm{v} 1 \cdot \mathrm{v} 2$: sum of the elementwise multiplied elements of both vectors $>\mathrm{t}(\mathrm{v} 1) \% * \% \mathrm{v} 2 \quad \# \mathrm{v} 1<-\mathrm{c}(1,3,8) \& \mathrm{v} 2<-\mathrm{c}(2,7,9)$

$$
[, 1]
$$

[1,] 95

- Dot product with a vector itself: v1•v1: Sum of the square elements of vector > t(v1) \%*\% v1
[,1]
[1,] 74
- Dot product with \mathbf{i} (a vector of ones): sum of elements of vector
$\mathrm{i}<-\mathrm{c}(1,1,1) \quad$ \# vector of ones (iota)
$>\mathrm{t}(\mathrm{i}) \% * \% \mathrm{v} 1 \quad \# \mathrm{v} 1<-\mathrm{c}(1,3,8)$
[,1]
[1,] 12
- Product of 2 vectors: v1 \& $\mathrm{t}(\mathrm{v} 2)$: A (3x3) matrix.
$>$ v1\%*\%t(v2)
[1,] $24 \quad 7 \quad 9$
$[2] \quad 6 \quad 21 \quad$,
[3,] $16 \quad 56 \quad 72$
Property of dot product: If the dot product of two vectors is equal to zero, then the vectors are orthogonal (perpendicular or " \perp ") vectors. We interpret this result as "the vectors are uncorrelated."
- Matrix transpose: \mathbf{t}
$>\mathrm{t}$ (B)
$\# B$ is $3 \times 2 \Rightarrow t(B)$ is 2×3
[,1] [,2] [,3]
[1,] $11 \begin{array}{lll}1 & 1\end{array}$
[2,] $1 \begin{array}{lll}1 & 2 & 0\end{array}$
- $\mathbf{X}^{\prime} \mathbf{X} \quad$ (a symmetric matrix)
$>\mathrm{t}(\mathrm{B}) \% * \% \mathrm{~B} \quad$ \# command crossprod (B) is more efficient [,1] [,2]
[1,] $11 \quad 7$
[2,] $7 \quad 5$
- Determinant: det (a symmetric matrix)
$>\operatorname{det}(\mathrm{t}(\mathrm{B}) \% * \% \mathrm{~B}) \quad$ \# Matrix has to be square. If $\operatorname{det}(\mathbf{A})=0 \Rightarrow \mathbf{A}$ non-invertible
[1] 6
- $\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-1}$: Inverse: solve
$>\operatorname{solve}(\mathrm{t}(\mathrm{B}) \% * \% \mathrm{~B}) \quad$ \# Matrix inside solve() has to be square
$[, 1] \quad[, 2]$
[1,] $0.8333333-1.166667$
[2,] -1.1666667 1.833333
- Take the diagonal elements of a matrix A: $\operatorname{diag}()$
$>\operatorname{diag}($ solve(t(B)$\% * \% \mathrm{~B})$)
[1] 0.83333331 .833333
- Square root of (positive) elements of a matrix A: sqrt()
$>\operatorname{sqrt}(\operatorname{diag}(\operatorname{solve}(\mathrm{t}(\mathrm{B}) \% * \% \mathrm{~B}))$)
v3 v4
0.91287091 .3540064

Linear Algebra: Examples

Example 1 - Linear DGP

There is a functional form relating a dependent variable, y , and k explanatory variables, \mathbf{X}. The functional form is linear, but it depends on k unknown parameters, $\boldsymbol{\beta}$. The relation between y and \mathbf{X} is not exact. There is an error, ε. We have T observations of y and \mathbf{X}.

- Then, the data is generated according to:

$$
y_{i}=\sum_{j=1}^{k} x_{k, i} \beta_{\mathrm{k}}+\varepsilon_{i} \quad \mathrm{i}=1,2, \ldots ., T .
$$

Or using matrix notation:

$$
y=\mathbf{X} \beta+\varepsilon
$$

where $\boldsymbol{y} \& \boldsymbol{\varepsilon}$ are $(T \mathrm{x} 1) ; \mathbf{X}$ is $(T \mathrm{x} k)$; and $\boldsymbol{\beta}$ is $(k \mathrm{x} 1)$.

- We will call this relation data generating process (DGP).
- The goal of econometrics is to estimate the unknown vector $\boldsymbol{\beta}$. $\mathbb{\|}$

Example 2 - Linear System

Assume an economic model as system of linear equations with:
a_{ij} parameters, \quad where $i=1, . ., m$ rows, $j=1, . ., n$ columns
x_{i} endogenous variables (n),
d_{i} exogenous variables and constants (m).

$$
\left\{\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=d_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=d_{2} \\
\ldots . \quad \ldots . . \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}=d_{m}
\end{array}\right.
$$

- Using linear algebra, we have a system of linear equations: $\mathbf{A x}=\boldsymbol{d}$

$$
\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\cdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
d_{1} \\
\cdots \\
d_{m}
\end{array}\right]
$$

where
$\mathbf{A}=(m \times n)$ matrix of parameters
$\mathbf{x}=$ column vector of endogenous variables $(n \times 1)$
$\boldsymbol{d}=$ column vector of exogenous variables and constants $(m \times 1) . \mathbb{\|}$

We want to solve for the solution of $\mathbf{A x}=\boldsymbol{d}, \Rightarrow \mathrm{x}^{*}$.
Theorem: Given $\mathrm{A}(m \mathrm{x} n)$ invertible. Then, the equation $\mathrm{Ax}=d$ has one and only one solution for every $d(m \times 1)$. That is, there is a unique x^{*}.

$$
\Rightarrow \mathbf{x}^{*}=\mathbf{A}^{-1} \boldsymbol{d}
$$

Example: In practice, we avoid computing \mathbf{A}^{-1}, we solve a system.
$\mathrm{A}<-\operatorname{matrix}(\mathrm{c}(1,1,5,7,9,11,10,10,14), \operatorname{ncol}=3)$ \# check $\operatorname{det}(\mathrm{A})$ for singularity $(\operatorname{det}(\mathrm{A})=-72)$ $\mathrm{d}<-\mathrm{c}(2,5,2)$
$>$ solve(A,d)
[1] -0.7222222 $1.5000000-0.7777778$

Linear Algebra: Linear Dependence and Rank

A set of vectors is linearly dependent if any one of them can be expressed as a linear combination of the remaining vectors; otherwise, it is linearly independent.

Formal definition: Linear independence (LI)
The set $\left\{\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{k}\right\}$ is called a linearly independent set of vectors iff

$$
c_{1} \boldsymbol{u}_{1}+\ldots .+c_{k} \boldsymbol{u}_{k}=\mathbf{0} \quad \Rightarrow c_{1}=c_{2}=\ldots=c_{k}=0 .
$$

Notes:

- Dependence prevents solving a system of equations (A is not invertible). More unknowns than independent equations.
- The number of linearly independent rows or columns in a matrix is the rank of a matrix $(\operatorname{rank}(\mathbf{A}))$.

Examples:

$$
\begin{align*}
& v_{1}^{\prime}=\left[\begin{array}{ll}
5 & 12
\end{array}\right] \tag{1}\\
& v_{2}^{\prime}=\left[\begin{array}{ll}
10 & 24
\end{array}\right]
\end{align*}
$$

$$
\boldsymbol{A}=\left[\begin{array}{cc}
5 & 10 \\
12 & 24
\end{array}\right]=\left[\begin{array}{l}
v_{1}^{\prime} \\
v_{2}^{\prime}
\end{array}\right]
$$

$$
2 v_{1}^{\prime}-v_{2}^{\prime}=\mathbf{0} \quad \Rightarrow \operatorname{rank}(\boldsymbol{A})=1
$$

(2) $v_{1}=\left[\begin{array}{l}2 \\ 7\end{array}\right] ; v_{2}=\left[\begin{array}{l}1 \\ 8\end{array}\right] ; v_{3}=\left[\begin{array}{l}4 \\ 5\end{array}\right]$;

$$
A=\left[\begin{array}{lll}
2 & 1 & 4 \\
7 & 8 & 5
\end{array}\right]
$$

$$
3 v_{1}^{\prime}-2 v_{2}^{\prime}=\left[\begin{array}{ll}
6 & 21
\end{array}\right]-\left[\begin{array}{ll}
2 & 16
\end{array}\right]
$$

$$
=\left[\begin{array}{ll}
4 & 5
\end{array}\right]=v_{3}^{\prime}
$$

$$
3 v_{1}^{\prime}-2 v_{2}^{\prime}-v_{3}^{\prime}=\mathbf{0} \quad \Rightarrow \operatorname{rank}(\boldsymbol{A})=2 .
$$

Least Squares Estimation with Linear Algebra - Rules for Vector Derivatives Below we present the tules for vector differentiation of linear functions and quadratic forms (for derivation of the rules, see Appendix at end of Lecture 4):
(1) Linear function: $\boldsymbol{y}=f(\boldsymbol{x})=\boldsymbol{x}^{\prime} \gamma+\omega$
where \boldsymbol{x} and γ are k-dimensional vectors and ω is a constant. Then,

$$
\nabla f(\boldsymbol{x})=\gamma
$$

(2) Quadratic form: $\quad \mathbf{q}=f(\boldsymbol{x})=\boldsymbol{x}^{\prime} \mathbf{A} \boldsymbol{x}$
where \boldsymbol{x} is $k \mathrm{x} 1$ vector and \mathbf{A} is a $k \mathrm{x} k$ matrix, with $a_{j i}$ elements. Then,

$$
\nabla f(\boldsymbol{x})=\mathbf{A}^{\prime} \boldsymbol{x}+\mathbf{A} \boldsymbol{x}=\left(\mathbf{A}^{\prime}+\mathbf{A}\right) \boldsymbol{x}
$$

If \mathbf{A} is symmetric, then $\nabla f(\boldsymbol{x})=2 \mathbf{A} \boldsymbol{x}$
In the next section, we apply these rules to

$$
\begin{aligned}
\mathrm{S}(\boldsymbol{x} ; \boldsymbol{\beta}) & =\sum_{i=1}^{T} \varepsilon_{i}^{2}=\boldsymbol{\varepsilon}^{\prime} \boldsymbol{\varepsilon}=(\boldsymbol{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\boldsymbol{y}-\mathbf{X} \boldsymbol{\beta}) \\
& =\left(\boldsymbol{y}^{\prime} \boldsymbol{y}-\boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime} \boldsymbol{y}-\boldsymbol{y}^{\prime} \mathbf{X} \boldsymbol{\beta}+\boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\beta}\right) \\
& =\left(\boldsymbol{y}^{\prime} \boldsymbol{y}-2 \beta^{\prime} \mathbf{X}^{\prime} \boldsymbol{y}+\beta^{\prime} \mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\beta}\right)
\end{aligned}
$$

where we take derivatives with respect to the $k \times 1$ vector β. Note that since you take k derivatives, the first derivative vector will be a $k \times 1$ vector, like β.

Least Squares Estimation with Linear Algebra

Let's assume a linear system with k independent variables and T observations. That is,

$$
y_{i}=\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\ldots+\beta_{k} x_{k i}+\varepsilon_{i}, \quad i=1,2, \ldots, T
$$

The whole system (for all i) is:

$$
\begin{aligned}
& y_{1}=\beta_{1} x_{11}+\beta_{2} x_{21}+\ldots+\beta_{k} x_{k 1}+\varepsilon_{1} \\
& y_{2}=\beta_{1} x_{12}+\beta_{2} x_{22}+\ldots+\beta_{k} x_{k 2}+\varepsilon_{2} \\
& y_{T}=\ddot{\beta}_{1} x_{1 T}+\ddot{\beta}_{2} x_{2 T}+\ldots+\beta_{k} x_{k T}+\varepsilon_{T}
\end{aligned}
$$

Using linear algebra we can rewrite the system as:

$$
y=\mathrm{X} \beta+\varepsilon
$$

Vectors will be column vectors: $\boldsymbol{y}, \boldsymbol{x}_{\boldsymbol{j}}$, and $\boldsymbol{\varepsilon}$ are $T \mathrm{x} 1$ vectors:

$$
\begin{array}{lll}
\boldsymbol{y}=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{T}
\end{array}\right] & \Rightarrow & \mathbf{y}^{\prime}=\left[\begin{array}{llll}
y_{1} & y_{2} & \ldots . & y_{T}
\end{array}\right] \\
\boldsymbol{x}_{\boldsymbol{j}}=\left[\begin{array}{c}
x_{j 1} \\
\vdots \\
x_{j T}
\end{array}\right] & \Rightarrow & \boldsymbol{x}_{j}^{\prime}=\left[\begin{array}{llll}
x_{j 1} & x_{j 2} & \ldots . & x_{j T}
\end{array}\right] \\
\boldsymbol{\varepsilon}=\left[\begin{array}{c}
\varepsilon_{1} \\
\vdots \\
\varepsilon_{T}
\end{array}\right] & \Rightarrow & \boldsymbol{\varepsilon}^{\prime}=\left[\begin{array}{llll}
\varepsilon_{1} & \varepsilon_{2} & \ldots & \varepsilon_{T}
\end{array}\right]
\end{array}
$$

\mathbf{X} is a $T \mathrm{x} k$ matrix. $\quad \Rightarrow \quad \mathbf{X}=\left[\begin{array}{llll}\mathbf{x}_{1} & \mathbf{x}_{2} \ldots & \mathbf{x}_{\mathrm{k}}\end{array}\right]$

$$
\begin{aligned}
\Rightarrow & X
\end{aligned} \begin{aligned}
& =\left[\begin{array}{cccc}
x_{11} & x_{21} & \cdots & x_{k 1} \\
\vdots & \vdots & \ddots & \vdots \\
x_{1 T} & x_{2 T} & \cdots & x_{k T}
\end{array}\right] \\
& \beta=\left[\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{k}
\end{array}\right] \\
& \\
&
\end{aligned}
$$

- With the linear assumption: $f(\mathbf{X}, \theta)=\mathbf{X} \boldsymbol{\beta}$, we can write the objective function as:

$$
\mathrm{S}(\boldsymbol{x} ; \theta)=\sum_{i=1}^{T} \varepsilon_{i}^{2}=\boldsymbol{\varepsilon}^{\prime} \boldsymbol{\varepsilon}=(\boldsymbol{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\boldsymbol{y}-\mathbf{X} \boldsymbol{\beta})
$$

We want to minimize $\mathrm{S}\left(\mathrm{x}_{\mathrm{i}}, \theta\right)$. After some simple algebra we have:

$$
\begin{aligned}
\mathrm{S}(\boldsymbol{x} ; \boldsymbol{\beta}) & =\left(\boldsymbol{y}^{\prime} \boldsymbol{y}-\boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime} \boldsymbol{y}-\boldsymbol{y}^{\prime} \mathbf{X} \boldsymbol{\beta}+\boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\beta}\right) \\
& =\left(\mathbf{c}-\boldsymbol{\beta}^{\prime} \mathbf{d}-\mathbf{d}^{\prime} \boldsymbol{\beta}+\boldsymbol{\beta}^{\prime} \mathbf{A} \beta\right)
\end{aligned}
$$

$$
=\left(\mathbf{c}-2 \beta^{\prime} \mathbf{d}+\beta^{\prime} \mathbf{A} \boldsymbol{\beta}\right) \quad\left(\mathbf{A}=\mathbf{X}^{\prime} \mathbf{X} \text { is symmetric }\right)
$$

First derivative w.r.t. $\beta^{\prime}: \quad \nabla \mathrm{S}(\boldsymbol{x} ; \theta)=(-2 \mathbf{d}+2 \mathbf{A} \beta) \quad$ ($k x 1$ vector) $=-2\left(\mathbf{X}^{\prime} \boldsymbol{y}-\mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\beta}\right)$
F.o.c. (normal equations): $\quad\left(\mathbf{X}^{\prime} \boldsymbol{y}-\mathbf{X}^{\prime} \mathbf{X} \mathbf{b}\right)=\mathbf{0}$

Simple algebra

$$
\left(\mathbf{X}^{\prime} \mathbf{X}\right) \mathbf{b}=\mathbf{X}^{\prime} \boldsymbol{y}
$$

Assuming ($\left.\mathbf{X}^{\prime} \mathbf{X}\right)$ is non-singular -i.e., invertible-, we solve for $\mathbf{b}: \quad \Rightarrow \mathbf{b}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{y}$
Note: \mathbf{b} is called the Ordinary Least Squares (OLS) estimator. (Ordinary $=f(\mathbf{X}, \theta)$ is linear.)
\mathbf{X} is a $T \mathrm{x} k$ matrix. Its columns are the $k T \mathrm{x} 1$ vectors $\boldsymbol{x}_{\boldsymbol{j}}$. It is common to treat $\boldsymbol{x}_{\mathbf{1}}$ as vector of ones:

$$
x_{1}=\left[\begin{array}{c}
x_{11} \\
\vdots \\
x_{1 T}
\end{array}\right]=\left[\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right] \quad \Rightarrow \quad x_{1}^{\prime}=\left[\begin{array}{llll}
1 & 1 & \ldots & 1
\end{array}\right]=i
$$

This vector of ones represent the usual constant in the model.
Note: Recall the dot product: Post-multiplying a vector (1x T) $\boldsymbol{x}_{\boldsymbol{k}}$ by \mathbf{i} (or $\mathbf{i}^{\prime} \boldsymbol{x}_{\boldsymbol{k}}$) produces a scalar, the sum of all the elements of vector $\boldsymbol{x}_{\boldsymbol{k}}$:

$$
\boldsymbol{x}_{\boldsymbol{k}}^{\prime} \boldsymbol{i}^{\prime}=\boldsymbol{i}^{\prime} \boldsymbol{x}_{\boldsymbol{k}}=x_{\boldsymbol{k} 1}+x_{k 2}+\ldots .+x_{k T}=\sum_{i}^{T} x_{k i} .
$$

Least Squares Estimation with Linear Algebra: The Fama-French Model

The CAPM is routinely rejected. A popular alternative model is the empirically derived 3-factor Fama-French (1993) model, which adds two risk factors to the market factor: a size factor, measured as the returns of a portfolio of small firms minus the returns of a portfolio of big firms (SMB), and a book-to-market (BM) factor (or value factor), measured as the returns of a portfolio of high BM firms minus the returns of a portfolio of low BM firms (HML). SMB accounts for companies with small market caps that generate higher returns, while HML accounts for value stocks with high book-to-market ratios that generate higher returns in comparison to the market.

Then, a linear DGP generating this model is:

$$
r_{i, t}-r_{f}=\alpha_{\mathrm{i}}+\beta_{1}\left(r_{m, t}-r_{f}\right)+\beta_{2} \boldsymbol{S M} \boldsymbol{B}_{t}+\beta_{3} \boldsymbol{H M} \boldsymbol{L}_{t}+\varepsilon_{i, t} .
$$

The interpretation of the coeffcientes is the usual interpretation, they measure the sensitivity of excess returns to the risk factors. For example, β_{2} measures the exposure of asset i to the size factor (in general, $\beta_{2}>0$ means that returns of asset i behaves like small stocks).

Like the CAPM, the 3-factor FF model produces expected excess returns:

$$
\mathrm{E}\left[r_{i, t}-r_{f}\right]=\beta_{1} \mathrm{E}\left[r_{m, t}-r_{f}\right]+\beta_{2} \mathrm{E}\left[\boldsymbol{S M} \boldsymbol{B}_{t}\right]+\beta_{3} \mathrm{E}\left[\boldsymbol{H} \boldsymbol{M} \boldsymbol{L}_{t}\right] .
$$

A significant constant would be evidence against this model: something is missing.
Below, we present in more detail this 3-factor model.
Example: Fama-French 3-factor Model for IBM returns:
SFX_da <-
read.csv("https://www.bauer.uh.edu/rsusmel/4397/Stocks_FX_1973.csv",head=TRUE,sep=",")
x_ibm <- SFX_da\$IBM \# Read IBM price data (Mkt_RF Factor)
x_Mkt_RF <- SFX_da\$Mkt_RF \# Read Factor data -Mkt_RF Factor (in \%)
$\mathrm{x}_{\mathrm{C}}^{-} \mathrm{SMB}<-$ SFX_da $\overline{\$} S M B \quad$ \# Read Factor data -SMB Factor (in \%)

```
x_HML <- SFX_da$HML # Read Factor data -HML Factor (in %)
x_RF <- SFX_da$RF
T <- length(x_ibm)
    lr_ibm <- log(x_ibm[-1]/x_ibm[-T])
Mkt_RF <- x_Mkt_RF[-1]/100
SMB <- x_SMB[-1]/100
HML <- x_HML[-1]/100
RF <- x_RF[-1]/100
y<- ibm_x # Define y (IBM excess returns)
x1 <- Mkt_RF # Regressor 1 (Mkt_RF)
x2<- SMB # Regressor 2 (SMB)
x3<- HML
T<- length(x1)
x0<- matrix(1,T,1)
x}<-\operatorname{cbind}(x0,x1,x2,x3
k<-ncol(x)
b <- solve(t(x)%*% x)%*% t(x)%*%y
>t(b)
    Mkt_RF SMB HML
[1,] -0.005088944 0.9082989-0.2124596-0.1715002
```

R Note: You should get the same numbers using R's lm (use summary(.) to print results):

```
fit_ibm_ff3 <- lm(ibm_x \(\sim\) Mkt_RF + SMB + HML)
```

$>$ summary(fit_ibm_ff3) \# print lm results
Call:
$\operatorname{lm}($ formula $=$ ibm_x \sim Mkt_RF + SMB + HML $)$

Residuals:
Min 1Q Median 3Q Max
$-0.307488-0.030388-0.0008610 .0343500 .252667$
Coefficients:

	Estimate	Std. Error	t value $\operatorname{Pr}(>\|t\|)$	
(Intercept)	-0.005089	0.002488	-2.046	$0.0412 *$
Mkt_RF	0.908299	$\mathbf{0 . 0 5 6 7 2 2}$	16.013	$<2 \mathrm{e}-16 * * *$
SMB	-0.212460	0.084112	-2.526	0.0118^{*}
HML	-0.171500	0.084682	-2.025	$0.0433 *$

Signif. codes: 0 '***' $0.0011^{\prime * * ’} 0.01^{\prime *} 0.05^{\prime} .^{\prime} 0.1^{\prime}{ }^{\prime} 1$
Residual standard error: 0.05848 on 565 degrees of freedom
Multiple R-squared: 0.3389 , Adjusted R-squared: 0.3354
F-statistic: 96.55 on 3 and 565 DF, p-value: $<2.2 \mathrm{e}-16$.
Conclusion: IBM has a positive exposure to the market, and negative exposure to the size and value factors. $\boldsymbol{\|}$

OLS - Assumptions

Typical OLS Assumptions
(1) DGP: $\quad y_{i}=\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\ldots+\beta_{k} x_{k i}+\varepsilon_{i}, \quad i=1,2, \ldots, T$
\Rightarrow functional form known, but β is unknown.
(2) $\mathrm{E}\left[\varepsilon_{i}\right]=0 . \quad \Rightarrow$ expected value of the errors is 0.
(3) Explanatory variables $\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}_{k}$, are given (\& non random)
\Rightarrow no correlation with $\varepsilon\left(\operatorname{Cov}\left(\varepsilon_{i}, X_{k i}\right)=0\right.$.) for all k.
(4) The k explanatory variables are independent.
(5) $\operatorname{Var}\left[\varepsilon_{i}\right]=\mathrm{E}\left[\varepsilon_{i}^{2}\right]=\sigma^{2}<\infty$ (homoscedasticity $=$ same variance for all i)
(6) $\operatorname{Cov}\left(\varepsilon_{i}, \varepsilon_{j}\right)=\mathrm{E}\left[\varepsilon_{i} \varepsilon_{j}\right]=0 . \quad$ (no serial/cross correlation for all $i \neq j$)

- These are the assumptions behind the classical linear regression model (CLM).

Least Squares - Assumptions with Linear Algebra Notation

We can rewrite the assumptions, conditioning on \mathbf{X}, which allows \mathbf{X} to be a random variable (though, once we condition, \mathbf{X} becomes a matrix of numbers). Using linear algebra:
(A1) DGP: $\boldsymbol{y}=f(\mathbf{X}, \boldsymbol{\theta})+\boldsymbol{\varepsilon}$ is correctly specified.
(A2) $\mathrm{E}[\varepsilon \mid \mathbf{X}]=0$
(A3) $\operatorname{Var}[\varepsilon \mid \mathbf{X}]=\sigma^{2} \mathbf{I}_{T}$
(A4) \mathbf{X} has full column $\operatorname{rank}-\operatorname{rank}(\mathbf{X})=k-$, where $\mathrm{T} \geq k$.

- Assumption (A1) is called correct specification. We know how the data is generated. We call $\boldsymbol{y}=f(\mathbf{X}, \boldsymbol{\theta})+\boldsymbol{\varepsilon} \quad$ the Data Generating Process (DGP).

Note: The errors, $\boldsymbol{\varepsilon}$, are called disturbances. They are not something we add to $f(\mathbf{X}, \boldsymbol{\theta})$ because we don't know precisely $f(\mathbf{X}, \boldsymbol{\theta})$. No. The errors are part of the DGP.

- Assumption (A2) is called regression.

From Assumption (A2) we get:
(i) $\mathrm{E}[\boldsymbol{\varepsilon} \mid \mathbf{X}]=0 \quad \Rightarrow \mathrm{E}[\boldsymbol{y} \mid \mathbf{X}]=\mathrm{E}[f(\mathbf{X}, \theta) \mid \mathbf{X}]+\mathrm{E}[\boldsymbol{\varepsilon} \mid \mathbf{X}]=f(\mathbf{X}, \theta)$

That is, the observed \mathbf{y} will equal $\mathrm{E}[\boldsymbol{y} \mid \mathbf{X}]+$ random variation.
(ii) Using rules of expectations and the law of iterated expectations (LIE), we get two results:
(1) $\mathrm{E}[\varepsilon \mid \mathbf{X}]=0$

$$
\Rightarrow \mathrm{E}[\varepsilon]=0
$$

\Rightarrow The conditional expectation $=$ unconditional expectation
(2) $\operatorname{Cov}(\varepsilon, \mathbf{X})=\mathrm{E}\left[(\varepsilon-0)\left(\mathbf{X}-\boldsymbol{\mu}_{\mathbf{X}}\right)\right]=\mathrm{E}\left[\varepsilon \mathbf{X}-\boldsymbol{\varepsilon} \boldsymbol{\mu}_{\mathbf{X}}\right]$

$$
=\mathrm{E}[\boldsymbol{\varepsilon} \mathbf{X}]-\boldsymbol{\mu}_{\mathbf{X}} \mathrm{E}[\boldsymbol{\varepsilon}]=\mathrm{E}[\boldsymbol{\varepsilon} \mathbf{X}]=0
$$

(by LIE, $\mathrm{E}[\varepsilon \mathbf{X}]=\mathrm{E}_{\mathbf{X}}[\mathbf{X} \mathrm{E}[\boldsymbol{\varepsilon} \mid \mathbf{X}]]=0$.)
\Rightarrow That is, $\mathrm{E}[\varepsilon \mathbf{X}]=0 \quad \Rightarrow \varepsilon \perp \mathbf{X}$.
There is no information about $\boldsymbol{\varepsilon}$ in \mathbf{X} and viceversa.

- Assumption (A3) gives the model a constant variance for all errors and no relation between the errors at different measurements/times. That is, we have a diagonal variance-covariance matrix:

$$
\operatorname{Var}[\boldsymbol{\varepsilon} \mid \mathbf{X}]=\boldsymbol{\Sigma}=\left[\begin{array}{cccc}
\sigma^{2} & 0 & \cdots & 0 \\
0 & \sigma^{2} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & \sigma^{2}
\end{array}\right]=\sigma^{2} \mathbf{I}_{\mathrm{T}} \quad(k x k) \text { matrix }
$$

This assumption implies
(i) homoscedasticity

$$
\Rightarrow \mathrm{E}\left[\varepsilon_{i}^{2} \mid \mathbf{X}\right]=\sigma^{2} \quad \text { for all } i .
$$

(ii) no serial/cross correlation $\quad \Rightarrow \mathrm{E}\left[\varepsilon_{i} \varepsilon_{j} \mid \mathbf{X}\right]=0 \quad$ for $i \neq j$.

It can be shown using the law of total variance that

$$
\operatorname{Var}[\varepsilon \mid \mathbf{X}]=\sigma^{2} \mathbf{I}_{T} \quad \Rightarrow \operatorname{Var}[\varepsilon]=\sigma^{2} \mathbf{I}_{T}
$$

Note: $\operatorname{Var}[\varepsilon \mid \mathbf{X}]=\mathrm{E}\left[(\boldsymbol{\varepsilon}-\mathrm{E}[\varepsilon])(\varepsilon-\mathrm{E}[\varepsilon])^{\prime} \mid \mathbf{X}\right]$
$=\mathrm{E}\left[(\boldsymbol{\varepsilon}-\mathbf{0})(\boldsymbol{\varepsilon}-\mathbf{0})^{\prime} \mid \mathbf{X}\right]$
$=\mathrm{E}\left[\boldsymbol{\varepsilon} \boldsymbol{\varepsilon}^{\prime} \mid \mathbf{X}\right]$
$=\left[\begin{array}{cccc}\mathrm{E}\left[\varepsilon_{1}^{2} \mid \mathbf{X}\right] & \mathrm{E}\left[\varepsilon_{2} \varepsilon_{1} \mid \mathbf{X}\right] & \cdots & \mathrm{E}\left[\varepsilon_{T} \varepsilon_{1} \mid \mathbf{X}\right] \\ \mathrm{E}\left[\varepsilon_{1} \varepsilon_{2} \mid \mathbf{X}\right] & \mathrm{E}\left[\varepsilon_{2}^{2} \mid \mathbf{X}\right] & \cdots & \mathrm{E}\left[\varepsilon_{T} \varepsilon_{2} \mid \mathbf{X}\right] \\ \vdots & \vdots & \vdots & \vdots \\ \mathrm{E}\left[\varepsilon_{1} \varepsilon_{T} \mid \mathbf{X}\right] & \mathrm{E}\left[\varepsilon_{2} \varepsilon_{T} \mid \mathbf{X}\right] & \cdots & \mathrm{E}\left[\varepsilon_{T}^{2} \mid \mathbf{X}\right]\end{array}\right]$
$=\left[\begin{array}{cccc}\sigma^{2} & 0 & \cdots & 0 \\ 0 & \sigma^{2} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \sigma^{2}\end{array}\right]=\sigma^{2} \mathbf{I}_{\mathrm{T}}$

- From Assumption (A4) \Rightarrow the k independent variables in \mathbf{X} are linearly independent. Then, the $k x k$ matrix $\mathbf{X}^{\prime} \mathbf{X}$ will also have full rank - i.e., $\operatorname{rank}\left(\mathbf{X}^{\prime} \mathbf{X}\right)=k$.

Thus, $\mathbf{X}^{\prime} \mathbf{X}$ is invertible. We will need this result to solve a system of equations given by the $1^{\text {st }}$ order conditions of Least Squares Estimation.

Note: To get asymptotic results we will need more assumptions about \mathbf{X}.

- We assume a linear functional form for $f(\mathrm{x}, \theta)=\mathbf{X} \boldsymbol{\beta}$:
(A1') DGP: $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$

CLM: OLS - Summary

Classical linear regression model (CLM) - Assumptions:
(A1) DGP: $\boldsymbol{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$ is correctly specified.
(A2) $\mathrm{E}[\varepsilon \mid \mathbf{X}]=0$
(A3) $\operatorname{Var}[\varepsilon \mid \mathbf{X}]=\sigma^{2} \mathbf{I}_{T}$
(A4) \mathbf{X} has full column $\operatorname{rank}-\operatorname{rank}(\mathbf{X})=k$, where $\mathrm{T} \geq k$.
Objective function: $\quad \mathrm{S}\left(x_{i}, \boldsymbol{\beta}\right)=\sum_{i=1}^{T} x_{i}^{2}=\boldsymbol{\varepsilon}^{\prime} \boldsymbol{\varepsilon}=(\boldsymbol{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\boldsymbol{y}-\mathbf{X} \boldsymbol{\beta})$

$$
=\left(\boldsymbol{y}^{\prime} \boldsymbol{y}-2 \beta^{\prime} \mathbf{X}^{\prime} \boldsymbol{y}+\beta^{\prime} \mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\beta}\right)
$$

First order conditions: $\quad-2\left(\mathbf{X}^{\prime} \boldsymbol{y}-\mathbf{X}^{\prime} \mathbf{X} \mathbf{b}\right)=\mathbf{0}$
Solving for \mathbf{b} : $\quad \mathbf{b}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{y} \quad(k x 1)$ vector

OLS Estimation: Second Order Condition

$$
\frac{\partial^{2} S\left(x_{i}, \boldsymbol{\beta}\right)}{\partial b \partial b^{\prime}}=2 \boldsymbol{X}^{\prime} \boldsymbol{X}=2\left[\begin{array}{cccc}
\Sigma_{i=1}^{T} x_{i 1}^{2} & \Sigma_{i=1}^{T} x_{i 1} x_{i 2} & \ldots & \Sigma_{i=1}^{T} x_{i 1} x_{i K} \\
\Sigma_{i=1}^{T} x_{i 2} x_{i 1} & \Sigma_{i=1}^{T} x_{i 2}^{2} & \ldots & \Sigma_{i=1}^{T} x_{i 2} x_{i K} \\
\ldots & \ldots & \ldots & \ldots \\
\Sigma_{i=1}^{T} x_{i K} x_{i 1} & \Sigma_{i=1}^{T} x_{i K} x_{i 2} & \ldots & \Sigma_{i=1}^{T} x_{i K}^{2}
\end{array}\right]
$$

If there were a single \mathbf{b}, we would require this to be positive, which it would be:

$$
2 \mathbf{x}^{\prime} \mathbf{x}=2 \sum_{i=1}^{T} x_{i}^{2}>0 .
$$

The matrix counterpart of a positive number is a positive definite (pd) matrix. We need $\mathbf{X}^{\prime} \mathbf{X}$ to be pd.

A square matrix (mxm) A "takes the sign" of the quadratic form, $\mathbf{z}^{\prime} \mathbf{A} \mathbf{z}$, where \mathbf{z} is a $m x 1$ vector. Then, $\mathbf{z}^{\prime} \mathbf{A} \mathbf{z}$ is a scalar.

A form is a polynomial expression in which each component term has a uniform degree. A quadratic form has a uniform $2^{\text {nd }}$ degree.

Examples:

$$
\begin{array}{ll}
9 x+3 y+2 z & \text { - 1st degree form. } \\
6 x^{2}+2 x y+2 y^{2} & \text { - 2nd degree (quadratic) form. } \\
\mathrm{d}^{2} \mathrm{z}=f_{x x} \mathrm{~d} x^{2}+2 f_{x y} \mathrm{~d} x \mathrm{~d} y+f_{y y} \mathrm{~d} y^{2} & \text { - quadratic form. } \mathbb{}
\end{array}
$$

A quadratic form can be written in matrix notation as $\mathbf{z}^{\prime} \mathbf{A} \mathbf{z}$, where \mathbf{A} is $(m \mathbf{x} m) \mathbf{A}$ and \mathbf{z} is an $m \mathrm{x} 1$ vector. Then, $\mathbf{z}^{\prime} \mathbf{A} \mathbf{z}$ is a scalar.

Example: The fiear quadratic form from the previous example can be written as

$$
\mathrm{q}=\left[\begin{array}{ll}
x & y
\end{array}\right] *\left[\begin{array}{ll}
6 & 1 \\
1 & 2
\end{array}\right] *\left[\begin{array}{l}
x \\
y
\end{array}\right]=6 x^{2}+2 x y+2 y^{2}
$$

Once we know $x \& y, \mathrm{q}$ is a number.

- Let q be a quadratic form. We say q is:
- Positive definite if q is invariably positive ($q>0$)
- Positive semi-definite if q is invariably non-negative ($q \geq 0$)
- Negative semi-definite if q is invariably non-positive ($q \leq 0$)
- Negative definite if q is invariably negative $(\mathrm{q}<0)$

Definition: Positive definite matrix
A matrix \mathbf{A} is positive definite (pd) if $\mathbf{z}^{\prime} \mathbf{A} \mathbf{z}>0$ for any \mathbf{z} (a $k x 1$ vector).
For some matrices, it is easy to check. Let $\mathbf{A}=\mathbf{X}^{\prime} \mathbf{X}$ (a $k x k$ matrix).
Then, $\mathbf{z}^{\prime} \mathbf{A} \mathbf{z}=\mathbf{z}^{\prime} \mathbf{X}^{\prime} \mathbf{X} \mathbf{z}=\mathbf{v}^{\prime} \mathbf{v}=\sum_{i=1}^{N} v_{i}^{2}>0 . \quad(\mathbf{v}=\mathbf{X} \mathbf{z}$ is an $N \mathbf{x} 1$ vector)
$\Rightarrow \mathbf{X}^{\prime} \mathbf{X}$ is $\mathrm{pd} \quad \Rightarrow \mathbf{b}$ is a $\mathrm{min}!$
Technical notes:

1) In general, we need eigenvalues of \mathbf{A} to check this. If all the eigenvalues are positive, then \mathbf{A} is pd .
2) If \mathbf{A} is pd , then \mathbf{A}^{-1} is also pd.
3) In optimization problems in multivariate calculus, the second order condition requires the evaluation of the matrix of second derivatives, the Hessian. If all the leading principal minors are positive, then the critical point obtained is a minimum. In our case, this means that the Hessian is pd.

Loosely speaking, a matrix is positive definite if the diagonal elements are positive and the offdiagonal elements are not too large in absolute value relative to the diagonal elements. This is a very informal way of looking at a pd matrix, but, keep in mind for later, that the diagonal elements are positive.

OLS Estimation - Properties of b

The OLS estimator of β in the CLM is

$$
\begin{aligned}
& \mathbf{b}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{y} \quad \Rightarrow \mathbf{b} \text { is a (linear) function of the data }\left(\mathrm{y}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}}\right) . \\
& \mathbf{b}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{y}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}(\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon})=\boldsymbol{\beta}+\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\varepsilon} \\
& \Rightarrow \mathbf{b}-\boldsymbol{\beta}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\varepsilon}
\end{aligned}
$$

Under the typical assumptions, we can establish properties for \mathbf{b}.

1) $\mathrm{E}[\mathbf{b} \mid \mathbf{X}]=\mathrm{E}[\boldsymbol{\beta} \mid \mathbf{X}]+\mathrm{E}\left[\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\varepsilon} \mid \mathbf{X}\right]$

$$
=\beta+\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} E[\varepsilon \mid \mathbf{X}]=\boldsymbol{\beta} \quad(\mathbf{b} \text { is unbiased } .)
$$

2) $\operatorname{Var}[\mathbf{b} \mid \mathbf{X}]=\mathrm{E}\left[(\mathbf{b}-\boldsymbol{\beta})(\mathbf{b}-\boldsymbol{\beta})^{\prime} \mid \mathbf{X}\right]=\mathrm{E}\left[\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\varepsilon} \boldsymbol{\varepsilon}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right]$

$$
=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathrm{E}\left[\boldsymbol{\varepsilon} \boldsymbol{\varepsilon}^{\prime} \mid \mathbf{X}\right] \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
$$

$$
=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\left\{\sigma^{2} \mathbf{I}_{\mathrm{T}}\right\} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}=\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
$$

$$
=\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \quad(k x k) \text { matrix }
$$

3) Gauss-Markov Theorem: b is BLUE (Best Linear Unbiased Estimator). No other linear \& unbiased estimator has a lower variance.
Proof:

$$
\begin{aligned}
& \text { Let } \mathbf{b}^{*}=\mathbf{C} \boldsymbol{y} \quad(\text { linear in } \boldsymbol{y}) \\
& \mathrm{E}\left[\mathbf{b}^{*} \mid \mathbf{X}\right]=\mathrm{E}[\mathbf{C} \boldsymbol{y} \mid \mathbf{X}]=\mathrm{E}[\mathbf{C}(\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}) \mid \mathbf{X}]=\boldsymbol{\beta} \text { (unbiased if } \mathbf{C X}=\mathbf{I} \text {) } \\
& \operatorname{Var}\left[\mathbf{b}^{*} \mid \mathbf{X}\right]=\mathrm{E}\left[\left(\mathbf{b}^{*}-\boldsymbol{\beta}\right)\left(\mathbf{b}^{*}-\boldsymbol{\beta}\right)^{\prime} \mid \mathbf{X}\right]=\mathrm{E}\left[\mathbf{C} \boldsymbol{\varepsilon} \boldsymbol{\varepsilon}^{\prime} \mathbf{C}^{\prime} \mid \mathbf{X}\right]=\boldsymbol{\sigma}^{2} \mathbf{C C}^{\prime}
\end{aligned}
$$

Now, we relate $\operatorname{Var}[\mathbf{b} \mid \mathbf{X}]$ to $\operatorname{Var}\left[\mathbf{b}^{*} \mid \mathbf{X}\right]$.
Let $\mathbf{D}=\mathbf{C}-\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \quad($ note $\mathbf{D X}=0)$
Then,

$$
\begin{gathered}
\operatorname{Var}\left[\mathbf{b}^{*} \mid \mathbf{X}\right] \quad=\sigma^{2}\left(\mathbf{D}+\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\right)\left(\mathbf{D}^{\prime}+\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right) \\
=\sigma^{2} \mathbf{D D}^{\prime}+\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}=\operatorname{Var}[\mathbf{b} \mid \mathbf{X}]+\sigma^{2} \mathbf{D} \mathbf{D}^{\prime} .
\end{gathered}
$$

Since $\mathbf{D D}^{\prime}$ is positive definite $\Rightarrow \operatorname{Var}\left[\mathbf{b}^{*} \mid \mathbf{X}\right]>\operatorname{Var}[\mathbf{b} \mid \mathbf{X}]$ •
4) If we make an additional assumption:

$$
(\mathbf{A 5}) \boldsymbol{\varepsilon} \mid \mathbf{X} \sim \text { i.i.d. } \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}_{\mathrm{T}}\right)
$$

we can derive the distribution of \mathbf{b}.

Since $\mathbf{b}=\boldsymbol{\beta}+\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\varepsilon}$, we have that \mathbf{b} is a linear combination of normal variables and, thus, follows a normal distribution:

$$
\mathbf{b} \mid \mathbf{X} \sim \text { i.i.d. } \mathrm{N}\left(\beta, \sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right)
$$

then, $\operatorname{SD}[\mathbf{b} \mid \mathbf{X}]=\operatorname{sqrt}\left(\right.$ diagonal elements of $\left.\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right)$
Note: The marginal distribution of a multivariate normal distribution is also normal, then

$$
\begin{aligned}
& \mathrm{b}_{k} \mid \mathbf{X} \sim \mathrm{N}\left(\beta_{k}, \mathrm{v}_{k}^{2}\right) \\
& \operatorname{Std} \operatorname{Dev}\left[\mathrm{b}_{k} \mid \mathbf{X}\right]=\operatorname{sqrt}\left\{\left[\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right]_{k k}\right\}=\mathrm{v}_{k}
\end{aligned}
$$

Remark: With (A5) we can do tests of hypothesis.
5) If (A5) is not assumed, we still can obtain a (limiting) distribution for \mathbf{b}. Under additional assumptions -mainly, the matrix $\mathbf{X}^{\prime} \mathbf{X}$ does not explode as T becomes large-, as $\mathrm{T} \rightarrow \infty$
(i) $\mathbf{b} \xrightarrow{p} \boldsymbol{\beta}$
(b is consistent)
(ii) $\mathbf{b} \xrightarrow{a} \mathrm{~N}\left(\boldsymbol{\beta}, \sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right)$
(b is asymptotically normal)

- Properties (1)-(4) are called finite (or small) sample properties, they hold for every sample size.
- Properties (5.i) and (5.ii) in (5) are called asymptotic properties, they only hold when T is large (actually, as T tends to ∞). Property (5.ii) is very important: When the errors are not normally distributed we still can do testing about β, but we rely on an "approximate distribution."

OLS Estimation - Fitted Values and Residuals

OLS estimates $\boldsymbol{\beta}$ with \mathbf{b}. Now, we define fitted values as:

$$
\hat{\boldsymbol{y}}=\mathbf{X} \mathbf{b}
$$

Now we define the estimated error, \boldsymbol{e} :

$$
\boldsymbol{e}=\boldsymbol{y}-\widehat{\boldsymbol{y}}
$$

\boldsymbol{e} represents the unexplained part of \mathbf{y}, what the regression cannot explain. They are usually called residuals.

Note that \mathbf{e} is uncorrelated (orthogonal) with $\mathbf{X} \quad \Rightarrow \varepsilon \perp \mathbf{X}$

$$
e=y-\mathbf{X b} \quad \Rightarrow \mathbf{X}^{\prime} e=\mathbf{X}^{\prime}(y-\mathbf{X b})=\mathbf{X}^{\prime} \boldsymbol{y}-\mathbf{X}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{y}=\mathbf{0}
$$

Using \mathbf{e}, we can define a measure of unexplained variation:

$$
\text { Residual Sum of Squares }(\text { RSS })=\boldsymbol{e}^{\prime} \boldsymbol{e}=\sum_{i} e_{i}^{2}
$$

OLS Estimation - Var[b|X]

We use the variance to measure precision of estimates. For OLS:

$$
\operatorname{Var}[\mathbf{b} \mid \mathbf{X}]=\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
$$

Example: One explanatory variable model.
(A1') DGP: $\boldsymbol{y}=\beta_{1}+\beta_{2} \boldsymbol{x}+\boldsymbol{\varepsilon}$
$\operatorname{Var}[\mathbf{b} \mid \mathbf{X}]=\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}=\sigma^{2}\left[\begin{array}{cc}\sum_{i} 1 & \sum_{i} 1 x_{i} \\ \sum_{i} 1 x_{i} & \sum_{i} x_{i}^{2}\end{array}\right]^{-1}=\sigma^{2}\left[\begin{array}{cc}T & T \bar{x} \\ T \bar{x} & \sum_{i} x_{i}^{2}\end{array}\right]^{-1}$

$$
=\sigma^{2} \frac{1}{T\left(\sum_{i} x_{i}^{2}-T \bar{x}^{2}\right)}\left[\begin{array}{cc}
\sum_{i} x_{i}^{2} & -T \bar{x} \\
-T \bar{x} & T
\end{array}\right]
$$

$\operatorname{Var}\left[\mathrm{b}_{1} \mid \mathbf{X}\right]=\sigma^{2} \frac{\sum_{i} x_{i}^{2}}{T\left(\sum_{i} x_{i}^{2}-T \bar{x}^{2}\right)}=\sigma^{2} \frac{\sum_{i} x_{i}^{2} / T}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}$
$\operatorname{Var}\left[\mathrm{b}_{2} \mid \mathbf{X}\right]=\sigma^{2} \frac{1}{\left(\sum_{i} x_{i}^{2}-T \bar{x}^{2}\right)}=\sigma^{2} \frac{1}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}$
$\operatorname{Covar}\left[\mathrm{b}_{1}, \mathrm{~b}_{2} \mid \mathbf{X}\right]=\sigma^{2} \frac{-\bar{x}}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}} . \quad$ ब

- In general, we do not know σ^{2}. It needs to be estimated. We estimate σ^{2} using the residual sum of squares (RSS):

$$
\mathrm{RSS}=\sum_{i} e_{i}{ }^{2}
$$

The natural estimator of σ^{2} is $\hat{\sigma}^{2}=\mathrm{RSS} / T$. Given the LLN, this is a consistent estimator of σ^{2}. However, this not unbiased.

- The unbiased estimator σ^{2} is s^{2}

$$
s^{2}=\operatorname{RSS} /(T-k)=\sum_{i} e_{i}^{2} /(T-k)=\boldsymbol{e}^{\prime} \boldsymbol{e} /(T-k)
$$

To get $\mathrm{E}\left[s^{2}\right]$, we use a property of a RV with a χ_{v}^{2} distribution:

$$
\mathrm{E}\left[\chi_{v}^{2}\right]=v
$$

Given that

$$
(T-k) s^{2} / \sigma^{2} \sim \chi_{T-k}^{2}
$$

Then,

$$
\begin{aligned}
& \mathrm{E}\left[(T-k) s^{2} / \sigma^{2} \mid \mathbf{X}\right]=(T-k) \\
& \mathrm{E}\left[\boldsymbol{e}^{\boldsymbol{\prime}} \boldsymbol{e} / \sigma^{2} \mid \mathbf{X}\right]=(T-k)
\end{aligned}
$$

$$
\mathrm{E}\left[\boldsymbol{e}^{\prime} \boldsymbol{e} /(T-k) \mid \mathbf{X}\right]=\mathrm{E}\left[s^{2} \mid \mathbf{X}\right]=\sigma^{2} \quad \Rightarrow \mathrm{E}\left[s^{2} \mid \mathbf{X}\right]=\sigma^{2}
$$

Note: $(T-k)$ is referred as a degrees of freedom correction.

- Then, the estimator of $\operatorname{Var}[\mathbf{b} \mid \mathbf{X}]=s^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \quad$ (a $k \mathrm{x} k$ matrix)

This estimator gives us the standard errors (SE) of the individual coefficients. For example, for the b_{k} coefficient:

$$
\mathrm{SE}\left[b_{k} \mid \mathbf{X}\right]=\operatorname{sqrt}\left[s^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right]_{k k}=s b, k
$$

OLS Estimation - Testing Only One Parameter

We are interested in testing a hypothesis about one parameter in our linear model: $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$

1. Set H_{0} and H_{1} (about only one parameter): $\quad \mathrm{H}_{0}: \beta_{k}=\beta_{k}^{0}$ $\mathrm{H}_{1}: \beta_{k} \neq \beta_{k}^{0}$.
2. Appropriate $\mathrm{T}(X)$: t-statistic. To derive the distribution of the test under H_{0}, we will rely on assumption (A5) $\boldsymbol{\varepsilon} \mid \mathbf{X} \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}_{\mathrm{T}}\right)$ (otherwise, results are only asymptotic).

Let $\quad b_{k}=$ OLS estimator of β_{k}

$$
\tilde{\operatorname{SE}}\left[\mathbf{b}_{k} \mid \mathbf{X}\right]=\operatorname{sqrt}\left\{\left[s^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right]_{k k}\right\}=s b, k
$$

From assumption (A5), we know that

$$
\begin{aligned}
\left(b_{k} \mid \mathbf{X} \sim \mathrm{N}\left(\beta_{k}, \mathrm{v}_{k}^{2}\right)\right. & \Rightarrow \text { Under } \mathrm{H}_{0}: \quad b_{k} \mid \mathbf{X} \sim \mathrm{N}\left(\beta_{k}^{0}, s_{b, k^{2}}\right) . \\
& \Rightarrow \text { Under } \mathrm{H}_{0}: \left.\quad t_{k}=\frac{b_{k}-\beta_{k}^{0}}{s_{b, k}} \right\rvert\, \mathbf{X} \sim t_{T-k} .
\end{aligned}
$$

- We measure distance in standard error units:

$$
t_{k}=\frac{b_{k}-\beta_{k}^{0}}{s_{b, k}}
$$

Note: t_{k} is an example of the Wald (normalized) distance measure. Most tests statistics in econometrics will use this measure.
3. Compute $t_{k}, \hat{\mathrm{t}}$, using b_{k}, β_{k}^{0}, s, and $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$. Get p-value $(\hat{\mathrm{t}})$.
$\begin{aligned} \text { 4. Rule: Set an } \alpha \text { level. If } p \text {-value }(\hat{\mathfrak{t}})<\alpha & \Rightarrow \text { Reject } H_{0}: \beta_{k}=\beta_{k}^{0} \\ \text { Alternatively, if }|\hat{\hat{t}}|>t_{T-1} & \Rightarrow \text { Reject } H_{0}: \beta_{k}=\beta^{0}\end{aligned}$

- Special case: $\quad H_{0}: \beta_{k}=0$
$\mathrm{H}_{1}: \beta_{k} \neq 0$.
Then,

$$
t_{k}=\frac{b_{k}}{\operatorname{sqrt}\left\{S^{2}\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-1}\right]_{k k}}=\frac{b_{k}}{\mathrm{SE}\left[b_{k}\right]} \quad \Rightarrow t_{k} \sim t_{T-k}
$$

This special case of t_{k} is called the t-value or t-ratio (also refer as the " t -stats"). That is, the t value is the ratio of the estimated coefficient and its SE.

- The t-value is routinely reported in all regression packages. In the $\operatorname{lm}()$ function, it is reported in the third column of numbers.
- Usually, $\alpha=5 \%$, then if $\left|t_{k}\right|>1.96 \approx 2$, we say the coefficient b_{k} is "significant."

OLS Estimation - Testing Only One Parameter: The CAPM

Recall that the CAPM states:

$$
\mathrm{E}\left[r_{i, t}-r_{f, t}\right]=\beta_{i} \mathrm{E}\left[\left(r_{M, t}-r_{f, t}\right)\right] .
$$

A linear data generating process (DGP) consistent the CAPM is:

$$
r_{i, t}-r_{f, t}=\alpha_{i}+\beta_{i}\left(r_{M, t}-r_{f, t}\right)+\varepsilon_{i, t}, \quad i=1, . ., N \& t=1, \ldots, T
$$

Then, using the time series of stock returns, we test the CAPM for asset i by testing:
H_{0} (CAPM holds): $\alpha_{i}=0$
H_{1} (CAPM rejected): $\alpha_{i} \neq 0$

Example: Testing the CAPM for IBM returns with time series.
For IBM, we test the CAPM by testing: $\quad \mathrm{H}_{0}$ (CAPM holds): $\alpha_{i=I B M}=0$
H_{1} (CAPM rejected): $\alpha_{i=I B M} \neq 0$
SFX_da <-
read.csv("https://www.bauer.uh.edu/rsusmel/4397/Stocks_FX_1973.csv",head=TRUE,sep=",")
x_ibm <- SFX_da\$IBM
\# Read IBM price data
x_Mkt_RF <- SFX_da\$Mkt_RF \# Read Market excess returns (in \%)
x_RF <-SFX_da\$RF
T<- length(x_ibm)
$1 \mathrm{r} _$ibm $<-\log \left(\mathrm{x} _i b m[-1] / \mathrm{x} _\right.$ibm[-T])
\# Sample size
\# Log returns for IBM (lost one observation)
Mkt_RF <- x_Mkt_RF[-1]/100 \# Adjust size (take one observation out)
$\mathrm{RF}<-\mathrm{x} _$RF[-1]/100
$i b m _x<-1 r_{-} i b m-R F \quad$ \# Define excess returns for IBM
fit_ibm_capm $<-\operatorname{lm}\left(\mathrm{ibm} _\mathrm{x} \sim\right.$ Mkt_RF) \quad \# OLS estimation with $l m$ package
> summary(fit_ibm_capm)
Coefficients:

| | Estimate | Std. Error | t value $\operatorname{Pr}(>\|t\|)$ | |
| :--- | ---: | :--- | :--- | :--- | :--- |
| (Intercept) | -0.005791 | 0.002487 | $\mathbf{- 2 . 3 2 9}$ | $0.0202 *$ |
| xMkt_RF | 0.895774 | 0.053867 | 16.629 | $<2 \mathrm{e}-166^{* *}$ |

- Q : Is the intercept ($\alpha_{\text {IBm }}$) equal to 0 ? We use the t -value:

$$
\begin{aligned}
t_{\alpha_{i}}= & \frac{\alpha_{i=I B M}}{\mathrm{SE}\left[\alpha_{i=I B M}\right]}=\frac{-0.005791}{0.002487}=-2.329 \quad \text { (the } \mathrm{t} \text {-value) } \\
& \Rightarrow\left|\hat{t}_{\alpha}=-2.329\right|>1.96 \quad \Rightarrow \text { Reject } \mathrm{H}_{0} \text { at } 5 \% \text { level }
\end{aligned}
$$

Conclusion: The CAPM is rejected for IBM at the 5% level.
Note: You can also reject H_{0} by looking at the p-value of intercept $(0.0202<.05)$

Interpretation: Given that the intercept is significant (\& negative), IBM underperformed relative to what the CAPM expected:

- IBM excess returns: mean $\left(\mathrm{ibm}_{-} \mathrm{x}\right)=\mathbf{- 0 . 0 0 0 7 3 1 4 1}$
- IBM excess returns $(C A P M)=0.895774 *$ mean(Mkt_RF)

$$
=0.895774 * 0.0056489=0.0050601
$$

- Ex-post difference: -0.00073141-0.0050601 $=-0.00579151\left(\approx \alpha_{\text {IBM }}\right)$. \mathbb{I}

Remark: Above we tested (\& rejected) the CAPM for one asset only, IBM. But, the CAPM should apply to all assets, that is, in the cross-section. Suppose we have N assets. Then, a test for the CAPM involves testing α_{i} 's:
$\mathrm{H}_{0}: \alpha_{1}=\alpha_{2}=\ldots=\alpha_{N}=0$
H_{0} : at least one $\alpha_{i} \neq 0$.
This test is a joint test. It requires a simultaneous estimation of the N CAPM equations. There are different ways to approach this simultaneous estimation, the popular approaches use a twostep estimation, for example, the popular Fama-MacBeth (1973) two-step estimation.

OLS Estimation - Testing Only One Parameter: The CAPM (Cross-Section)

The CAPM tells also a cross-section story for asset returns: Assets with higher β_{i} should get, on average, higher compensation.

CAPM (cross-section): $\quad \mathrm{E}\left[r_{i, t}-r_{f}\right]=\beta_{i} \lambda$
where λ, in equilibrium, is the market excess return (or factor return). It is sometimes referred as the price of risk.

If we have $\beta_{i}{ }^{\prime} s$ for N assets, we can estimate the security market line (SML), where we show the effect of β_{i} on $\mathrm{E}\left[r_{i, t}-r_{f}\right]$. Below we show the SML in red. All stocks on the SML are priced correctly, all above are underpriced securities, that is, the return is higher than what is expected for a given level of risk (β_{i}). Similarly, all stocks under the SML are overpriced. For example, above we determined that IBM has a $\beta_{i=I B M}=0.895774$, but its average excess return is negative, $\mathbf{- 0 . 0 0 0 7 3 1 4 1}$. Thus, IBM is under the SML line and, thus, IBM is overvalued.

The SML answers the question: Which stocks deserve higher returns? Assets with higher exposure to market risk -i.e., higher β_{i}.

A linear DGP consistent with the CAPM is:

$$
r_{i}-r_{f}=\alpha+\beta_{i} \lambda+\varepsilon_{i}, \quad i=1, . ., N
$$

Testing implication of the SML for the cross-section of stock returns:
H_{0} (CAPM holds in the CS): $\alpha=0$ and $\lambda=\mathrm{E}\left[r_{m, t}-r_{f}\right]$
H_{1} (CAPM rejected in the CS): $\alpha \neq 0$ and/or $\lambda \neq \mathrm{E}\left[r_{m, t}-r_{f}\right]$.
Again, we have a joint test. There are different ways to approach this simultaneous estimation, a common approach is use the Fama-MacBeth (1973) two-step estimation.

Fama-French $(1992,1993)$ adapted the Fama-MacBeth (1973) procedure, to produce a wellknow approach to test the relevance of the CAPM in explaining the cross-section of stock returns. The first step, or first pass, involves a time-series regression to estimate the betas for each asset (IBM, GE, MSFT, etc.), the second step, or second pass, regresses the average excess return of eah asset (IBM, GE, MSFT, etc.) on the estimated betas (OLS b's). That is:

(1) First Pass

Estimate β_{i} using the time series (T observations) for each asset $i=1, \ldots, N$.

$$
r_{i, t}-r_{f, t}=\alpha_{i}+\beta_{i}\left(r_{M, t}-r_{f, t}\right)+\varepsilon_{i, t}, \quad t=1, \ldots, T \quad \Rightarrow \text { Get } N \mathrm{~b}_{i} \text { ’s. }
$$

(2) Second Pass

Using the $N \mathrm{~b}_{i}$'s as regressors, estimate

$$
\left(\bar{r}_{i}-\bar{r}_{f}\right)=\alpha+\mathrm{b}_{i} \lambda+\varepsilon_{i}, \quad i=1, \ldots, N
$$

where $\left(\bar{r}_{i}-\bar{r}_{f}\right)$ is the average excess return of asset i in our sample.
The usual execution of almost all 2-step procedures involves:

1) Since returns are estimated with a lot of noise, portfolios are used, not individual securities.
2) The estimation takes into account the possible change over time of beta coefficients, by estimating the coefficients every 5 or 10 years.

- This 2-step framework can be extended to include more factors in both steps, for example, Fama-French (1993) introduce their well-known 3-factor model to test if beta is a significant driver of expected excess returns in the cross-section.

Example: We test the CAPM, in the cross-section, using the 2-step Fama-French approach. We use returns of 25 Fama-French portfolios (sorted by Size (ME) and Book-to-Market), downloaded, along the 3-Fama-French factors, from Ken French's website:
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html\#Research.
Note: the files are zip files. I unzipped them and put them on my website.
FF_p_da <- read.csv("https://www.bauer.uh.edu/rsusmel/4397/FF_25_portfolios.csv", head=TRUE, sep=",")
FF_f_da <- read.csv("https://www.bauer.uh.edu/rsusmel/4397/FF_3_factors.csv", head=TRUE, sep=",")

```
# Extract variables from imported data
Mkt_RF_fm <- FF_f_da$Mkt_RF # extract Market excess returns (in %)
HML_fm}<-\mathrm{ FF_f_da$HML # extract HML returns (in %)
SMB_fm<- FF_f_da$SMB # extract HML returns (in %)
RF_fm}<-\mp@subsup{F}{F}{\prime}f_da$RF # extract Risk-free rate (in %
Y_p<- FF_p_da[,2:26] - RF_fm # Compute excess returns of 25 portfolios
T<- length(HML_fm) # Number of observations (1926:July on)
x0<- matrix (1,T,1) # Vector of ones, represents constant in X
x<- cbind(x0, Mkt_RF_fm) # Matrix X (Tx2)
k<-ncol(Y_p)
## First Pass
Allbs = NULL # Initialize empty (a space to put betas)
for (i in seq(1,k,1)){
    y <- Y_p[,i] # select Y (portfolio)
    b <- solve(t(x)%*% x)%*% t(x)%*%%y # OLS regression = (X'X)^(-1) X'y
    Allbs =cbind(Allbs,b) # accumulate b as rows
}
```

beta_ret <- cbind(colMeans(Y_p),t(Allbs)) \# Mean portfolio returns along alpha \& beta
estimates
cor(beta_ret[,1], beta_ret[,3]) \# Correlation of mean portfolio return \& beta
$>$ cor(beta_ret[,1], beta_ret[,3])
[1] 0.3326008
plot(beta_ret[,1], beta_ret[,3], main="Scatterplot: Portfolio Returns \& CAPM Beta",
xlab="Mean Portfolio Returns ", ylab="Market Beta", pch=19)


```
## Second Pass (CAPM)
fit_fm_capm_25 <- lm(beta_ret[,1] ~ beta_ret[,3])
> summary(fit_fm_capm_25)
```

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
$\begin{array}{lllll}\text { (Intercept) } & 0.3728 & 0.3113 & 1.198 & 0.243\end{array}$
beta_ret[, 3] $0.4289 \quad 0.2536 \quad 1.691 \quad 0.104 \quad \Rightarrow$ Not significant: Beta plays no role!
Residual standard error: 0.2 on 23 degrees of freedom
Multiple R-squared: 0.1106, Adjusted R-squared: 0.07195
F-statistic: 2.861 on 1 and 23 DF, p-value: 0.1043
Conclusion: The CAPM's beta is not significant. That is, in the cross-section, Beta plays no role in determining expected returns for assets. I

Fama and French (1992, 1993) estimate variations of the DGP with more factors. They find that β is weakly significant or not significant ("Beta is dead") in explaining the C-S of stock returns. They even report the wrong sign for beta in the second pass.

But, other researchers dispute the "Beta is dead" finding, criticizing the selection of estimation period, construction of portfolios, number of factors, statistical problems like measurement error and incorrect SE, etc.

The debate about β \& what (\& how many) factors to include in the DGP continues.

OLS Estimation - Testing Only One Parameter: The 3-Factor F-F Model

As mentioned above, the CAPM is routinely rejected. A popular alternative model is the empirically derived 3-factor Fama-French (1993) model, which adds two rsik factors, related to firm characteristics, to the market factor:
a) Size factor, measured as returns of a small size portfolio minus returns of a big size portfolio, or SMB (= long Small \& short Big).
b) Value factor or book-to-market factor, measured as returns of a high B / M portfolio minus returns of a low B/M portfolio, or HML (= long High \& short Low.)

The three factors are, in theory, "factor mimicking portfolios," that is, portfolios with unit exposure to the risk factor in question (market, size, or value), and no exposure to any other risk factor. Any significant factor is considered a "CAPM anomaly."

Then, a linear DGP generating this model is:

$$
r_{i, t}-r_{f}=\alpha_{i}+\beta_{1}\left(r_{m, t}-r_{f}\right)+\beta_{2} \mathbf{S M B}_{t}+\beta_{3} \mathbf{H M L}_{t}+\varepsilon_{i, t} .
$$

That is, according to this model, excess returns are driven by their sensitivity to the market, to size, and to value stocks, as measured by the book-to-market ratio. The estimated parameters in the time-series regressions are called "factor loadings," they measure the sensitivity of asset i to changes in the factor.

- Interpretation of coefficients:
- β_{1} has the same as the interpretation in the CAPM, it measures the relation between asset i risk and market risk.
- β_{2} measures how tilted asset i is towards small stock (in general, $\beta_{2}>0$ means that returns of asset i behaves like small stocks.
- β_{3} measures how tilted asset i is towards value stock (in general, $\beta_{3}>0$ means that returns of asset i behave like high book-to-market stocks).

Like the CAPM, the 3-factor Fama-French model produces expected excess returns:

$$
\mathrm{E}\left[r_{i, t}-r_{f, t}\right]=\beta_{1} \mathrm{E}\left[r_{m, t}-r_{f}\right]+\beta_{2} \mathrm{E}\left[S M B_{t}\right]+\beta_{3} \mathrm{E}\left[S M B_{t}\right]
$$

A significant constant would be evidence against this model: something is missing in the model.

- Questions:
- How where these factors determined to be drivers of stock returns?

By looking at data characteristics, not theory. Data mining issues are likely present.

- Are these 3 factors the definitive number of factor?

No. There have been over 200 factors proposed, counting interactions among factors, the potential number can be, easily, in the thousands. Many of these factors are likely a product of data mining, which is a problem for correct statistical inference and, more important, for out-ofsample forecasting. Feng, Giglio and Xiu (2020), who propose a methodology to select factors that explain the cross-section of expected return, call their paper "Taming the Factor Zoo."

- In 2014, Fama and French added two additional factors to their 3-factor model: RMW \& CMA. - RMW measures the return of the portfolio of most profitable firms ("robust") minus the returns of portfolio least profitable ("weak").
- CMA measures the return of a portfolio of firms that invest conservatively minus the returns portfolio of firms that invest aggressively.

Again, the 5-factor FF model produces expected excess returns:

$$
\mathrm{E}\left[r_{i, t}-r_{f}\right]=\beta_{1} \mathrm{E}\left[r_{m, t}-r_{f}\right]+\beta_{2} \mathrm{E}\left[S M B_{t}\right]+\beta_{3} \mathrm{E}\left[S M B_{t}\right]+\beta_{4} \mathrm{E}\left[R M W_{t}\right]+\beta_{5} \mathrm{E}\left[C M A_{t}\right]
$$

There is debate regarding the validity or usefulness of this extension, especially, outside the U.S. market.

- The portfolios SMB, HML, RMW and CMA are formed as follows:

Step 1. At the end of June of every year t, sort the stock returns by attribute (size of B / M).
Step 2. Split the sorted assets by attribute into 3 equal-weighted/value-weighted portfolio (3 tercile portfolios). The split can be thinner, say using 5 quintile portfolios, or based on more complicated sorts, for example, using 6 portfolios constructed by the intersection of 2 size portfolios and 3 value portfolios.

Step 3. At the end of each month (week or day), from July of year t to June of year $t+1$, based on the portfolios constructed at end of June in Step 1, compute the returns of each of the split portfolios.

Step 4. Form a "hedge portfolio", go long the top tercile and short the bottom tercile.
Note: The portfolios for July of year t to June of $t+1$ include all NYSE, AMEX, and NASDAQ stocks for which there is data for June of t.

Example: Testing individual parameters in the 3-factor Fama-French model for IBM. Using the time-series, we test if the factors in the 3-factor Fama-French model for IBM are, individually, significant.

SFX_da <-
read.csv("https://www.bauer.uh.edu/rsusmel/4397/Stocks_FX_1973.csv",head=TRUE,sep=",")
x_ibm <- SFX_da\$IBM \# Read IBM price data (Mkt_RF Factor)
x_Mkt_RF <- SFX_da\$Mkt_RF \# Read Factor data -Mkt_RF Factor (in \%)
x_SMB $<-$ SFX_d $\overline{\$} S M B$
x_HML <- SFX_da\$HML
x_RF <-SFX_da\$RF
T<- length(x_ibm) \# Sample size
lr_ibm <- $\log \left(x _i b m[-1] / x_{_}\right.$ibm[-T]) \# Log returns for IBM (lost one observation)
Mkt_RF <- x_Mkt_RF[-1]/100 \# Adjust size (take one observation out)
SMB $<-x_{-}$SMB $[-1] / 100$
HML <- x_HML[-1]/100
$\mathrm{RF}<-\mathrm{x}$ _RF[-1]/100
$\mathrm{y}<-\mathrm{ibm} \mathrm{x} \quad$ \# Define y (IBM excess returns)
$\mathrm{x} 1<-$ Mkt_RF \# Regressor 1 (Mkt_RF)
$\mathrm{x} 2<-$ SMB \# Regressor 2 (SMB)
x 3 <- HML \# Regressor 3 (HML)
fit_ibm_ff3 <- lm(ibm_x \sim Mkt_RF + SMB + HML $)$
$>$ summary(fit_ibm_ff3) \# print lm results
Call:
$\operatorname{lm}\left(\right.$ formula $=\mathrm{ibm} __{-} \sim$ Mkt_RF $\left.+\mathrm{SMB}+\mathrm{HML}\right)$
Residuals:

Coefficients:

	Estimate	Std. Error	t value $\operatorname{Pr}(>\|\mathrm{t}\|)$	
(Intercept)	$\mathbf{- 0 . 0 0 5 0 8 9}$	0.002488	$\mathbf{- 2 . 0 4 6}$	0.0412^{*}
Mkt_RF	$\mathbf{0 . 9 0 8 2 9 9}$	$\mathbf{0 . 0 5 6 7 2 2}$	$\mathbf{1 6 . 0 1 3}$	$<2 \mathrm{e}-16^{* * *}$
SMB	$\mathbf{- 0 . 2 1 2 4 6 0}$	0.084112	$\mathbf{- 2 . 5 2 6}$	0.0118^{*}
HML	-0.171500	0.084682	$\mathbf{- 2 . 0 2 5}$	0.0433^{*}

Signif. codes: $0{ }^{\prime * * * '} 0.001^{\prime * * '} 0.01^{\prime *} 0.05^{\prime} .{ }^{\prime} 0.1^{\prime}{ }^{\prime} 1$
Residual standard error: 0.05848 on 565 degrees of freedom
Multiple R-squared: 0.3389, Adjusted R-squared: 0.3354
F-statistic: 96.55 on 3 and 565 DF, p-value: $<2.2 \mathrm{e}-16$
Conclusion: Consistent with the 3-factor Fama-French model, Mkt_RF, SMB and HML are drivers of the expected returns for IBM. The signs of $\beta_{2} \& \beta_{3}$ indicate that IBM behaves like a large \& low B/M firm.

Note: The constant is significant, that is, there is an "extra" component of expected returns not explained by the $3 \mathrm{~F}-\mathrm{F}$ factors.

- Now, to gauge the behavior of the 3-factor model, we plot fitted IBM values and compare with actual IBM values.

```
plot(y, type = "l", col = "blue", # Plot IBM returns
main = "IBM Returns: Actual Returns and Fitted Values", ylab = "Returns", xlab = "Time")
lines(y_hat, type = "l", col = "red") # Add fitted values to plot
legend("topleft", # Add legend to plot
    legend = c("Actual", "Fitted"), col = c("blue", "red"), lty = 1)
```


We observe some periods with good fit -mainly early and late periods- and some periods with poor fit -mainly the middle period. I

Example: Testing IBM's β in the 3-Factor Fama-French Model.
In the context of the 3-factor Fama-French model, we test if IBM's risk has a one-to-one relation with the market risk. That is, we test if the market beta $\left(\beta_{l}\right)$ is equal to 1 . Formally, we test:
$\mathrm{H}_{0}: \beta_{1}=1$
$\mathrm{H}_{1}: \beta_{1} \neq 1$
Using the previous estimation, we have:

$$
\begin{aligned}
\Rightarrow t_{k}= & \left(b_{k}-\beta_{k}^{0}\right) / \operatorname{Est} . \operatorname{SE}\left(b_{k}\right) \\
& \hat{t}_{1}=(0.9082989-1) / 0.05672206=-1.616674 \\
\Rightarrow & \left|\hat{t}_{1}=-1.616674\right|<1.96 \quad \Rightarrow \text { Cannot reject } H_{0} \text { at } 5 \% \text { level. }
\end{aligned}
$$

Conclusion: IBM bears the same market risk as the market.
R Note: You should get the same numbers using R's $l m$ and extracting information from lm :
b_ibm <- fit_ibm_ff3\$coefficients
SE_ibm <- sqrt(vcov(fit_ibm_ff3))
t_betal <- (b_ibm[2] - 1)/SE_ibm[2]
$>$ t_betal
[1] -1.616674
p_val <- 1- pnorm(abs(t_beta1)) \# pvalue for t_beta1 (one-sided)
>p_val * 2
[1] 0.1059487. ब
\# Extract from lm function OLS coefficients
\# SE from fit_ibm (also a $k x 1$ vector)
$\# \mathrm{t}$-stat for $\mathrm{H}_{0}: \beta_{1}=1$.
\# two-sided test (multiply one-side p-value by 2)

OLS Estimation - Linear Algebra Interpretation

- Disturbances and Residuals

In the population: $\quad \mathrm{E}\left[\mathbf{X}^{\prime} \varepsilon\right]=0$.

In the sample: $\quad \mathbf{X}^{\prime} \mathbf{e}=\mathbf{X}^{\prime}(\mathbf{y}-\mathbf{X b})=\mathbf{X}^{\prime} \mathbf{y}-\mathbf{X}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}$

$$
=1 / \mathrm{T}\left(\mathbf{X}^{\prime} \mathbf{e}\right)=0 .
$$

- We have two ways to look at \mathbf{y} :

$$
\begin{aligned}
& \mathbf{y}=\mathrm{E}[\mathbf{y} \mid \mathrm{X}]+\varepsilon=\text { Conditional mean }+ \text { disturbance } \\
& \mathbf{y}=\mathbf{X b}+\mathrm{e}=\text { Projection }+ \text { residual }
\end{aligned}
$$

OLS Estimation - Important Matrices: M

Important Matrices
(1) "Residual maker"

$$
\begin{aligned}
& \mathbf{M}=\mathbf{I}_{\mathrm{T}}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \\
& \mathbf{M} \boldsymbol{y}=\boldsymbol{y}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{y}=\boldsymbol{y}-\mathbf{X b}=\mathbf{e} \quad \text { (rx } T \text { matrix) } \\
& \mathbf{M X}=\left(\mathbf{I}_{\mathrm{T}}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\right) \mathbf{X}=\mathbf{0}
\end{aligned}
$$

- \mathbf{M} is symmetric $\quad-\mathbf{M}=\mathbf{M}^{\prime}$
- \mathbf{M} is idempotent
$-\mathbf{M}^{*} \mathbf{M}=\mathbf{M}$
- \mathbf{M} is singular
$-\mathbf{M}^{-1}$ does not exist. $\quad \Rightarrow \operatorname{rank}(\mathbf{M})=T-k$
- Special case: $\mathbf{X}=\mathbf{i}$

$$
\begin{array}{ll}
\mathbf{M}^{0}=\mathbf{I}-\mathbf{i}\left(\mathbf{i}^{\prime} \mathbf{i}^{-1} \mathbf{i}^{\prime}=\mathbf{I}-\mathbf{i} \mathbf{i}^{\prime} / T\right. & \text { - since } \mathbf{i}^{\prime} \boldsymbol{i}=T \\
\mathbf{M}^{0} \boldsymbol{y}=\boldsymbol{y}-\mathbf{i}\left(\mathbf{i}^{\prime} \mathbf{i}^{-1} \mathbf{i}^{\prime} \boldsymbol{y}=\boldsymbol{y}-\mathbf{i} \overline{\boldsymbol{y}}\right. & - \text { since } \mathbf{i}^{\prime} \boldsymbol{y} / T=\bar{y} \\
\mathbf{M}^{0} \boldsymbol{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{T}
\end{array}\right]-\left[\begin{array}{l}
1 \\
1 \\
\vdots \\
1
\end{array}\right] \bar{y}=\left[\begin{array}{c}
y_{1}-\bar{y} \\
y_{2}-\bar{y} \\
\vdots \\
y_{T}-\bar{y}
\end{array}\right]
\end{array}
$$

Interpretation of M^{0} : De-meaning matrix.
(2) "Projection matrix"

$$
\begin{aligned}
& \stackrel{\mathbf{P}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}}{ } \quad(T \mathrm{x} T \text { matrix) } \\
& \mathbf{P y}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}=\mathbf{X b}=\hat{\mathbf{y}} \quad \\
& \mathbf{P y}=\text { Projection of } \mathbf{y} \text { into the column space } \\
& \mathbf{P X}=(\mathbf{(d i t t e d} \text { values) } \\
& \left.\mathbf{P X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\right) \mathbf{X}=\mathbf{X} \\
& \mathbf{P X}=\operatorname{Projection} \text { of } \mathbf{X} \text { into } \mathbf{X}=\mathbf{X} . \\
& \mathbf{P M}=\mathbf{M P}=\mathbf{0}
\end{aligned}
$$

$\underline{\text { Note: }} \mathbf{M}=\mathbf{I}_{\mathrm{T}}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}=\mathbf{I}_{\mathrm{T}}-\mathbf{P}$

- \mathbf{P} is symmetric
- \mathbf{P} is idempotent
- \mathbf{P} is singular
$-\mathbf{P}=\mathbf{P}^{\prime}$
$-\mathbf{P}^{*} \mathbf{P}=\mathbf{P}$
$-\mathbf{P}^{-1}$ does not exist. $\quad \Rightarrow \operatorname{rank}(\mathbf{P})=k$

Results when X Contains a Constant Term

Let the first column of \mathbf{X} be a column of ones. That is

$$
\mathbf{X}=\left[\mathbf{i}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathrm{K}}\right]
$$

- Recall $\mathbf{i}^{\prime} \mathbf{z}=\sum_{i}^{T} z_{i}$, where \mathbf{z} and $\mathbf{i ́}$ are $T \mathrm{x} 1$.

Then,
(1) Residuals sum to zero.

Since $\mathbf{X}^{\prime} \boldsymbol{e}=\mathbf{0}$

$$
=\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
x_{21} & x_{22} & \cdots & x_{2 T} \\
\vdots & \vdots & \ddots & \vdots \\
x_{k 1} & x_{k 2} & \cdots & x_{k T}
\end{array}\right] *\left[\begin{array}{c}
e_{1} \\
e_{2} \\
\vdots \\
e_{T}
\end{array}\right]=0 \quad \Rightarrow \sum_{i}^{T} e_{i}=0
$$

$\Rightarrow \mathbf{x}_{1}{ }^{\prime} \boldsymbol{e}=\sum_{i}^{T} e_{i}=0$-the residuals sum to zero.
(2) Regression line passes through the means

Recall we can write $\boldsymbol{y}=$ fitted value + residual

$$
\boldsymbol{y}=\mathbf{X b}+\boldsymbol{e}
$$

Pre-multiply by $\mathbf{i}^{\prime}: \quad \mathbf{i}^{\prime} \boldsymbol{y}=\mathbf{i}^{\prime} \mathbf{X b}+\mathbf{i}^{\prime} \boldsymbol{e}$

$$
\begin{aligned}
& \Rightarrow \sum_{i}^{T} y_{i}=\sum_{i}^{T}\left\{b_{1} 1+b_{2} x_{2 i}+\ldots+b_{\mathrm{k}} x_{k i}\right\}+\sum_{i}^{T} e_{i} \\
& \Rightarrow \sum_{i}^{T} y_{i}=b_{1} \sum_{i}^{T} 1+b_{2} \sum_{i}^{T} x_{2 i}+\ldots+b_{\mathrm{k}} \sum_{i}^{T} x_{k i} \\
& \Rightarrow \sum_{i}^{T} y_{i}=b_{1} T+b_{2} \sum_{i}^{T} x_{2 i}+\ldots+b_{\mathrm{k}} \sum_{i}^{T} x_{k i}
\end{aligned}
$$

Dividing both sides by T :

$$
\begin{aligned}
& \sum_{i}^{T} y_{i} / T=b_{1}+b_{2} \sum_{i}^{T} x_{2 i} / T+\ldots+b_{\mathrm{k}} \sum_{i}^{T} x_{k i} / T \\
& \bar{y} \\
&=b_{1}+b_{2} \bar{x}_{2}+\ldots+b_{\mathrm{k}} \bar{x}_{k} \\
& \quad \Rightarrow \bar{y}=\bar{x}^{\prime} \mathbf{b}
\end{aligned}
$$

That is, the regression line passes through the means.
Note: These results are only true if \mathbf{X} contains a constant term!

Goodness of Fit of the Regression

After estimating the model (A1), we would like to judge the adequacy of the model. There are two ways to do this:

- Visual: Plots of fitted values and residuals, histograms of residuals.
- Numerical measures: R2, adjusted R^{2}, AIC, BIC, etc.

Numerical measures. In general, they are simple and easy to compute. We call them goodness-of-fit measures. Most popular: R^{2}.

Definition: Variation
In the context of a model, we consider the variation of a variable as the movement of the variable, usually associated with movement of another variable.
Total variation $=$ Total sum of squares $($ TSS $)=\sum_{i}\left(y_{i}-\bar{y}\right)^{2}$
We want to decompose TSS in two parts: one explained by the regression and one unexplained by the regression.

$$
\begin{aligned}
\mathrm{TSS} & =\sum_{i}\left(y_{i}-\bar{y}\right)^{2}=\sum_{i}\left(y_{i}-\hat{y}_{i}+\hat{y}_{i}-\bar{y}\right)^{2} \\
& =\sum_{i}\left(y_{i}-\hat{y}_{i}\right)^{2}+\sum_{i}\left(\hat{y}_{i}-\bar{y}\right)^{2}+2 \sum_{i}\left(y_{i}-\hat{y}_{i}\right)\left(\hat{y}_{i}-\bar{y}\right) \\
& =\sum_{i} e_{i}{ }^{2}+\sum_{i}\left(\hat{y}_{i}-\bar{y}\right)^{2}
\end{aligned}
$$

Since

$$
\sum_{i}\left(y_{i}-\hat{y}_{i}\right)\left(\hat{y}_{i}-\bar{y}\right)=\sum_{i} e_{i}\left(\hat{y}_{i}-\bar{y}\right)=0
$$

Or \quad TSS $=$ RSS + SSR

RSS: Residual Sum of Squares (also called SSE: SS of errors)
SSR: Regression Sum of Squares (also called ESS: explained SS)

Goodness of Fit of the Regression - Linear Algebra

Recall that we can use the de-meaning matrix $\mathbf{M}^{\mathbf{0}}$ to write

$$
\mathbf{y}-\mathbf{i} \bar{y}=\mathbf{M}^{0} \mathbf{y}(T \mathrm{x} 1 \text { vector }) \quad \text { where } \mathbf{M}^{\mathbf{0}}=\mathbf{I}-\mathbf{i}^{\prime}\left(\mathbf{i}^{\prime} \mathbf{i} \mathbf{i}^{-1} \mathbf{i}^{\prime}\right.
$$

Using linear algebra we also get the decomposition of TSS. Now,

$$
\mathrm{TSS}=\sum_{i}\left(y_{i}-\bar{y}\right)^{2}=\mathbf{y}^{\prime} \mathbf{M}^{\mathbf{0} \boldsymbol{\prime}} \mathbf{M}^{0} \mathbf{y}=\mathbf{y}^{\prime} \mathbf{M}^{0} \mathbf{M}^{\mathbf{0}} \mathbf{y}=\mathbf{y}^{\prime} \mathbf{M}^{0} \mathbf{y} .
$$

We want to decompose the total variation of \mathbf{y} (assume $\mathbf{X}_{\mathbf{1}}=\mathbf{i}$-a constant.)

$$
\mathbf{y}=\mathbf{X b}+\mathbf{e},
$$

then,

$$
\begin{array}{ll}
\mathbf{M}^{0} \mathbf{y}=\mathbf{M}^{0} \mathbf{X} \mathbf{b}+\mathbf{M}^{0} \mathbf{e}=\mathbf{M}^{0} \mathbf{X} \mathbf{b}+\mathbf{e} & \text { (deviations from means) } \\
\boldsymbol{y}^{\prime} \mathbf{M}^{0} \boldsymbol{y}=\mathbf{b}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{M}^{0}\right)\left(\mathbf{M}^{0} \mathbf{X}\right) \mathbf{b}+\mathbf{e}^{\prime} \mathbf{e} & \text { (sum of squared deviations from means) }
\end{array}
$$

$$
\begin{array}{rlr}
& =\mathbf{b}^{\prime} \mathbf{X}^{\prime} \mathbf{M}^{0} \mathbf{X} \mathbf{b}+\mathbf{e}^{\prime} \mathbf{e} . & \left(\mathbf{M}^{0} \text { is idempotent } \& \mathbf{e}^{\prime} \mathbf{M}^{0} \mathbf{X}=\mathbf{0}\right) \\
\mathbf{T S S} & =\text { SSR }+ \text { RSS } &
\end{array}
$$

A Goodness of Fit Measure: R-squared

We want to have a measure that describes the fit of a regression. Simplest measure: the standard error of the regression (SER)

$$
\mathrm{SER}=\sqrt{\frac{\mathrm{RSS}}{\mathrm{~T}-k}} \quad \Rightarrow \text { SER depends on units. Not good! }
$$

- R-squared (R^{2})

$$
\begin{aligned}
1 & =\text { SSR } / \mathbf{T S S}+\mathrm{RSS} / \mathbf{T S S} \\
\mathrm{R}^{2} & =\mathrm{SSR} / \mathbf{T S S}=\mathrm{Regression} \mathrm{variation/Total} \mathrm{variation} \\
\mathrm{R}^{2} & =\mathbf{b}^{\prime} \mathbf{X}^{\prime} \mathbf{M}^{0} \mathbf{X b} / \mathbf{y}^{\prime} \mathbf{M}^{0} \mathbf{y}=1-\mathbf{e}^{\prime} \mathbf{e} / \boldsymbol{y}^{\prime} \mathbf{M}^{0} \boldsymbol{y} \\
& =(\hat{\mathbf{y}}-\mathbf{i} \bar{y})^{\prime}(\hat{\mathbf{y}}-\mathbf{i} \bar{y}) /(\boldsymbol{y}-\mathbf{i} \overline{\boldsymbol{y}})^{\prime}(\boldsymbol{y}-\mathbf{i} \overline{\boldsymbol{y}})=\left[\hat{\mathbf{y}}^{\prime} \hat{\mathbf{y}}-T \bar{y}^{2}\right] /\left[\boldsymbol{y}^{\prime} \boldsymbol{y}-T \bar{y}^{2}\right]
\end{aligned}
$$

As introduced here, R^{2} lies between 0 and 1 (\& it is independent of units of measurement!). It measures how much of total variation (TSS) is explained by regression (SSR): the higher R^{2}, the better.

Note: R^{2} is bounded by zero and one only if:
(a) There is a constant term in \mathbf{X}-we need $\mathbf{e}^{\boldsymbol{\prime}} \mathbf{M}^{\mathbf{0}} \mathbf{X}=\mathbf{0}$!
(b) The line is computed by linear least squares.

- Main problem with R^{2} : Adding regressors

Given the above interpretation of R^{2}, it seems an appropriate criteria to select a model: If we have several models, the model with the higher R^{2} should be selected. However, R^{2} favors the addition of "irrelevant" explanatory variables.

It can be shown that R^{2} never falls when regressors (say \mathbf{z}) are added to the regression. This occurs because RSS decreases with more information.

Problem: Judging a model based on R^{2} tends to over-fitting-i.e., in our linear model, including too many explanatory variables.

- Comparing Regressions

When R^{2} is used as a criteria for model selection, make sure the denominator in R^{2} is the same i.e., same left hand side variable. For example, R^{2} will not be an appropriate criteria to select between a linear vs. loglinear specifications of the dependent variable, y_{i}. Loglinear will almost always appear to fit better because taking logs reduces variation.

- Linear Transformation of data does not change R^{2}.
- Based on $\mathbf{X , b}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{y}$.

Suppose we work with $\mathbf{X}^{*}=c \mathbf{X}$, instead $\quad(c$ is a constant).

$$
\begin{aligned}
\mathbf{P}^{*} \boldsymbol{y} & =\mathbf{X}^{*} \mathbf{b}^{*}=c \mathbf{X}\left(c \mathbf{X}^{\prime} c \mathbf{X}\right)^{-1} c \mathbf{X}^{\prime} \boldsymbol{y} \\
& =c \mathbf{X}\left(c^{2} \mathbf{X}^{\prime} \mathbf{X}\right)^{-1} c \mathbf{X}^{\prime} \boldsymbol{y} \\
& =\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{y}=\mathbf{P} \boldsymbol{y}
\end{aligned}
$$

\Rightarrow same fit, same residuals, same R^{2} !

Adjusted R-squared

To avoid over-fitting, R^{2} is modified with a penalty for number of parameters: Adjusted- R^{2}

$$
\begin{aligned}
& \bar{R}^{2}=1-\frac{(T-1)}{(T-k)}\left(1-\mathrm{R}^{2}\right)=1-\frac{(T-1)}{(T-k)} \frac{\mathrm{RSS}}{\mathrm{TSS}}=1-\frac{s^{2}}{\mathrm{TSS} /(T-1)} \\
& \Rightarrow \text { maximizing } \bar{R}^{2}<=>\text { minimizing }[\operatorname{RSS} /(T-k)]=s^{2}
\end{aligned}
$$

- Degrees of freedom -i.e., ($T-k$)- adjustment assumes something about "unbiasedness."
\bar{R}^{2} includes a penalty for variables that do not add much fit. Can fall when a variable is added to the equation.

Technical note: \bar{R}^{2} will rise when a variable, say \mathbf{z}, is added to the regression if and only if the $\mathrm{t}-$ ratio on \mathbf{z} is larger than one in absolute value.

Theil (1957) shows that, under certain assumptions (an important one: the true model is being considered), if we consider two linear models:
$\begin{array}{ll}\mathrm{M}_{1}: & \boldsymbol{y}=\mathbf{X}_{1} \boldsymbol{\beta}_{1}+\boldsymbol{\varepsilon}_{1} \\ \mathrm{M}_{2}: & \boldsymbol{y}=\mathbf{X}_{2} \boldsymbol{\beta}_{2}+\boldsymbol{\varepsilon}_{2}\end{array}$
$\mathrm{M}_{2}: \quad \boldsymbol{y}=\mathbf{X}_{2} \boldsymbol{\beta}_{2}+\boldsymbol{\varepsilon}_{2}$
and choose the model with smaller s^{2} (or, larger Adjusted R^{2}), we will select the true model, M_{1}, on average.

In this sense, we say that "maximizing Adjusted $\mathrm{R}^{2 "}$ " is an unbiased model-selection criterion.

Other Goodness of Fit Measures

There are other goodness-of-fit measures that also incorporate penalties for number of parameters (degrees of freedom). We minimize these measures.

Information Criteria

- Amemiya: $\left[\mathbf{e}^{\prime} \mathbf{e} /(T-k)\right] *(1+k / T)=s^{2} *(1+k / T)$
- Akaike Information Criterion (AIC)

AIC $=-2 / T(\ln L-k) \quad L:$ Likelihood
\Rightarrow if normality $\mathrm{AIC}=\ln \left(\mathbf{e}^{\prime} \mathbf{e} / T\right)+(2 / T) k \quad(+$ constants $)$

- Bayes-Schwarz Information Criterion (BIC)
$\mathrm{BIC}=-(2 / T \ln L-[\ln (T) / T] k)$
\Rightarrow if normality $\mathrm{AIC}=\ln \left(\mathbf{e}^{\prime} \mathbf{e} / T\right)+[\ln (T) / T] k \quad$ (+constants)

Example: 3 Factor F-F Model (continuation) for IBM returns:

$\mathrm{b}<-\operatorname{solve}(\mathrm{t}(\mathrm{x}) \% * \% \mathrm{x}) \% * \% \mathrm{t}(\mathrm{x}) \% * \% \mathrm{y}$	\# $\mathbf{b}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}$ (OLS regression)
$\mathrm{e}<-\mathrm{y}-\mathrm{x} \% * \% \mathrm{~b}$	\# regression residuals, e
$\mathrm{k}<-\operatorname{ncol}(\mathrm{x})$	\# Number of parameters estimated
$\mathrm{RSS}<-\operatorname{as.numeric}(\mathrm{t}(\mathrm{e}) \% * \% \mathrm{e})$	\# RSS
$\mathrm{R} 2<-1-\operatorname{as.numeric(RSS}) /$ as.numeric $(\mathrm{t}(\mathrm{y}) \% * \% \mathrm{y})$	\# R-squared
Adj_R2 $<-1-(\mathrm{T}-1) /(\mathrm{T}-\mathrm{k})^{*}(1-\mathrm{R} 2)$	\# Adjusted R-squared
$\mathrm{AIC}<-\log (\mathrm{RSS} / \mathrm{T})+2 * \mathrm{k} / \mathrm{T}$	\# AIC under N(.,.) -i.e., under (A5)

$>$ R2
[1] $0.338985 \Rightarrow$ The 3 factors explain 34% of the variability of IBM returns.
> Adj_R2
[1] 0.3354752
$>$ AIC
[1] -5.671036.
\underline{R} Note: We can extract R^{2} and Adjusted R^{2} from the 1 m function:
r2_fit_ff3r $<-$ summary(fit_ibm_ff3)\$r.squared
adjr2_fit_ff3r $<-\operatorname{summary}\left(f i t _i b m _f f 3\right) \$ a d j . r . s q u a r e d ~ \|$

Maximum Likelihood Estimation

Idea: Assume a particular distribution with unknown parameters. Maximum likelihood (ML) estimation chooses the set of parameters that maximize the likelihood of drawing a particular sample.

Consider a sample $\left(X_{1}, \ldots, X_{N}\right)$ which is drawn from a pdf $f(\boldsymbol{X} \mid \theta)$ where θ are parameters. If the X_{i} 's are independent with $\operatorname{pdf} f\left(X_{\mathrm{i}} \mid \theta\right)$ the joint probability for the whole sample is just:

$$
\begin{gathered}
L(\boldsymbol{X} \mid \theta)=f\left(X_{1}, X_{2}, \ldots, X_{N} \mid \theta\right)=f\left(X_{1} \mid \theta\right) * f\left(X_{2} \mid \theta\right) * \ldots * f\left(X_{N} \mid \theta\right) \\
=\prod_{i=1}^{N} f\left(X_{i} \mid \theta\right)
\end{gathered}
$$

The function $L(\mathrm{X} \mid \theta)$-also written as $\mathrm{L}(\mathrm{X} ; \theta)$ - is called the likelihood function. This function can be maximized with respect to θ to produce maximum likelihood estimates: $\hat{\theta}_{M L E}$.

It is often convenient to work with the Log of the likelihood function. That is,

$$
\ln L(X \mid \theta)=\sum_{i=1}^{N} \ln f\left(X_{i} \mid \theta\right)
$$

Then, we maximize as usual:

$$
\begin{aligned}
& 1^{\text {st_derivative }} \Rightarrow \frac{\partial \ln L(X \mid \theta)}{\partial \theta}=\sum_{i=1}^{N} \frac{\partial \ln f\left(X_{i} \mid \theta\right)}{\partial \theta}=\sum_{i=1}^{N} \frac{f \prime\left(X_{i} \mid \theta\right)}{f\left(X_{i} \mid \theta\right)} \\
& \text { f.o.c. }
\end{aligned}
$$

Usually, the first order conditions are solved using numerical optimization.

The ML estimation approach is very general. In the context of the CLM, we need a model (A1) and a pdf for the errors, for example, normality, to apply ML. Now, if the model is not correctly specified, the estimates are sensitive to misspecification.

A lot of applications in finance and economics: Time series, volatility (GARCH and stochastic volatility) models, factor models of the term structure, switching models, option pricing, logistic models (mergers and acquisitions, default, etc.), trading models, etc.

In general, we rely on numerical optimization to get MLEs.

Maximum Likelihood Estimation: Properties

ML estimators (MLE) have very appealing properties:
(1) Efficiency. Under general conditions, they achieve lowest possible variance for an estimator.
(2) Consistency. As the sample size increases, the MLE converges to the population parameter it is estimating:

$$
\hat{\theta}_{M L E} \xrightarrow{p} \theta
$$

(3) Asymptotic Normality: As the sample size increases, the distribution of the MLE converges to the normal distribution.

$$
\hat{\theta}_{M L E} \xrightarrow{a} N\left(\theta,[n \mathbf{I}(\theta)]^{-1}\right)
$$

where $\mathbf{I}(\theta)$ is the information matrix:

$$
E\left[\left(\frac{\partial \log L}{\partial \theta}\right)\left(\frac{\partial \log L}{\partial \theta}\right)^{\mathrm{T}}\right]=I(\theta)(k \mathrm{x} k \text { matrix })
$$

(4) Invariance. The ML estimate is invariant under functional transformations. That is, if $\widehat{\theta}_{M L E}$ is the MLE of θ and if $g(\theta)$ is a function of θ, then $g\left(\widehat{\theta}_{\text {MLE }}\right)$ is the MLE of $g(\theta)$.
(5) Sufficiency. If a single sufficient statistic exists for θ, the MLE of θ must be a function of it. That is, $\hat{\theta}_{M L E}$ depends on the sample observations only through the value of a sufficient statistic.

Maximum Likelihood Estimation: Example

Let the sample be $\boldsymbol{X}=\{5,6,7,8,9,10\}$ drawn from a $\operatorname{Normal}(\mu, 1)$. The probability of each of these points based on the unknown mean, μ, can be written as:

$$
\begin{aligned}
f(5 \mid \mu) & =\frac{1}{\sqrt{2 \pi}} \exp \left[-\frac{(5-\mu)^{2}}{2}\right] \\
f(6 \mid \mu) & =\frac{1}{\sqrt{2 \pi}} \exp \left[-\frac{(6-\mu)^{2}}{2}\right] \\
\quad & \\
f(10 \mid \mu) & =\frac{1}{\sqrt{2 \pi}} \exp \left[-\frac{(10-\mu)^{2}}{2}\right]
\end{aligned}
$$

Assume that the sample is independent. Then, the joint pdf function can be written as:

$$
\begin{aligned}
L(X \mid \mu) & =f(5 \mid \mu) * f(6 \mid \mu) * \ldots * f(10 \mid \mu) \\
& =\frac{1}{(2 \pi)^{6 / 2}} \exp \left[-\frac{(5-\mu)^{2}}{2}-\frac{(6-\mu)^{2}}{2}-\cdots-\frac{(10-\mu)^{2}}{2}\right]
\end{aligned}
$$

The value of m that maximizes the likelihood function of the sample can then be defined by $\max _{\mu} L(X \mid \mu)$.
It easier, however, to maximize the \log likelihood, $\ln \mathrm{L}(\mathrm{X} \mid \mu)$. That is,

$$
\begin{aligned}
& \qquad \max _{\mu} \ln (L(X \mid \mu))=-\frac{6}{2} \ln (2 \pi)+\left[-\frac{(5-\mu)^{2}}{2}-\frac{(6-\mu)^{2}}{2}-\cdots-\frac{(10-\mu)^{2}}{2}\right] \\
& 1^{\text {st.derivative } \quad \Rightarrow} \frac{\partial}{\partial \mu}\left[K-\frac{(5-\mu)^{2}}{2}-\frac{(6-\mu)^{2}}{2}-\cdots-\frac{(10-\mu)^{2}}{2}\right] \\
& \text { f.o.c. } \Rightarrow\left(5-\hat{\mu}_{M L E}\right)+\left(6-\hat{\mu}_{M L E}\right)+\cdots+\left(10-\hat{\mu}_{M L E}\right)=0
\end{aligned}
$$

Solving for $\hat{\mu}_{\text {MLE }}$:

$$
\hat{\mu}_{M L E}=\frac{5+6+7+8+9+10}{6}=7.5=\bar{x}
$$

That is, the MLE estimator $\hat{\mu}_{\text {MLE }}$ is equal to the sample mean. This is good for the sample mean: MLE has very good properties!

Maximum Likelihood Estimation: Numerical Optimization

We have a function $f(X \mid \theta)=\ln L(\mathrm{X} \mid \theta)$, with k unknown parameters. We use numerical optimization to estimate θ. Numerical optimization are methods that search over the parameter space of θ looking for the values that optimize -i.e., maximize or minimize- the function $f(X \mid \theta)$.

In R, the functions optim \& $n l m$ do numerical optimization. Both minimize any non-linear function $f(X \mid \theta)$. Recall that $\max f(X \mid \theta)=\min -f(X \mid \theta)$. Then, in practice, we numerically minimize the negative of the likelihood function, or $\ln L(\mathrm{X} \mid \theta) *(-1)$.

Example: In Example I above, we numerically minimize $\ln L(X \mid \mu) *(-1)$.
Most common optimization algorithms are based on the Newton-Raphson method (N-R). It is an iterative algorithm:

- At iteration $j+1$, based on information from the previous iteration $j, \mathrm{~N}$-R update the estimate of $\boldsymbol{\theta}$.
- N -R stops when the values of $\boldsymbol{\theta}$ at j is similar to the value at $j-1$.

In our ML case, at iteration $j+1, \mathrm{~N}-\mathrm{R}$ computes $\boldsymbol{\theta}_{j+1}$ (or updates $\boldsymbol{\theta}_{j}$) based on $\boldsymbol{\theta}_{j}$ plus an update. The update is based on the first and second derivatives of $\ln L(X \mid \boldsymbol{\theta})$.

- NR's $j+1$ iteration:

$$
\boldsymbol{\theta}_{j+1}=\boldsymbol{\theta}_{j}-\left.\mathbf{A}_{j}^{-1} * \frac{\partial \boldsymbol{\operatorname { l n }} \boldsymbol{L}}{\boldsymbol{\partial} \boldsymbol{\theta}}\right|_{j} \quad\left(=\boldsymbol{\theta}_{j}+\text { update }\right)
$$

$\left.\frac{\boldsymbol{\partial} \boldsymbol{n} \boldsymbol{L}}{\boldsymbol{\partial} \boldsymbol{\theta}}\right|_{j}=(k \times 1)$ Vector of 1st derivatives of $\ln L(X \mid \boldsymbol{\theta})$, evaluated at iteration j, with parameter $\boldsymbol{\theta}_{j}$.
$\mathbf{A}_{j}=(k \mathrm{x} k)$ Matrix of 2nd derivatives of $\ln L$, evaluated at $\boldsymbol{\theta}_{j}$.
Note: At iteration $j=1$, we input initial values for $\boldsymbol{\theta}_{j=0}$, called $\boldsymbol{\theta}_{0}$, which we use to compute \mathbf{A}_{0} and $\left.\frac{\partial \ln L}{\partial \theta}\right|_{0}$.

The vector of first derivatives of $\ln L$ is called the Score. The matrix of second derivatives is called the Hessian.

- To run optim or $n l m$, we need to specify:
- Initial values for the parameters, θ_{0}.
- Function to be minimized (in Example I, $\left.\ln L(\mathrm{X} \mid \mu)^{*}(-1)\right)$.
- Data used.
- Other optional inputs: Choice of method, hessian calculated, etc.
- More on this topic in Lecture 10.

Example: For $\boldsymbol{X}=\{5,6,7,8,9,10\} \sim \mathrm{N}(\mu, 1)$, code to get $\hat{\mu}_{M L E}$.
$\mathrm{mu}<-0 \quad$ \# assumed mean $\left(\theta_{0}=\right.$ initial value for μ)
$x _6<-c(5,6,7,8,9,10)$
\# data
dnorm $(5, \mathrm{mu}, \mathrm{sd}=1) \quad$ \# probability of observing a 5 , assuming a $\mathrm{N}(\mathrm{mu}=0, \mathrm{sd}=1)$
dnorm(x_6) \# probability of observing each element in $x _6$
1_f <- prod(dnorm(x_6)) \# Likelihood function
$\log \left(1 _f\right) \quad$ \# Log likelihood function
$\operatorname{sum}\left(\log \left(\operatorname{dnorm}\left(x _6\right)\right)\right)$ \# Alternative calculation of Log likelihood function
\# Step 1 - Create Likelihood function
likelihood_n <- function(mu) \{ \# Create a prob function with mu as an argument
$\operatorname{sum}\left(\log \left(\operatorname{dnorm}\left(x _6, m u, s d=1\right)\right)\right)$
\}
$>$ likelihood_n(mu) \# print likelihood
[1]-183.0136
negative_likelihood_n $<-$ function(mu) \{ \# R uses a minimization algorithm, change sign $\operatorname{sum}\left(\log \left(\operatorname{dnorm}\left(x _6, m u, s d=1\right)\right)\right) *(-1)$
\}
$>$ negative_likelihood_n(mu)
[1] 183.0136
\# Step 2 - Maximize (or Minimize negative Likelihood function)
results_n $<-\mathrm{nlm}($ negative_likelihood_n, mu, stepmax=2) \# nlm minimizes the function $>$ results_n \# Show nlm results
\$minimum
[1] 14.26363
$<=$ The minimized value of function (-14.26363 is the max)
\$estimate
[1] $7.5<=$ The MLE for $\mu\left(=\hat{\mu}_{M L E}\right)$.
\$gradient
[1]-4.736952e-12 <= Should be very close to zero if we're at a minimum

$\operatorname{mu_ max}<-$ results_n\$estimate	\# Extract estimates
$>$ mu_max	\# Should be equal to mean
[1] 7.5	
$>$ likelihood_n(mu_max)	\# Check max value at mu_max
$[1]-\mathbf{1 4 . 2 6 3 6 3 .}$.	

- Now, we generalize the previous example to an i.i.d. sample $\boldsymbol{X}=\left\{X_{1}, X_{2}, \ldots, X_{\mathrm{T}}\right\}$ drawn from a $\operatorname{Normal}\left(\mu, \sigma^{2}\right)$. Then, the joint pdf function is:

$$
L(X \mid \mu)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{-T / 2}} \exp \left[-\frac{\left(x_{1}-\mu\right)^{2}}{2 \sigma^{2}}-\frac{\left(x_{2}-\mu\right)^{2}}{2 \sigma^{2}}-\cdots-\frac{\left(x_{T}-\mu\right)^{2}}{2 \sigma^{2}}\right]
$$

Then, taking logs, we have:

$$
\ln L=-\frac{T}{2} \ln \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{T}\left(X_{i}-\mu\right)^{2}=-\frac{T}{2} \ln 2 \pi-\frac{T}{2} \ln \sigma^{2}-\frac{1}{2 \sigma^{2}}(X-\mu)^{\prime}(X-\mu)
$$

Then, taking logs, we have:

$$
\ln L=-\frac{T}{2} \ln \left(2 \pi \sigma^{2}\right)-\frac{\sum_{i=1}^{T}\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}=-\frac{T}{2} \ln 2 \pi-\frac{T}{2} \ln \sigma^{2}-\frac{(X-\mu)^{\prime}(X-\mu)}{2 \sigma^{2}}
$$

Taking first derivatives:

$$
\begin{aligned}
& \frac{\partial \ln L}{\partial \mu}=-\frac{\sum_{i=1}^{T} 2\left(x_{i}-\mu\right)(-1)}{2 \sigma^{2}}=\frac{\sum_{i=1}^{T}\left(x_{i}-\mu\right)}{\sigma^{2}} \\
& \frac{\partial \ln L}{\partial \sigma^{2}}=-\frac{T}{2 \sigma^{2}}+\frac{\sum_{i=1}^{T}\left(x_{i}-\mu\right)^{2}}{2 \sigma^{4}}
\end{aligned}
$$

We can write the first derivatives as a vector, the gradient, whose length is the number of unknown parameters in the likelihood -i.e., size of θ. In this case, a 2×2 vector:

$$
\frac{\partial \ln L}{\partial \theta}=\left[\begin{array}{c}
\frac{\partial \ln L}{\partial \mu} \\
\frac{\partial \ln L}{\partial \sigma^{2}}
\end{array}\right]=\left[\begin{array}{c}
\frac{\sum_{i=1}^{T}\left(x_{i}-\mu\right)}{\sigma^{2}} \\
-\frac{T}{2 \sigma^{2}}+\frac{\sum_{i=1}^{T}\left(x_{i}-\mu\right)^{2}}{2 \sigma^{4}}
\end{array}\right]
$$

In the case of a \log likelihood function, the vector of first derivatives is called the Score.
When we set the Score equal to $\mathbf{0}$, we have the set of first order conditions (f.o.c.). Then, we have the f.o.c. and jointly solve for the ML estimators:

$$
\text { (1) } \frac{\partial \ln L}{\partial \mu}=\frac{1}{\hat{\sigma}_{M L E}^{2}} \sum_{i=1}^{T}\left(X_{i}-\hat{\mu}_{M L E}\right)=0 \quad \Rightarrow \hat{\mu}_{M L E}=\frac{1}{T} \sum_{i=1}^{T} X_{i}=\bar{X}
$$

Note: The MLE of μ is the sample mean. Therefore, it is unbiased.

$$
\begin{aligned}
& \text { (2) } \frac{\partial \ln L}{\partial \sigma^{2}}=-\frac{T}{2 \widehat{\sigma}_{M L E}^{2}}+\frac{1}{2 \widehat{\sigma}_{M L E}^{4}} \sum_{i=1}^{T}\left(X_{i}-\hat{\mu}_{M L E}\right)^{2}=0 \\
& \quad \Rightarrow \hat{\sigma}_{M L E}^{2}=\frac{1}{T} \sum_{i=1}^{T}\left(X_{i}-\bar{X}\right)^{2}
\end{aligned}
$$

Note: The MLE of σ^{2} is not s^{2}. Therefore, it is biased! But, it is consistent.
Example: Using $\boldsymbol{X}=\{5,6,7,8,9,10\}$, now drawn from a $\operatorname{Normal}\left(\mu, \sigma^{2}\right)$.

$$
\begin{aligned}
& \hat{\mu}_{M L E}=\bar{X}=7.5 \\
& \hat{\sigma}_{M L E}^{2}=\frac{\sum_{i=1}^{6}\left(x_{i}-7.5\right)^{2}}{6}=\frac{17.5}{6}=2.916667 \\
& \hat{\sigma}_{M L E}=\operatorname{sqrt}(\mathbf{2 . 9 1 6 6 6 7})=1.707825
\end{aligned}
$$

Note 1: $s^{2}=\frac{17.5}{(6-1)}=3.5$
Note 2: The computation of MLE for the mean parameter $\hat{\mu}_{M L E}$ is independent of the computation of the MLE for the variance $\hat{\sigma}_{M L E}^{2}$. $\mathbb{\|}$

- To obtain the variance of $\hat{\theta}_{M L E}=\left[\hat{\mu}_{M L E}, \hat{\sigma}_{M L E}^{2}\right]$ we invert the information matrix for the whole sample $\mathbf{I}(\theta \mid X)$. Recall,

$$
\hat{\theta}_{M L E} \xrightarrow{a} N\left(\theta, \mathbf{I}(\theta \mid X)^{-1}\right)
$$

where $\mathbf{I}(\theta \mid X)$ is the Information matrix for the whole sample. It is generally calculated as:

$$
E\left[-\left(\frac{\partial^{2} \ln L(\theta \mid X)}{\partial \theta \partial \theta \prime}\right)\right]=I(\theta \mid X), \quad(k x k \text { matrix })
$$

where the matrix of second derivatives is the Hessian matrix, \mathbf{H} :

$$
\frac{\partial^{2} \ln L(\theta \mid X)}{\partial \theta \partial \theta \prime}=\mathbf{H}
$$

In practice, we use numerical optimization packages (say, $n l m$ in R), which minimize a function. Then, we minimize the negative $\log L(\theta \mid X)$ and, thus, to get $\operatorname{Var}\left[\hat{\theta}_{M L E}\right]$ we do not need to multiply \mathbf{H} by ($\mathbf{- 1}$).

[,1] [,2]

[1,] $2.0571428731-0.0009030531$
[2,] -0.0009030531 4.1122292411

```
cov_lf <- solve(coeff_hess) # invert Hessian to get cov(MLEs)
\# invert Hessian to get \(\operatorname{cov}(\) MLEs \()\)
```

$>$ cov_lf
[,1] [,2]
[1,] 0.48611115420 .0001067509
[2,] 0.00010675090 .2431771280
se_lf<- sqrt(diag(cov_lf)) \# Compute standard errors of MLEs
$>$ se lf
[1] $\mathbf{0 . 6 9 7 2 1 6 7} 0.4931299$
\# t-tests
> par_max[1]/se_lf[1]
[1] 10.75706
par_max[2]/se_lf[2]
[1] 3.463236 . \|
\# t-ratio for mu
\# Show covariance matrix
\# t-ratio for sigma2

Maximum Likelihood Estimation: Linear Model Example

We will work the previous example with matrix notation. Suppose we assume:

$$
\begin{array}{lll}
& y_{i}=\boldsymbol{x}_{i}{ }^{\prime} \boldsymbol{\beta}+\varepsilon_{i}, & \varepsilon_{i} \sim N\left(0, \sigma^{2}\right) \\
\text { or } & \boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}, & \boldsymbol{\varepsilon} \sim N\left(0, \sigma^{2} I_{T}\right)
\end{array}
$$

where $\boldsymbol{x}_{\mathrm{i}}$ is a $k \times 1$ vector of exogenous numbers and $\boldsymbol{\beta}$ is a $k \times 1$ vector of unknown parameters. Then, the joint likelihood function becomes:

$$
L=\prod_{i=1}^{T} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\varepsilon_{i}^{2}}{2 \sigma^{2}}\right)=\left(2 \pi \sigma^{2}\right)^{-T / 2} \prod_{i=1}^{T} \exp \left(-\frac{\varepsilon_{i}^{2}}{2 \sigma^{2}}\right)
$$

Taking logs, we have the log likelihood function:

$$
\ln L=-\frac{T}{2} \ln 2 \pi \sigma^{2}-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{T} \varepsilon_{i}^{2}=-\frac{T}{2} \ln 2 \pi \sigma^{2}-\frac{1}{2 \sigma^{2}}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})^{\prime}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})
$$

The joint likelihood function becomes:

$$
\begin{aligned}
\ln L & =-\frac{T}{2} \ln 2 \pi \sigma^{2}-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{T} \varepsilon_{i}^{2}= \\
& =-\frac{T}{2} \ln (2 \pi)-\frac{T}{2} \ln \left(\sigma^{2}\right)-\frac{1}{2 \sigma^{2}}(y-X \beta)^{\prime}(y-X \beta)
\end{aligned}
$$

We take first derivatives of the log likelihood w.r.t. $\boldsymbol{\beta}$ and σ^{2} :

$$
\frac{\partial \ln L}{\partial \beta}=-\frac{1}{2} \sum_{i=1}^{T} 2 \varepsilon_{i} x_{i}^{\prime} / \sigma^{2}=-\frac{1}{\sigma^{2}} X^{\prime} \varepsilon
$$

$$
\frac{\partial \ln L}{\partial \sigma^{2}}=-\frac{T}{2 \sigma^{2}}-\left(-\frac{1}{2 \sigma^{4}}\right) \sum_{i=1}^{T} \varepsilon_{i}^{2}=\left(\frac{1}{2 \sigma^{2}}\right)\left[\frac{\varepsilon^{\prime} \varepsilon}{\sigma^{2}}-T\right]
$$

Using the f.o.c., we jointly estimate $\boldsymbol{\beta}$ and σ^{2} :

$$
\begin{aligned}
& \frac{\partial \ln L}{\partial \beta}=-\frac{1}{\sigma^{2}} \boldsymbol{X}^{\prime} \boldsymbol{\varepsilon}=\frac{1}{\sigma^{2}} \boldsymbol{X}^{\prime}\left(\boldsymbol{y}-\boldsymbol{X} \widehat{\boldsymbol{\beta}}_{M L E}\right)=0 \quad \Rightarrow \widehat{\boldsymbol{\beta}}_{M L E}=\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime} \boldsymbol{y} \\
& \frac{\partial \ln L}{\partial \sigma^{2}}=\left(\frac{1}{2 \hat{\sigma}_{M L E}^{2}}\right)\left[\frac{\boldsymbol{e}^{\prime} \boldsymbol{e}}{\hat{\sigma}_{M L E}^{2}}-T\right]=0 \quad \Rightarrow \hat{\sigma}_{M L E}^{2}=\frac{\boldsymbol{e}^{\prime} \boldsymbol{e}}{T}=\sum_{i=1}^{T} \frac{\left(y_{i}-\boldsymbol{X}_{i} \widehat{\boldsymbol{\beta}}_{M L E}\right)^{2}}{T}
\end{aligned}
$$

Under (A5) -i.e., normality for the errors-, we have that $\widehat{\boldsymbol{\beta}}_{M L E}=\boldsymbol{b}$.
This is a good result for OLS b. ML estimators have very good properties: Efficiency, consistency, asymptotic normality and invariance.
$\hat{\sigma}_{M L E}^{2}$ is biased, but given that it is an ML estimator, it is efficient, consistent and asymptotically normally distributed.

Example: We estimate the 3 F-F factor model for IBM.
SFX_da<-
read.csv("https://www.bauer.uh.edu/rsusmel/4397/Stocks_FX_1973.csv",head=TRUE,sep=",")
x_{-}ibm <-SFX_da\$IBM
x_Mkt_RF<- SFX_da\$Mkt_RF
$\mathrm{x}_{-}^{-} \mathrm{SMB}<-$ SFX_dā\$SMB
x_HML <-SFX_da\$HML
x_RF <-SFX_da\$RF
T<- length(x_ibm)
$1 r _i b m<-\log \left(x _p f e[-1] / x _p f e[-T]\right)$
$\mathrm{x} 0<-\operatorname{matrix}(1, \mathrm{~T}-1,1)$
Mkt_RF <- x_Mkt_RF[-1]/100
SMB $<-x_{-}$SMB[-1]/100
HML <- x_HML[-1]/100
RF $<-\mathrm{x}$ _RF[-1]/100
ibm_x <- lr_ibm - RF
$\mathrm{X}<-\operatorname{cbind}(\mathrm{x} 0$, Mkt_RF, SMB, HML)
\# Step 1 - Negative Likelihood function
likelihood_lf $<$ - function(theta, y, X) \{
$\mathrm{N}<-\operatorname{nrow}(\mathrm{X})$
$\mathrm{k}<-\operatorname{ncol}(\mathrm{X})$
beta $<-$ theta[1:k]
sigma $2<-$ theta $[k+1]^{\wedge} 2$
e <- y - X\%*\%beta
$\log \mathrm{l}<-.5 * \mathrm{~N} * \log (2 * \mathrm{pi})-.5 * \mathrm{~N} * \log ($ sigma 2$)-((\mathrm{t}(\mathrm{e}) \% * \% \mathrm{e}) /(2 * \operatorname{sigma} 2))$

```
return(-logl)
}
theta <- c(0,1,1,1,.1) # initial values
likelihood_lf(theta,ibm_x,X)
    [,1]
[1,] -599.0825
```

\# Step 2 - Maximize (or Minimize negative Likelihood function)
results_lf $<-$ nlm(likelihood_lf, theta, hessian=TRUE, $\left.y=i b m _x, X=X\right) \quad$ \# nlm minimizes $1_{-} f$
par_max <- results_lf\$estimate \# Extract estimates
$>$ par_max \# Should be equal to OLS results
[1] -0.0005907974 0.8676052091 -0.6815947799-0.2284249895 0.0557422421
$>$ likelihood_lf(par_max,ibm_x,X) \# Check max value of likelihood function
[,1]
[1,] -835.3316
\# Compare with OLS results
fit_ibm_ff3 $<-\operatorname{lm}(\mathrm{ibm}$ _x \sim Mkt_RF + SMB + HML)
> summary(fit_ibm_ff3)

Coefficients:

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	$-\mathbf{0 . 0 0 0 5 9 0 3}$	$\mathbf{0 . 0 0 2 3 7 9 3}$	-0.248	0.80416
Mkt_RF	0.8676042	$\mathbf{0 . 0 5 4 2 5 5 4}$	15.991	$<2 \mathrm{e}-16^{* * *}$
SMB	-0.6815950	$\mathbf{0 . 0 8 0 4 5 4 2}$	-8.472	$<2 \mathrm{e}-16^{* * *}$
HML	-0.2284263	$\mathbf{0 . 0 8 0 9 9 9 2}$	-2.820	$0.00497^{* *}$

Signif. codes: $0{ }^{\text {'***' }} 0.001^{\text {'**' }} 0.01^{\prime *} 0.05^{\prime} .{ }^{\prime} 0.1^{\prime}{ }^{\prime} 1$

Maximum Likelihood Estimation: Score and Information Matrix

Definition: Score (or efficient score)

$$
S(X ; \theta)=\frac{\delta \log (L(X \mid \theta))}{\delta \theta}=\sum_{i=1}^{n} \frac{\delta \log \left(f\left(x_{i} \mid \theta\right)\right)}{\delta \theta}
$$

$S(X ; \theta)$ is called the score of the sample. It is the vector of partial derivatives (the gradient), with respect to the parameter θ. If we have k parameters, the score will have a $k x 1$ dimension.

Definition: Fisher information for a single parameter for observation i :

$$
E\left[\left(\frac{\partial \log \left(f\left(x_{i} \mid \theta\right)\right)}{\partial \theta}\right)^{2}\right]=I(\theta)
$$

$I(\theta)$ is sometimes just called information. It measures the shape of the $\log f(X \mid \theta)$.

The concept of information can be generalized for the k-parameter case. In this case, for the whole sample:

$$
E\left[\left(\frac{\partial \log L}{\partial \boldsymbol{\theta}}\right)\left(\frac{\partial \log L}{\partial \boldsymbol{\theta}}\right)^{T}\right]=\boldsymbol{I}(\theta)
$$

This is $k x k$ matrix.
If L is twice differentiable with respect to θ, and under certain regularity conditions, then the information may also be written as

$$
E\left[\left(\frac{\partial \log L}{\partial \boldsymbol{\theta}}\right)\left(\frac{\partial \log L}{\partial \boldsymbol{\theta}}\right)^{\mathrm{T}}\right]=E\left[-\left(\frac{\delta^{2} \log (L(X \mid \boldsymbol{\theta}))}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{\prime}}\right)\right]=\mathbf{I}(\boldsymbol{\theta})
$$

$\mathbf{I}(\theta)$ is called the information matrix (negative Hessian). It measures the shape of the likelihood function.

- The inverse of the information matrix for the whole sample is the Variance of $\hat{\theta}_{M L E}$. That is,

$$
\operatorname{Var}\left(\hat{\theta}_{M L E}\right)=I(\theta)^{-1}
$$

Sometimes, the notation for the information matrix for the whole sample is $I(\theta \mid X)$.
Remark: In practice, we use the inverse of the Hessian, evaluated at $\hat{\theta}_{M L E}$, as the estimator of the variance. R calculates the Hessian in all optimization packages (for example, nlm or optim). In the previous example, we extracted the Hessian from the nlm function with
coeff_hess <- results_lf\$hessian \# Extract Hessian
Example: We assume:

$$
\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}, \quad \boldsymbol{\varepsilon} \sim N\left(0, \sigma^{2} I_{T}\right)
$$

Taking logs, we have the log likelihood function:
$\ln L=-\frac{T}{2} \ln 2 \pi \sigma^{2}-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{T} \varepsilon_{i}^{2}=-\frac{T}{2} \ln 2 \pi-\frac{T}{2} \ln \sigma^{2}-\frac{1}{2 \sigma^{2}}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})^{\prime}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})$
The score function is -first derivatives of $\log \mathrm{L}$ w.r.t. $\boldsymbol{\theta}=\left(\boldsymbol{\beta}, \sigma^{2}\right)$:

$$
\begin{aligned}
& \frac{\partial \ln L}{\partial \beta}=-\frac{1}{2 \sigma^{2}}\left(-2 \boldsymbol{X}^{\prime} \boldsymbol{y}+2 \boldsymbol{X} \boldsymbol{X} \boldsymbol{\beta}\right)=\frac{1}{\sigma^{2}} \boldsymbol{X}^{\prime}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta}) \\
& \frac{\partial \ln L}{\partial \sigma^{2}}=-\frac{T}{2 \sigma^{2}}-\left(-\frac{(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})^{\prime}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})}{2 \sigma^{4}}\right)=\left(\frac{1}{2 \sigma^{2}}\right)\left[\frac{\varepsilon \boldsymbol{\varepsilon}}{\sigma^{2}}-T\right]
\end{aligned}
$$

Then, we take second derivatives to calculate $\mathrm{I}(\theta)$:

$$
\frac{\partial^{2} \ln L}{\partial \beta \partial \beta^{\prime}}=-\frac{X^{\prime} X}{\sigma^{2}} \quad-k x k \text { matrix. }
$$

$$
\begin{aligned}
& \frac{\partial^{2} \ln L}{\partial \beta \partial \sigma^{2} \prime}=-\frac{1}{\sigma^{4}}\left(\boldsymbol{X}^{\prime} \boldsymbol{y}-\boldsymbol{X} \boldsymbol{X} \boldsymbol{\beta}\right)=-\frac{1}{\sigma^{4}}\left(\boldsymbol{X}^{\prime} \boldsymbol{\varepsilon}\right) \\
& \frac{\partial^{2} \ln L}{\partial \sigma^{2} \partial \sigma^{2 \prime}}=-\frac{1}{2 \sigma^{4}}\left[\frac{\varepsilon \prime \varepsilon}{\sigma^{2}}-T\right]+\left(\frac{1}{2 \sigma^{2}}\right)\left(-\frac{\varepsilon^{\prime} \varepsilon}{\sigma^{4}}\right)=-\frac{1}{2 \sigma^{4}}\left[2 \frac{\varepsilon^{\prime \varepsilon}}{\sigma^{2}}-T\right] \quad \text {-scalar }
\end{aligned}
$$

Using linear algebra notation:

$$
I(\theta)=E\left[-\frac{\partial \ln L}{\partial \theta \partial \theta^{\prime}}\right]=\left[\begin{array}{cc}
\left(\frac{1}{\sigma^{2}} \boldsymbol{X}^{\prime} \boldsymbol{X}\right) & 0 \\
0 & \frac{T}{2 \sigma^{4}}
\end{array}\right] \quad \text { a }(k+1) \mathrm{x}(k+1) \text { matrix. }
$$

To get SE for $\hat{\theta}_{M L E}$, we invert the $(k+1) \mathrm{x}(k+1)$ information matrix.
Technical Note: The information matrix is block-diagonal, the inverse is the inverse of the diagonal blocks. Then,

$$
I(\theta \mid X)^{-1}=\left[\begin{array}{cc}
\sigma^{2}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} & 0 \\
0 & \frac{2 \sigma^{4}}{T}
\end{array}\right]
$$

Then,

$$
\begin{aligned}
& \operatorname{Var}\left[\widehat{\boldsymbol{\beta}}_{M L E}\right]=\hat{\sigma}_{M L E}^{2}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \\
& \operatorname{Var}\left[\hat{\sigma}_{M L E}^{2}\right]=2 \hat{\sigma}_{M L E}^{4} / \mathrm{T} \cdot \boldsymbol{\top}
\end{aligned}
$$

Example: We continue the previous IBM example, computing MLE SEs for linear model
\# Step 3 - Compute S.E. by inverting Hessian
par_hess <- results_lf\$hessian \# Extract Hessian
$>$ par_hess \# Show Hessian matrix
$\left[\begin{array}{cccc}{[, 1]} & {[, 2]} & {[, 3]} & {[, 4]}\end{array}\right]$
[1,] $183123.21311034 .3403801300 .5280632452 .9161743-3.243494 \mathrm{e}+02$
[2,] $1034.3404390 .199568371 .3131499-55.6126338-6.913297 \mathrm{e}-01$
$[3] \quad 300.5281 \quad 71.3131499170 .5839168-26.9486009-,3.023956 \mathrm{e}-01$
[4,] $452.9162-55.6126338-26.9486009165 .2938181-2.928687 \mathrm{e}-01$
[5,] $-324.3494-0.6913297-0.3023956-0.2928687 \quad 3.629895 \mathrm{e}+05$
cov_lf <- solve(par_hess)
se_lf $<-\operatorname{sqrt}($ diag (cov_lf) $)$
$>$ se_lf
[1] 0.0023709390 .0540639120 .0801701610 .0807132270 .001659791
\# We can do testing. For example, H_{0} : Beta $=1$.
$>$ (par_max[2]-1)/se_lf[2]
[1] -2.448857

- Summary: OLS vs MLE

	OLS		MLE	
	Coefficients	S.E.	Coefficients	S.E.
Intercept	-0.00509	0.00238	-0.00509	0.00237
Mkt_RF	0.86761	0.05425	0.86761	0.05406
SMB	-0.68159	0.08045	-0.68159	0.08017
HML	-0.22842	0.08100	-0.22842	0.08071

Conclusion: Same coefficients as expected. Very similar results for the S.E. ब

Data Problems

"If the data were perfect, collected from well-designed randomized experiments, there would hardly be room for a separate field of econometrics." Zvi Griliches (1986, Handbook of Econometrics)

Three important data problems:
(1) Missing Data - very common, especially in cross sections and long panels.
(2) Outliers - unusually high/low observations.
(3) Multicollinearity - there is perfect or high correlation in the explanatory variables.

- In general, data problems are exogenous to the researcher. We cannot change the data or collect more data.

Missing Data

General Setup
We have an indicator variable, si. If $s_{i}=1$, we observe Y_{i}, and if $s_{i}=0$ we do not observe Y_{i}.
Note: We always observe the missing data indicator $s i$.
Suppose we are interested in the population mean $\theta=\mathrm{E}\left[Y_{i}\right]$.
With a lot of information -large T-, we can learn $p=\mathrm{E}\left[s_{i}\right]$ and $\mu_{1}=\mathrm{E}\left[Y_{i} \mid s_{i}=1\right]$, but nothing about $\mu_{0}=\mathrm{E}\left[Y_{i} \mid s_{i}=0\right]$.

We can write: $\theta=p * \mu_{1}+(1-p) * \mu_{0}$.

Problem: Even in large samples we learn nothing about μ_{0}. Without additional information and/or assumptions there is no much we can say about θ.

Now, suppose the variable of interest is binary: $Y_{i} \in\{0,1\}$. We also have an explanatory variable of Y_{i}, say W_{i}.

Then, the natural (not data-informed) lower and upper bounds for μ_{0} are 0 and 1 respectively. This implies bounds on θ :

$$
\theta \in\left[\theta_{\mathrm{LB}}, \theta \mathrm{UB}\right]=\left[p * \mu_{1}, p * \mu_{1}+(1-p) * \mu_{0}\right] .
$$

These bounds are sharp, in the sense that without additional information we cannot improve on them.

If from variable W_{i} we can infer something about the missing values, these bounds can be improved.

Missing Data - CLM

Now, suppose we have the CLM: $\quad y_{i}=\boldsymbol{x}_{\boldsymbol{i}}{ }^{\prime} \boldsymbol{\beta}+\varepsilon_{i}$
We use the selection indicator, s_{i}, where $s_{i}=1$ if we can use observation i. After some algebra we get,

$$
\mathbf{b}=\boldsymbol{\beta}+\left(\sum_{i=1}^{T} s_{i} \boldsymbol{x}_{i}{ }^{\prime} \boldsymbol{x}_{i} / T\right)^{-1}\left(\sum_{i=1}^{T} s_{i} \boldsymbol{x}_{i}{ }^{\prime} \varepsilon_{i} / T\right)
$$

- For unbiased (and consistent) results, we need $\mathrm{E}\left[s_{i} \boldsymbol{x}_{i}{ }^{\prime} \varepsilon_{i}\right]=0$, implied by

$$
\begin{equation*}
\mathrm{E}\left[\varepsilon_{i} \mid s_{i} \boldsymbol{x}_{i}{ }^{\prime}\right]=0 \tag{*}
\end{equation*}
$$

In general, we find that when $s_{i}=h\left(\mathbf{x}_{\mathbf{i}}\right)$, that is, the selection is a function of $\mathbf{x}_{\mathbf{i}}$, we have an inconsistent OLS \mathbf{b}. This situation is called selection bias.

Example of Selection Bias: Determinants of Hedging.
A researcher only observes companies that hedge. Estimating the determinants of hedging from this population will bias the results! $\mathbb{\Phi}$

If missing observations are randomly (exogenously) "selected," it is likely safe to ignore problem. Rubin (1976) calls this assumption "missing completely at random" (or MCAR).

In general, MCAR is rare. In general, it is more common to see "missing at random," where missing data depends on observables (say, education, sex) but one item for individual i is NA (Not Available).

If in the regression we "control" for the observables that influence missing data (not easy), it is OK to delete the whole observation for i.

Missing Data - Usual Solutions

Otherwise, we can:
a. Fill in the blanks -i.e., impute values to the missing data- with averages, interpolations, or values derived from a model.
b. Use (inverse) probability weighted estimation. Here, we inflate or "over-weight" unrepresented subjects or observations.
c. Heckman selection correction. We build a model for the selection function, $h\left(\mathrm{x}_{\mathrm{i}}\right)$.

Outliers

Many definitions: Atypical observations, extreme values, conditional unusual values, observations outside the expected relation, etc.

In general, we call an outlier an observation that is numerically different from the data. But, is this observation a "mistake," say a result of measurement error, or part of the (heavy-tailed) distribution?

In the case of normally distributed data, roughly 1 in 370 data points will deviate from the mean by $3 *$ SD. Suppose $T=1,000$ and we see 9 data points deviating from the mean by more than $3 *$ SD indicates outliers. We expect 3 data points to deviate by more than $3 *$ SD. Which of the 9 observations can be classified as an outlier?

Problem with outliers: They can affect estimates. For example, with small data sets, one big outlier can seriously affect OLS estimates.

Outliers: Identification

- Informal identification method:
- Eyeball: Look at the observations away from a scatter plot.

Example: Plot residuals for the 3 FF factor model for IBM returns
e_ibm <- residuals(fit_ibm_ff3) \# Extract IBM residuals from FF regression fit_ibm_ff3. plot(e_ibm, type ="l", col="blue", main ="IBM Residuals from 3 FF Factor Model", xlab="Date", ylab="IBM residuals")

- Formal identifications methods:
- Standardized residuals, $\mathrm{e}_{\mathrm{i}} / \mathrm{SD}\left(\mathrm{e}_{\mathrm{i}}\right)$: Check for errors that are $2 * \mathrm{SD}$ (or more) away from the expected value.

Example: Plot standardized residuals for IBM residuals
x_stand_resid <- e_ibm/sd(e_ibm) \# standardized residuals
plot(x_-stand_resid, type ="l", col="blue", main ="IBM Standardized Residuals from 3 FF Factor Model", xlab="Date", ylab="IBM residuals")

- Leverage statistic: It measures the difference of an independent data point from its mean. High leverage observations can be potential outliers. Leverage is measured by the diagonal values of the \mathbf{P} matrix:

$$
h_{t}=1 / T+\left(x_{t}-\bar{x}\right) /\left[(T-1) s x^{2}\right] .
$$

But, an observation can have high leverage, but no influence.

- Influence statistic: Dif beta. It measures how much an observation influences a parameter estimate, say b_{j}. Dif beta is calculated by removing an observation, say i, recalculating b_{j}, say $b_{j}(-$ $i)$, taking the difference in betas and standardizing it. Then,

$$
\operatorname{Dif}_{j} \operatorname{beta}_{j(-i)}=\left[\mathrm{b}_{j}-\mathrm{b}_{j}(-i)\right] / \mathrm{SE}\left[\mathrm{~b}_{j}\right] .
$$

- Influence statistic: Distance D (as in Cook's D). It measures the effect of deleting an observation on the fitted values, say $\hat{y} j$.

$$
D_{j}=\Sigma_{\mathrm{j}}\left[\hat{\mathrm{y}}_{j}-\hat{\mathrm{y}}_{j}(-i)\right] /[k * \mathrm{MSE}],
$$

where k is the number of parameters in the model and MSE is mean square error of the regression model ((MSE=RSS/T)..

The identification statistics are usually compared to some ad-hoc cut-off values. For example, for Cook's D, if $D_{i}>4 / T \Rightarrow$ observation i is considered a (potential) highly influential point.

The analysis can also be carried out for groups of observations. In this case, we would be looking for blocks of highly influential observations.

Outlier Identification: Leverage \& Influence

Deleting the observation in the upper right corner has a clear effect on the regression line. This observation has leverage and influence.

Outliers: Summary of Rules of Thumb

General rules of thumb (ad-hoc thresholds) used to identify outliers:

Measure	Value
abs(stand resid)	>2
leverage	$>(2 k+2) / T$
$\operatorname{abs}($ Dif Beta $)$	$>2 / \operatorname{sqrt}(T)$

Cook's D $\quad>4 / T$
In general, if we have 5% or less observations exceeding the ad-hoc thresholds, we tend to think that the data is OK.

Example: Cook's D for IBM returns using the 3 FF Factor Model
y <- ibm_x
$x<-$ cbind (x0, Mkt_RF, SMB, HML)
dat_xy <- data.frame (y, x)
fit_ibm_ff3 <- $\operatorname{lm}(y \sim x-1)$
cooksd <- cooks.distance(fit_ibm_ff3)
\# plot cook's distance
plot(cooksd, pch="*", cex=2, main="Influential Obs by Cooks distance")
\# add cutoff line
abline($\mathrm{h}=4^{*}$ mean(cooksd, na.rm=T), col="red") \# add cutoff line
\# add labels
$\operatorname{text}(\mathrm{x}=1$:length(cooksd) $+1, \mathrm{y}=$ cooksd, labels=ifelse(cooksd $>4 *$ mean(cooksd, na.rm=T), names(cooksd),""), col="red") \# add labels
\# influential row numbers
influential <- as.numeric $($ names $($ cooksd $)[($ cooksd $>4 *$ mean $($ cooksd, na.rm=T) $)])$
\# print first 10 influential observations.
head(dat_xy[influential,], $n=10 \mathrm{~L}$)

$>$ \# print first 10 influential observations.
$>$ head(dat_xy[influential,],n=10L)
V1 Mkt_RF SMB HML
$8 \quad-0.1609506810 .04750 .02940 .0219$
$94 \quad 0.0126644410 .0959-0.0345-0.0835$
227-0.04237227 1 0.1084-0.0224-0.0403
$237-0.1908357510 .0102 \quad 0.0205-0.0210$
$239-0.3064863810 .01530 .01640 .0252$

```
282 0.07787100 1-0.0597-0.0383 0.0445
286 0.20734626 1 0.0625-0.0389 0.0117
291 0.15218986 1 0.0404-0.0565-0.0006
306 0.13928315 1-0.0246-0.0512-0.0096
3150.16196934 1 0.0433 0.0400 0.0253
```

Note: There are easier ways to plot Cook's D and identify the suspect outliers. The package olsrr can be used for this purpose too. \mathbb{I}

Example: Different tools to check for outliers for residual in the FF model for IBM returns. We will use the package olsrr --install it with install.packages(). install.packages("olsrr")

```
library(olsrr)
e_ibm <- residuals(fit_ibm_ff3)
x_stand_resid <- e_ibm /sd(e_ibm)
sum(x_stand_resid > 2)
x_lev <- ols_leverage(fit_ibm_ff3)
sum(x_lev > (2*k+2)/T)
sum(cooksd > 4/T)
ols_plot_resid_stand(fit_ibm_ff3)
ols_plot_cooksd_bar(fit_ibm_ff3)
ols_plot_dfbetas(fit_ibm_ff3)
> sum(x_stand_resid > 2)
[1] 13 # 5%?= 13/569 = 0.0228
> sum(x_lev > (2*k+2)/T)
[1] 32 # 5%?= 32/569=0.0562
> sum(cooksd > 4/T)
[1] 38 # 5%?= 38/569=0.0668
```


Conclusion: Using standardized residuals, we get some evidence of outliers.

Outliers: What to Do?

Typical solutions:

- Use a non-linear formulation or apply a transformation (log, square root, etc.) to the data.
- Remove suspected observations. (Sometimes, there are theoretical reasons to remove suspect observations. Typical procedure in finance: remove public utilities or financial firms from the analysis.)
- Winsorization of the data (cut an $\alpha \%$ of the highest and lowest observations of the sample).
- Use dummy variables.
- Use LAD (quantile) regressions, which are less sensitive to outliers.
- Weight observations by size of residuals or variance (robust estimation).

General rule: Present results with or without outliers.

Multicollinearity

The \mathbf{X} matrix is singular (perfect collinearity) or near singular (multicollinearity).

- Perfect collinearity

Not much we can do. OLS will not work $\Rightarrow \mathbf{X}^{\prime} \mathbf{X}$ cannot be inverted. The model needs to be reformulated.

- Multicollinearity.

OLS will work. $\boldsymbol{\beta}$ is still unbiased. The problem is in $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$; that is, in the $\operatorname{Var}[\mathbf{b} \mid \mathbf{X}]$. Let's see the effect on the variance of particular coefficient, b_{k}.

Recall the estimated $\operatorname{Var}\left[\mathrm{b}_{k} \mid \mathbf{X}\right]$ is the k th diagonal element of $\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$.
Let define $\mathrm{R}^{2}{ }_{k}$. as the R^{2} in the regression of \mathbf{x}_{k} on the other regressors, $\mathbf{X}_{(-k)}$. Then, we can show the estimated $\operatorname{Var}\left[\mathrm{b}_{k} \mid \mathbf{X}\right]$ is

$$
\operatorname{Var}\left[\mathrm{b}_{k} \mid \mathbf{X}\right]=\frac{s^{2}}{\left[\left(1-R_{k .}^{2}\right) \sum_{i=1}^{n}\left(x_{i k}-\bar{x}_{k}\right)^{2}\right]}
$$

\Rightarrow the higher $R^{2}{ }_{k}$.-i.e., the fit between \mathbf{x}_{k} and the rest of the regressors-, the higher $\operatorname{Var}\left[\mathrm{b}_{k} \mid \mathbf{X}\right]$.

Multicollinearity: Signs

Signs of Multicollinearity:

- Small changes in \mathbf{X} produce wild swings in \mathbf{b}.
- High R ${ }^{2}$, but \mathbf{b} has low t-stats -i.e., high standard errors
- "Wrong signs" or difficult to believe magnitudes in \mathbf{b}.

There is no cure for collinearity. Estimating something else is not helpful (transforming regressors, principal components, etc.).

There are "measures" of multicollinearity, such as the

- K\# = Condition number $=\max ($ singular value $) / \min ($ singular value)
- Variance inflation factor $=\mathrm{VIF}_{\mathrm{k}}=1 /\left(1-\mathrm{R}^{2}{ }_{k}\right.$).

Rule of thumb for Condition number: If $K \#>30$ such matrix cannot be inverted reliably. Thus, \mathbf{X} shows severe multicollinearity.

Multicollinearity: VIF and Condition Index

Belsley (1991) proposes to calculate the VIF and the condition number, using Rx, the correlation matrix of the standardized regressors:
$\mathrm{VIF}_{k}=\operatorname{diag}\left(\mathrm{RX}^{-1}\right)_{k}$
Condition Index $=\kappa_{k}=\operatorname{sqrt}\left(\lambda_{1} / \lambda_{k}\right)$
where $\lambda_{1}>\lambda_{2}>\ldots>\lambda_{p}>\ldots$ are the ordered eigenvalues of $R x$.
Belsley's (1991) rules of thumb for κ_{k} :

- below $10 \quad \Rightarrow$ good
- from 10 to $30 \quad \Rightarrow$ concern
- greater than $30 \quad \Rightarrow$ trouble
- greater than $100 \quad \Rightarrow$ disaster.

Another common rule of thumb: If $\mathrm{VIF}_{k}>5$, concern.
Best approach: Recognize the problem and understand its implications for estimation.
Note: Unless we are very lucky, some degree of multicollinearity will always exist in the data. The issue is: when does it become a problem?

Multicollinearity: Example

Example: Check for multicollinearity for IBM returns 3-factor model
library(olsrr)
ols_vif_tol(fit_ibm_ff3)
ols_eigen_cindex(fit_ibm_ff3)
> ols_vif_tol(fit_ibm_ff3)
Variables Tolerance VIF
1 xMkt_RF 0.89012291 .123440
2 xSMB 0.91473201 .093216
3 xHML 0.93499041 .069530
> ols_eigen_cindex(fit_ibm_ff3)

Eigenvalue Condition Index								intercept	xMkt_RF	xSMB xHML
1	1.4506645	1.000000	0.01557614	0.24313961	0.212001760	0.1518949				
2	1.0692689	1.164770	0.66799183	0.01432250	0.001789253	0.2129328				
3	0.7967889	1.349310	0.16184731	0.01239755	0.576432492	0.4107435				
4	0.6832777	1.457085	0.15458473	0.73014033	0.209776495	0.2244287				

Conclusion: Multicollinearity does not seem to be a problem. \uparrow

Lecture 4 - Appendix A: Rules for Vector Derivatives

(1) Linear function

Consider the linear function: $\mathbf{y}=f(\boldsymbol{x})=\boldsymbol{x} \boldsymbol{\gamma} \boldsymbol{\gamma}+\omega$
where \boldsymbol{x} and $\boldsymbol{\gamma}$ are k-dimensional vectors and ω is a constant.

We derive the gradient in matrix notation as follows:

1. Convert to summation notation: $\quad f(\boldsymbol{x})=\sum_{i}^{k} x_{i} \gamma_{i}$
2. Take partial derivative w.r.t. element $x_{j}: \quad \frac{\partial}{\partial x_{j}}\left[\sum_{i}^{k} x_{i} \gamma_{i}\right]=\gamma_{j}$
3. Put all the partial derivatives in a vector:

$$
\nabla f(\boldsymbol{x})=\left[\begin{array}{c}
\frac{\partial f(\boldsymbol{x})}{\partial x_{1}} \\
\vdots \\
\frac{\partial f(x)}{\partial x_{k}}
\end{array}\right]=\left[\begin{array}{c}
\gamma_{1} \\
\vdots \\
\gamma_{k}
\end{array}\right]
$$

4. Convert to matrix notation: $\quad \nabla f(\boldsymbol{x})=\gamma$
(2) Quadratic form

Consider a quadratic form: $\quad \mathbf{q}=f(\boldsymbol{x})=\boldsymbol{x}, \mathbf{A} \boldsymbol{x}$
where \boldsymbol{x} is $k \times 1$ vector and \mathbf{A} is a $k \mathrm{x} k$ matrix, with $a_{j i}$ elements.
Steps:

1. Convert to summation notation:

$$
f(\boldsymbol{x})=\boldsymbol{x},\left[\begin{array}{c}
\sum_{j}^{k} a_{j 1} x_{j} \\
\vdots \\
\sum_{j}^{k} a_{j k} x_{j}
\end{array}\right]=\sum_{i}^{k} \sum_{j}^{k} x_{i} a_{j i} x_{j}
$$

(we rewrite $\sum_{j}^{k} \sum_{i}^{k} x_{i} a_{j i} x_{j}=\sum_{i}^{k} a_{i i} x_{i}^{2}+\sum_{i}^{k} \sum_{j \neq i}^{k} x_{i} a_{j i} x_{j}$)
2. Take partial derivative w.r.t. element x_{j} :

$$
\begin{aligned}
\frac{\partial}{\partial x_{j}}\left[\sum_{i}^{k} \sum_{j}^{k} x_{i} a_{j i} x_{j}\right] & =2 a_{j j} x_{j}+\sum_{i \neq j}^{k} x_{i} a_{j i}+\sum_{i \neq j}^{k} a_{i j} x_{i} \\
& =\sum_{i}^{k} x_{i} a_{j i}+\sum_{i}^{k} a_{i j} x_{i}
\end{aligned}
$$

Appendix B: Expectation of a RV and Rules of Expectations

Let X denote a discrete $R V$ with probability function $p(x)$, then the expected value of $X, E[X]$, is defined to be:

$$
\mathrm{E}[X]=\sum_{i} x_{i} p\left(x_{i}\right)
$$

and if X is continuous with probability density function $f(x)$:

$$
\mathrm{E}[X]=\int_{-\infty}^{\infty} x f(x) d x
$$

- For the continuous case, the expected value of $g(X), E[g(X)]$, is:

$$
\mathrm{E}[X]=\int_{-\infty}^{\infty} g(x) f(x) d x
$$

Note: The discrete case is a simple adaptation.
Examples: $\quad g(x)=x \quad \Rightarrow \mathrm{E}[g(x)]=\mathrm{E}[x]$

$$
\begin{array}{ll}
g(x)=(x-\mu)^{2} & \Rightarrow \mathrm{E}[g(x)]=\mathrm{E}\left[(x-\mu)^{2}\right] \\
g(x)=(x-\mu)^{k} & \Rightarrow \mathrm{E}[g(x)]=\mathrm{E}\left[(x-\mu)^{k}\right]
\end{array}
$$

- We derive the rules for the continuous case. That is,

$$
\mathrm{E}[X]=\int_{-\infty}^{\infty} g(x) f(x) d x
$$

- Rule 1. $\mathrm{E}[c]=c, \quad$ where c is a constant.

Proof: $g(x)=c$
Then, $\mathrm{E}[g(x)]=\mathrm{E}[c]=\int_{-\infty}^{\infty} c f(x) d x=c \int_{-\infty}^{\infty} f(x) d x=c$

- Rule 2. $\mathrm{E}[c+d X]=c+d \mathrm{E}[X], \quad$ where $c \& d$ are constants.

Proof: $g(x)=c+d X$
Then, $\mathrm{E}[g(x)]=\mathrm{E}[c+d X]=\int_{-\infty}^{\infty}(c+d x) f(x) d x$

$$
\begin{aligned}
& =c \int_{-\infty}^{\infty} f(x) d x+d \int_{-\infty}^{\infty} x f(x) d x \\
& =c+d \mathrm{E}[X]
\end{aligned}
$$

- Rule 3. $\operatorname{Var}[X]=\mu_{2}^{0}=E\left[(X-\mu)^{2}\right]=E\left[X^{2}\right]-[E(X)]^{2}=\mu_{2}-\mu^{2}$

Proof: $g(x)=(x-\mu)^{2}$

$$
\begin{aligned}
\operatorname{Var}[X] & =E\left[(X-\mu)^{2}\right]=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x \\
& =\int_{-\infty}^{\infty}\left(x^{2}-2 x \mu+\mu^{2}\right) f(x) d x \\
& =\int_{-\infty}^{\infty} x^{2} f(x) d x-\int_{-\infty}^{\infty} 2 x \mu f(x) d x+\int_{-\infty}^{\infty} \mu^{2} f(x) d x \\
& =\int_{-\infty}^{\infty} x^{2} f(x) d x-2 \mu \int_{-\infty}^{\infty} x f(x) d x+\mu^{2} \int_{-\infty}^{\infty} f(x) d x \\
& =E\left[X^{2}\right]-2 \mu E(X)+\mu^{2}=\mu_{2}-\mu^{2}
\end{aligned}
$$

Note: If $\mu=0$, then $\operatorname{Var}[X]=E\left[X^{2}\right]$

- Rulle 4. $\operatorname{Var}[a X+b]=a^{2} \operatorname{Var}[X]$

Proof: Do it yourself. Define $g(x)=(a X+b-E[a X+b])^{2}$
Then, simplify b, apply square and use Rule 2 .

- Suppose excess returns for asset $i, r_{i, t}-r_{f}$, are driven by the following linear model (DGP behind the CAPM):

$$
\left(r_{i, t}-r_{f}\right)=\alpha_{\mathrm{i}}+\beta_{\mathrm{i}}\left(r_{m, t}-r_{f}\right)+\varepsilon_{i, t},
$$

where
$r_{m, t}-r_{f}=$ excess return on the market portfolio at time t.
$\beta_{\mathrm{i}}=$ the sensitivity to market (systematic) risk.
$\varepsilon_{i, t}=$ idiosyncratic error term, with mean $0 \&$ unrelated to $\mathrm{r}_{\mathrm{m}, \mathrm{t}}$.
Then,

$$
\begin{array}{lll}
\mathrm{E}\left[\left(r_{i, t}-r_{f}\right)\right]=\mathrm{E}\left[\alpha_{\mathrm{i}}\right]+\beta_{\mathrm{i}} \mathrm{E}\left[\left(r_{m, t}-r_{f}\right)\right]+\mathrm{E}\left[\varepsilon_{i, t}\right] & & \text { (by Rule 2) } \\
\mathrm{E}\left[\left(r_{i, t}-r_{f}\right)\right]=\alpha_{\mathrm{i}}+\beta_{\mathrm{i}} \mathrm{E}\left[\left(r_{m, t}-r_{f}\right)\right]+\mathrm{E}\left[\varepsilon_{i, t}\right] & & \text { (by Rule 1) } \\
\mathrm{E}\left[\left(r_{i, t}-r_{f}\right)\right]=\alpha_{\mathrm{i}}+\beta_{\mathrm{i}} \mathrm{E}\left[\left(r_{m, t}-r_{f}\right)\right] & & \text {-by assumption about mean } 0 \text { of } \varepsilon_{\mathrm{i}, \mathrm{t}}
\end{array}
$$

The CAPM implies that $\alpha_{i}=0$.
Also, by Rule 4, $\quad \operatorname{Var}\left[\left(r_{i, t}-r_{f}\right)\right]=\left(\beta_{\mathrm{i}}\right)^{2} \operatorname{Var}\left[\left(r_{m, t}-r_{f}\right)\right]+\operatorname{Var}\left[\varepsilon_{i, t}\right]$

Lecture 4 - OLS: Sampling, and Bootstrapping

OLS Estimation - Assumptions

CLM Assumptions
(A1) DGP: $\mathbf{y}=\mathbf{X} \beta+\varepsilon$ is correctly specified.
(A2) $\mathrm{E}[\boldsymbol{\varepsilon} \mid \mathbf{X}]=0$
(A3) $\operatorname{Var}[\varepsilon \mid \mathbf{X}]=\sigma^{2} \mathbf{I}_{T}$
(A4) \mathbf{X} has full column $\operatorname{rank}-\operatorname{rank}(\mathbf{X})=k$-, where $\mathrm{T} \geq k$.

- From assumptions (A1), (A2), and (A4)

$$
\Rightarrow \mathbf{b}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}
$$

We define $\mathbf{e}=\mathbf{y}-\mathbf{X b} \quad \Rightarrow \mathbf{X}^{\prime} \mathbf{e}=\mathbf{X}^{\prime}(\mathbf{y}-\mathbf{X b}) \mathbf{X}^{\prime} \mathbf{y}-\mathbf{X}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}=\mathbf{0}$

- Now, we will study the properties of \mathbf{b}.

Sampling Distribution of b

Small sample $=$ For all sample sizes - i.e., for all values of $T($ or $N)$.

$$
\mathbf{b}=\boldsymbol{\beta}+\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\varepsilon} \quad \Rightarrow \mathbf{b} \text { is a vector of random variables. }
$$

- Properties
(1) $\mathrm{E}[\mathbf{b} \mid \mathbf{X}]=\boldsymbol{\beta}$
(2) $\operatorname{Var}[\mathbf{b} \mid \mathbf{X}]=\mathrm{E}\left[(\mathbf{b}-\boldsymbol{\beta})(\mathbf{b}-\boldsymbol{\beta})^{\prime} \mid \mathbf{X}\right]=\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$
(3) Gauss-Markov Theorem: \mathbf{b} is BLUE (MVLUE).
(4) If (A5) $\boldsymbol{\varepsilon}\left|\mathbf{X} \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}_{\mathbf{T}}\right) \quad \Rightarrow \mathbf{b}\right| \mathbf{X} \sim \mathrm{N}\left(\boldsymbol{\beta}, \sigma^{2}\left(\mathbf{X}^{\mathbf{\prime}} \mathbf{X}\right)^{-1}\right)$

$$
\Rightarrow \mathrm{b}_{k} \mid \mathbf{X} \sim \mathrm{N}\left(\beta_{k}, \sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)_{k k}{ }^{-1}\right.
$$

(Note: the last implication is derived from the fact that the marginal distributions of a multivariate normal are also normal.)

Note: Under (A5), \mathbf{b} is also the MLE. Thus, it has all the nice MLE properties: efficiency, consistency, sufficiency and invariance!

Sampling Distribution of b

Recall that a sample statistic like \mathbf{b} is a function of RVs. Then, it has a statistical distribution.
In general, in finance, we observe only one sample mean (actually, our only sample). But, many sample means are possible from the DGP.

- A sampling distribution is a distribution of a statistic over all possible samples.

Let's generate some yi's using a DGP and, then, some b's. Using:

$$
\mathbf{b}=\boldsymbol{\beta}+\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\varepsilon}=\boldsymbol{\beta}+\Sigma_{\mathrm{i}} \mathbf{v}_{\mathrm{i}}^{\prime} \varepsilon_{\mathrm{i}}
$$

Set $\beta=.4$; then, the DGP is:

$$
\mathbf{y}=(.4) \mathbf{X}+\boldsymbol{\varepsilon}
$$

(1) Generate \mathbf{X} (to be treated as numbers). Say $\mathbf{X} \sim N(2,4)$

$$
\Rightarrow \mathrm{x}_{1}=3.22, \mathrm{x}_{2}=2.18, \mathrm{x}_{3}=-0.37, \ldots \ldots, \mathrm{x}_{\mathrm{T}}=1.71
$$

(2) Generate $\boldsymbol{\varepsilon} \sim \mathrm{N}(0,1)$

$$
\Rightarrow \text { draws } \varepsilon_{1}=0.52, \varepsilon_{2}=-1.23, \varepsilon_{3}=1.09, \ldots . ., \varepsilon_{\mathrm{T}}=-0.09
$$

(3) Generate $\mathbf{y}=.4 \mathbf{X}+\varepsilon$

$$
\begin{array}{rl}
\Rightarrow \mathrm{y}_{1}=.4 & * 3.22+0.52=1.808 \\
\mathrm{y}_{2}=.4 * 2.18+(-1.23)=-0.358 \\
\mathrm{y}_{3}=.4 *(-0.37)+1.09=0.942 \\
\ldots \\
\mathrm{y}_{\mathrm{T}}=.4 * 1.71+(-0.09)=0.594
\end{array}
$$

(4) Generate $\mathbf{b}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}=\Sigma_{\mathrm{i}}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) / \Sigma_{\mathrm{i}}\left(x_{i}-\bar{x}\right)^{2}$

- We want to generate many b's. Steps
(1) Generate \mathbf{X} (to be treated as numbers). Say $\mathbf{X} \sim N(2,4)$
(2) Generate $\boldsymbol{\varepsilon} \sim \mathrm{N}(0,1)$
(3) Generate $\mathbf{y}=.4 \mathbf{X}+\boldsymbol{\varepsilon}$
(4) Generate $\mathbf{b}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}=\Sigma_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}-\bar{x}\right)\left(\mathrm{x}_{\mathrm{i}}-\bar{y}\right) / \Sigma_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}-\bar{x}\right)^{2}$

Conditioning on step (1), we can repeat (2)-(4) B times, say 1,000 times. Then, we are able to generate a sampling distribution for \mathbf{b}.

We can, obviously, play with T; say $T=100 ; 1,000 ; 10,000$.
We can check: $\mathrm{E}[\mathbf{b} \mid \mathbf{X}]=(1 / B) \Sigma_{\mathrm{i}} \mathrm{b}_{\mathrm{i}}=\boldsymbol{\beta}$?
We can calculate the variance of $\operatorname{Var}[\mathbf{b} \mid \mathbf{X}]$.

Sampling Distribution of \mathbf{b} - Code in \mathbf{R}

Steps (1)-(4) in R to generate \mathbf{b}, with a sample of size $T=100$:
$>\mathrm{T}<-100 \quad$ \# sample size
$>\mathrm{x}<-\operatorname{rnorm}(\mathrm{T}, 2,2)$
$>\mathrm{ep}<-\operatorname{rnorm}(\mathrm{T}, 0,1)$
$>y<-.4^{*} \mathrm{x}+\mathrm{ep}$
$>\mathrm{b}<-$ solve(t(x) $\% * \% \mathrm{x}) \% * \% \mathrm{t}(\mathrm{x}) \% * \% y$
\# sample size \# generate \mathbf{x} from a $\mathrm{N}\left(2,2^{2}\right)$.
\# generate errors from a $\mathrm{N}(0,1)$.
\# generate \mathbf{y}
\# OLS regression

We run these commands B (say, $\mathrm{B}=1,000$) times to get the sampling distribution of \mathbf{b}. Then, we can calculate means, variances, skewness and kurtosis coefficients, etc.

- Script to generate the sampling distribution for $\mathrm{B}=1,000 \& \mathrm{~T}=100$:

Allbs=NULL
$\mathrm{T}<-100$
$\mathrm{x}<-\operatorname{rnorm}(\mathrm{T}, 2,2)$
reps $=1000$
for $(\mathrm{i}$ in $\operatorname{seq}(1$, reps, 1$))\{$
ep $<-\operatorname{rnorm}(T, 0,1)$
y<-. $4 *$ x+ep
$\mathrm{b}<-\operatorname{solve}(\mathrm{t}(\mathrm{x}) \% * \% \mathrm{x}) \% * \% \mathrm{t}(\mathrm{x}) \% * \% \mathrm{y}$
Allbs=rbind(Allbs,b)
\}
$\mathrm{mb}<-$ mean(Allbs)
varb $<-\operatorname{var}($ Allbs $)$
hist(Allbs[,1],main="Histogram for OLS Coefficients", xlab="b Coefficients")

For $\mathrm{T}=100$
$\mathrm{B}=1,000$
Mean[b] $=0.3995132$
$\mathrm{SD}[\mathrm{b}]=\mathbf{0 . 0 2 6 1 3 1 3 4}$
Histogram for OLS Coefficients

For $\mathrm{T}=1,000$
$\mathrm{B}=1,000$
Mean[b] $=0.3999375$
$\mathrm{SD}[\mathrm{b}]=\mathbf{0 . 0 2 2 0 8 6}$

Bootstrapping (Again!)

Bootstrapping is the practice of estimating the properties of an estimator -say, its variance- by measuring those properties when sampling from an approximating distribution (the bootstrap $D G P)$.

Idea: We use the data at hand -the empirical distribution (ED)- to estimate the variation of statistics that are themselves computed from the same data. Recall that, for large samples drawn from F, the ED approximates the CDF of F very well.

Thus, an easy choice for an approximating distribution is the ED of the observed data. That is, the ED becomes a "fake population."

John Fox (2005, UCLA): "The population is to the sample as the sample is to the bootstrap samples."

Bootstrapping: Empirical Bootstrap (Again!)

Suppose we have a dataset with N i.i.d. observations drawn from F :

$$
\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{N}\right\} \quad-" f a k e ~ p o p u l a t i o n . "
$$

From the ED, F^{*}, we sample with replacement N observations:

$$
\left\{x_{1}^{*}, x_{2}^{*}, x_{3}^{*}, \ldots, x_{N}^{*}\right\} \quad \text { - a bootstrap sample }
$$

This is an empirical bootstrap sample, which is a resample of the same size N as the original data, drawn from F^{*}.

For any statistic θ computed from the original sample data, we can define a statistic θ^{*} by the same formula, but computed instead using the resampled data.

- We compute many $\widehat{\theta}^{*}$, by resampling many times from F^{*}. Say, we resample $\theta^{*} B$ times:

$$
\left\{\hat{\theta}_{1}^{*}, \hat{\theta}_{2}^{*}, \hat{\theta}_{3}^{*}, \ldots, \hat{\theta}_{B}^{*}\right\}
$$

From this collection of $\hat{\theta}^{*}$'s, we learn about statistic θ : we compute moments, C.I.'s, etc.
Bootstrap Steps:

1. From the original sample, draw random sample with size N.
2. Compute statistic θ from the resample in $1: \hat{\theta}_{1}^{*}$.
3. Repeat steps $1 \& 2 B$ times \Rightarrow Get B statistics: $\left\{\hat{\theta}_{1}^{*}, \hat{\theta}_{2}^{*}, \widehat{\theta}_{3}^{*}, \ldots, \widehat{\theta}_{B}^{*}\right\}$
4. Compute moments, draw histograms, etc. for these B statistics.

- Results:

1. With a large enough B, the LLN allows us to use the $\widehat{\theta}^{*}$'s to estimate the distribution of $\widehat{\theta}$, $F(\widehat{\theta})$.
2. The variation in $\hat{\theta}$ is well approximated by the variation in $\widehat{\theta}^{*}$.

Result $\mathbf{2}$ is the one we used in Lecture 2 to estimate the size of a C.I.

Bootstrapping: Variations

If the ED is used for the draws, the method is usually called the nonparametric bootstrap. If a distribution is assumed, say a t-distribution, and we draw from this distribution, the method is called the parametric bootstrap.

- If the y's and the x's are sampled together, this method is sometimes called the paired bootstrap-for example, in a regression or to bootstrap a correlation coefficient.
- If blocks of data are sample together, the method is called block bootstrap-for example, in the presence of correlated data, typical of time series or spatial data.

Bootstrapping: Why?

Question: Why do we need a bootstrap?

- N is "small," asymptotic assumptions do not apply.
- DGP assumptions are violated.
- Distributions are complicated.

The main appeal is its simplicity and its consistent results.

Bootstrapping in Econometrics

Bootstrapping provides a very general method to estimate a wide variety of statistics. It is most useful when:
(1) Reliance on "formulas" is problematic because the formula's assumptions are dubious.
(2) A formula holds only as $T \rightarrow \infty$, but our sample is not very big.
(3) A formula is complicated or it has not even been worked out yet.

The most common econometric applications are situations where you have a consistent estimator of a parameter of interest, but it is hard or impossible to calculate its standard error or its C.I.

Technical note: Bootstrapping is easiest to implement if the estimator is "smooth," $\sqrt{ } T$-consistent, and based on an i.i.d. sample. In other situations, it is more complicated.

Bootstrapping in Econometrics: Example

You are interested in the relation between CEO's education (X) and firm's long-term performance (\mathbf{y}). You have 1,500 observations on both variables. You estimate the correlation coefficient, ρ, with its sample counterpart, r. You find the correlation to be very low.

Q: How reliable is this result? The distribution of r is complicated. You decide to use a bootstrap to study the distribution of r. Note that to compute r, we need to bootstrap pairs, then, we use a paired bootstrap.

Randomly construct a sequence of B samples (all with $T=1,500$). Say,
$\mathrm{B}_{1}=\left\{\left(x_{1}, y_{1}\right),\left(x_{3}, y_{3}\right),\left(x_{6}, y_{6}\right),\left(x_{6}, y_{6}\right), \ldots,\left(x_{1458,}, y_{1458}\right)\right\} \quad \Rightarrow r_{1}$
$\mathrm{B}_{2}=\left\{\left(x_{5}, y_{5}\right),\left(x_{7}, y_{7}\right),\left(x_{11}, y_{11}\right),\left(x_{\left.\left.12, y_{12}\right), \ldots,\left(x_{1486}, y_{1486}\right)\right\} \quad \Rightarrow r_{2}, ~}^{\text {l }}\right.\right.$
$\mathrm{B}_{B}=\left\{\left(x_{2}, y_{2}\right),\left(x_{2}, y_{2}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right), \ldots,\left(x_{1499}, y_{1499}\right)\right\} \quad \Rightarrow r_{B}$
We rely on the observed data. We take it as our "fake population" and we sample from it B times. We have a collection of bootstrap subsamples.

The sample size of each bootstrap subsample is the same (T). Thus, some elements are repeated.
Now, we have a collection of estimators of ρ_{i} 's: $\left\{r_{1}, r_{2}, r_{3}, \ldots, r_{\mathrm{B}}\right\}$. We can do a histogram and get an approximation of the probability distribution. We can calculate its mean, variance, kurtosis, confidence intervals, etc.

Bootstrapping in Econometrics: Estimating the mean \& correlation coefficient
Example: We bootstrap the mean returns of IBM, using monthly data 1973-2020, with $\boldsymbol{B}=$ 1,000. (You need to install R package boot.)

```
sim_size = 1000
```

library(boot)
\# function to obtain the mean from the data
mean_p $<$ - function(data, i) \{
d <-data[i]
return(mean(d))
\}
\# bootstrapping with sim_size replications
boot.samps <- boot(data=ibm_x, statistic=mean_p, R=sim_size)
\# view stored bootstrap samples and compute mean
> boot.samps \# Print original mean, bias and SE of bootstraps
ORDINARY NONPARAMETRIC BOOTSTRAP
Call:
$\operatorname{boot}\left(\right.$ data $=i b m_{-} x$, statistic $=$ mean_p, $\mathrm{R}=\operatorname{sim} _$size $)$
Bootstrap Statistics :
original bias std. error
t1*-0.0006990633 5.021474e-07 0.002964358
> boot.samps\$t[1:10] \# Show first 10 bootstrapped mean
[1] -0.0066684274 0.0011648002-0.0010053505-0.0024989738-0.0025442486
[6] 0.0007935133-0.0039867127 $0.0030962313-0.0017929592-0.0023480292$
$>$ mean(boot.samps\$t) \# The estimate of the bootstrapped mean
[1]-0.0006985612
$>$ sd(boot.samps\$t) \#SD of the bootstrapped mean
[1] 0.002964358
\# Elegant histogram
> hist(boot.samps\$t,main="Histogram for Bootstrapped Means",
$+\quad$ xlab="Means", breaks=20)

Example: We bootstrap the correlation between the returns of IBM \& the S\&P 500, using monthly data 1973-2020, with $\boldsymbol{B}=\mathbf{1 , 0 0 0}$.
sim_size $=1000$
x_sp $<-$ SFX_da\$SP500
lr_{-}sp $<-\log \left(\mathrm{x}_{-}\right.$sp[-1]/x_sp[-T])
dat_spibm $<-$ data.frame $\left(\mathrm{lr}_{-} \mathrm{sp}, \mathrm{lr}_{-}\right.$ibm $)$
library(boot)
\# function to obtain the correlation coefficient from the data
cor_xy <- function(data, i) \{
d <-data[i,]
return($\left.\operatorname{cor}\left(\mathrm{d} \$ 1 \mathrm{r}_{-} \mathrm{sp}, \mathrm{d} \$ 1 \mathrm{r}_{-} \mathrm{ibm}\right)\right)$
\}
\# bootstrapping with sim_size replications boot.samps <- boot(data=dat_spibm, statistic=cor_xy, $\quad \mathrm{R}=$ sim_size)
\# view stored bootstrap samples and compute mean
$>$ boot.samps \# Print original ρ, bias and SE of bootstraps

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:

boot(data $=$ dat_spibm, statistic $=$ cor_xy, $\mathrm{R}=$ sim_size $)$
Bootstrap Statistics :
original bias std. error
t1*0.5894632-0.001523914 0.03406313
$>$ mean(boot.samps\$t)
[1] 0.5879392
$>\operatorname{sd}($ boot.samps $\$$ t) \#SD of the correlation estimate
[1] 0.03406313
\# Elegant histogram
> hist(boot.samps\$t,main="Histogram for Bootstrapped Correlations",

+ xlab="Correlations", breaks=20)

- Simple 95\% percentile method C.I.
new $<-$ sort(boot.samps\$t)
$>$ new[25]
[1] 0.5151807
> new[975]
[1] 0.6495722
Note: You get same results using boot.ci(boot.samps, type = "perc")
- Empirical boostrap method C.I. (our preferred method)
> boot.ci(boot.samps, type="basic")
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates

CALL:
boot.ci(boot.out $=$ boot.samps, type $=$ "basic")

Intervals :
Level Percentile
95\% (0.5293, 0.6637)
Calculations and Intervals on Original Scale. \mathbb{I}

Bootstrapping: How many bootstraps?

It is not clear. There are many theorems on asymptotic convergence, but there are no clear rules regarding B. There are some suggestions.

Efron and Tibsharani's (1994) textbook recommends $B=200$ as enough. (Good results with B as low as 25 !)

Davidson and Mackinnon's (2001) textbook suggests steps to select B. In the $\mathrm{D} \& \mathrm{M}$ simulations, on average, B is between 300 and 2,400.

Wilcox's (2010) textbook recommends "599 [...] for general use."
Rule of thumb: Start with $B=100$, then, try $B=1,000$, and see if your answers have changed by much. Increase bootstraps until you get stability in your answers.

Example: We bootstrap the correlation between IBM returns and S\&P 500 returns, using $\boldsymbol{B}=$ 100.
> \# view bootstrap results
> boot.samps
ORDINARY NONPARAMETRIC BOOTSTRAP

Call:

boot(data $=$ dat_spibm, statistic $=$ cor_xy, $\mathrm{R}=$ sim_size $)$
Bootstrap Statistics :
original bias std. error
t 1 * $0.5898636-0.001156230 .03449216$
$>$ mean(boot.samps\$t)
[1] 0.5887074
$>$ sd(boot.samps\$t)
[1] 0.028858868. \|

Example: We bootstrap the correlation between IBM returns and S\&P 500 returns, using $\boldsymbol{B}=$ 25.
> \# view bootstrap results
$>$ boot.samps
ORDINARY NONPARAMETRIC BOOTSTRAP
Call:
boot $($ data $=$ dat_spibm, statistic $=$ cor_xy, $\mathrm{R}=$ sim_size $)$
Bootstrap Statistics :
original bias std. error
t 1 * $0.5898636-0.001156230 .03449216$
> mean(boot.samps\$t)
[1] 0.5847676
$>$ sd(boot.samps\$t)
[1] 0.03449216
Conclusion: Results do not change that much. $\boldsymbol{\|}$

Bootstrapping: Bias

You can estimate the bias of the bootstrap of a parameter, say \mathbf{b} :

$$
\operatorname{Bias}(\mathbf{b})=(1 / \mathrm{B}) \Sigma_{\mathrm{r}} \mathbf{b}(\mathrm{r})-\mathbf{b}
$$

Note: In the OLS case, \mathbf{b} is an unbiased estimator, but as an estimate, the bias can be non-zero. This estimate must be analyzed along the SE's.

Example: In the previous bootstrapping correlations exercise, R displays the bias:
Bootstrap Statistics :

	original	bias	std. error
t1*	0.5898636	-0.001244376	0.03455582.

Bootstrapping: Linear Model - Var[b]

Some assumptions in the CLM are not reasonable -for example, (A3) assuming homoscedasticity or no serial correlation, or if (A5) assuming normality. If we assuming normality (A5), we also assume the sampling distribution of \mathbf{b}. But if data is not normal, the normality of the sampling distribution of b only apply for large N-i.e., asymptotic results.

We can use a bootstrap to estimate the sampling distribution of \mathbf{b}. It can give us a better idea of the small sample distribution. Then, we can estimate the $\operatorname{Var}[\mathbf{b}]$.

Monte Carlo (MC=repeated sampling) method:

1. Estimate model using full sample (of size T) \Rightarrow we get \mathbf{b}
2. Repeat B times:

- Draw T observations from the sample, with replacement
- Estimate β with $\mathbf{b}(\mathbf{r})$.

3. Estimate variance with

$$
\mathbf{V}_{\mathbf{b o o t}}=(1 / \mathrm{B})[\mathbf{b}(\mathrm{r})-\mathbf{b}][\mathbf{b}(\mathrm{r})-\mathbf{b}]^{\prime}
$$

- In the case of one parameter, say \mathbf{b}_{1} : Estimate variance with

$$
\operatorname{Var}_{\text {boot }}\left[\mathbf{b}_{1}\right]=(1 / \mathrm{B}) \Sigma_{\mathrm{r}}\left[\mathbf{b}_{1}(\mathrm{r})-\mathbf{b}_{1}\right]^{2}
$$

You can also estimate $\operatorname{Var}\left[\mathbf{b}_{1}\right]$ as the variance of \mathbf{b}_{1} in the bootstrap

$$
\operatorname{Var}_{\text {boot }}\left[\mathbf{b}_{1}\right]=(1 / \mathrm{B}) \Sigma_{\mathrm{r}}\left[\mathbf{b}_{1}(\mathrm{r})-\operatorname{mean}\left(\mathbf{b}_{1-\mathrm{r}}\right)\right]^{2}
$$

$$
\operatorname{mean}\left(\mathbf{b}_{1-r}\right)=(1 / B) \Sigma_{\mathrm{r}} \mathbf{b}_{1}(\mathbf{r})
$$

Note: Obviously, this method for obtaining standard errors of parameters is most useful when no formula has been worked out for the standard error (SE), or the formula is complicated -for example, in some 2-step estimation procedures-, or the assumptions behind the formula are not realistic.

Bootstrapping: Linear Model - Estimating Var[b]

Example: We bootstrap the SE for \mathbf{b} for IBM returns using the 3 FF Factor Model. We use the R package lmboot, which needs to be installed with the install.packages() function.

```
library(lmboot) # need to run before
install.packages("lmboot")
y <- ibm_x
x <- cbind(x0, Mkt_RF, SMB, HML)
dat_yx <- data.frame(y,x) # lmboot needs an R data frame. We make one.
ff3_b <- paired.boot(y ~ x-1, data=dat_yx, B = sim_size)
ff3_b$origEstParam # print OLS results ("original estimates")
> ff3_b$origEstParam
    [,1]
x -0.005088944
xMkt_RF 0.908298898
xSMB -0.212459588
xHML -0.171500223
# Mean values for b
mean(ff3_b$bootEstParam[,1]) # print mean of bootstrap samples for constant
mean(ff3_b$bootEstParam[,2]) # print mean of bootstrap samples for Mkt_RF
mean(ff3_b$bootEstParam[,3]) # print mean of bootstrap samples for SMB
mean(ff3_b$bootEstParam[,4]) # print mean of bootstrap samples for HML
\# Statistics for sampling distribution of \(\mathbf{b}\)
summary(ff3_b$bootEstParam) # distribution of b
```

```
# SD of parameter vector b
sd(ff3_b$bootEstParam[,1])
sd(ff3_b$bootEstParam[,2])
sd(ff3_b$bootEstParam[,3])
sd(ff3_b$bootEstParam[,4])
# bootstrap bias
ff3_b$origEstParam[1] - mean(ff3_b$bootEstParam[,1])
ff3_b$origEstParam[2] - mean(ff3_b$bootEstParam[,2])
ff3_b$origEstParam[3] - mean(ff3_b$bootEstParam[,3])
ff3_b$origEstParam[4] - mean(ff3_b$bootEstParam[,4])
> summary(ff3_b$bootEstParam)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{x} & xMkt_RF & \multicolumn{2}{|c|}{xSMB} & \multicolumn{2}{|r|}{xHML} \\
\hline Min. & :-0.012159 & Min. & :0.7115 & Min. & :-0.5175 & Min. & :-0.4699 \\
\hline 1st Qu. & :-0.006731 & 1st Qu. & :0.8669 & 1st Qu. & :-0.2890 & 1st Qu. & :-0.2362 \\
\hline Median & :-0.005074 & Median & :0.9087 & Median & :-0.2185 & Median & :-0.1690 \\
\hline Mean & :-0.005008 & Mean & :0.9068 & Mean & :-0.2125 & Mean & :-0.1710 \\
\hline 3rd Qu. & :-0.003273 & 3rd Qu & :0.9492 & 3rd Qu & :-0.1415 & 3rd Qu & :-0.1086 \\
\hline Max. & : 0.002293 & Max. & :1.0854 & Max. & : 0.1909 & Max. & : 0.2477 \\
\hline
\end{tabular}
> sd(ff3_b$bootEstParam[,1])
[1] 0.002493708
> sd(ff3_b$bootEstParam[,2])
[1] 0.06132218
> sd(ff3_b$bootEstParam[,3])
[1] 0.1108
> sd(ff3_b$bootEstParam[,4])
[1] 0.09729972
```

- Comparing OLS and Bootstrap

	OLS		Bootstrap		Bias $(2)-(1)$
	Coeff. (1)	S.E.	Coeff. (2)	S.E.	
x	-0.00509	0.00249	-0.00501	0.00249	$8.0765 \mathrm{e}-05$
x xkt_RF	0.90829	0.05672	$\mathbf{0 . 9 0 6 8 4}$	$\mathbf{0 . 0 6 1 3 2}$	-0.0014571
x xMB	-0.21246	0.08411	-0.21245	$\mathbf{0 . 1 1 0 8 0}$	$1.9914 \mathrm{e}-06$
$x H M L$	-0.17150	0.08468	$-\mathbf{0 . 1 7 0 9 9}$	$\mathbf{0 . 0 9 7 3 0}$	0.0005133

Conclusion: Very similar results for the coefficients, a bit different for S.E. Usually, we rely on the bigger S.E., in this case, for inferences we'd rely on the Booststrap S.E.

```
> ff3_b$bootEstParam[1:10,] # print the first 10 of B=1,000 bootstrap samples
    x xMkt_RF xSMB xHML
    [1,] -6.109007e-03 0.9186830-0.1299534100 -0.163421636
    [2,] -1.757503e-03 0.8333006-0.2067565390-0.147604991
    [3,] -3.907573e-03 0.9746878-0.2870744815 -0.169189619
    [4,] 1.596103e-03 0.9185157-0.2937731120-0.296972497
    [5,] -8.409239e-03 0.7309406 -0.0681714313-0.149883639
    [6,] -1.998929e-03 0.9133751-0.3001713380-0.315913280
    [7,] -6.289286e-03 0.9441856-0.2276894034-0.058924929
    [8,] -5.533354e-03 0.8210057-0.2221866298-0.078512341
    [9,] -6.152301e-03 1.0389917-0.2592958758-0.237930809
    [10,] -3.778058e-03 0.9544829-0.1859554067-0.217702583
```


From the B samples, we compute variances and SD as usual. II

Bootstrapping: Some Remarks

Question: How reliable is bootstrapping?

- There is still no consensus on how far it can be applied, but for now nobody is going to dismiss your results for using it.
- There is a general agreement that for normal and close to normal (and symmetric) distributions it works well.
- Bootstrapping is more problematic for skewed distributions.
- It can be unreliable for situations where there are not a lot of observations. Typical example in finance: estimation of quantiles in the tails of returns distributions.

Note: We presented two simple examples. There are many bootstraps variations. We will not cover them.

Lecture 5 - Testing in the CLM

Review - OLS Assumptions

CLM Assumptions
(A1) DGP: $\mathbf{y}=\mathbf{X} \beta+\boldsymbol{\varepsilon}$ is correctly specified.
(A2) $\mathrm{E}[\boldsymbol{\varepsilon} \mid \mathbf{X}]=0$
(A3) $\operatorname{Var}[\varepsilon \mid \mathbf{X}]=\sigma^{2} \mathbf{I}_{T}$
(A4) \mathbf{X} has full column $\operatorname{rank}-\operatorname{rank}(\mathbf{X})=k$-, where $\mathrm{T} \geq k$.
Issues for this lecture:
Q: What happens when we impose restrictions to the DGP (A1)?
Q: How do we test restrictions in the context of OLS estimation?

OLS Subject to Linear Restrictions

Restrictions: Theory imposes certain restrictions on parameters and provide the foundation of several tests. In this Lecture, we only consider linear restrictions, written as $\mathbf{R} \boldsymbol{\beta}=\mathbf{q}$.
The dimension of \mathbf{R} is $J \mathrm{x} k$, where J is the number of restrictions, and k is the number of parameters. $\boldsymbol{\beta}$, as usual, is a $k \times 1$ column vector. Then, \mathbf{q} is a $J \times 1$ column vector.

Examples:

(1) Dropping variables from the equation. That is, certain coefficients in \mathbf{b} forced to equal 0 . For example, in the CAPM, we imposee that variables $\mathbf{x}_{3}=S M B$ and $\mathbf{x}_{4}=H M L$ are not part of the model. That is, we impose $\beta_{S M B}=0$ and $\beta_{H M L}=0$.Using the above notation:

$$
\mathbf{R} \boldsymbol{\beta}=\mathbf{q} \quad \Rightarrow\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] *\left[\begin{array}{c}
\beta_{1} \\
\beta_{M K t} \\
\beta_{S M B} \\
\beta_{H M L}
\end{array}\right]=\left[\begin{array}{c}
\beta_{S M B} \\
\beta_{H M L}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

We have two restrictions ($J=2$): $\beta_{S M B}=0 \& \beta_{H M L}=0$. We have $k=4$ parameters.
$\Rightarrow \mathbf{R}$ is a 2×4 matrix, $\boldsymbol{\beta}$ is a 4×1 vector, and \mathbf{q} is a 2×1 vector.
Note: The restrcitions make the FF model into the traditional CAPM.
(2) Adding up conditions: Sums of certain coefficients must equal fixed values. Adding up conditions in demand systems. In a CAPM setting, the sum of all cross-sectional $\beta_{i}{ }^{\text {' }}$ s should be equal to 1 . For example, in the 3 Fama-French factor model, we force $\beta_{S M B}+\beta_{H M L}=1$.

$$
\mathbf{R} \boldsymbol{\beta}=\mathbf{q} \quad \Rightarrow\left[\begin{array}{llll}
0 & 0 & 1 & 1
\end{array}\right] *\left[\begin{array}{c}
\beta_{1} \\
\beta_{M k t} \\
\beta_{S M B} \\
\beta_{H M L}
\end{array}\right]=\beta_{S M B}+\beta_{H M L}=1
$$

We have one restrictions $(J=1): \beta_{S M B}+\beta_{H M L}=1$. We have $k=4$ parameters.

$$
\Rightarrow \mathbf{R} \text { is a } 1 \times 4 \text { matrix (a row vector), } \boldsymbol{\beta} \text { is a } 4 \times 1 \text { vector, and } \mathbf{q} \text { is a scalar. }
$$

(3) Equality restrictions: Certain coefficients must equal other coefficients. Using real vs. nominal variables in equations. For example, in the 3 Fama-French factor model, we force $\beta_{\text {SMB }}$ $=\beta_{H M L}$.

$$
\mathbf{R} \boldsymbol{\beta}=\mathbf{q} \quad \Rightarrow\left[\begin{array}{llll}
0 & 0 & 1 & -1
\end{array}\right] *\left[\begin{array}{c}
\beta_{1} \\
\beta_{M k t} \\
\beta_{S M B} \\
\beta_{H M L}
\end{array}\right]=0
$$

We have one restrictions $(J=1): \beta_{S M B}+\beta_{H M L}=1$. We have $k=4$ parameters.
$\Rightarrow \mathbf{R}$ is a 1×4 matrix (a row vector), β is a 4×1 vector, and \mathbf{q} is a scalar. If

- Common formulation: We minimize the error sum of squares, subject to the linear restrictions. That is,

$$
\operatorname{Min}_{\mathbf{b}}\left\{\mathrm{S}\left(\mathrm{x}_{\mathrm{i}}, \theta\right)=\Sigma_{\mathrm{i}} \varepsilon_{\mathrm{i}}^{2}=\boldsymbol{\varepsilon}^{\prime} \boldsymbol{\varepsilon}=(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})\right\} \quad \text { s.t. } \mathbf{R} \boldsymbol{\beta}=\mathbf{q}
$$

In practice, restrictions can usually be imposed by solving them out. Suppose we have a model:

$$
y_{i}=\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\beta_{3} x_{i 3}+\varepsilon_{i}
$$

(1) Dropping variables -i.e., force a coefficient to equal zero, say β_{3}.

Problem: $\quad \operatorname{Min} \beta \sum_{i=1}^{n}\left(y_{i}-\beta_{1} x_{i 1}-\beta_{2} x_{i 2}-\beta_{3} x_{i 3}\right)^{2}$ s.t. $\beta_{3}=0$

$$
\operatorname{Min}_{\beta} \sum_{i=1}^{n}\left(y_{i}-\beta_{1} x_{i 1}-\beta_{2} x_{i 2}\right)^{2}
$$

(2) Adding up. Suppose we impose: $\beta_{1}+\beta_{2}+\beta_{3}=1$. Then, $\beta_{3}=1-\beta_{1}-\beta_{2}$.

Substituting in model:

$$
\left(\boldsymbol{y}-\boldsymbol{x}_{1}\right)=\beta_{1}\left(\boldsymbol{x}_{1}-\boldsymbol{x}_{3}\right)+\beta_{2}\left(\boldsymbol{x}_{2}-\boldsymbol{x}_{3}\right)+\boldsymbol{\varepsilon} .
$$

Problem: $\operatorname{Min} \beta \sum_{i=1}^{n}\left(\left(y_{i}-x_{i 3}\right)-\beta_{1}\left(x_{i 1}-x_{i 3}\right)-\beta_{2}\left(x_{i 2}-x_{i 3}\right)\right)^{2}$
(3) Equality. Suppose we impose: $\beta_{2}=\beta_{3}$.

Substituting in model:

$$
y=\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{2} x_{3}+\varepsilon=\beta_{1} x_{1}+\beta_{2}\left(\mathrm{x}_{2}+x_{3}\right)+\varepsilon
$$

Problem: $\operatorname{Min}_{\beta} \sum_{i=1}^{n}\left(y_{i}-\beta_{1} x_{i 1}-\beta_{2} x_{i 2}-\beta_{3} x_{i 3}\right)^{2}$ s.t. $\beta_{2}=\beta_{3}$ $\operatorname{Min} \beta \sum_{i=1}^{n}\left(y_{i}-\beta_{1} x_{i 1}-\beta_{2}\left(x_{i 2}+x_{i 3}\right)\right)^{2}$

- Before setting the general restricted LS problem, we look at the simplest case: one explanatory variable (x) and one restriction $(r \beta=q)$.

Then, we set up the Lagrangean (recall values of Lagrange multiplier', λ, play no role):

$$
\operatorname{Min}_{\beta, \lambda} L(\beta, \lambda)=\sum_{i=1}^{n}\left(y_{i}-x_{i} \beta\right)^{2}+2 \lambda(r \beta-\mathrm{q})
$$

We take first derivatives of $L(\beta, \lambda)$ with respect to β, λ :

$$
\begin{aligned}
& \Rightarrow \quad\left.\frac{\partial L(\beta, \lambda)}{\partial \beta}=-2 \sum_{i}^{T}\left(y_{i}-x_{i} \beta\right)\right)\left(-x_{i}\right)+2 \lambda r \\
& \frac{\partial L(\beta, \lambda)}{\partial \lambda}=2(r \beta-q)
\end{aligned}
$$

Then, the f.o.c. are:

$$
\begin{array}{ll}
\Rightarrow-\sum_{i}^{T}\left(y_{i}-x_{i} \mathrm{~b}^{*}\right)\left(x_{i}\right)+\lambda r=0 & \Rightarrow \sum_{i}^{T}\left(y_{i} x_{i}-x_{i}^{2} \mathrm{~b}^{*}\right)=\lambda r \\
\Rightarrow \quad \lambda\left(r \mathrm{~b}^{*}-\mathrm{q}\right)=0 & \Rightarrow r \mathrm{~b}^{*}-\mathrm{q}=0
\end{array}
$$

From the $1^{\text {st }}$ equation:

$$
\begin{aligned}
\sum_{i}^{T} y_{i} x_{i}-b^{*} \sum_{i}^{T} x_{i}^{2}=\boldsymbol{x}^{\prime} \boldsymbol{y}-b^{*}\left(\boldsymbol{x}^{\prime} \boldsymbol{x}\right)^{-1}=\lambda r \quad \Rightarrow \mathrm{~b}^{*} & =\left(\boldsymbol{x}^{\prime} \boldsymbol{x}\right)^{-1} \mathbf{x}^{\prime} \boldsymbol{y}-\left(\boldsymbol{x}^{\prime} \boldsymbol{x}\right)^{-1} \lambda r \\
& =\mathrm{b}-\left(\boldsymbol{x}^{\prime} \boldsymbol{x}\right)^{-1} \lambda r
\end{aligned}
$$

$\mathrm{b}^{*}=\mathrm{b}-r\left(\boldsymbol{x}^{\prime} \boldsymbol{x}\right)^{-1} \lambda \quad \Rightarrow$ Restricted OLS $=\mathrm{OLS}+$ "correction"
Premultiplying both sides by r and then subtract q :

$$
\begin{aligned}
r \mathrm{~b}^{*}-q & =\mathrm{rb}-r^{2}\left(\boldsymbol{x}^{\prime} \boldsymbol{x}\right)^{-1} \lambda-q \\
0 & =-r^{2}\left(\boldsymbol{x}^{\prime} \boldsymbol{x}\right)^{-1} \lambda+(r \mathrm{~b}-q)
\end{aligned}
$$

Solving for $\lambda \quad \Rightarrow \quad \lambda=\left[r^{2}\left(\mathbf{x}^{\prime} \mathbf{x}\right)^{-1}\right]^{-1}(r \mathrm{~b}-q)$
Substituting in $\mathrm{b}^{*} \quad \Rightarrow \mathrm{~b}^{*}=\mathrm{b}-\left(\boldsymbol{x}^{\prime} \boldsymbol{x}\right)^{-1} r\left[r^{2}\left(\boldsymbol{x}^{\prime} \boldsymbol{x}\right)^{-1}\right]^{-1}(r \mathrm{~b}-q)$
This is the Restricted OLS estimator.

- Properties of Restricted OLS.

Property 1. Taking expectations of b^{*} :

$$
\begin{aligned}
\mathrm{E}\left[\mathrm{~b}^{*} \mid \mathrm{X}\right] & =\mathrm{E}[\mathrm{~b} \mid \mathrm{X}]-\left(\mathbf{x}^{\prime} \mathbf{x}\right)^{-1} r\left[r^{2}\left(\mathbf{x}^{\prime} \mathbf{x}\right)^{-1}\right]^{-1} \mathrm{E}[(r \mathrm{~b}-q) \mid \mathrm{X}] \\
& =\beta-\left(\mathbf{x}^{\prime} \mathbf{x}\right)^{-1} r\left[r^{2}\left(\mathbf{x}^{\prime} \mathbf{x}\right)^{-1}\right]^{-1}(r \beta-q)
\end{aligned}
$$

Implications:
If the restriction is true-i.e., $(r \beta=q) \quad \Rightarrow \mathrm{E}\left[\mathrm{b}^{*} \mid \mathrm{X}\right]=\beta$
If the restriction is not true-i.e., $(r \beta \neq q) \quad \Rightarrow \mathrm{E}\left[\mathrm{b}^{*} \mid \mathrm{X}\right] \neq \beta$
Then, if theory imposes a correct restriction, then, b^{*} is unbiased:

$$
E\left[b^{*} \mid X\right]=\beta
$$

In practice, if restriction is true, the restricted and unrestricted estimators should be similar.
Note: If theory is correct, the expected shadow price is 0 !

$$
\mathrm{E}[\lambda \mid \mathrm{X}]=\left[r^{2}\left(\mathbf{x}^{\prime} \mathbf{x}\right)^{-1}\right]^{-1} \mathrm{E}[(r \mathrm{~b}-q) \mid \mathrm{X}]=0
$$

That is, you would pay nothing to release the restriction, $r \beta=q$.

Property 2. We compute the $\operatorname{Var}\left[\mathrm{b}^{*}\right]$. It can be shown that

$$
\begin{aligned}
& \operatorname{Var}\left[\mathrm{b}^{*} \mid \mathrm{X}\right]=\operatorname{Var}[\mathrm{b} \mid \mathrm{X}]-\sigma^{2}\left(\mathbf{x}^{\prime} \mathbf{x}\right)^{-1} r\left[r^{2}\left(\mathbf{x}^{\prime} \mathbf{x}\right)^{-1}\right]^{-1} r\left(\mathbf{x}^{\prime} \mathbf{x}\right)^{-1} \\
& \Rightarrow \operatorname{Var}[\mathrm{~b} \mid \mathrm{X}]-\operatorname{Var}\left[\mathrm{b}^{*} \mid \mathrm{X}\right]=\sigma^{\mathbf{2}}\left(\mathbf{x}^{\prime} \mathbf{x}\right)^{-1} r\left[r^{2}\left(\mathbf{x}^{\prime} \mathbf{x}\right)^{-1}\right]^{-1} r\left(\mathbf{x}^{\prime} \mathbf{x}\right)^{-1}>0 \text {. }
\end{aligned}
$$

\Rightarrow The restricted OLS estimator is more efficient!
Remark from Properties 1 and 2: It is common to select an estimator based on the MSE $(=\mathrm{RSS} / T)$. The one with the lowest MSE is said to be more "precise."

We can decompose the MSE of an estimator, $\hat{\theta}$, as:

$$
\operatorname{MSE}[\hat{\theta}]=\operatorname{Variance}[\hat{\theta}]+\text { Squared } \operatorname{bias}[\hat{\theta}]
$$

For an unbiased estimator, like $\mathbf{b} \Rightarrow \operatorname{MSE}[\mathbf{b}]=\operatorname{Var}[\mathbf{b} \mid \mathbf{X}]$

- Back to \mathbf{b}^{*}. Suppose the theory is incorrect $\Rightarrow \mathbf{b}^{*}$ is biased.

There may be situations (small bias, but much lower variance) where \mathbf{b}^{*} is more "precise" (lower MSE) than \mathbf{b}. It is possible that a practitioner may prefer imposing a wrong H_{0} to get a better MSE.

- For the general case, with k explanatory variables and J restrictions, which we write as:

$$
\mathbf{R} \boldsymbol{\beta}=\mathbf{q}
$$

we have a programming problem:

$$
\text { Minimize wrt } \boldsymbol{\beta} \quad L^{*}=(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta}) \quad \text { s.t. } \mathbf{R} \boldsymbol{\beta}=\mathbf{q}
$$

Quadratic programming problem: Minimize a quadratic criterion subject to a set of linear restrictions. We solve this minimizations problem using the Lagrange multiplier method.

We form the Lagrangean (the 2 is for convenience, since the value of $\boldsymbol{\lambda}$ is irrelevant for extrema):

$$
\operatorname{Min}_{\mathbf{b}, \lambda} \quad L^{*}=(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})+2 \lambda(\mathbf{R} \boldsymbol{\beta}-\mathbf{q})
$$

f.o.c.:

$$
\begin{aligned}
& \partial L^{*} / \partial \mathbf{b}^{\prime}=-2 \mathbf{X}^{\prime}\left(\mathbf{y}-\mathbf{X} \mathbf{b}^{*}\right)+2 \mathbf{R}^{\prime} \lambda=\mathbf{0} \Rightarrow-\mathbf{X}^{\prime}\left(\mathbf{y}-\mathbf{X} \mathbf{b}^{*}\right)+\mathbf{R}^{\prime} \lambda=\mathbf{0} \\
& \partial L^{*} / \partial \lambda=2\left(\mathbf{R b}^{*}-\mathbf{q}\right)=\mathbf{0} \quad \Rightarrow\left(\mathbf{R} \mathbf{b}^{*}-\mathbf{q}\right)=\mathbf{0}
\end{aligned}
$$

where \mathbf{b}^{*} is the restricted OLS estimator.
f.o.c.:

$$
\begin{align*}
& -\mathbf{X}^{\prime}\left(\mathbf{y}-\mathbf{X} \mathbf{b}^{*}\right)+\mathbf{R}^{\prime} \lambda=\mathbf{0} \tag{1}\\
& \left(\mathbf{R} \mathbf{b}^{*}-\mathbf{q}\right)=\mathbf{0} \tag{2}
\end{align*}
$$

where \mathbf{b}^{*} is the restricted OLS estimator.
Then, from the $1^{\text {st }}$ equation (and assuming full rank for \mathbf{X}):

$$
\begin{aligned}
-\mathbf{X}^{\prime} \mathbf{y}+\mathbf{X}^{\prime} \mathbf{X} \mathbf{b}^{*}+\mathbf{R}^{\prime} \lambda=\mathbf{0} \Rightarrow \mathbf{b}^{*} & =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}-\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime} \lambda \\
& =\mathbf{b}-\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime} \lambda
\end{aligned}
$$

Premultiply both sides by \mathbf{R} and then subtract \mathbf{q}

$$
\begin{aligned}
& \mathbf{R} \mathbf{b}^{*}=\mathbf{R b}-\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime} \lambda \\
& \mathbf{R} \mathbf{b}^{*}-\mathbf{q}=\mathbf{R b}-\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime} \lambda-\mathbf{q} \\
& \mathbf{0} \quad=-\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime} \boldsymbol{\lambda}+(\mathbf{R b}-\mathbf{q})
\end{aligned}
$$

Solving for $\lambda \quad \Rightarrow \quad \lambda=\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1}(\mathbf{R b}-\mathbf{q})$
Substituting in $\mathbf{b}^{*} \quad \Rightarrow \mathbf{b}^{*}=\mathbf{b}-\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1}(\mathbf{R} \mathbf{b}-\mathbf{q})$
Note: Restricted OLS $=$ Unrestricted OLS + "correction"

Restricted Least Squares

Question: How do linear restrictions affect the properties of the least squares estimator?
Restricted LS estimator: $\mathbf{b}^{*}=\mathbf{b}-\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1}(\mathbf{R b}-\mathbf{q})$

- Properties:

1. Unbiased? Yes, if Theory is correct!

$$
\mathrm{E}\left[\mathbf{b}^{*} \mid \mathbf{X}\right]=\boldsymbol{\beta}-\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1} \mathrm{E}[(\mathbf{R} \mathbf{b}-\mathbf{q}) \mid \mathbf{X}]=\boldsymbol{\beta}
$$

But, if Theory is incorrect: $\mathrm{E}[(\mathbf{R b}-\mathbf{q}) \mid \mathbf{X}] \neq \mathbf{0} \quad \Rightarrow \mathrm{E}\left[\mathbf{b}^{*} \mid \mathbf{X}\right] \neq \boldsymbol{\beta}$.
2. Efficiency?

$$
\begin{aligned}
& \operatorname{Var}\left[\mathbf{b}^{*} \mid \mathbf{X}\right]=\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}-\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1} \mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \\
& \operatorname{Var}\left[\mathbf{b}^{*} \mid \mathbf{X}\right]=\operatorname{Var}[\mathbf{b} \mid \mathbf{X}]-\text { a nonnegative definite matrix }<\quad \operatorname{Var}[\mathbf{b} \mid \mathbf{X}]
\end{aligned}
$$

3. \mathbf{b}^{*} may be more "precise," where precision is measured by the MSE (=RSS/T).

We can decompose the MSE of an estimator, $\hat{\theta}$, as:

$$
\operatorname{MSE}[\hat{\theta}]=\operatorname{Variance}[\hat{\theta}]+\text { Squared } \operatorname{bias}[\hat{\theta}]
$$

For an unbiased estimator, say \mathbf{b}, then, $\operatorname{MSE}[\mathbf{b}]=\operatorname{Var}[\mathbf{b} \mid \mathbf{X}]$
Suppose the theory is incorrect. Then, \mathbf{b}^{*} is biased. There may be situations (small bias, but much lower variance) where \mathbf{b}^{*} is more "precise" (lower MSE) than \mathbf{b}. A practitioner may prefer imposing a wrong H_{0} to get a better MSE.

Restricted Least Squares - Interpretation

1. $\mathbf{b}^{*}=\mathbf{b}-\mathbf{C m}, \quad \mathbf{m}=$ the "discrepancy vector" $\mathbf{R b}-\mathbf{q}$.

Note: If $\mathbf{m}=\mathbf{0} \Rightarrow \mathbf{b}^{*}=\mathbf{b} . \quad(\mathrm{Q}$: What does $\mathbf{m}=\mathbf{0}$ mean?)
2. $\lambda=\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1}(\mathbf{R b}-\mathbf{q})=\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1} \mathbf{m}$

When does $\boldsymbol{\lambda}=\mathbf{0}$? We usually think of $\boldsymbol{\lambda}$ as a "shadow price."
3. Combining results: $\mathbf{b}^{*}=\mathbf{b}-\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime} \lambda$
4. We can show that RSS never decreases with restrictions:

$$
\begin{aligned}
& \mathbf{e}^{\prime} \mathbf{e}=(\mathbf{y}-\mathbf{X b})^{\prime}(\mathbf{y}-\mathbf{X b}) \leq \mathbf{e}^{* \prime} \mathbf{e}^{*}=\left(\mathbf{y}-\mathbf{X} \mathbf{b}^{*}\right)^{\prime}\left(\mathbf{y}-\mathbf{X b}^{*}\right) \\
& \Rightarrow \text { Restrictions cannot increase } \mathrm{R}^{2} \Rightarrow \mathrm{R}^{2} \geq \mathrm{R}^{2^{*}}
\end{aligned}
$$

- Two cases
- Case 1: Theory is correct: $\mathbf{R} \boldsymbol{\beta}-\mathbf{q}=\mathbf{0}$ (restrictions hold). \mathbf{b}^{*} is unbiased \& $\operatorname{Var}\left[\mathbf{b}^{*} \mid \mathbf{X}\right] \leq \operatorname{Var}[\mathbf{b} \mid \mathbf{X}]$
- Case 2: Theory is incorrect: $\mathbf{R} \boldsymbol{\beta}-\mathbf{q} \neq \mathbf{0}$ (restrictions do not hold). \mathbf{b}^{*} is biased \& $\operatorname{Var}\left[\mathbf{b}^{*} \mid \mathbf{X}\right] \leq \operatorname{Var}[\mathbf{b} \mid \mathbf{X}]$.
- Interpretation
- The theory gives us information.

Bad information produces bias (away from "the truth.")
Any information, good or bad, makes us more certain of our answer. In this context, any information reduces variance.

Testing: Parameter vs Diagnostic

So far, the tests discussed in Lectures $3 \& 4$, involved parameters. We call these types of testing parameter tests.

When we tests the assumptions behind the CLM, for example, (A5), we perform a diagnostic tests.

- Parameter testing: We test economic H_{0} 's.

Example: Test $\beta_{k}=0 \quad$-say, there is no size effect on the expected return equation. \mathbb{I}

- Diagnostic testing: We test assumptions behind the model. In our case, assumptions (A1)-(A5) in the CLM.
Example: Test $\mathrm{E}[\varepsilon \mid \mathrm{X}]=0 \quad$-i.e., the residuals are zero-mean, white noise distributed errors. \mathbb{I}

Review - Significance Testing

Fisher's significance testing procedure relies on the p-value: the probability of observing a result at least as extreme as the test statistic, under H_{0}.

- Fisher's Idea

1) Form $H_{0} \&$ decide on a significance level $(\alpha \%)$ to compare your test results.
2) Find $T(X)$. Know (or derive) the distribution of $T(X)$ under H_{0}.
3) Collect a sample of data $X=\left\{x_{1}, x_{2}, \ldots, x_{T}\right\}$.

Compute the test-statistics $T(X)$ used to test $H_{0} \Rightarrow$ Report its p-value.
4) Rule: If p-value $<\alpha$ (say, 5%) \Rightarrow test result is significant: Reject H_{0}.

If the results are "not significant," no conclusions are reached (no learning here).
\Rightarrow Go back gather more data or modify model.

Review - Testing Only One Parameter

We are interested in testing a hypothesis about one parameter in our linear model: $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$

1. Set H_{0} and H_{1} (about only one parameter): $\quad \mathrm{H}_{0}: \beta_{k}=\beta_{k}^{0}$

$$
\mathrm{H}_{1}: \beta_{k} \neq \beta_{k}^{0}
$$

2. Appropriate $\mathrm{T}(X)$: t-statistic. To derive the distribution of the test under H_{0}, we will rely on assumption (A5) $\boldsymbol{\varepsilon} \mid \mathbf{X} \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}_{\mathrm{T}}\right)$ (otherwise, results are only asymptotic).

Let $\quad \mathrm{b}_{k}=$ OLS estimator of β_{k}

$$
\tilde{\operatorname{SE}}\left[\mathrm{b}_{k} \mid \mathbf{X}\right]=\operatorname{sqrt}\left\{\left[s^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right]_{k k}\right\}=s_{b, k}
$$

From assumption (A5), we know that

$$
\begin{gathered}
\mathrm{b}_{k} \mid \mathbf{X} \sim \mathrm{N}\left(\beta_{k}, \mathrm{v}_{k}^{2}\right) \quad \Rightarrow \text { Under } \mathrm{H}_{0}: \mathrm{b}_{k} \mid \mathbf{X} \sim \mathrm{N}\left(\beta_{k}^{0}, s b, k^{2}\right) . \\
\Rightarrow \text { Under } \mathrm{H}_{0}: \left.\quad t_{k}=\frac{b_{k}-\beta_{k}^{0}}{s_{b, k}} \right\rvert\, \mathbf{X} \sim t_{T-k} .
\end{gathered}
$$

3. Compute $t_{k}, \hat{\mathrm{t}}$, using $\mathrm{b}_{k}, \beta_{k}^{0}, s$, and $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$. Get p-value $(\hat{\mathrm{t}})$.
4. Rule: Set an α level. If p-value (at $)<\alpha \quad \Rightarrow$ Reject $H_{0}: \beta_{k}=\beta_{k}^{0}$

Alternatively, if $|\hat{\mathrm{t}}|>\mathrm{t}_{T-k,(1-\alpha) / 2} \quad \Rightarrow$ Reject $\mathrm{H}_{0}: \beta_{k}=\beta_{k}^{0}$.

Review - Testing Only One Parameter: t-value

Special case: $H_{0}: \beta_{k}=0$
$H_{1}: \beta_{k} \neq 0$.
Then,

$$
t_{k}=\frac{b_{k}}{s_{b, k}} \quad \Rightarrow t_{k} \sim t_{T-k}
$$

In this case, we call t_{k} the t-value or t-ratio.
Usually, $\alpha=5 \%$, then if $\left|\widehat{t}_{k}\right|>1.96 \approx 2$, we say the coefficient b_{k} is "significant."

Review - Confidence Intervals

The goal of the confidence intervals (C.I.) is to set the coverage probability to equal a ($1-\alpha$) \% pre-specified target.

When we know the distribution of point estimate, it is easy to construct a C.I. Under the usual assumptions for b_{k} we have:
$\mathrm{C}_{\mathrm{n}}=\left[b_{k}-\mathrm{t}_{T-k, 1-\alpha / 2} *\right.$ Estimated $\operatorname{SE}\left(b_{k}\right), b_{k}+\mathrm{t}_{T-k,(1-\alpha) / 2} *$ Estimated $\left.\operatorname{SE}\left(b_{k}\right)\right]$
This C.I. is symmetric around b_{k} : length is proportional to $\mathrm{SE}\left(\mathrm{b}_{k}\right)$.
Usual α levels and $t_{T-k,\left(1-\frac{\alpha}{2}\right)}$-when $T>30$, (usual case) $\mathrm{t}_{T-k,\left(1-\frac{\alpha}{2}\right)} \approx z_{(1--\alpha / 2)}$

$$
\begin{aligned}
& \alpha=5 \% \text {, then } z_{(1-\alpha / 2)}=1.96 . \\
& \alpha=2 \% \text {, then } z_{(1-\alpha / 2)}=2.33 . \\
& \alpha=1 \% \text {, then } z_{(1-\alpha / 2)}=2.58 .
\end{aligned}
$$

R Note: In R, we get $\alpha=5 \%$, then $z(1-\alpha / 2)=1.96$, using qnorm(0.975).

Testing: The Expectation Hypothesis (EH)

Example: EH states that forward/futures prices are good predictors of future spot rates:

$$
\mathrm{E}_{\mathrm{t}}\left[\mathrm{~S}_{t+T}\right]=\mathrm{F}_{t, T}
$$

Implication of $\mathrm{EH}: \quad \mathrm{S}_{t+T}-\mathrm{F}_{t, T}=$ unpredictable.
That is, $\quad \mathrm{E}_{\mathrm{t}}\left[\mathrm{S}_{t+T}-\mathrm{F}_{t, T}\right]=\mathrm{E}_{\mathrm{t}}\left[\varepsilon_{t}\right]=0$!
Empirical tests of the EH are based on a regression:

$$
\left(\mathrm{S}_{t+T}-\mathrm{F}_{t, T}\right) / \mathrm{S}_{t}=\alpha+\beta \mathrm{Z}_{t}+\varepsilon_{t}, \quad\left(\text { where } \mathrm{E}_{\mathrm{t}}\left[\varepsilon_{t}\right]=0\right)
$$

where Z_{t} represents any economic variable that might have power to explain S_{t}, for example, interest rate differentials, $\left(i_{d}-i_{f}\right)$.

Then, under EH, $\quad \mathrm{H}_{0}: \alpha=0$ and $\beta=0$.
vs $\quad H_{1}: \alpha \neq 0$ and/or $\beta \neq 0$.

- We will informally test EH using exchange rates (USD/GBP), 3-mo forward rates and 3-mo interest rates.

SF_da <- read.csv("https://www.bauer.uh.edu/rsusmel/4397/SpFor_prices.csv", head=TRUE, sep=",")
summary(SF_da)
x_date $<-$ SF_da $^{-}$da\$Date
x_S $<-$ SF_da\$GBPSP
x_F3m <- SF_da\$GBP3M
i_us3 <- SF_da\$Dep_USD3M
i_uk3 <- SF_da\$Dep_UKP3M
T <- length(x_S)
prem <- $\left(x _S[-1]-x_{-} F 3 m[-T]\right) / x_{-} S[-1]$
int_dif $<-($ i_us3 - i_uk3)/100
$\mathrm{y}<-$ prem
$\mathrm{x}<-$ int_dif[-T]
fit_eh $<-\operatorname{lm}(\mathrm{y} \sim \mathrm{x})$

- We do two individual t-tests on $\alpha \& \beta$.
> summary(fit_eh)
Call:
$\operatorname{lm}($ formula $=y \sim x)$
Residuals:
Min 1Q Median 3Q Max
$-0.125672-0.014576-0.0004390 .0173560 .094283$
Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) -0.0001854 0.0016219 -0.114 $0.90906 \Rightarrow$ constant not significant $(|t|<2)$
$\begin{array}{lllll}\mathrm{x} & \mathbf{0} .2157540 & \mathbf{0 . 0 7 3 1 5 5 3} & -2.949 & 0.00339{ }^{* *} \Rightarrow \text { slope is significant }(|t|>2) \text { : Reject } \mathrm{H}_{0}\end{array}$

Residual standard error: 0.02661 on 361 degrees of freedom
Multiple R-squared: 0.02353, Adjusted R-squared: 0.02082
F-statistic: 8.698 on 1 and 361 DF, p-value: 0.003393
- 95\% C.I. for b:

$$
\mathrm{C}_{\mathrm{n}}=\left[b_{k} \pm t_{T-k, 1-\alpha / 2} * \text { Estimated } \operatorname{SE}\left(b_{k}\right)\right]
$$

hen,

$$
\begin{gathered}
\mathrm{C}_{\mathrm{n}}=[-0.215754-1.96 * 0.0731553,-0.215754+1.96 * 0.0731553] \\
=[-\mathbf{0 . 3 5 9 1 3 8 4},-0.07236961]
\end{gathered}
$$

Since $\boldsymbol{\beta}=\mathbf{0}$ is not in C_{n} with 95% confidence $\quad \Rightarrow$ Reject $H_{0}: \beta_{1}=0$ at 5% level.
Note: The EH is a joint hypothesis, it should be tested with a joint test! \|

The General Linear Hypothesis: Wald Statistic

Most of our test statistics, including joint tests, are Wald statistics.
Wald = normalized distance measure.

- One parameter:

$$
t_{k}=\frac{b_{k}-\beta_{k}^{0}}{\mathrm{SE}\left[b_{k}\right]}=\text { distance/unit }
$$

- More than one parameter.

Let $\mathbf{z}=$ (random vector - hypothesized value) be the distance

$$
W=\mathbf{z}^{\prime}[\operatorname{Var}(\mathbf{z})]^{-1} \mathbf{z} \quad \text { (a quadratic form) }
$$

Example: Let $\mathbf{z}=\mathbf{R b}-\mathbf{q}$, which under (A5) \& $\mathrm{H}_{0}: \mathbf{R} \boldsymbol{\beta}=\mathbf{q}$

$$
\mathbf{z} \sim \mathrm{N}(\mathbf{0}, \operatorname{Var}[\mathbf{z}]), \quad \text { where } \operatorname{Var}[\mathbf{z}]=\mathbf{R}[\operatorname{Var}[\mathbf{b} \mid \mathbf{X}]]^{-1} \mathbf{R}^{\prime}
$$

Then, if H_{0} is correct, W should be a small number, ideally close to zero. A large value would be evidence against H_{0}.

We need the distribution of W to determine how "far" is from zero.

- Distribution of W ? We have a quadratic form.
- If \mathbf{z} is normal and σ^{2} known, $W \sim \chi_{\operatorname{rank}(\operatorname{Var}[\boldsymbol{x}])}^{2}$
- If \mathbf{z} is normal and σ^{2} unknown, which we estimate with $s^{2}=\mathbf{e}^{\prime} \mathbf{e} /(T-k)$, then, $W \sim F$
- If \mathbf{z} is not normal and we use s^{2} to estimate the unknown σ^{2}, we rely on asymptotic theory, then, $W \xrightarrow{d} \chi_{\operatorname{rank}(\operatorname{Var}[x])}^{2}$

The General Linear Hypothesis: $H_{0}: \mathbf{R} \beta-\mathbf{q}=\mathbf{0}$

- Suppose we are interested in testing J joint hypotheses.

Example: We want to test that in the 3 FF factor model that the SMB and HML factors have the same coefficients, $\beta_{S M B}=\beta_{H M L}=\beta^{0}$.

We can write linear restrictions as $H_{0}: \mathbf{R} \boldsymbol{\beta}-\mathbf{q}=\mathbf{0}$, where \mathbf{R} is a $J_{\mathrm{x}} k$ matrix and \mathbf{q} a $J_{\mathrm{x}} 1$ vector.
In the above example ($J=2$), we write:

$$
\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] *\left[\begin{array}{c}
\beta_{1} \\
\beta_{M k t} \\
\beta_{S M B} \\
\beta_{H M L}
\end{array}\right]=\left[\begin{array}{l}
\beta^{0} \\
\beta^{0}
\end{array}\right]
$$

- Question: Is $\mathbf{R b}-\mathbf{q}$ close to $\mathbf{0}$?

There are two different approaches to this question. Both have in common the property of unbiasedness for \mathbf{b}.

Approach (1) We base the answer on the discrepancy vector:

$$
\mathbf{m}=\mathbf{R} \mathbf{b}-\mathbf{q} .
$$

Then, we construct a Wald statistic:

$$
W=\mathbf{m}^{\prime}(\operatorname{Var}[\mathbf{m} \mid \mathbf{X}])^{-1} \mathbf{m}
$$

to test if \mathbf{m} is different from $\mathbf{0}$.
Approach (2) We base the answer on a model loss of fit when restrictions are imposed: RSS must increase and R^{2} must go down. Then, we construct an F test to check if the unrestricted $\operatorname{RSS}\left(R S S_{U}\right)$ is different from the restricted $\operatorname{RSS}\left(R S S_{R}\right)$.

Approach (1). To test H_{0}, we calculate the discrepancy vector:

$$
\mathbf{m}=\mathbf{R b}-\mathbf{q} \quad\left(\text { under }(\mathbf{A 5}) \& \mathrm{H}_{0}: \mathbf{m} \sim \mathrm{N}(\mathbf{0}, \operatorname{Var}[\mathbf{m}])\right)
$$

Then, we compute the Wald statistic:

$$
W=\mathbf{m}^{\prime}(\operatorname{Var}[\mathbf{m} \mid \mathbf{X}])^{-1} \mathbf{m}
$$

It can be shown that $\operatorname{Var}[\mathbf{m} \mid \mathbf{X}]=\mathbf{R}\left[\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right] \mathbf{R}^{\prime}$. Then,

$$
W=(\mathbf{R} \mathbf{b}-\mathbf{q})^{\prime}\left\{\mathbf{R}\left[\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right] \mathbf{R}^{\prime}\right\}^{-1}(\mathbf{R} \mathbf{b}-\mathbf{q}) \quad\left(\text { under }(\mathbf{A} \mathbf{5}) \& \mathrm{H}_{0}: W \sim \chi_{J}^{2}\right)
$$

Under H_{0} and assuming (A5) \& estimating σ^{2} with $s^{2}=\mathbf{e}^{\prime} \mathbf{e} /(T-k)$:

$$
\begin{aligned}
& \mathrm{W}^{*}==\frac{W}{\left[\frac{\mathrm{e}^{\prime} \mathrm{e}}{T-k}\right] / \sigma^{2}}=(\mathbf{R b}-\mathbf{q})^{\prime}\left\{\mathbf{R}\left[s^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right] \mathbf{R}\right\}^{-1}(\mathbf{R b}-\mathbf{q}) \\
& \mathrm{F}=W^{*} / J \sim F_{J, T-k}
\end{aligned}
$$

If (A5) is not assumed, the results are only asymptotic: $J * F \xrightarrow{d} \chi_{J}^{2}$
Technical Note: Why $\mathrm{F}=W^{*} / J$ follows an F distribution? The F -distribution is a ratio of two independent χ_{J}^{2} and χ_{T}^{2} RV divided by their degrees of freedom:

$$
F=\frac{\chi_{J}^{2} / J}{\chi_{T}^{2} / T} \sim F_{J, T} .
$$

(1) Numerator: $\quad W=(\mathbf{R b}-\mathbf{q})^{\prime}\left\{\mathbf{R}\left[\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right] \mathbf{R}^{\prime}\right\}^{-1}(\mathbf{R b}-\mathbf{q}) \sim \chi_{J}^{2}$
(2) Denominator: $\quad(T-k) * s^{2} / \sigma^{2}=\mathbf{e}^{\prime} \mathbf{e} / \sigma^{2} \sim \chi_{T-k}^{2}$

$$
F=\frac{\chi_{J}^{2} / J}{\chi_{T}^{2} / T}=\frac{\left[(\mathbf{R} \mathbf{b}-\mathbf{q})^{\prime}\left\{\mathbf{R}\left[\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right] \mathbf{R}^{\prime}\right\}^{-1}(\mathbf{R} \mathbf{b}-\mathbf{q})\right] / J}{\left[(T-k) * S^{2} / \sigma^{2}\right] /(T-k)} \sim F_{J, T-k} .
$$

Example: We want to test that in the 3 FF factor model $(T=569)$

1. $\mathrm{H}_{0}: \beta_{S M B}=0.2$ and $\beta_{H M L}=0.6$.
$\mathrm{H}_{1}: \beta_{S M B} \neq 0.2$ and $/$ or $\beta_{H M L} \neq 0.6 . \quad \Rightarrow J=2$
We define $\mathbf{R}(2 \times 4)$ below and write $\mathrm{m}=\mathrm{R} \beta-\mathrm{q}=0$:

$$
\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] *\left[\begin{array}{c}
\beta_{1} \\
\beta_{M k t} \\
\beta_{S M B} \\
\beta_{H M L}
\end{array}\right]=\left[\begin{array}{c}
0.2 \\
0.6
\end{array}\right]
$$

2. Test-statistic: $\mathrm{F}=\mathrm{W}^{*} / J=(\mathbf{R b}-\mathbf{q})^{\prime}\left\{\mathbf{R}\left[s^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right] \mathbf{R}^{\prime}\right\}^{-1}(\mathbf{R b}-\mathbf{q})$

Distribution under $\mathrm{H}_{0}: \mathrm{F}=W^{*} / 2 \sim F_{J=2, T-4}\left(\right.$ or asymptotic, $2 * F \xrightarrow{d} \chi_{2}^{2}$)
3. Get OLS results, compute F, \widehat{F}.
4. Decision Rule: $\alpha=0.05$ level. We reject H_{0} if p -value $(a F)<.05$.

Or, reject H_{0}, if $\hat{F}>\mathrm{F}_{J=2, T-4,05}$.
$\mathrm{J}<-2 \quad$ \# number of restriction
fit_ibm_ff3<- lm(ibm_x \sim Mkt_RF + SMB + HML)
$\mathrm{b}<$ - fit_ibm_ff3\$coefficients
\# Extract OLS coefficients

```
Var_b<- vcov(fit_ibm_ff3) # Extract Var[b]
R<- matrix(c(0,0,0,0,1,0,0,1), nrow=2) # matrix of restrictions
q<- c(.2,.6)
m}<-\textrm{R}%*%\textrm{ob}-\textrm{q
Var_m<- R %*% Var_b %*% t(R)
det(Var_m)
W <- t(m)%*%solve(Var_m)%*%m
F_t<- as.numeric(W/J - ) # F-test statistic
qf(.95, df1=J, df2=(T - k)) # exact distribution (F-dist) if errors normal
p_val <- 1-pf(F_t, df1=J, df2=(T - k))
p_val
F_t_asym <- J*F # Asymptotic F test (a Chi-square test)
qchisq(.95, df=J)
p_val <- 1 - pchisq(F_t_asym, df=J)
p_val
>F_t
49.217
>
>qf(.95, df1=J, df2=(T - k)) # exact distribution (F-dist) if errors normal
[1] 3.011644 F_t > 3.011644 }=>\mathrm{ reject H0}\mp@subsup{\textrm{H}}{0}{}\mathrm{ at 5% level
p_val<-1 - pf(F_t, df1=J, df2=(T - k)) # p-value(F_t) under errors normal
> p_val
[1]<2.2e-16 ` }\quad=>\mathrm{ reject }\mp@subsup{\textrm{H}}{0}{}\mathrm{ at 5% level.
> F_t_asym
98.433
>
>qchisq(.95, df=J) # asymptotic distribution (chi-square)
[1] 5.991465 F_t > 5.991465 => reject H0 at 5% level
> p_val <- 1 - pchisq(F_t_asym, df=J) # p-value(F_t) under asymptotic distribution
>p_val
[1]<2.2e-16 }\quad=>\mathrm{ so low it is almost zero. Extremely low chance }\mp@subsup{\textrm{H}}{0}{}\mathrm{ is true.
```

Conclusion: We reject the restrctions: $\beta_{S M B}=0.2$ and $\beta_{H M L}=0.6$.
R Note: You can use the R package car to test linear restrictions (linear H_{0}). install.packages("car")
library(car)
linearHypothesis(fit_ibm_ff3, $\mathrm{c}($ "SMB $=0.2$ ","HML $=0.6 ")$, test="F") \# Exact F test
Linear hypothesis test

Hypothesis:
SMB $=0.2$
$\mathrm{HML}=0.6$
Model 1: restricted model
Model 2: ibm_x ~Mkt_RF + SMB + HML
Res.Df RSS Df Sum of Sq F $\quad \operatorname{Pr}(>F)$
$1 \quad 5672.2691$
$25651.932420 .3366749 .217<2.2 \mathrm{e}-16 * * \quad \Rightarrow$ reject H_{0} at 5% level

Example: Now, we do a joint test of the EH. $\mathrm{H}_{0}: \alpha=0$ and $\beta=0$.
Using the previous program but with:

```
J <- 2
R<- matrix(c(1,0,0,1), nrow=2) # matrix of restrictions
q<-c(0,0) # hypothesized values
> F_t
4.1024
>
>qf(.95, df1=J, df2=(T - k)) # exact distribution (F-dist) if errors normal
[1] 3.020661 F_t > 3.020661 }=>\mathrm{ reject H0}\mp@subsup{H}{0}{}\mathrm{ at 5% level
p_val<-1 - pf(F_t, dfl=J, df2=(T - k)) # p-value(F_t) under errors normal
> p_val
[1]0.01731 ` }=>\mathrm{ reject H0 at 5% level.
>F_t_asym
8.2047
>
> qchisq(.95, df=J) # asymptotic distribution (chi-square)
[1] 5.991465 F_t > 5.991465 => reject H0 at 5% level
> p_val <- 1-pchisq(F_t_asym, df=J) # p-value(F_t) under asymptotic distribution
> p_val
[1] 0.01653 ` }\quad=>\mathrm{ reject H0 at 5% level.
```

The R package car can do the above too:
$>$ linearHypothesis(fit_eh, c("(Intercept) $=0$ ","x $=0$ "), test="F") \# "F": exact test, with F-distr
Linear hypothesis test
Hypothesis:
$($ Intercept $)=0$
$\mathrm{x}=0$

Model 1: restricted model
Model 2: y ~ x
Res.Df RSS Df Sum of Sq F $\operatorname{Pr}(>F)$
13630.27033
23610.2643220 .00600754 .10240 .01731 *

Signif. codes: $0{ }^{\text {'***' } 0.001 ~ ' * * ’ ~} 0.01^{\text {'*' }} 0.05^{\prime}{ }^{\prime}{ }^{\prime} 0.1^{\prime}{ }^{\prime} 1$
$\begin{array}{lr}>\mathrm{qf}(.95, \mathrm{df} 1=\mathrm{J}, \mathrm{df} 2=(\mathrm{T}-\mathrm{k})) & \quad \text { \# exact distribution }(\mathrm{F} \text {-dist) if errors normal } \\ \text { [1] 3.020661 } & \text { F_t }>3.020661 \Rightarrow \text { reject } \mathrm{H}_{0} \text { at } 5 \% \text { level }\end{array}$
Conclusion: We reject the joint restrctions: $\mathrm{H}_{0}: \alpha=0$ and $\beta=0$. $\boldsymbol{\|}$

The F Test: $\mathbf{H}_{0}: \mathbf{R} \boldsymbol{\beta}-\mathbf{q}=\mathbf{0}$

Approach (2). We know that imposing the restrictions leads to a loss of fit. R^{2} must go down. Does it go down a lot? -i.e., significantly?

Recall (i) $\mathbf{e}^{*}=\mathbf{y}-\mathbf{X} \mathbf{b}^{*}=\mathbf{e}-\mathbf{X}\left(\mathbf{b}^{*}-\mathbf{b}\right)$
(ii) $\mathbf{b}^{*}=\mathbf{b}-\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1}(\mathbf{R b}-\mathbf{q})$
$\Rightarrow \quad \mathbf{e}^{* \prime} \mathbf{e}^{*}=\mathbf{e}^{\prime} \mathbf{e}+\left(\mathbf{b}^{*}-\mathbf{b}\right)^{\prime} \mathbf{X}^{\prime} \mathbf{X}\left(\mathbf{b}^{*}-\mathbf{b}\right)$
Replacing ($\mathbf{b}^{*}-\mathbf{b}$) from (ii) in the above formula, we get:

$$
\mathbf{e}^{* \prime} \mathbf{e}^{*}-\mathbf{e}^{\prime} \mathbf{e}=(\mathbf{R b}-\mathbf{q})^{\prime}\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1}(\mathbf{R b}-\mathbf{q})
$$

Note: $\mathbf{e}^{* \prime} \mathbf{e}^{*}-\mathbf{e}^{\prime} \mathbf{e}$ is a quadratic form, then we can use a lot of results to derive its asymptotic distribution

- Recall, the F-distribution is a ratio of two independent χ_{J}^{2} and χ_{T}^{2} RV divided by their degrees of freedom

$$
F=\frac{\chi_{J}^{2} / J}{\chi_{T}^{2} / T} \sim F_{J, T}
$$

Then, to get to the F-test, we rely on two results:

$$
\begin{aligned}
& -W=(\mathbf{R b}-\mathbf{q})^{\prime}\left\{\mathbf{R}\left[\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right] \mathbf{R}^{\prime}\right\}^{-1}(\mathbf{R b}-\mathbf{q}) \sim \chi_{J}^{2}\left(\text { if } \sigma^{2} \text { is known }\right) \\
& -\mathbf{e}^{\prime} \mathbf{e} / \sigma^{2} \sim \chi_{T-k}^{2} . \\
& \quad \Rightarrow F=\frac{\left(\mathbf{e}^{*} \mathbf{e}^{*}-\mathbf{e}^{\prime} \mathbf{e}\right) / J}{\left[\mathbf{e}^{\prime} \mathbf{e} /(T-k)\right]} \sim F_{J, T-k}
\end{aligned}
$$

- We can write the F-test in terms of R^{2} 's. Let

$$
\mathrm{R}^{2}=\text { unrestricted model }=1-\mathrm{RSS} / \mathrm{TSS}
$$

$$
\mathrm{R}^{* 2}=\text { restricted model fit }=1-\mathrm{RSS}^{*} / \mathrm{TSS}
$$

Then, dividing and multiplying F by TSS we get

$$
F=\frac{\left(1-R^{* 2}\right)-\left(1-R^{2}\right) / J}{\left(1-R^{2}\right) /(T-k)} \sim F_{J, T-k}
$$

or

$$
F=\frac{\left(R^{2}-R^{* 2}\right) / J}{\left(1-R^{2}\right) /(T-k)} \sim F_{J, T-k}
$$

The F Test: \mathbf{H}_{0} : F-test of Goodness of Fit

In the linear model, with a constant $\left(\mathbf{X}_{1}=\boldsymbol{i}\right)$:

$$
\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}=\mathbf{X}_{1} \boldsymbol{\beta}_{1}+\mathbf{X}_{2} \boldsymbol{\beta}_{2}+\ldots+\mathbf{X}_{k} \boldsymbol{\beta}_{k}+\boldsymbol{\varepsilon}
$$

- We want to test if the slopes $\mathbf{X}_{2}, \ldots, \mathbf{X}_{k}$ are equal to zero. That is,

$$
H_{0}: \beta_{2}=\cdots=\beta_{k}=0
$$

$$
H_{l}: \text { at least one } \beta \neq 0 \quad \Rightarrow J=k-1
$$

We can write $\mathrm{H}_{0}: \mathbf{R} \boldsymbol{\beta}-\mathbf{q}=\mathbf{0} \quad \Rightarrow\left[\begin{array}{cccc}\mathbf{0} & \mathbf{1} & \ldots & \mathbf{0} \\ \ldots & \ldots & \ldots & \ldots \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1}\end{array}\right]\left[\begin{array}{c}\boldsymbol{\beta}_{\mathbf{1}} \\ \boldsymbol{\beta}_{\mathbf{2}} \\ \ldots \\ \boldsymbol{\beta}_{\boldsymbol{k}}\end{array}\right]=\left[\begin{array}{c}\mathbf{0} \\ \ldots \\ \mathbf{0}\end{array}\right]$

- We have $J=k-1$. Then,

$$
F=\frac{\left(R^{2}-R^{* 2}\right) / J}{\left(1-R^{2}\right) /(T-k)} \sim F_{k-1, T-k} .
$$

For the restricted model, $\mathrm{R}^{* 2}=0$. Then,

$$
F=\frac{R^{2} /(k-1)}{\left(1-R^{2}\right) /(T-k)} \sim F_{k-1, T-k}
$$

Recall $E S S / T S S$ is the definition of $R^{2} . R S S / T S S$ is equal to $\left(1-R^{2}\right)$.

$$
F=\frac{R^{2} /(k-1)}{\left(1-R^{2}\right) /(T-k)}=\frac{\frac{E S S}{T S S} /(k-1)}{\frac{E S S}{T S S} /(T-k)}=\frac{E S S /(k-1)}{R S S /(T-k)}
$$

This test statistic is called the F-test of goodness of fit. It is reported in all regression packages as part of the regression output. In R , the lm function reports it as " F-statistic."

Example: We want to test if all the FF factors (Market, SMB, HML) are jointly significant ($\mathrm{J}=3$), using monthly data $1973-2020(\mathrm{~T}=569)$.
$\mathrm{y}<-\mathrm{ibm}$ _x
T<- length(x)
$\mathrm{x} 0<-\operatorname{matrix}(1, \mathrm{~T}, 1)$
$x<-\operatorname{cbind}\left(x 0, M k t _R F, S M B, H M L\right)$
$\mathrm{k}<-\operatorname{ncol}(\mathrm{x})$
$\mathrm{b}<-\operatorname{solve}(\mathrm{t}(\mathrm{x}) \% * \% \mathrm{x}) \% * \% \mathrm{t}(\mathrm{x}) \% * \% \mathrm{y} \quad$ \#OLS regression
e <- y - x\%*\%b
RSS $<-$ as.numeric $(\mathrm{t}(\mathrm{e}) \% * \% \mathrm{e})$
$\mathrm{R} 2<-1$ - as.numeric(RSS)/as.numeric $(\mathrm{t}(\mathrm{y}) \% * \% \mathrm{y}) \quad$ \#R-squared
$>$ R2
[1] 0.338985
F_goodfit <- (R2/(k-1))/((1-R2)/(T-k)) \#F-test of goodness of fit.
> F_goodfit
[1] 96.58204 \Rightarrow F_goodfit $>\mathrm{F}_{3,565,05}=2.62067 \Rightarrow$ Reject H_{0}. ब
Conclusion: We strongly reject the restrctions: $\beta_{M t k}=\beta_{S M B}=\beta_{H M L}=0$. ब

The F Test: General Case - Example

In the linear model

$$
\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}=\boldsymbol{\beta}_{1}+\mathbf{X}_{2} \boldsymbol{\beta}_{2}+\mathbf{X}_{3} \boldsymbol{\beta}_{3}+\mathbf{X}_{4} \boldsymbol{\beta}_{4}+\boldsymbol{\varepsilon}
$$

We want to test if the slopes $\mathbf{X}_{3}, \mathbf{X}_{4}$ are equal to zero. That is,
$\mathrm{H}_{0}: \boldsymbol{\beta}_{3}=\boldsymbol{\beta}_{4}=\mathbf{0}$
$\mathrm{H}_{1}: \beta_{3} \neq \mathbf{0}$ or $\boldsymbol{\beta}_{4} \neq \mathbf{0}$ or both $\boldsymbol{\beta}_{3}$ and $\boldsymbol{\beta}_{4} \neq \mathbf{0}$
We can use, $\quad F=\left(\mathbf{e}^{* \prime} \mathbf{e}^{*}-\mathbf{e}^{\prime} \mathbf{e}\right) / J /\left[\mathbf{e}^{\prime} \mathbf{e} /(T-k)\right] \sim F_{J, T-K}$.
Define $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}=\boldsymbol{\beta}_{1}+\mathbf{X}_{2} \boldsymbol{\beta}_{2}+\boldsymbol{\varepsilon} \quad$ (Restricted RSS $=$ RSSR , with k_{R} parameters)

$$
\mathbf{y}=\boldsymbol{\beta}_{1}+\mathbf{X}_{2} \boldsymbol{\beta}_{2}+\mathbf{X}_{3} \boldsymbol{\beta}_{3}+\mathbf{X}_{4} \boldsymbol{\beta}_{4}+\boldsymbol{\varepsilon} \quad \text { (Unrestricted RSS }=\text { RSSU, with } k_{U}
$$

parameters)
Then, $\quad F=\frac{\frac{R S S_{R}-R S S_{U}}{\left(k_{U}-k_{R}\right)}}{\frac{R S S_{U}}{\left(T-k_{U}\right)}} \sim F_{J, T-k}$, where $J=\left(k_{U}-k_{R}\right)$, and $T-k=T-k_{U}$.

The F Test: Are SMB and HML Priced Factors?

Example: We want to test if the additional FF factors (SMB, HML) are significant, using monthly data $1973-2020(\mathrm{~T}=569)$. That is, we test $\mathrm{H}_{0}: \beta_{S M B}=\beta_{H M L}=0$.

Unrestricted Model (Fama-French 3-factor model):
(U)

$$
\left(r_{I B M, t}-r_{f}\right)=\beta_{0}+\beta_{1}\left(r_{m, t}-r_{f}\right)+\beta_{2} S M B_{t}+\beta_{3} H M L_{t}+\varepsilon_{t}
$$

Hypothesis: $H_{0}: \beta_{2}=\beta_{3}=0$

$$
\mathrm{H}_{1}: \beta_{2} \neq 0 \text { and/or } \beta_{3} \neq 0
$$

Then, the Restricted Model (CAPM):
(R)

$$
\left(r_{I B M, t}-r_{f}\right)=\beta_{0}+\beta_{1}\left(r_{m, t}-r_{f}\right)+\varepsilon
$$

Test: $\quad F=\frac{\left(R S S_{R}-R S S_{U}\right) / J}{R S S_{U} /\left(T-k_{u}\right)} \sim F_{J, T-k}, \quad$ where $J=\left(k_{U}-k_{R}\right)=4-2=2$

- The unrestricted model was already estimated in Lecture 3. For the restricted model:
$\mathrm{y}<-\mathrm{ibm} \mathrm{X}_{\mathrm{x}}$
$\mathrm{x} 0<-\operatorname{matrix}(1, \mathrm{~T}, 1)$
$\mathrm{x} _$r $<-\operatorname{cbind}(\mathrm{x} 0, \mathrm{Mkt}$ _RF) \# Restricted X vector
$\mathrm{k}<-\operatorname{ncol}(\mathrm{x})$
T $<-\operatorname{nrow}(x)$
k2 $<-\operatorname{ncol}(\mathrm{x})$
$\mathrm{b} 2<-\operatorname{solve}\left(\mathrm{t}\left(\mathrm{x} _\mathrm{r}\right) \% * \% \mathrm{x} _\mathrm{r}\right) \% * \% \mathrm{t}\left(\mathrm{x} _\mathrm{r}\right) \% * \% \mathrm{y} \quad$ \# Restricted OLS regression
e2 <- y - x_r\%*\%b2
RSS2 $<-$ as.numeric $(\mathrm{t}(\mathrm{e} 2) \% * \% \mathrm{e} 2)$
$>$ RSS $=1.932442 \quad$ \# RSSU
$>$ RSS2 $=1.964844$ \# RSSR
$>\mathrm{J}<-\mathrm{k}-\mathrm{k} 2 \quad$ \# J = degrees of freedom of numerator
$>$ F_test $<-(($ RSS2 - RSS $) / \mathrm{J}) /(\mathrm{RSS} /(\mathrm{T}-\mathrm{k}))$
$>$ F test
[1] 4.736834
$>\mathrm{qf}(.95, \mathrm{df} 1=\mathrm{J}, \mathrm{df} 2=(\mathrm{T}-\mathrm{k})) \quad \# \mathrm{~F}_{2,565,05}$ value (≈ 3)
[1] $3.011672 \quad \Rightarrow$ Reject H_{0}.
$>$ p_val <- $1-\mathrm{pf}\left(\mathrm{F}_{-}\right.$test, $\left.\mathrm{df} 1=\mathrm{J}, \mathrm{df} 2=(\mathrm{T}-\mathrm{k})\right) \quad$ \# p-value of F_{-}test
$>$ p_val
[1] 0.009117494
$\Rightarrow \mathrm{p}$-value is small \Rightarrow Reject H_{0}.
Conclusion: We strongly reject the restrctions: $\beta_{S M B}=\beta_{H M L}=0 . \boldsymbol{q}$
R Note: There is package in R, lmtest, that performs this test, waldtest, (and many others, used in this class). You need to install it first: install.packages("lmtest"). For the waldtest, the default reports the F-test with the F distribution.

Remark: The models need to be nested.
Example: We test if the additional FF factors (SMB, HML) are significant, using monthly data 1973-2020 (T=569).
library(lmtest)

```
fit_ibm_ff3<- lm (y ~ Mkt_RF + SMB + HML) # Unrestricted Model
fit_ibm_capm <- lm (y ~ Mkt_RF)
waldtest(fit_ibm_ff3, fit_ibm_capm)
Wald test
```

```
Model 1: y ~Mkt_RF + SMB + HML
Model 2: y ~Mkt_RF
    Res.Df Df F \(\quad \operatorname{Pr}(>F)\)
1565
2 567-2 4.7368 0.009117 ** \(\quad \Rightarrow\) p-value is small: Reject \(\mathrm{H}_{0}\). ब
```


Trilogy of Asymptotic Tests: LR, Wald, and LM

In practice, we tend to rely on the asymptotic distribution of the Wald test. That is, $W \stackrel{d}{\rightarrow} \chi_{J}^{2}$.
There are two other popular tests that are asymptotically equivalent -i.e., they have the same asymptotic distribution: the Likelihood Ratio (LR) and the Lagrange Multiplier (LM) tests.

- The LR is based on the (log) Likelihood. It needs two ML estimations: the unrestricted estimation, producing $\hat{\theta}_{M L}$, and the restricted estimation, producing $\hat{\theta}^{R}$. Below we define the LR test:

$$
L R=2\left[\log \left(L\left(\hat{\theta}_{M L}\right)\right)-\log \left(L\left(\hat{\theta}^{R}\right)\right)\right] \xrightarrow{\mathrm{d}} \chi_{J}^{2}
$$

Note: MLE requires assuming a distribution, usually, a normal.
Technical note: The LR test is a consistent test. An asymptotic test which rejects H_{0} with probability one when the H_{1} is true is called a consistent test. That is, a consistent test has asymptotic power of 1 . The LR test is a consistent test.

Example: We use a likelihood ratio test to check if the additional FF factors (SMB, HML) are significant, using monthly data 1973 - 2020 (T=569).

```
library(lmtest)
fit_ibm_ff3 <- lm (ibm_x \(\sim\) Mkt_RF + SMB + HML)
fit_ibm_capm <- lm (ibm_x \(\sim\) Mkt_RF)
lrtest(fit_ibm_ff3, fit_ibm_capm)
Likelihood ratio test
Model 1: ibm_x ~ Mkt_RF + SMB + HML
Model 2: ibm_x ~ Mkt_RF
    \#Df LogLik Df Chisq \(\operatorname{Pr}(>\) Chisq)
15810.03
2 3 805.30-2 9.4616 0.008819 ** \(\Rightarrow\) p-value is small: Reject \(\mathrm{H}_{0}\). व
```

- The LM test needs only one estimation: the restricted estimation, producing $\hat{\theta}^{R}$. If the restriction is true, then the slope of the objective function (say, the Likelihood) at $\hat{\theta}^{R}$ should be zero. The slope is called the Score, $\mathrm{S}\left(\hat{\theta}^{R}\right)$. The LM test is based on a Wald test on $\mathrm{S}\left(\hat{\theta}^{R}\right)=0$.

$$
L M=S\left(\hat{\theta}^{R}\right)^{\prime}\left[\operatorname{Var}\left(S\left(\hat{\theta}^{R}\right)\right]^{-1} S\left(\hat{\theta}^{R}\right) \xrightarrow{\mathrm{d}} \chi_{J}^{2}\right.
$$

It turns out that there is a much simpler formulation for the LM test, based on the residuals of the restricted model. We will present this version of the test in Lecture 6.

If the likelihood function were quadratic then $\mathrm{LR}=\mathrm{LM}=\mathrm{W}$. In general, however, $\mathrm{W}>\mathrm{LR}>$ LM.

Testing Remarks: Pre-testing

A special case of omitted variables.

- First, a researcher starts with an unrestricted model (U):

$$
\begin{equation*}
\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon} \tag{U}
\end{equation*}
$$

- Then, based on ("preliminary") tests -say, an F-test- a researcher decides to use restricted estimator, \mathbf{b}^{*}. That is,

$$
\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon} . \quad \text { s.t. } \mathbf{R} \boldsymbol{\beta}=\mathbf{q}
$$

- We can think of the estimator we get from estimating R as:

$$
\mathbf{b}_{\mathrm{PT}}=\mathrm{I}_{\{0, \mathrm{c}\}}(F) \mathbf{b}^{*}+\mathrm{I}_{\{\mathrm{c}, \infty\}}(F) \mathbf{b},
$$

where $\mathrm{I}_{\{0, \mathrm{c}\}}$ is an indicator function:
$\mathrm{I}_{\{\mathrm{c}, \infty\}}(F)=0, \quad$ if F-stat in R (rejection region)-say, $F>c$,
$\mathrm{I}_{\{0, \mathrm{c}\}}(F)=1 \quad$ if F-stat in R^{C}-say, $F<c$.
c : critical value chosen for testing $\mathrm{H}_{0}: \mathbf{R} \boldsymbol{\beta}=\mathbf{q}$, using the F-stat.

- The pre-test estimator is a rule, which chooses between the restricted estimator, \mathbf{b}^{*}, or the OLS estimator, \mathbf{b} :

$$
\mathbf{b}_{\mathrm{PT}}=\mathrm{I}_{\{0, \mathrm{c}\}}(F) \mathbf{b}^{*}+\mathrm{I}_{\{\mathrm{c}, \infty\}}(F) \mathbf{b},
$$

$$
\text { where } \mathbf{b}^{*}=\mathbf{b}-\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\right]^{-1}(\mathbf{R} \mathbf{b}-\mathbf{q})
$$

- Two "negative" situations:
(1) $\mathrm{H}_{0}: \mathbf{R} \boldsymbol{\beta}=\mathbf{q}$ is true. The F-test will incorrectly reject $\mathrm{H}_{0} \alpha \%$ of the time. That is, in $\alpha \%$ of the repeated samples, we have "irrelevant variables" \Rightarrow OLS b: No bias, but inefficient estimator.
(2) $\mathrm{H}_{0}: \mathbf{R} \boldsymbol{\beta}=\mathbf{q}$ is false. The F-test will correctly reject $\mathrm{H}_{0} \mathrm{a} \%$ of times equal to the power π of the test. That is, $(100-\pi) \%$ of the time, $\mathbf{R} \boldsymbol{\beta}=\mathbf{q}$ will be incorrectly imposed, we have "omitted variables:"
\Rightarrow OLS b*: bias, but small variance!
The failure of the OLS estimator to have the properties under correct specification is called pretest bias.

Pre-testing (also called sequential estimation, data mining) is common in practice. In general, it is ignored -and not even acknowledged.

Main argument to ignore pre-testing: We need some assumptions to decide which variables are included in a model. Is the probability that pre-testing yields an incorrect set of \boldsymbol{X} greater than the probability of selecting the "correct" assumption?

David Hendry, a well known thinker of these methodological issues, does not see pre-testing in the discovery stage as a problem. For him, pre-testing at that stage is part of the process of discovery.

Practical advise: Be aware of the problem. Do not rely solely on stats to select a model -use economic theory as well.

- Do not use same sample evidence to generate an H_{0} and to test it!

Example: The Fama-French factors have been "discovered" using the CRSP/Compustast database for a long, long time. Thus, testing the Fama-French factors using the CRSP/Compustat is not advisable!
(You can test them with another dataset, for example, get international data.) ब

Testing Remarks: Significance level, α

So far, we have assumed that the distribution of the test statistic -say the F-statistic- under H_{0} is known exactly, so that we have what is called an exact test.

Technically, the size of a test is the supremum of the rejection probability over all DGPs that satisfy H_{0}. For an exact test, the size equals the nominal level, α-i.e., the Prob[Type I error] = α.

Usually, the distribution of a test is known only approximately (asymptotically). In this case, we need to draw a distinction between the nominal level, α (nominal size), of the test $\&$ the actual rejection probability (empirical size), which may differ greatly from the nominal level.

Simulations are needed to gauge the empirical size of tests.

Testing Remarks: A word about α

Ronald Fisher, before computers, tabulated distributions. He used a $.10, .05$, and .01 percentiles. These tables were easy to use and, thus, those percentile became the de-facto standard α for testing H_{0}.
"It is usual and convenient for experimenters to take 5% as a standard level of significance." Fisher (1934).

Given that computers are powerful and common, why is $p=0.051$ unacceptable, but $p=0.049$ is great? There is no published work that provides a theoretical basis for the standard thresholds.

Rosnow and Rosenthal (1989): "... surely God loves . 06 nearly as much as .05."

Practical advise: In the usual Fisher's null hypothesis (significance) testing, significance levels, α, are arbitrary. Make sure you pick one, say 5%, and stick to it throughout your analysis or paper.

- Report p-values, along with CI's. Search for economic significance.

Questions: . $10, .05$, or .01 significance?
Many tables will show *, ${ }^{* *}$, and ${ }^{* * *}$ to show $.10, .05$, and .01 significance levels -for example, $\operatorname{lm}()$ in R. Throughout the paper, the authors will point out the different significance levels. In these papers, it is not clear what α is the paper using for inference.

We can think of these stars (or p-values) as ways of giving weights to H_{0} relative to H_{1}.

Testing Remarks: A word about \mathbf{H}_{0}

In applied work, we only learn when we reject H_{0}; say, when the p-value $<\alpha$. But, rejections are of two types:

- Correct ones, driven by the power of the test
- Incorrect ones, driven by Type I Error ("statistical accident," luck).

It is important to realize that, however small the p-value, there is always a finite chance that the result is a pure accident. At the 5% level, there is 1 in 20 chances that the rejection of H_{0} is just luck.

Since negative results are difficult to publish (publication bias), there is an unknown but possibly large number of false claims taken as truths.

Example: If $\alpha=0.05$, proportion of false $\mathrm{H}_{0}=10 \%$, and $\pi=.50,47.4 \%$ of rejections are true H_{0} -i.e., "false positives." ||

Testing Remarks: Mass significance

We have a model. We perform k different tests, say $k t$-tests, each with a nominal significance level of α :
$\alpha=\operatorname{Prob}$ (Rejecting for a given test $\mid \mathrm{H}_{0}$ for this test is true)

The overall significance of the test procedure is, however, given by $\alpha^{*}=$ Prob (Rejecting at least one test \mid all H_{0} are true).

The probability of rejecting at least one H_{0} is obviously greater than of rejecting a specific test. This is the problem of mass significance.

- Two cases
(1) Independent tests $\alpha^{*}=1-(1-\alpha)^{k} \quad \& \quad \alpha=1-\left(1-\alpha^{*}\right)^{1 / k}$
(2) Dependent tests: $\alpha^{*} \leq k \alpha \quad \& \quad \alpha \geq \alpha^{*} / k$
\Rightarrow close to the "independent" values for small α, but can differ for large α.
Example: $\quad \alpha=0.05$ and $k=5 \quad \Rightarrow \alpha^{*}($ Indep $)=.23 \quad \& \quad \alpha^{*}($ Dep $)=.25$
$\alpha=0.05$ and $k=20 \quad \Rightarrow \alpha^{*}($ Indep $)=.64 \quad \& \alpha^{*}($ Dep $)=1$
$\alpha^{*}=0.05$ and $k=5 \quad \Rightarrow \alpha($ Indep $)=.0102 \& \alpha($ Dep $)=.01$
$\alpha^{*}=0.20$ and $k=5 \quad \Rightarrow \alpha($ Indep $)=.044 \quad \& \quad \alpha($ Dep $)=.04$
$\alpha^{*}=0.20$ and $k=20 \quad \Rightarrow \alpha($ Indep $)=.011 \quad \& \alpha($ Dep $)=.01$. ๆ
- David Hendry's suggestions:

In repeated parametric testing (overall level 5\%):

- Only accept variables as important when their p-values are less than 0.001 , preferably smaller
- Maybe look for other ways of choosing variables, say AIC.

In repeated diagnostic testing (overall level 20\%), we should only accept there is no misspecification if

- All p-values are greater than 0.05 , or
- Most p-values are greater than 0.10 with a few in the range 0.02 to 0.10

Non-nested Models and Tests

So far, all our tests ($\mathrm{t}-$, $\mathrm{F}-\&$ Wald tests) have been based on nested models, where the R model is a restricted version of the U model.

Example:

Model U $\quad \mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{W} \boldsymbol{\delta}+\boldsymbol{\varepsilon} \quad$ (Unrestricted)
Model R $\quad \mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\xi} \quad$ (Restricted)
Model U becomes Model R under $\mathrm{H}_{0}: \boldsymbol{\delta}=\mathbf{0}$. \mathbb{I}

- Sometimes, we have two rival models to choose between, where neither can be nested within the other -i.e., neither is a restricted version of the other.

Example:

Model $1 \quad \mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{W} \boldsymbol{\delta}+\boldsymbol{\varepsilon}$
Model $2 \quad \mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{Z} \boldsymbol{\gamma}+\boldsymbol{\xi} . \quad$ ब
If the dependent variable is the same in both models (as is the case here), we can simply use Adjusted- R^{2} to rank the models and select the one with the largest Adjusted- R^{2}.

We can also use AIC and/or BIC.

But, we can also use more sophisticated testing-based methods: Encompassing test and J-test.

Non-nested Models: Encompassing Test

Alternative approach: Encompassing
(1) Form a composite or encompassing model that nests both rival models -say, Model 1 and Model 2. This is the unrestricted Model (ME).
(2) Test the relevant restrictions of each rival model against ME. We do two F-tests, where the restricted models are Model 1 and Model 2.

If we reject the restrictions against one Model, say Model 1, and we cannot reject the restrictions against the other, Model 2, we are done: We select the Model that the F test do not reject restrictions (Model 2).

Assuming the restrictions cannot be rejected, we prefer the model with the lower F statistic for the test of restrictions.

Note: We test a hybrid model. Also, multicollinearity may appear.
Example: We have:
Model $1 \quad \mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{W} \boldsymbol{\delta}+\boldsymbol{\varepsilon}$
Model $2 \quad \mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{Z} \boldsymbol{\gamma}+\boldsymbol{\xi}$
Then, the Encompassing Model (ME) is:

$$
\text { ME: } \quad \mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{W} \boldsymbol{\delta}+\mathbf{Z} \boldsymbol{\gamma}+\boldsymbol{\varepsilon}
$$

Now test, separately, the hypotheses (1) $\boldsymbol{\delta}=\mathbf{0}$ and (2) $\boldsymbol{\gamma}=\mathbf{0}$. That is,
F-test for $\mathrm{H}_{0}: \boldsymbol{\gamma}=\mathbf{0}$: ME (U Model) vs Model 1 (R Model).
F-test for $\mathrm{H}_{0}: \boldsymbol{\delta}=\mathbf{0}$: ME (U Model) vs Model 2 (R Model).
If we reject $\mathrm{H}_{0}: \boldsymbol{\gamma}=\mathbf{0} \Rightarrow$ Evidence against Model 1 (statistically different from ME).
If we reject $\mathrm{H}_{0}: \boldsymbol{\delta}=\mathbf{0} \Rightarrow$ Evidence against Model 2 (statistically different from ME). व

Non-nested Models and Tests: IFE or PPP?

Two of the main theories to explain the behaviour of exchange rates, S_{t}, are the International Fisher Effect (IFE) and the Purchasing Power Parity (PPP). We use the direct notation for S_{t}, that is, units of domestic currency (DC) per 1 unit of foreign currency (FC).

IFE states that, in equilibrium, changes in exchange rates (e) are driven by the interest rates differential between the domestic currency, id, and the foreign currency, if:. A DGP consistent with IFE is:

$$
\mathrm{e}=\alpha^{1}+\beta^{1}\left(\mathrm{i}_{\mathrm{d}}-\mathrm{i}_{\mathrm{f}}\right)+\varepsilon^{1}
$$

$\mathbf{P P P}$, in its Relative version, states that that, in equilibrium, e are driven by the inflation rates differential between the domestic Inflation rate, I_{d}, and the foreign Inflation rate, If. A GDP consistent with IFE is:

$$
\mathrm{e}=\alpha^{2}+\beta^{2}\left(\mathrm{I}_{\mathrm{d}}-\mathrm{I}_{\mathrm{f}}\right)+\varepsilon^{2}
$$

Both theories are non-nested, thus, we need a non-nested method to select a model.
Example: What drives log changes in exchange rates for the USD/GBP (e): (id -if) or ($\mathrm{I}_{\mathrm{d}}-\mathrm{If}$)? The USD is the DC; the GBP is the FC. Both non-nested models are:

$$
\begin{array}{ll}
\text { IFE Model: } & \mathbf{e}=\alpha^{1}+\beta^{1}\left(\mathbf{i}_{\mathbf{d}}-\mathbf{i}_{\mathbf{f}}\right)+\boldsymbol{\varepsilon}^{1} \\
\text { PPP Model: } & \mathbf{e}=\alpha^{2}+\beta^{2}\left(\mathbf{I}_{\mathbf{d}}-\mathbf{I}_{\mathbf{f}}\right)+\boldsymbol{\varepsilon}^{2}
\end{array}
$$

SF_da <- read.csv("https://www.bauer.uh.edu/rsusmel/4397/SpFor_prices.csv", head=TRUE, sep=",")
x_date $<-$ SF_da\$Date
x_S <- SF_da\$GBPSP
x_F3m <- SF_da\$GBP3M
i_us3 <- SF_da\$Dep_USD3M
i_uk3 <-SF_da\$Dep_UKP3M
cpi_uk <- SF_da\$UK_CPI
cpi_us <- SF_da\$US_CPI
T <- length(x_S)
int_dif <- (i_us3[-1] - i_uk3[-1])/100
$1 r_{-}$usdgbp $<-\log \left(x_{-} \mathrm{S}[-1] / x_{-} \mathrm{S}[-\mathrm{T}]\right)$
I_us $<-\log$ (cpi_us[-1]/cpi_us[-T])
I_uk <- \log (cpi_uk[-1]/cpi_uk[-T])
inf_dif <- (I_us - I_uk)
Encompassing Model (ME or "Unrestricted Model")

$$
\mathbf{e}=\alpha+\beta_{1}\left(\mathbf{i}_{\mathbf{d}}-\mathbf{i}_{\mathbf{f}}\right)+\beta_{2}\left(\mathbf{I}_{\mathbf{d}}-\mathbf{I}_{\mathbf{f}}\right)+\boldsymbol{\varepsilon}^{\mathbf{1}}
$$

\# Encompassing Model and Test
fit_me $<-\operatorname{lm}\left(\operatorname{lr} _\right.$usdgbp \sim int_dif + inf_dif $) \quad$ \# ME estimation
$>$ summary(fit_me)
Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) $-0.00096330 .0016210-0.594 \quad 0.5527$

int_dif	-0.0278510	0.0741189	-0.376	0.7073	\Rightarrow cannot reject $H_{0}: \beta_{1}=0$.
inf_dif	0.7444711	0.3429106	$\mathbf{2 . 1 7 1}$	$\mathbf{0 . 0 3 0 6}$	

Signif. codes: 0 '***’ $0.001^{\text {'**' }} 0.01^{\text {'*' }} 0.05$ '.' $0.1^{\text {' ' } 1} 1$
Residual standard error: 0.02662 on 360 degrees of freedom
Multiple R-squared: 0.01316, Adjusted R-squared: 0.007673
F-statistic: 2.399 on 2 and 360 DF, p-value: 0.09221
Conclusion: The encompasing test favors the PPP Model.
Note: Two F-tests are needed, but for the one variable case, the t-tests are equivalent.
R Note: The package in R, lmtest, performs this test, encomptest. Recall you need to install it first: install.packages("Imtest"). The test reported is an F-test $\sim F_{1, T-k}$, which, in this case with only one variable in each Model, is equal to $\left(t_{T-k}\right)^{2}$.
library(lmtest)
fit_m1 <- lm(lr_usdgbp ~int_dif) \# Restricted Model 1
fit_m2 <- $\operatorname{lm}\left(\operatorname{lr} _u s d g b p \sim\right.$ inf_dif $) \quad$ \# Restricted Model 2
$>$ encomptest(fit_m1, fit_m2)
1: 1 r_usdgbp ~ int_dif
Model 2: lr_usdgbp ~inf_dif
Model E: lr_usdgbp ~ int_dif + inf_dif
Res.Df Df F $\operatorname{Pr}(>F)$
M1 vs. ME 360-1 4.7134 0.03058 * $\quad \Rightarrow$ reject $H_{0}: \beta_{2}=0$. Check: $(2.171)^{2}=4.713$
M2 vs. ME 360-1 0.1412 0.70732.

Non-nested Models: J-test

We present the most popular test for non-nested models, the Davidson-MacKinnon (1981)'s J test.

We start with two non-nested models. Say,

$$
\begin{array}{ll}
\text { Model 1: } & \mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon} \\
\text { Model 2: } & \mathbf{Y}=\mathbf{Z} \boldsymbol{\gamma}+\boldsymbol{\xi}
\end{array}
$$

Idea: If Model 2 is true, then the fitted values from the Model 1, when added to the 2 nd equation, should be insignificant.

- Steps:
(1) Estimate Model $1 \Rightarrow$ obtain fitted values: $\mathbf{X b}$.
(2) Add $\mathbf{X b}$ to the list of regressors in Model 2
$\Rightarrow \mathbf{Y}=\mathbf{Z} \gamma+\lambda \mathbf{X b}+\xi$
(3) Do a t-test on λ. A significant t-value would be evidence against Model 2, favoring Model 1.
(4) Repeat the procedure for the models the other way round.
(4.1) Estimate Model $2 \quad \Rightarrow$ obtain fitted values: $\mathbf{Z c}$.
(4.2) Add $\mathbf{Z c}$ to the list of regressors in Model 1:

$$
\Rightarrow \mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\lambda \mathbf{Z c}+\boldsymbol{\varepsilon}
$$

(4.3) Do a t-test on λ. A significant t-value would be evidence against Model 1 and in favor of Model 2.
(5) Rank the models on the basis of this test.

- The "best situation" is when we reject only one $\mathrm{H}_{0}: \boldsymbol{\lambda}=0$. In this case, it is very clear which model to select. But, tt is possible that we cannot reject both models. This is possible in small samples, even if one model, say Model 2, is true.

It is also possible that both t-tests reject $\mathrm{H}_{0}(\lambda \neq 0 \& \lambda \neq 0)$. This is not unusual. McAleer's (1995), in a survey, reports that out of 120 applications all models were rejected 43 times.

Technical Note: As some of the regressors in step (3) are stochastic, Davidson and MacKinnon (1981) show that the t-test is asymptotically valid.

- One would also want to examine the diagnostic test results when choosing between two models.

```
Non-nested Models: J-test - IFE or PPP?
using the }J\mathrm{ -test.
    Model 1 (IFE): }\quad\mathbf{e}=\mp@subsup{\alpha}{}{1}+\mp@subsup{\beta}{}{1}(\mp@subsup{\mathbf{i}}{\mathbf{d}}{}-\mp@subsup{\mathbf{i}}{\mathbf{f}}{\mathbf{f}})+\mp@subsup{\boldsymbol{\varepsilon}}{}{1
    Model 2 (PPP): }\quad\mathbf{e}=\mp@subsup{\boldsymbol{\alpha}}{}{2}+\mp@subsup{\boldsymbol{\beta}}{}{\mathbf{2}}(\mp@subsup{\mathbf{I}}{\mathbf{d}}{}-\mp@subsup{\mathbf{I}}{\mathbf{f}}{})+\mp@subsup{\boldsymbol{\varepsilon}}{}{\mathbf{2}
```

Example: Now, we test IFE Model vs PPP Model 2, for changes in the USD/GBP exchange rate
$\mathrm{y}<-$ lr_usdgbp
fit_m1 <- lm(y ~int_dif)
summary(fit_m1)
y_hat1 <- fitted(fit_m1)
fit_J1 $<-\operatorname{lm}(\mathrm{y} \sim$ inf_dif + y_hat1 $)$
summary(fit_J1)
fit_m2 $<-\operatorname{lm}(\mathrm{y} \sim$ inf_dif $)$
summary(fit_m2)
y_hat2 <- fitted(fit_m2)
fit J $2<-\operatorname{lm}\left(\mathrm{y} \sim\right.$ int_dif $+\mathrm{y}_{-}$hat2 $)$
summary(fit_J2)
fit_m1 <- lm(y ~int_dif)
$y_{\text {_hat1 }}<-$ fitted(fit_m1)
fit_J1 <- lm (formula $=\mathrm{y} \sim$ inf_dif + y_hat $_{\text {_ }}$)
$>$ summary(fit_J1)

Residuals:
Min 1Q Median 3Q Max
-0.136310-0.014168 0.0003510 .0172270 .092421
Coefficients:

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$	
(Intercept)	0.0001497	0.0025556	0.059	0.9533	
inf_dif	0.7444711	0.3429106	2.171	0.0306	
y_hat1 *	1.2853298	3.4206106	$\mathbf{0 . 3 7 6}$	$\mathbf{0 . 7 0 7 3}$	\Rightarrow cannot reject $\mathrm{H}_{0}: \lambda=0$. (Good for
					Model 2)

Signif. codes: $0{ }^{\text {'***' }} 0.001^{\text {'**' }} 0.01^{\prime *} 0.05^{\prime} .{ }^{\prime} 0.1^{\prime}{ }^{\prime} 1$
Residual standard error: 0.02662 on 360 degrees of freedom
Multiple R-squared: 0.01316, Adjusted R-squared: 0.007673
F-statistic: 2.399 on 2 and 360 DF , p -value: 0.09221
it_m2 $<-\operatorname{lm}(\mathrm{y} \sim$ inf_dif $)$
y_hat2 <- fitted(fit_m2)
fit_J2 $<-\operatorname{lm}$ (formula $=\mathrm{y} \sim$ int_dif $+\mathrm{y}_{-}$hat 2$)$
$>$ summary(fit_J2)
Residuals:
Min 1Q Median 3Q Max
-0.136310-0.014168 0.0003510 .0172270 .092421
Coefficients:
Estimate Std. Error $\quad t$ value $\operatorname{Pr}(>|t|)$
$\begin{array}{lllll}\text { (Intercept) } & -0.000304 & 0.0016409 & -0.186 & 0.8529\end{array}$
$\begin{array}{lllll}\text { int_dif } & -0.027851 & 0.0741189 & -0.376 & 0.7073\end{array}$
$\begin{array}{lllll}y_{-} \text {hat2 } & 1.0066945 & 0.4636932 & 2.171 & 0.0306\end{array} \quad \Rightarrow$ Reject $H_{0}: \lambda=0$. (Again, good for Model 2)

Residual standard error: 0.02662 on 360 degrees of freedom
Multiple R-squared: 0.01316, Adjusted R-squared: 0.007673
F-statistic: 2.399 on 2 and 360 DF, p-value: 0.09221
Conclusion: We only rejected one $\mathrm{H}_{0}: \lambda=0$. Then, the J-test selects the PPP Model (Model 2).

R Note: The lmtest package also performs this test, with the function jtest. Recall that you need to install it first: install.packages("lmtest").
library(lmtest)
fit_m1 <- lm(lr_usdgbp \sim int_dif)
fit_m2 $<-\operatorname{lm}\left(l_{\text {__ }}\right.$ usdgbp \sim inf_dif)
$>$ jtest(fit_m1, fit_m2)
J test
Model 1: 1 r_usdgbp ~int_dif
Model 2: 1 r_usdgbp ~ inf_dif
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$

```
M1 + fitted(M2) 1.0067 0.4637 2.1710 0.03058* * Reject H: 访0. (Model 2 selected)
M2 + fitted(M1) 1.2853 3.4206 0.3758 0.70732. |
```


Non-nested Models: J-test - Application

We want to test

$$
\begin{array}{ll}
\mathbf{H}_{0}: \boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}+\varepsilon_{0} & \text { (additive) vs } \\
\mathbf{H}_{1}: \ln \boldsymbol{y}=(\ln \boldsymbol{X}) \gamma+\varepsilon_{1} & \text { (multiplicative) }
\end{array}
$$

We look at the J-test

- Step 1: OLS on \mathbf{H}_{1} : get $\hat{\gamma}$

$$
\text { OLS } \mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\lambda_{1} \exp \{\ln (\mathbf{X}) \hat{\gamma}\}+\boldsymbol{\varepsilon} \quad \Rightarrow t \text {-test on } \lambda_{1}
$$

- Step 2: OLS on \mathbf{H}_{0} : get \mathbf{b}

$$
\text { OLS } \ln \mathbf{y}=(\ln \boldsymbol{X}) \gamma+\lambda_{0} \mathbf{X b}+\boldsymbol{\varepsilon} \quad \Rightarrow t \text {-test on } \lambda_{0}
$$

Situations:
(1) Both OK: $\quad \lambda_{1}=0$ and $\lambda_{0}=0 \quad \Rightarrow$ get more data
(2) Only 1 is OK: $\lambda_{1} \neq 0$ and $\lambda_{0}=0$ (multiplicative is OK);
$\lambda_{0} \neq 0$ and $\lambda_{1}=0 \quad$ (additive is OK)
(3) Both rejected: $\quad \lambda_{1} \neq 0$ and $\lambda_{0} \neq 0{ }^{`} \quad \Rightarrow$ new model is needed.

Non-nested Models: \boldsymbol{J}-test - Remarks

The J-test was designed to test non-nested models (one model is the true model, the other is the false model), not for choosing competing models -the usual use of the test.

The J-test is likely to over reject the true (model) hypothesis when one or more of the following features is present:
i) A poor fit of the true model
ii) A low/moderate correlation between the regressors of the 2 models
iii) The false model includes more regressors than the correct model.

Davidson and MacKinnon (2004) state that the J-test will over-reject, often quite severely in finite samples when the sample size is small or where conditions (i) or (iii) above are obtained.

Lecture 6 - Specification, Forecasting \& Model Selection

OLS Estimation - Assumptions
Brief Review of CLM Assumptions
(A1) DGP: $\mathbf{y}=\mathbf{X} \beta+\varepsilon$ is correctly specified.
(A2) $\mathrm{E}[\boldsymbol{\varepsilon} \mid \mathbf{X}]=0$
(A3) $\operatorname{Var}[\varepsilon \mid \mathbf{X}]=\sigma^{2} \mathbf{I}_{T}$
(A4) \mathbf{X} has full column $\operatorname{rank}-\operatorname{rank}(\mathbf{X})=k$-, where $\mathrm{T} \geq k$.
Question: What happens when (A1) is not correctly specified?
First, we look at (A1), in the context of linearity. Are we omitting a relevant regressor? Are we including an irrelevant variable? What happens when we impose restrictions in the DGP?

Second, in (A1), we allow some non-linearities in its functional form.

Specification Errors: Omitted Variables

Omitting relevant variables: Suppose the correct model (DGP) is

$$
\mathbf{y}=\mathbf{X}_{1} \boldsymbol{\beta}_{1}+\mathbf{X}_{2} \boldsymbol{\beta}_{2}+\boldsymbol{\varepsilon} \quad \text {-the "long regression," with } \mathbf{X}_{1} \& \mathbf{X}_{2} .
$$

But, we compute OLS omitting \mathbf{X}_{2}. That is,

$$
\mathbf{y}=\mathbf{X}_{1} \boldsymbol{\beta}_{1}+\boldsymbol{\varepsilon} \quad \text {-the "short regression." }
$$

We have two nested models: one model becomes the other, once a restriction is imposed. In the above case, the true model becomes "the short regression" by imposing the restriction $\beta_{2}=0$.

Question: What are the implications of using the wrong model, with omitted variables? We already know the answer, we are imposing a wrong restriction: the restricted estimator, \mathbf{b}^{*}, is biased, but it is more efficient.

Specification Errors: Omitted Variables

Some easily proved results:

$$
\begin{aligned}
\mathrm{E}\left[\mathbf{b}_{1} \mid \mathbf{X}\right] & =\mathrm{E}\left[\left(\mathbf{X}_{1} \mathbf{}^{\prime} \mathbf{X}_{\mathbf{1}}\right)^{-1} \mathbf{X}_{\mathbf{1}}{ }^{\prime} \mathbf{y}\right]=\mathrm{E}\left[\left(\mathbf{X}_{\mathbf{1}} \mathbf{X}_{1}\right)^{-1} \mathbf{X}_{\mathbf{1}}{ }^{\prime}\left(\mathbf{X}_{1} \boldsymbol{\beta}_{1}+\mathbf{X}_{2} \boldsymbol{\beta}_{2}+\boldsymbol{\varepsilon}\right)\right] \\
& =\boldsymbol{\beta}_{1}+\left(\mathbf{X}_{1} \mathbf{1}_{1} \mathbf{X}_{1}\right)^{-1} \mathbf{X}_{\mathbf{1}}{ }^{\prime} \mathbf{X}_{\mathbf{2}} \boldsymbol{\beta}_{2} \neq \boldsymbol{\beta}_{1} .
\end{aligned}
$$

Thus, unless $\mathbf{X}_{1} \mathbf{X}_{\mathbf{2}}=0, \mathbf{b}_{1}$ is biased. The bias can be huge. It can reverse the sign of a price coefficient in a "demand equation."
(2) $\operatorname{Var}\left[\mathbf{b}_{1} \mid \mathbf{X}\right] \leq \operatorname{Var}\left[\mathbf{b}_{1.2} \mid \mathbf{X}\right]$, where $\mathbf{b}_{1.2}$ is the OLS estimator of $\boldsymbol{\beta}_{1}$ in the long regression (the true model).

Thus, we get a smaller variance when we omit \mathbf{X}_{2}.

Interpretation: Omitting \mathbf{X}_{2} amounts to using extra information -i.e., $\boldsymbol{\beta}_{2}=\mathbf{0}$. Even if the information is wrong, it reduces the variance.
(3) Mean Squared Error $(M S E=R S S / T)$

If we use MSE as precision criteria for selecting an estimator, \mathbf{b}_{1} may be more "precise."

$$
\begin{aligned}
\text { Precision } & =\text { Mean squared error (MSE) } \\
& =\text { Variance }+ \text { Squared bias } .
\end{aligned}
$$

Smaller variance but positive bias. If bias is small, a practitioner may still favor the short regression.

Note: Suppose $\mathbf{X}_{1} \mathbf{X}_{\mathbf{2}}=\mathbf{0}$. Then the bias goes away. Interpretation, the information is not "right," it is irrelevant: \mathbf{b}_{1} is the same as $\mathbf{b}_{1.2}$.

Example: We fit an ad-hoc model for U.S. short-term interest rates (ius,t) that includes inflation rate ($\mathrm{I}_{U S, \mathrm{t}}$), changes in the USD/EUR (e_{t}), money growth rate (mus,t), and unemployment ($\mathrm{u}_{\mathrm{US}, \mathrm{t}}$), using monthly data from 1975:Jan-2020: Jul. That is,

$$
i U S, t=\beta_{0}+\beta_{1} I U S, t+\beta_{2} e_{t}+\beta_{3} m U S, t+\beta_{4} u U S, t+\varepsilon_{i}
$$

Fger_da <- read.csv("https://www.bauer.uh.edu/rsusmel/4397/FX_USA_GER.csv", head=TRUE, sep=",")
us_CPI <- Fger_da\$US_CPI
us_M1 <- Fger_da\$US_M1
us_i <- Fger_da\$US_I3M
us_GDP <- Fger_da\$US_GDP
ger_CPI <- Fger_da\$GER_CPI
us_u $<-$ Fger_da\$US_UN
S_ger <- Fger_da\$USD_EUR
T <- length(us_CPI)
us_I $<-\log ($ us_CPI $[-1] /$ us_CPI[-T]) \# US Inflation: (Log) Changes in CPI
us_mg <- log(us_M1[-1]/us_M1[-T]) \# US Money Growth: (Log) Changes in M1
e_ger $<-\log ($ S_ger[-1]/S_ger[-T]) \# (Log) Changes in USD/EUR
us_i_1 <- us_i[-1] \# Adjust sample size of untransformed data
us_u_1<-us_u[-1] \# Adjust sample size of untransformed data
us_i_0 $<-$ us_i $[-T]$ \# lagged interest rates, by removing T observation
xx_i $<-$ cbind(us_I ,e_ger, us_mg, us_u_1) \# X matrix
fit_i $<-\operatorname{lm}($ us_i_1~xx_i)
$>$ summary(fit_i)
Coefficients:

	Estimate	Std. Erior	t value	
(Intercept)	2.12516	0.52177	4.073	$34 \mathrm{e}-05$ *
xx_i_us_I	410.03733	37.17344	30	16
xx_i_e_ger	8.90564	4.59915	1.936	0.053343

xx_i_us_mg -50.07811 15.04907-3.3280.000935 *** $\quad \Rightarrow$ significant.
xx_i_us_u_10.22673 $0.08346 \quad 2.7170 .006805^{* *} \quad \Rightarrow$ significant.
Signif. codes: $0^{\text {‘***’ } 0.001 ~ ' * * ’ ~} 0.01^{\text {'* }} 0.05^{\prime} .{ }^{\prime} 0.1^{\prime}{ }^{\prime} 1$
Residual standard error: 3.113 on 542 degrees of freedom
Multiple R-squared: 0.2276, Adjusted R-squared: 0.2219
F-statistic: 39.93 on 4 and $542 \mathrm{DF}, \mathrm{p}$-value: $<2.2 \mathrm{e}-16$

- Now, we include lagged interest rates
xx_i <- cbind(us_I ,e_ger, us_mg, us_u_1, us_i_0) \# X matrix with lagged interest rates
fit_i_1<- lm(us_i_1~xx_i)
summary(fit_i_1)
Coefficients:

	Estimate	Std. Error	t value $\operatorname{Pr}(>\mid t)$	
(Intercept)	0.101007	0.079458	1.2710 .20420	
xx_ius_I	16.367138	6.144709	2.6640 .00796 **	
xx_ie_ger	3.112901	0.691673	$4.5018 .3 \mathrm{e}-06{ }^{\text {*** }}$	
xx_ius_mg	1.231633	2.284528	0.5390 .59003	\Rightarrow now, not significant.
xx_ius_u_1	-0.015444	0.012632	-1.2230.22199	\Rightarrow now, not significant.
xx_i_us_i_0	0.22673	0.08346	2.7170 .00681 **	\Rightarrow significant effect on other coeff.

Signif. code	: $0{ }^{\text {'**** }} 0$	$0.001^{\text {'**' }} 0$. $01{ }^{\prime *}$ ' 0.05^{\prime} '. 0.1	

Residual standard error: 3.113 on 542 degrees of freedom
Multiple R-squared: 0.2276, Adjusted R-squared: 0.2219
Note: Lagged ius (ius, t-1) is very significant \& changes significance of other variables. It may point out to a general misspecification in (A1). ब

Omitted Variables Example: Gasoline Demand

We have a linear model for the demand for gasoline (G) as function of price (PG) and income (Y):

$$
\mathbf{G}=P G \beta_{1}+Y \beta_{2}+\varepsilon,
$$

Q: What happens when you wrongly exclude Income (Y)?

$$
\mathrm{E}\left[\mathrm{~b}_{1} \mid \mathbf{X}\right]=\beta_{1}+\quad \beta_{2}
$$

In time series data, $\beta_{1}<0, \beta_{2}>0$ (usually)

$$
\operatorname{Cov}[\text { Price, } \text { Income }]>0 \text { in time series data. }
$$

\Rightarrow The short regression will overestimate the price coefficient.

In a simple regression of G (demand) on a constant and PG, the Price Coefficient (β_{1}) should be negative.

Example: Estimation of a 'Demand' Equation: Shouldn't the Price Coefficient be Negative?
Taken from Green's graduate Econometrics textbook

- If a multiple regression is done, incorporating income, Y, theory works!

OrdinaryLHS $=\mathrm{G}$	least squares regression		
	Mean =	226.09444	
	Standard deviation =	50.59182	
	Number of observs.	36	
Model size	Parameters =	3	
	Degrees of freedom =	33	
Residuals	Sum of squares	1472.79834	
	Standard error of e =	6.68059	
Fit	R-squared	. 98356	
	Adjusted R-squared	. 98256	
Model test	F[2, 33] (prob) =	987.1(.0000)	
Variable\| Coefficient		r t-ratio	$\mathrm{P}[\|\mathrm{T}\|>\mathrm{t}]$
Constant\|	-79.7535*** 8.67255	-9.196	. 0000
Y ${ }^{\text {l }}$.03692*** 000132	28.022	. 0000
PG\|	-15.1224*** 1.88034	-8.042	. 0000

Note: Income is helping us to identify a demand equation-i.e., with a negative slope for the price variable. $\boldsymbol{\|}$

Specification Errors: Irrelevant Variables

Irrelevant variables. Suppose the correct model is

$$
\boldsymbol{y}=\mathbf{X}_{1} \boldsymbol{\beta}_{1}+\boldsymbol{\varepsilon} \quad \text {-the "short regression," with } \mathbf{X}_{1}
$$

But, we estimate

$$
\boldsymbol{y}=\mathbf{X}_{1} \boldsymbol{\beta}_{1}+\mathbf{X}_{2} \boldsymbol{\beta}_{2}+\boldsymbol{\varepsilon} \text {-the "long regression." }
$$

Some easily proved results: Including irrelevant variables just reverse the omitted variables results: It increases variance -the cost of not using information-; but does not create biases.
\Rightarrow Since the variables in \mathbf{X}_{2} are truly irrelevant, then $\boldsymbol{\beta}_{2}=\mathbf{0}$,

$$
\text { so } E\left[\mathbf{b}_{1.2} \mid \mathbf{X}\right]=\boldsymbol{\beta}_{1} \text {. }
$$

- A simple example

Suppose the correct model is: $\quad \boldsymbol{y}=\beta_{1}+\beta_{2} \mathbf{X}_{2}+\boldsymbol{\varepsilon}$
But, we estimate: $\quad \boldsymbol{y}=\beta_{1}+\beta_{2} \mathbf{X}_{2}+\beta_{3} \mathbf{X}_{3}+\boldsymbol{\varepsilon}$

- Results:
- Unbiased: \quad Given that $\beta_{3}=0 \quad \Rightarrow E\left[b_{2} \mid X\right]=\beta_{2}$
- Efficiency:

$$
\operatorname{Var}\left[b_{2} \mid X\right]=\frac{\sigma^{2}}{\sum\left(X_{2 i}-\bar{X}_{2}\right)^{2}} \times \frac{1}{1-r_{X_{2}, X_{3}}^{2}}>\frac{\sigma^{2}}{\sum\left(X_{2 i}-\bar{X}_{2}\right)^{2}}
$$

where $r_{X_{2}, X_{3}}$ is the correlation coefficient between X_{2} and X_{3}.
Note: These are the results in general. Note that if X_{2} and X_{3} are uncorrelated, there will be no loss of efficiency after all.

Testing Model Specification: Nested Models

In both previous cases, we have two nested models, one is the restricted version of the other. For example, in the case of omitted variables:
(U) $\boldsymbol{y}=\mathbf{X} \beta_{1}+\mathbf{Z} \beta_{2}+\varepsilon \quad$-the "long regression,"
(R) $\boldsymbol{y}=\mathbf{X} \boldsymbol{\beta}_{1}+\boldsymbol{\varepsilon}$-the "short regression."

To test H_{0} (No omitted variables): $\boldsymbol{\beta}_{2}=0$, we can use the F-test:

$$
F=\frac{\left(R S S_{R}-R S S_{U}\right) / J}{R S S_{U} /(T-k)} \sim F_{J, T-K .}
$$

Example: In the previous Lecture, we performed this F-test to test if in the 3-factor FF model for IBM returns, SMB and HML were significant, which they were. That is, we showed that the usual CAPM formulation for IBM returns had omitted variables: SMB and HML.

Testing Model Specification with an LM Test

Note that we can tests for omitted variables with Wald tests and LR tests. The F-test and the LR test of $\mathrm{H}_{0}: \boldsymbol{\beta}_{2}=0$ require two estimations: the Unrestricted model and the Restricted model.

There is another test of $\mathrm{H}_{0}: \boldsymbol{\beta}_{2}=0$, that only uses the restricted model as the basis for testing: The Lagrange Multiplier (LM) test, which we introduced in Lecture 5.

In this section, we present the simpler formulation of the LM test, which is based on the residuals of the restricted model, \mathbf{e}_{R}.

Simple intuition. Everything that is omitted from (\& belongs to!) a model should appear in the residuals (\mathbf{e}_{R}). Suppose we consider a model driven by \mathbf{X}_{1} and \mathbb{Z} :

$$
\boldsymbol{y}=\mathbf{X}_{1} \boldsymbol{\beta}_{1}+\mathbb{Z} \boldsymbol{\beta}_{2}+\boldsymbol{\varepsilon}
$$

But, we use a simpler model, which omits the J variables, \mathbb{Z} :

$$
y=\mathbf{X}_{1} \beta_{1}+\varepsilon
$$

The LM test checks if the restricted residuals, \mathbf{e}_{R}, can be explained by the J omitted variables \mathbb{Z}. We use a simple regression of er against \mathbb{Z} to check for misspecification in the estimated model.

- LM test steps:
(1) Run restricted model $\left(\mathbf{y}=\mathbf{X} \boldsymbol{\beta}_{1}+\varepsilon\right)$. Get restricted residuals, $\mathbf{e}_{\text {R }}$.
(2) (Auxiliary Regression). Run the regression of e_{R} on all the J omitted m variables, Z, and the k included variables, \mathbf{X}. In our case:

$$
\mathrm{e}_{\mathrm{R}, \mathrm{i}}=\alpha_{0}+\alpha_{1} \mathrm{x}_{\mathrm{i}, 1}+\ldots+\alpha_{k} \mathrm{x}_{\mathrm{i}, k}+\gamma_{1} \mathrm{Z}_{\mathrm{i}, 1}+\ldots .+\gamma_{J} \mathrm{Z}_{\mathrm{i}, J}+\mathrm{v}_{\mathrm{i}}
$$

\Rightarrow Keep the R^{2} from this regression, $R_{e R}^{2}$.
(3) Compute LM-statistic:

$$
\mathrm{LM}=T * R_{e R}^{2} \xrightarrow{d} \chi_{J}^{2} .
$$

Technical Note: We include the original variables in (2), \mathbf{X}, in the auxiliary regression to get the convenient form for the LM-test, as shown by Engle (1982).

The LM Test is very general. It can be used in many settings, for example, to test for nonlinearities, interactions among variables, autocorrelation or heteroscedasticity (discussed later).

Asymptotically speaking, the LM Test, the LR Test and the Wald Test are equivalent -i.e, they have the same limiting distribution, χ_{J}^{2}. In small T, they can have different conclusions. In general, however, we find: $\mathrm{W}>\mathrm{LR}>\mathrm{LM}$. That is, the LM test is more conservative (cannot reject more often) and the Wald test is more aggressive.

Example: We use an LM test to check if the standard CAPM for IBM returns omits SMB and HML.
fit_r $<-\operatorname{lm}\left(\right.$ ibm_x $^{\prime} \sim$ Mkt_RF)
resid_r <- fit_r\$residuals \# get residuals from R model
fit_lm $<-\operatorname{lm}\left(\right.$ resid_r $\left.\sim M k t _R F+S M B+H M L\right) \quad \#$ auxiliary regression
$>$ summary(fit_lm)
Coefficients:

	Estimate	Std. Error t value $\operatorname{Pr}(>\|t\|)$			
(Intercept)	0.0007021	0.0024875	0.282	0.7779	
Mkt_RF	0.0125253	0.0567221	0.221	0.8253	
SMB	-0.2124596	0.0841119	$\mathbf{- 2 . 5 2 6}$	0.0118 *	
HML	-0.1715002	0.0846817	$\mathbf{- 2 . 0 2 5}$	0.0433 *	

Residual standard error: 0.05848 on 565 degrees of freedom
Multiple R-squared: $\mathbf{0 . 0 1 6 4 9}$, Adjusted R-squared: 0.01127
F-statistic: 3.158 on 3 and 565 DF, p-value: 0.02438
R2_r <- summary(fit_lm)\$r.squared \# extracting R^{2} from fit_lm $>$ R2_r
[1] 0.01649104
LM_test $<-$ R2_r * T
$>$ LM_test
[1] $9.383402 \Rightarrow$ LM_test $>$ qchisq $(.95, \mathrm{df}=2) \Rightarrow$ Reject H_{0}.
qchisq($95, \mathrm{df}=2) \quad$ \# chi-squared $(\mathrm{df}=2)$ value at 5% level
p_val <-1 - pchisq $\left(L M_{-}\right.$test, $\left.d f=2\right) \quad \# p$-value of LM_test
>p_val
$[1] 0.009171071 \quad \Rightarrow \mathrm{p}$-value is small \Rightarrow Reject $\mathrm{H}_{0}:$ SMB \& HML not in model.
Conclusion: We strongly reject the CAPM (one factor model), since the LM tests strongly suggests that SMB and HML should be in the model. व

Note: In Lecture 5 we performed the same test with the Wald test (using the F distribution), the p-value was $\mathbf{0 . 0 0 9 1 1 7 5}$. (This almost exact coincidence is not always the case.)

Functional Form: Linearity in Parameters

Linear in variables and parameters:

$$
\boldsymbol{y}=\beta_{1}+\beta_{2} \boldsymbol{X}_{2}+\beta_{3} \boldsymbol{X}_{3}+\beta_{4} X_{4}+\boldsymbol{\varepsilon}
$$

So far, this is the linear model we have used. OLS estimates all parameters: $\beta_{1}, \beta_{2}, \beta_{3}, \& \beta_{4}$.
Non-linear in variables, but linear in parameters -i.e., intrinsic linear:

$$
\boldsymbol{y}=\beta_{1}+\beta_{2} \boldsymbol{X}_{2}^{2}+\beta_{3} \sqrt{\boldsymbol{X}_{3}}+\beta_{4} \log \boldsymbol{X}_{4}+\boldsymbol{\varepsilon}
$$

Define: $\boldsymbol{Z}_{2}=\boldsymbol{X}_{2}^{2}, \quad \boldsymbol{Z}_{3}=\sqrt{\boldsymbol{X}_{3}}, \quad \& \quad \boldsymbol{Z}_{4}=\log \boldsymbol{X}_{4}$
Then, the non-linear model becomes a linear model:

$$
\boldsymbol{y}=\beta_{1}+\beta_{2} \boldsymbol{Z}_{2}+\beta_{3} \boldsymbol{Z}_{3}+\beta_{4} Z_{4}+\boldsymbol{\varepsilon}
$$

Again, OLS can be used to estimate all $\beta_{1}, \beta_{2}, \beta_{3}, \& \beta_{4}$.

Suppose we have:

$$
\boldsymbol{y}=\beta_{1}+\beta_{2} \boldsymbol{X}_{2}+\beta_{3} \boldsymbol{X}_{2}^{2}+\boldsymbol{\varepsilon}
$$

The model allows for a quadratic relation between \mathbf{y} and $\mathbf{X}_{\mathbf{2}}$:

Let $\boldsymbol{X}_{3}=\boldsymbol{X}_{2}^{2}$, then, the model is intrinsic linear:

$$
\boldsymbol{y}=\beta_{1}+\beta_{2} \boldsymbol{X}_{2}+\beta_{3} \boldsymbol{X}_{3}+\varepsilon
$$

Example: We want to test if a measure of market risk (MktRet $\left.-\mathrm{r}_{\mathrm{f}}\right)^{2}$ enters as an additional explanatory variable in the 3-factor FF model for IBM returns.

The model is non-linear in ($\mathrm{Mkt}_{\text {Ret }}-\mathrm{r}_{\mathrm{f}}$), but still intrinsic linear:

$$
\mathrm{IBM}_{\text {Ret }}-\mathrm{r}_{\mathrm{f}}=\beta_{0}+\beta_{1}\left(\mathrm{MktRet}-\mathrm{r}_{\mathrm{f}}\right)+\beta_{2} \mathrm{SMB}+\beta_{3} \mathrm{HML}+\beta_{4}\left(\mathrm{MktRet}-\mathrm{r}_{\mathrm{f}}\right)^{2}+\varepsilon
$$

We can do OLS, by redefining the variables: Let $\boldsymbol{X}_{1}=($ MktRet -rf$) ; \boldsymbol{X}_{2}=\mathrm{SMB} ; \boldsymbol{X}_{3}=\mathrm{HML} ; \boldsymbol{X}_{4}=$ \boldsymbol{X}_{1}^{2}. Then,

$$
\boldsymbol{y}=\beta_{0}+\beta_{1} \boldsymbol{X}_{1}+\beta_{2} \boldsymbol{X}_{2}+\beta_{3} \boldsymbol{X}_{3}+\beta_{4} \boldsymbol{X}_{4}+\boldsymbol{\varepsilon}
$$

Mkt_RF2 <- Mkt_RF^2
fit_ibm_ff_2 <- lm (ibm_x ~ Mkt_RF + SMB + HML + Mkt_RF2)
summary(fit_ibm_ff_2)
Coefficients:

	Estimate	Std. Error	t value $\operatorname{Pr}(>\|\mathrm{t}\|)$	
(Intercept)	-0.004765	0.002854	-1.6700 .0955.	
Mkt_RF	0.906527	0.057281	$15.826<2 \mathrm{e}-16 * * *$	
SMB	-0.215128	0.084965	$-2.5320 .0116^{*}$	
HML	-0.173160	0.085054	$-2.0360 .0422 *$	\Rightarrow Not significant!

Conclusion: A t-test cannot reject $\mathrm{H}_{0}: \beta_{4}=0$. That is, there is no evidence that $(\mathrm{MktRet}-\mathrm{rf})^{2}$ is an explanatory variable for IBM excess returns.

- Now, we can also check with an LM test if all variables squares ((MktRet $\left.-\mathrm{rf}_{\mathrm{f}}\right)^{2}, \mathrm{SMB}^{2}$, and $H M L^{2}$) are omitted from the 3-factor FF model for IBM returns.

Mkt_RF2 <- Mkt_RF^2
$\mathbf{S M B 2}<-$ SMB $^{\wedge} 2$

HML2 $<-$ HML $^{\wedge} 2$
fit_r <- lm (ibm_x ~Mkt_RF + SMB + HML)
resid_r $<-$ fit_r\$residuals
fit_lm $<-\operatorname{lm}$ (resid_r \sim Mkt_RF + SMB + HML + Mkt_RF2 + SMB2 + HML2)
R2_r <- summary(fit_lm)\$r.squared
LM_test $<-\mathbf{R 2}_{-}$r * T
$>$ LM_test
[1] 2.453822
p_val <- 1 - pchisq(LM_test, $\mathrm{df}=3$) \# p-value of LM_test
>p_val
[1] $0.4836944 \quad \Rightarrow$ p-value is higher than standard levels \Rightarrow Cannot Reject H_{0}. व
Conclusion: The LM test cannot reject the 3-factor F-F model, since all squared terms are not jointly significant. II

- Nonlinear in parameters:

$$
\boldsymbol{y}=\beta_{1}+\beta_{2} \boldsymbol{X}_{2}+\beta_{3} X_{3}+\beta_{2} \beta_{3} \boldsymbol{X}_{4}+\boldsymbol{\varepsilon}
$$

This model is nonlinear in parameters since the coefficient of X_{4} is the product of the coefficients of X_{2} and X_{3}. OLS cannot be used to estimate all parameters.

Some nonlinearities in parameters can be linearized by appropriate transformations, but not this one. This is not an intrinsic linear model. Different estimation techniques should be used in these cases.

Intrinsic linear models can be estimated using OLS. Sometimes, transformations are needed. Suppose we start with a power function:

$$
\boldsymbol{y}=\beta_{1} \boldsymbol{X}^{\beta_{2}} \boldsymbol{\varepsilon}
$$

- The errors enter in multiplicative form. Then, using logs:

$$
\log \boldsymbol{y}=\log \beta_{1} \boldsymbol{X}^{\beta_{2}} \boldsymbol{\varepsilon}=\log \beta_{1}+\beta_{2} \log \boldsymbol{X}+\log \boldsymbol{\varepsilon}
$$

or

$$
\boldsymbol{y}^{\prime}=\beta_{1}^{\prime}+\beta_{2} \boldsymbol{X}^{\prime}+\boldsymbol{\varepsilon}^{\prime}
$$

where $\boldsymbol{y}^{\prime}=\log \boldsymbol{y}, \boldsymbol{X}^{\prime}=\log \boldsymbol{X}, \beta_{1}^{\prime}=\log \beta_{1}, \boldsymbol{\varepsilon}^{\prime}=\log \boldsymbol{\varepsilon}$
Now, we have an intrinsic linear model: OLS can be used to estimate all the parameters.
Similar intrinsic model can be obtained if $\boldsymbol{y}=\boldsymbol{e}^{\beta_{1}+\beta_{2} \boldsymbol{X}+\boldsymbol{\varepsilon}}$
Note: Recall that we can only use logs when \boldsymbol{y} has positive values. In general, we use logs when we believe the independent variable has an exponential or power formulation, typical behavior for nominal variables, like sales, revenue or prices.

- Not all models are intrinsic linear. For example:

$$
\boldsymbol{y}=\beta_{1} \boldsymbol{X}^{\beta_{2}}+\boldsymbol{\varepsilon}
$$

$$
\log \boldsymbol{y}=\log \left(\beta_{1} \boldsymbol{X}^{\beta_{2}}+\boldsymbol{\varepsilon}\right)
$$

We cannot linearize the model by taking logarithms. There is no way of simplifying $\log \left(\beta_{1} X^{\beta_{2}}+\right.$ $\varepsilon)$.

We will have to use some nonlinear estimation technique for these situations. (ML can estimate this model.)

Functional Form: Linear vs Log specifications

Two popular models, especially in Corporate Finance: linear or log?
Model 1 - Linear model: $\quad \boldsymbol{y}=\beta_{1}+\beta_{2} \boldsymbol{X}+\varepsilon$
Model 2 - (Semi-) Log model: $\quad \log \boldsymbol{y}=\beta_{1}+\beta_{2} \boldsymbol{X}+\varepsilon$
$\begin{array}{llll}\text { Box-Cox transformation: } & \frac{Y^{\lambda}-1}{\lambda} & =\beta_{1}+\beta_{2} X+\varepsilon & \\ & \frac{Y^{\lambda}-1}{\lambda}=Y-1 & \text { when } \lambda=1 \\ & \frac{Y^{\lambda}-1}{\lambda}=\log (Y) & \text { when } \lambda \rightarrow 0\end{array}$
Putting $\lambda=0$ gives the (semi-)log model (think about the limit of λ tends to zero.). The BoxCox transformation is flexible. We can estimate λ to test if λ is equal to 0 or 1 . It is possible that it is neither!

Functional Form: Ramsey's RESET Test

To test the specification of the functional form, Ramsey designed a simple test. We start with the fitted values from our (A1) model:

$$
\hat{\mathbf{y}}=\mathbf{X b} .
$$

Then, we add $\hat{\mathbf{y}}^{2}$ to the regression specification:

$$
\boldsymbol{y}=\mathbf{X} \boldsymbol{\beta}+\hat{\mathbf{y}}^{2} \boldsymbol{\gamma}+\boldsymbol{\varepsilon}
$$

If $\hat{\mathbf{y}}^{2}$ is added to the regression specification, it should pick up quadratic and interactive nonlinearity, if present, without necessarily being highly correlated with any of the \boldsymbol{X} variables.

We test $\quad H_{0}$ (linear functional form): $\boldsymbol{\gamma}=0$
H_{1} (non linear functional form): $\boldsymbol{\gamma} \neq 0$
$\Rightarrow t$-test on the OLS estimator of γ.
If the t-statistic for $\hat{\mathbf{y}}^{2}$ is significant \Rightarrow evidence of nonlinearity.
The RESET test is intended to detect nonlinearity, but not be specific about the most appropriate nonlinear model (no specific functional form is specified in H_{1}).

Example: We want to test the functional form of the 3 FF Factor Model for IBM returns, using monthly data 1973-2020.

```
fit_ibm_ff3 <- lm(ibm_x \(\sim\) Mkt_RF + SMB + HML \()\)
y_hat \(^{<-}\)- fitted(fit_ibm_ff3)
\(y_{-}\)hat \(2<-y_{-}\)hat \(\wedge\) ²
fit_ramsey \(<-\operatorname{lm}\left(\mathrm{ibm}_{-} \mathrm{x} \sim \mathrm{Mkt}\right.\) - RF + SMB + HML + y_hat2)
\(>\) summary(fit_ramsey)
```

Coefficients:

	Estimate	Std. Error	t value $\operatorname{Pr}(>\|t\|)$		
(Intercept)	-0.004547	0.002871	-1.584	0.1137	
Mkt_RF	0.903783	0.058003	15.582	$<2 \mathrm{e}-16 * * *$	
SMB	-0.217268	0.085128	-2.552	0.0110^{*}	
HML	-0.173276	0.084875	-2.042	$0.0417 *$	
y_hat2	$\mathbf{- 0 . 2 8 9 1 9 7}$	$\mathbf{0 . 7 6 3 5 2 6}$	$\mathbf{- 0 . 3 7 9}$	$\mathbf{0 . 7 0 5 0} \quad$ Not significant!	

R Note: The lmtest package performs this test, resettest, (and many others, used in this class, encompassing, jtest, waldtest, etc). You need to install it first: install.packages("lmtest"), then call the library(lmtest).

Note: The test reported is an F-test $\sim \mathrm{F}_{1, \mathrm{~T}-k \text {, which }}$ is equal to $\left(\mathrm{t}_{\mathrm{T}-\mathrm{k}}\right)^{2}$. The p-values should be the same.
library(lmtest)

```
> resettest(fit_ibm_ff3, power=2, type="fitted")
    RESET test
data: y ~ Mkt_RF + SMB + HML
RESET = 0.14346, df1 = 1, df2 = 564, p-value = 0.705
    => cannot reject H0. Check: (-0.379)}\mp@subsup{)}{}{2}=0.1434
```

Conclusion: The RESET test does not find evidence of non-linearities (or, in general, of misspecification) in the 3-factor F-F model, since the squared fitted values are not significant at the 5% level. $\|$

Qualitative Variables and Functional Form

Suppose that you want to model CEO compensation as a function of education. You have data on annual total CEO compensation (Comp), annual returns, annual sales, CEO's age, CEO's previous experience, and the CEO's last degree (education). We have qualitative data.

One approach to see the impact of education on the CEO compensation model is to run individual regressions for each last degree -i.e., BA/BS; MS/MA/MBA; Doctoral:
Undergrad degree
Comp $_{i}=\beta_{0-\mathrm{u}}+\boldsymbol{\beta}_{1-\mathrm{u}} \mathbf{z}_{\mathbf{i}}+\varepsilon_{u, i}$
Masters degree
Comp $_{i}=\beta_{0-\mathrm{m}}+\beta_{1-\mathrm{m}} \mathbf{z}_{\mathbf{i}}+\varepsilon_{\mathrm{m}, i}$
Doctoral degree
$\operatorname{Comp}_{i}=\beta_{0-\mathrm{d}}+\beta_{1-\mathrm{d}} \mathbf{z}_{\mathbf{i}}+\varepsilon_{d, i}$
where the $\mathbf{z}_{\mathbf{i}}$ is a vector of the CEO i 's age and previous experience and his/her firm's annual returns and annual sales. We observe the impact of education through the different coefficients in each regression. A potential problem with this approach is that we may end up with three small samples (and imprecise estimations).

An alternative approach that uses the whole sample in the estimation is to combine the three regressions in one. To do this, we use a "dummy variable" -also called, indicator variable-, which is a variable that points whether an observation belongs to a category or class or not. For example:

$$
\begin{aligned}
D_{C, i} & =1 & & \text { if observation } i \text { belongs to category } \mathrm{C}(\text { say, male.) } \\
& =0 & & \text { otherwise. }
\end{aligned}
$$

Simple process: First, we define dummy/indicator variables for Masters \& doctoral degrees:

$$
\begin{aligned}
D_{m, i} & =1 & & \text { if at least Masters degree } \\
& =0 & & \text { otherwise. } \\
D_{d, i} & =1 & & \text { if doctoral degree } \\
& =0 & & \text { otherwise. }
\end{aligned}
$$

Then, we introduce the dummy/indicator variables in the compensation model:

$$
\operatorname{Comp}_{i}=\beta_{0}+\beta_{1} \mathbf{z}_{i}+\beta_{2} D_{m, i}+\beta_{3} D_{d, i}+\gamma_{1}^{\prime} \mathbf{z}_{i} D_{m, i}+\gamma_{2}^{\prime} \mathbf{z}_{i} D_{d, i}+\varepsilon_{i}
$$

Not, this model uses all the sample to estimate the parameters. It is flexible:

- Model for undergrads only $\left(D_{m, i}=0 \& D_{d, i}=0\right)$:

$$
\operatorname{Comp}_{i}=\beta_{0}+\beta_{1} \mathbf{z}_{i}+\varepsilon_{i}
$$

- Model for Masters degree only $\left(D_{m, i}=1 \& D_{d, i}=0\right)$:

$$
\operatorname{Comp}_{i}=\left(\beta_{0}+\beta_{2}\right)+\left(\beta_{1}+\gamma_{1}\right)^{\prime} \mathbf{z}_{i}+\varepsilon_{i}
$$

- Model for Doctoral degree only $\left(D_{m, i}=1 \& D_{d, i}=2\right)$:

$$
\operatorname{Comp}_{i}=\left(\beta_{0}+\beta_{2}+\beta_{3}\right)+\left(\beta_{1}+\gamma_{1}+\gamma_{2}\right)^{\prime} \mathbf{z}_{i}+\varepsilon_{i}
$$

The parameters for the different categories are:

- Constant:

Constant for undergrad degree: β_{0}
Constant for Masters degree: $\beta_{0}+\beta_{2}$
Constant for Doctoral degree: $\beta_{0}+\beta_{2}+\beta_{3}$

- Slopes:

Slopes for undergrad degree: β_{1}
Slopes for Masters degree: $\beta_{1}+\gamma_{1}$
Slopes for Doctoral degree: $\beta_{1}+\gamma_{1}+\gamma_{2}$
We can test the effect of education on CEO compensation:
(1) H_{0} : No effect of grad degree: $\beta_{3}=\beta_{2}=0 \& \gamma_{1}=\gamma_{2}=\mathbf{0} \quad \Rightarrow$ F-test.
(2) H_{0} : No effect of Masters degree on constant: $\beta_{2}=0 \quad \Rightarrow t$-test.
(3) H_{0} : No effect of doctoral degree: $\beta_{3}=0 \& \gamma_{2}=\mathbf{0} \quad \Rightarrow$ F-test.
(4) H_{0} : No effect of Dr degree on marginal effect: $\boldsymbol{\gamma}_{2}=\mathbf{0} \quad \Rightarrow$ F-test.

- We may have more than one qualitative category (last degree above) in our data that we may want to introduce in our model.

Example: Suppose we also have data for CEO graduate school. Now, we can create another qualitative category, "quality of school", defined as Top 20 school, to test if a Top 20 school provides "more value." To do this, we use $D_{T O P}$ to define if any schooling is in the Top 20.

$$
\begin{aligned}
D_{T O P, i} & =1 & & \text { if CEO } i ’ s \text { school is a Top } 20 \text { school } \\
& =0 & & \text { otherwise. }
\end{aligned}
$$

The model becomes:

$$
\operatorname{Comp}_{i}=\beta_{0}+\boldsymbol{\beta}_{1}^{\prime} z_{i}+\beta_{2} D_{m, i}+\beta_{3} D_{d, i}+\beta_{4} D_{T O P, i}+\gamma_{1}{ }^{\prime} z_{i} D_{m, i}+\gamma_{2}^{\prime} z_{i} D_{d, i}+\gamma_{3}^{\prime} z_{i} D_{T O P, i}+\varepsilon_{i}
$$

In this setting, we can test the effect of a Top20 education on CEO compensation:
(1) H_{0} : No effect of Top20 degree: $\beta_{4}=0$ and $\gamma_{3}=\mathbf{0} \Rightarrow F$-test.

- The omitted category is the reference or control category.
- In our first example, with only educational degrees, the reference category is undergraduate degree. - In the second example, with educational degrees and quality of school (Top20 dummy), the reference category is undergraduate degree with no Top 20 education.
- Dummy trap. If there is a constant, the numbers of dummy variables per qualitative variable should be equal to the number of categories minus 1 . If you put the number of dummies variables equals the number of categories, you will create perfect multicollinearity.

Dummy Variables as Seasonal Factors

A popular use of dummy variables is in estimating seasonal effects. We may be interested in studying the January effect in stock returns or if the returns of oil companies (say, Exxon or BP) are affected by the seasons, since during the winter people drive less and during the summer.

In this case, we define dummy/indicator variables for Summer, Fall and Winter (the base case is, thus, Spring):

$$
\begin{array}{rlrl}
D_{\text {Sum }, i} & =1 & & \text { if observation } i \text { occurs in Summer } \\
& \begin{array}{l}
\text { otherwise. }
\end{array} \\
D_{\text {Fall, } i}=1 & & \text { if observation } i \text { occurs in Fall } \\
& =0 & \begin{array}{l}
\text { otherwise. } \\
D_{\text {Win }, i} i
\end{array} & \begin{array}{ll}
\text { if observation } i \text { occurs in Winter } \\
& =0
\end{array} \\
\text { otherwise. }
\end{array}
$$

Then, letting \mathbf{Z} be the vector of the three FF factors $\left(\left(r_{m, t}-r_{f}\right), S M B_{t}, H M L_{t}\right)$, and assuming the seasons only affect the constant, we have:

$$
\left(r_{i}-r_{f}\right)=\beta_{0}+\boldsymbol{\beta}_{1} \mathbf{z}_{i}+\beta_{2} D_{\text {Sum }, i}+\beta_{3} D_{\text {Fall }, i}+\beta_{4} D_{\text {Win }, i}+\varepsilon_{i}
$$

Example: In the context of the 3-factor FF model, we test if Exxon's excess returns (XOM) are affected by seasonal (quarters) factors:

```
    (r rом,i
x_xom<- SFX_da$XOM # Extract XOM prices
T<- length(x_xom)
lr_xom <- log(x_xom[-1]/x_xom[-T])
xom_x <- lr_xom - RF
T<- length(xom_x)
Summ <- rep(c(0,0,0,0,0,0,1,1,1,0,0,0), round(T/12)+1) # Create Summer dummy
Fall <- rep(c(0,0,0,0,0,0,0,0,0,1,1,1), round(T/12)+1) # Create Fall dummy
Wint <- rep(c(1,1,1,0,0,0,0,0,0,0,0,0), round(T/12)+1) # Create Winter dummy
T1<- T+1
Fall_1<- Fall[2:T1] # Adjusting sample (starts in Feb)
Wint_1<- Wint[2:T1]
Summ_1 <- Summ[2:T1]
fit_xom_s <- lm(xom_x ~ Mkt_RF + SMB + HML + Fall_1 + Wint_1 + Summ_1)
summary(fit_xom_s)
> summary(fit_xom_s)
```

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) $0.0024450 .0034850 .7020 .4832 \Rightarrow$ constant for reference category (Spring) ≈ 0.
Mkt_RF $0.7618160 .04060218 .763<2 \mathrm{e}-16^{* * *}$
SMB $\quad-0.2619250 .060575-4.3241 .81 \mathrm{e}-05$ ***
$\begin{array}{lllll} & H M L & 0.370623 & 0.060049 & 6.172 \\ 1.29 \mathrm{e}-09 & \text { *** }\end{array}$
Fall_1 $-0.0066090 .004947-1.3360 .1822$
Wint_1 -0.0112830 .004928 -2.290 $\quad 0.0224^{*} \Rightarrow$ significant. Reject H_{0} : No Winter effect. Summ_1 -0.007100 0.004944-1.436 0.1515

Interpretation: In the Winter quarter, Exxon excess returns decrease, relative to the Spring, by 1.13%. But since Spring's (\& Fall's \& Winter's) effect is non-significant, the decrease is in absolute terms.

Conclusion: The t-value for the Winter dummy (Wint_1) is significant at the 5% level. That is, we reject H_{0} : No seasonal effect on XOM excess returns.

- We can test if all quarters jointly matter. That is, $H_{0}: \beta_{2}=\beta_{3}=\beta_{4}=0$.

We do an F-test:

```
fit_u \(<-\operatorname{lm}\left(x o m_{-} \mathrm{x} \sim\right.\) Mkt_RF + SMB + HML + Fall_1 + Wint_1 + Summ_1)
fit_r \(<-\operatorname{lm}\left(x m_{\_} \quad x \sim\right.\) Mkt_RF + SMB + HML \()\)
resid_u \(<\) - fit_u\$residuals
RSS_u <- sum((resid_u)^2)
resid_r \(<-\) fit_r\$residuals
RSS_r \(<-\) sum \(\left((\text { resid_r })^{\wedge} 2\right)\)
f_test \(<-((\) RSS_r - RSS_u \() / 2) /(\) RSS_u/(T-4) \()\)
\(>\) f_test
```

p_val <- $1-\mathrm{pf}(\mathrm{f}$ _test, $\mathrm{df} 1=3, \mathrm{df} 2=\mathrm{T}-3) \quad$ \# p-value of F-test
> p_val
[1] $0.05504357 \Rightarrow$ p-value is "marginal." Cannot reject H_{0} : No joint seasonal effect.
Conclusion: We cannot reject, at the 5% level, H_{0} : No joint seasonal effect.

- Suppose we are also interested in checking if the slopes -i.e., the marginal effects- are affected by the Winter quarter. Then, we fit:

$$
\left(r_{X O M, i}-r_{f}\right)=\beta_{0}+\boldsymbol{\beta}_{1} \mathbf{z}_{i}+\beta_{2} \mathrm{D}_{\text {Sum }, i}+\beta_{3} \mathrm{D}_{\text {Fall, }, i}+\beta_{4} \mathrm{D}_{\text {Win }, i}+\boldsymbol{\gamma}_{1}^{\prime} \mathbf{z}_{i} \mathrm{D}_{\text {Win }, i}+\varepsilon_{i}
$$

Mkt_W <- Mkt_RF*Wint_1
SMB_W <- SMB*Wint_1
HML_W <- HML*Wint_1
fit_xom_s2 <- lm(xom_x \sim Mkt_RF + SMB + HML + Mkt_W + SMB_W + HML_W + Fall_1

+ Wint_1 + Summ_1)
> summary(fit_xom_s2)
Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) 0.0031270 .0034780 .8990 .368962
Mkt_RF $0.6957620 .04820214 .434<2 \mathrm{e}-16$ ***
SMB $\quad-0.2911990 .075197-3.8720 .000120$ ***
HML $\quad 0.270262 \quad 0.0774163 .491 \quad 0.000519$ ***
$\begin{array}{lllll}\text { Mkt_W } & 0.208912 & 0.091972 & 2.271 & 0.023497 *\end{array} \quad \Rightarrow$ significant effect on Mkt's slope
SMB_W $\quad 0.0647530 .126138 \quad 0.5130 .607911$
HML_W 0.1987530 .1242611 .5990 .110278
Fall_1 $\quad-0.0067950 .004934-1.3770 .169038$
Wint_1 -0.013747 0.005000-2.750 0.006159** $\quad \Rightarrow$ significant effect on constant.
Summ_1 -0.007492 0.004928-1.520 0.129012
Interpretation: The only factor interacting significantly with Winter is the Market factor. Then, we have two significantly different slopes:
- In the Winter, the Market slope is: $0.695762+\mathbf{0 . 2 0 8 9 1 2}=\mathbf{0 . 9 0 3 6 7 4}$
- In all other quarters, the Market is: $\mathbf{0 . 6 9 5 7 6 2}$

It looks like in the Winter, XOM behaves closer to the Market, while in all other quarters, it is significantly less risky than the market.

- Now, we perform a joint test for interacting Winter effects in the model::
> f_test
[1] 6.505231
p_val <- $1-\mathrm{pf}\left(\mathrm{f}\right.$ _test, $\left.\mathrm{df}^{n} 1=3, \mathrm{df} 2=\mathrm{T}-7\right) \quad$ \# p-value of F-test
> p_val
[1] $0.0007923967 \Rightarrow p$-value $<.05$, then, we reject H_{0} (joint Winter interactive effect): $\boldsymbol{\gamma}_{\mathbf{1}}=\mathbf{0}$.

Conclusion: We strongly reject, at the 5% level, H_{0} : No joint Winter interactive effect. ब

Dummy Variables: Is There a January Effect?

The January Effect is a hypothesis that states that the stock market has an unusually high return during the first month of the year. This result can be traced to an observation made in 1942 U.S. investment banker Sidney Wachtel. Wachtel noticed higher returns for small stocks than for large stock in January, a result later examined by Kiem (1983), who found that the January return premium was evident for small stocks. In one of the earlier studies, Rozeff and Kinney (1976) found seasonal patterns in an equal-weighted index of NYSE prices over the period 1904-74. Specifically, the average monthly return in January was 3.5%, while other months averaged 0.5% percent. A very strong result that shows a clearly predictable pattern, which goes against the Efficient Markets Hypothesis. Since then, a lot of work has been done: The evidence suggests that, in recent years, the January effect has dissipated.

Example: We want to test the January effect on IBM stock returns, where because of tax reasons/window dressing, stocks go down in December and recover in January. The test can be done by adding a dummy variable to the 3 -factor FF model:

$$
\begin{aligned}
D_{J, t} & =1 & & \text { if observation } t \text { occurs in January } \\
& =0 & & \text { otherwise. }
\end{aligned}
$$

Then, we estimate the expanded 3-factor FF model:

$$
\left(r_{t}-r_{f}\right)=\beta_{0}+\beta_{1}\left(r_{m, t}-r_{f}\right)+\beta_{2} S M B_{t}+\beta_{3} H M L_{t}+\beta_{4} D_{J, t}+\varepsilon_{t}
$$

We test H_{0} (No January effect): $\beta_{4}=0 \quad \Rightarrow t$-test .
Alternatively, we can estimate do an LM test on the residuals of the 3-factor FF model and check if $D_{J, t}$ is significant.

```
T <- length(ibm_x)
Jan <- rep(c(1,0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0),(round(T)/12+1)) # Create January dummy
T2<- T+1
Jan_1<- Jan[2:T2] # Adjust sample
fit_ibm_ff3 <- lm (ibm_x ~ Mkt_RF + SMB + HML) # Restricted Regression
resid_r <- fit_ibm_ff3$residuals
fit_Jan <- lm (resid_r ~ Mkt_RF + SMB + HML + Jan_1) # Auxiliary Regression
> summary(fit_Jan)
```

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) -0.002111 $0.002561-0.8240 .41027$
Mkt_RF $-0.0051980 .056405-0.0920 .92661$
$\begin{array}{llllll}\text { SMB } & -0.026306 & 0.084063 & -0.313 & 0.75445\end{array}$
HML $\quad-0.0149140 .083606 \quad-0.178 \quad 0.85848$
Jan_1 $0.0269660 .0089063 .028 \quad 0.00258$ **

Signif. codes: 0 '***’ 0.001 '**’ $0.01^{\text {'*' }} 0.05^{\prime} .{ }^{\prime} 0.1^{\prime}{ }^{\prime} 1$
Residual standard error: 0.058 on 565 degrees of freedom
Multiple R-squared: 0.01597, Adjusted R-squared: 0.009
F-statistic: 2.292 on 4 and 565 DF, p-value: 0.05841

```
R2_r <- summary(fit_Jan)\$r.squared \# Keep R^2 from Auxiliary Regression
\(>\) R2_r
[1] 0.01596528
LM_test <- R2_r * T
> LM_test
[1] 9.084247
p_val <- 1 - pchisq \(\left(L M \_\right.\)test, \(\left.\mathrm{df}=1\right) \quad \# p\)-value of LM_test
>p_val
[1] \(0.002578207 \Rightarrow p\)-value is small \(\Rightarrow\) Reject \(\mathrm{H}_{0}\).
```

Given this result, we modify the 3-factor FF and add the January Dummy to the FF model:
fit_ibm_ff3_Jan <- lm (ibm_x ~ Mkt_RF + SMB + HML + Jan_1)
$>$ summary(fit_ibm_ff3_Jan)
Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) -0.007302 $0.002561-2.851 \quad 0.00452^{* *}$
Mkt RF $0.9051820 .05640516 .048<2 \mathrm{e}-16$ ***
SMB $\quad-0.2476910 .084063-2.946 \quad 0.00335$ **
HML $\quad-0.1540930 .083606-1.8430 .06584$.
Jan_1 $0.0269660 .0089063 .028 \quad 0.00258$ **

Signif. codes: 0 '***’ 0.001 '**' $0.01^{\text {'*' }} 0.05{ }^{\prime} .{ }^{\prime} 0.1^{\prime}{ }^{\prime} 1$
Residual standard error: 0.058 on 565 degrees of freedom
Multiple R-squared: 0.3499 , Adjusted R-squared: 0.3453
F-statistic: 76.01 on 4 and 565 DF, p-value: $<2.2 \mathrm{e}-16$
Interpretation: We have two constants (excess return, Jensen's alpha):
Feb - Dec: - $\mathbf{0 . 7 3 0 2 \%}$ (significant).
January: $-\mathbf{0 . 7 3 0 2} \%+2.6966 \%=1.9664 \%$ (significant).
When the January dummy was not in the model, we had: $\mathbf{- 0 . 0 0 5 1 9 1}$, which is close to an average of the constants $(=-\mathbf{0 . 0 0 7 3 0 2} * 11+\mathbf{0 . 0 1 9 6 6 4}) / 12=-0.00505)$.

Interpretation: During January IBM has an additional $\mathbf{2 . 6 9 6 6 \%}$ excess returns. This is a big number. Today, the evidence for the January effect is much weaker than in this case. $\boldsymbol{\|}$

Note: In the FF model we expect the constant to be very small (≈ 0). In this case, it is not zero. Like in the case of the CAPM, a significant constant is evidence against the 3-factor model of Fama-French. Maybe we have a misspecified (A1).

Dummy Variable for One Observation

We can use a dummy variable to isolate a single observation.

$$
\begin{aligned}
D_{j} & =1 & & \text { for observation } j . \\
& =0 & & \text { otherwise. }
\end{aligned}
$$

Define \mathbf{d} to be the dummy variable in question.
$\mathbf{Z}=$ all other regressors. $\mathbf{X}=\left[\mathbf{Z}, \boldsymbol{D}_{J}\right]$
Multiple regression of \mathbf{y} on \mathbf{X}. We know that
$\mathbf{X}^{\prime} \boldsymbol{e}=\mathbf{0} \quad$ where $\boldsymbol{e}=$ the column vector of residuals.

This approach can be used to deal with (eliminate) outliers.
Example: In Dec 1992, IBM reported record losses and gave a very bleak picture of its future. The stock tumbled -30.64% that month. We check the effect of that extreme observation, a potential outlier, on the 3-factor FF model + January dummy:

```
dec_1992 <- rep(0,T) # Define Dec 1992 dummy
dec_1992[239] <- 1 # Define Dec 1992 dummy (=1 if Dec 1992)
```



```
> summary(fit_d92)
```

Coefficients:

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	-0.006772	0.002502	-2.707	$0.00699 * *$
Mkt_RF	0.908775	0.055054	16.507	$<2 \mathrm{e}-16 * * *$
SMB	-0.239213	0.082059	-2.915	$0.00370 * *$
HML	-0.138629	0.081647	-1.698	0.09008.
Jan_1	0.026163	0.008694	3.009	$0.00273 * *$
dec_1992	-0.306202	0.056710	-5.399	$9.86 \mathrm{e}-08 * * *$ (same value of observation)

Conclusion: Potential "Outlier" has no major effect on coefficients. ब

Chow Test: Testing the effect of Categories on a Model

It is common to have a qualitative variable with two categories, say education (MS/MBA or not). Before modelling the data, we can check if only one regression ("pooling") model applies to both categories.

We use the Chow Test (an F-test) -Chow (1960, Econometrica).

Steps:
(1) Run OLS with all the data, with no distinction between schools (Pooled regression or Restricted regression). Keep RSSR.
(2) Run two separate OLS, one for each school (Unrestricted regression). Keep RSS 1 and RSS $_{2}$ $\Rightarrow \mathrm{RSS}_{\mathrm{u}}=\mathrm{RSS}_{1}+\mathrm{RSS}_{2}$.
(Alternative, we can run just one regression with the dummy variable).
(3) Run a standard F-test (testing Restricted vs. Unrestricted models):

$$
F=\frac{\left(R S S_{R}-R S S_{U}\right) /\left(k_{U}-k_{R}\right)}{\left(R S S_{U}\right) /\left(T-k_{U}\right)}=\frac{\left(R S S_{R}-\left[R S S_{1}+R S S_{2}\right]\right) / k}{\left(R S S_{1}+R S S_{2}\right) /(T-2 k)}
$$

Example: Who visits doctors more: Men or Women?
Data: German Health Care Usage Data, with 7,293 Individuals.
Time Periods: Varying Number.
Variables in the file are:
Data downloaded from Journal of Applied Econometrics Archive. This is an unbalanced panel with 7,293 individuals. There are altogether $\mathbf{2 7 , 3 2 6}$ observations. The number of observations ranges from 1 to 7 per family. (Frequencies are: $1=1525,2=2158,3=825,4=926,5=1051$, $6=1000,7=987$).

The dependent variable of interest is:
DOCVIS $=$ number of visits to the doctor in the observation period
The explanatory variables are:
HHNINC = household nominal monthly net income in German marks / 10000.
(4 observations with income $=0$ were dropped)
HHKIDS $=$ children under age 16 in the household $=1$; otherwise $=0$
EDUC = years of schooling
AGE = age in years
MARRIED $=$ marital status $\quad(1=$ if married $)$
WHITEC = 1 if has "white collar" job
Health_Da <- read.csv("https://www.bauer.uh.edu/rsusmel/4397/german_health.csv", head=TRUE, sep=",")
x_fem <- Health_Da\$Gender_F
x_age <- Health_Da\$age
x_edu <- Health_Da\$educ
x_hhinc <- Health_Da\$hhninc/100
x_hhkids <- Health_Da\$hhkids
x_married <- Health_Da\$married
x_white_col <- Health_Da\$whitecollar

```
x_docvis <- Health_Da$docvis
```

```
fit_doc_vis <-1m (x_docvis \(\sim\) x_age +x - edu +x _married + x_white_col + x_hhkids +
x _hhinc)
    summary(fit_doc_vis)
```

- OLS Estimation for Men only. Keep RSS m $_{\text {= 372,818.1 }}$

Coefficients:

	Estimate	Std. Error t value	Pr $(>1$	
(Intercept)	1.801539	0.2907926 .195	$5.98 \mathrm{e}-10$	
x_gx_age	0.067656	$0.004421 \quad 15.302$	< 2e-16	**
$x^{\prime} \quad g x^{\prime} e d u$	-0.105462	$0.018814-5.605$	$2.12 \mathrm{e}-08$	***
x_gx_married	0.022278	0.1214670 .183	0.854480	
x_gx_white_col	-0.367075	$0.096300-3.812$	0.000139	***
x_gx_hhkids	-0.428916	$0.102070-4.202$	$2.66 \mathrm{e}-05$	
$x^{-\quad g x _h h i n c ~}$	-0.015438	$0.002629-5.872$	$4.40 \mathrm{e}-09$	
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 5.118 on 14233 degrees of freedom				
Multiple R-squared: 0.03602, Adjusted R-squared: 0.03561				
F-statistic: 88.63 on 6 and 14233 DF, p-value: < 2.2e-16				

- OLS Estimation for Women only. Keep RSS $=478,894.2$
\#\# Run a regression with only Women data. Use Allgen to collect relevant data for women only.We will do a for loop and keep data if x_{f} fem is greater than 0 .
$\mathrm{xx}<-\mathrm{cbind}\left(\mathrm{x} _\right.$fem, $\mathrm{x} _$docvis, $\mathrm{x} _$age, x_{-}edu, x_{-}married, $\mathrm{x} _$white_col, x -hhkids, x -hhinc)

```
Allgen = NULL # Initialize empty (to collect variables by one sex (f/m) only)
i <- 1
T<- length(x_fem)
k<-ncol(xx)
for (i in 1:T) {
    if (xx[i,1]>0) {
        Allgen = rbind(Allgen, xx[i,2:k])
    }
}
y_g <- Allgen[,1] # Dependent variable: doctor's visits by women only
x_g<- Allgen[,2:(k-1)]
T_f<-length(y_g)
fit_doc_vis_f <- lm (y_g ~ x_g)
summary(fit_doc_vis_f)
```

Coefficients:

	Estimate	td. Error	t value	$\operatorname{Pr}(>\|t\|)$	
(Intercept)	2.999559	0.453506	6.614	$3.88 e-11$	$\star * *$
x_gx_age	0.049366	0.005719	8.632	< 2e-1	**
$x \quad x^{\prime} x^{\prime}$	-0.048141	0.027011	-1.782	0.	
x_gx_married	-0.119853	0.133846	-0.895	0.370	
x_gx_white_col	-0.006734	0.124768	-0.054	0.9570	
x_gx_hhkids	-0.636619	0.128844	-4.941	$7.87 e-07$	\star
x_gx_hhinc	-0.015651	0.003174	-4.932	$8.25 e-07$	\star
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 6.052 on 13075 degrees of freedom					
Multiple R-squared: 0.01984, Adjusted R-squared: 0.01939					
F-statistic: 44.11 on 6 and 13075 DF, p-value: $<2.2 e-16$					

- OLS Estimation for Men only. Keep RSS ${ }_{M}=\mathbf{3 7 2 , 8 1 8 . 1}$ \# Use above code, but change for loop (now, keep data if x _fem less than 1)

```
for (i in 1:T) {
    if (xx[i,1]<1) {
        Allgen = rbind(Allgen, xx[i,2:k])
    }
}
```

Coefficients:

	Estimate	Std.	e)
(Intercept)	1.801539	0.290792	6.195	$5.98 \mathrm{e}-10$
x_gx_age	0.067656	0.004421	15.302	< 2e-16
$x_{\text {_ }} \mathrm{gx}$ _edu	-0.105462	0.018814	-5.605	$2.12 e-08$
x_gx_married	0.022278	0.121467	0.183	0.854480
x_gx_white_col	-0.367075	0.096300	-3.812	0.000139
x_gx_hhkids	-0.428916	0.102070	-4.202	$2.66 \mathrm{e}-05$
x_gx_hhinc	-0.015438	0.002629	-5.872	4.40e-09

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 5.118 on 14233 degrees of freedom Multiple R-squared: 0.03602, Adjusted R-squared: 0.03561 F-statistic: 88.63 on 6 and 14233 DF, p-value: < 2.2e-16

- OLS Estimation for ALL. Keep RSS ALL $=\mathbf{8 5 8 , 4 3 5}$

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) $2.6837000 .24928210 .766<2 e-16 * * *$

```
\begin{tabular}{lrrrrr} 
x_age & 0.061810 & 0.003444 & 17.947 & \(<2 e-16\) & *** \\
x_edu & -0.118858 & 0.015573 & -7.632 & \(2.38 \mathrm{e}-14\) & *** \\
x_married & -0.090716 & 0.089056 & -1.019 & 0.308 & \\
x_white_col & -0.115412 & 0.076540 & -1.508 & 0.132 & \\
x_hhkids & -0.492028 & 0.080014 & -6.149 & \(7.89 \mathrm{e}-10\) & *** \\
x_hhinc & -0.015429 & 0.002046 & -7.539 & \(4.87 e-14\) & ***
\end{tabular}
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 5.606 on 27,315 degrees of freedom
Multiple R-squared: 0.02949, Adjusted R-squared: 0.02928
F-statistic: 138.3 on 6 and 27315 DF, p-value: < 2.2e-16
Chow Test \(=[(858,435-(372,818.1+478,894.2)) / 7] /[(372,818.1+478,894.2) /(27,323-14)]\)
    =31.1178
F(8,27309) = 2.009925 盾 reject H0.
```

Conclusion: There is strong evidence that men and women do not have the same behavior. ๆ

Functional Form: Structural Change

Suppose there is an event that we think had a big effect on the behaviour of our model. Suppose the event occurred at time $T_{S B}$. We think that the before and after behaviour of the model is significantly different. For example, the parameters are different before and after $T_{S B}$. That is,

$$
\begin{array}{ll}
\mathrm{y}_{\mathrm{i}}=\beta_{0}+\beta_{1} \mathrm{X}_{1, \mathrm{i}}+\beta_{2} \mathrm{X}_{2, \mathrm{i}}+\beta_{3} \mathrm{X}_{3, \mathrm{i}}+\varepsilon_{\mathrm{i}} & \text { for } i \leq T_{S B} \\
\mathrm{y}_{\mathrm{i}}=\gamma_{0}+\gamma_{1} \mathrm{X}_{1, \mathrm{i}}+\gamma_{2} \mathrm{X}_{2, \mathrm{i}}+\gamma_{3} \mathrm{X}_{3, \mathrm{i}}+\varepsilon_{\mathrm{i}} & \\
\text { for } i>T_{S B}
\end{array}
$$

The event caused structural change in the model. $T_{S B}$ separates the behaviour of the model in two regimes/categories ("before" \& "after".)

A Chow test can be used to check if one model applies to both regimes:

$$
y_{i}=\beta_{0}+\beta_{1} X_{1, i}+\beta_{2} X_{2, i}+\beta_{3} X_{3, i}+\varepsilon_{i} \quad \text { for all } i
$$

Under H_{0} (No structural change), the parameters are the same for all i.

- We test H_{0} (No structural change): $\beta_{0}^{1}=\beta_{0}^{2}=\beta_{0}$

$$
\begin{aligned}
& \beta_{1}^{1}=\beta_{1}^{2}=\beta_{1} \\
& \beta_{2}^{1}=\beta_{2}^{2}=\beta_{2} \\
& \beta_{3}^{1}=\beta_{3}^{2}=\beta_{3}
\end{aligned}
$$

H_{1} (structural change): For at least $k(=0,1,2,3): \beta_{k}^{1} \neq \beta_{k}^{2}$

What events may have this effect on a model? A financial crisis, a big recession, an oil shock, Covid-19, etc.

Testing for structural change is the more popular use of the Chow test.
Chow tests have many interpretations: tests for structural breaks, pooling groups, parameter stability, predictive power, etc.

One important consideration: T may not be large enough. For example, we may think that Covid19 had a structural effect on the behaviour of tech companies. We may not have enough data to run an F-test.

We structure the Chow test to test H_{0} (No structural change) as usual.

- Steps for Chow (Structural Change) Test:
(1) Run OLS with all the data, with no distinction between regimes (Restricted or pooled model): Keep $\mathrm{RSS}_{\mathrm{r}}$.
(2) Run two separate OLS, one for each regime (Unrestricted model):

Before Date $T_{S B .} \quad$ Keep RSS 1 .
After Date $T_{S B} . . \quad$ Keep RSS $2 . \quad \Rightarrow \mathrm{RSS}_{\mathrm{u}}=\mathrm{RSS}_{1}+\mathrm{RSS}_{2}$.
(3) Run a standard F-test (testing Restricted vs. Unrestricted models):

$$
F=\frac{\left(R S S_{R}-R S S_{U}\right) /\left(k_{U}-k_{R}\right)}{\left(R S S_{U}\right) /\left(T-k_{U}\right)}=\frac{\left(R S S_{R}-\left[R S S_{1}+R S S_{2}\right]\right) / k}{\left(R S S_{1}+R S S_{2}\right) /(T-2 k)}
$$

Example: We test if the Oct 1973 oil shock in quarterly GDP growth rates had an structural change on the GDP growth rate model. We use Federal Reserve data (FRED) from 1947:I to 2023:II ($\mathrm{T}=304$).

We model the GDP growth rate, y_{t}, with an AR(1) model, that is, GDP growth rate depends only on its own lagged growth rate:

$$
y_{t}=\beta_{0}+\beta_{1} y_{t-1}+\varepsilon_{t}
$$

GDP_da <- read.csv("https://www.bauer.uh.edu/rsusmel/4397/GDP_q.csv", head=TRUE, sep=",")
x_date <- GDP_da\$DATE
x_gdp <- GDP_da\$GDP
x_dummy <- GDP_da\$D73
T <- length (x_gdp)
t_s <- 108 \# TsB $=$ Oct 1973
$1 r _g d p<-\log \left(x _g d p[-1] / x _g d p[-T]\right)$
T <- length(lr_gdp)
lr_gdp0 <- lr_gdp[-1]
$\operatorname{lr} _$gdp $1<-1 r _$gdp[-T]
t - $<-\mathrm{t}$ - $\mathrm{s}-1 \quad$ \# Adjust t_s (we lost the first observation)
$\mathrm{y}<-$ lr_gdp0

```
x1<- lr_gdp1
T<- length(y)
x0<- matrix(1,T,1)
x<- cbind(x0,x1)
k<-ncol(x)
# Restricted Model (Pooling all data)
fit_ar1<- lm(lr_gdp0 ~ lr_gdp1) # AR(1) Model
summary(fit_ar1)
e_R <- fit_ar1 $residuals
RSS_R <- sum(e_R^2)
# Unrestricted Model (Two regimes)
y_1<- y[1:t_s]
x_u1<-x[1:t_s,]
fit_ar1_1<- lm(y_1 ~ x_u1 - 1) # AR(1) Regime 1
el<- fit_ar1_1$residuals
RSS1<- sum(e1^2)
kk=t_s+1
y_2<- y[kk:T]
x_u2<- x[kk:T,]
fit_ar1_2<- lm(y_2~x_u2 - 1) # AR(1) Regime 2
e2<- fit_ar1_2$residuals
RSS2 <- sum(e2^2)
```


Restricted Regression

```
# Restricted Regression
# regression residuals, e
# regression residuals, e
# RSS Restricted
```

```
# RSS Restricted
```

```
```


Regime 1 regression residuals, e

Starting date for Regime 2

Regime 2 regression residuals, e

```
\# Regime 2 regression residuals, e \# RSS Regime 2
```

F<- ((RSS_R - (RSS1+RSS2))/k)/((RSS1+RSS2)/(T - 2*k))
> F
[1] 4.391997
p_val <- 1 - pf(F, df1 = 2, df2 = T - 2*k) \# p-value of F_test
>p_val
[1] 0.0131817 }=>\mathrm{ small p-values: Reject H0 (No structural change). |

```

Example: 3 Factor Fama-French Model for IBM (continuation)
Q: Did the dot.com bubble (end of 2001) affect the structure of the FF Model? Sample: Jan 1973 - June \(2020(\mathrm{~T}=569)\).

Pooled RSS \(=1.9324\)
Jan 1973 - Dec 2001 RSS \(=\) RSS \(_{1}=1.3307(\mathrm{~T}=342)\)
Jan 2002 - June 2020 RSS \(=\) RSS \(_{2}=0.5791(\mathrm{~T}=227)\)
\begin{tabular}{|l|r|r|r|r|r|}
\hline & Constant & \multicolumn{1}{c|}{ Mkt - rf } & \multicolumn{1}{l|}{ SMB } & \multicolumn{1}{l|}{ HML } & \multicolumn{1}{l|}{ RSS } \\
\hline \(1973-2020\) & -0.0051 & 0.9083 & -0.2125 & -0.1715 & 1.9324 \\
\hline \(1973-2001\) & -0.0038 & 0.8092 & -0.2230 & -0.1970 & 1.3307 \\
\hline
\end{tabular}
\(\begin{array}{lllllll}2002-2020 & -0.0073 & 1.0874 & -0.1955 & -0.3329 & 0.5791 & 227\end{array}\)
\[
F=\frac{\left[R S S_{R}-\left(R S S_{1}+R S S_{2}\right)\right] / k}{\left(R S S_{1}+R S S_{2}\right) /(T-k)}=\frac{[1.9324-(1.3307+0.5792)] / 4}{(1.3307+.05791) /(569-2 * 4)}=1.6627
\]
\(\Rightarrow\) Since \(\mathrm{F}_{4,565, .05}=2.39\), we cannot reject \(\mathrm{H}_{0}\).
Conclusion: We do not find evidence that the 3-factor F-F model IBM excess returns suffered a structural break in January 2002. \(\dagger\)

Under the \(\mathrm{H}_{0}\) (No structural change), we can pool the data into one model. That is, the parameters are the same under both regimes. We fit the same model for all \(i\), for example, with vector \(\boldsymbol{x}_{\boldsymbol{i}}\) of explanatory variables:
\[
y_{i}=\beta_{0}+\boldsymbol{\beta}_{\mathbf{1}}{ }^{\prime} \boldsymbol{x}_{\boldsymbol{i}}+\varepsilon_{i}
\]

If the Chow test rejects \(\mathrm{H}_{0}\), we need to reformulate the model. A typical reformulation includes a dummy variable ( \(\left.D_{S B, i}\right)\). For example:
\[
y_{i}=\beta_{0}+\boldsymbol{\beta}_{1} \boldsymbol{x}_{\boldsymbol{i}}+\beta_{2} D_{S B, i}+\gamma_{1}{ }^{\prime} \boldsymbol{x}_{\boldsymbol{i}} D_{S B, i}+\varepsilon_{i}
\]
where
\[
\begin{aligned}
D_{S B, i} & =1 & & \text { if observation } i \text { occurred after } T_{S B} \\
& =0 & & \text { otherwise. }
\end{aligned}
\]

Example: Given the Chow Test, we want to incorporate the effect of the October 1973 oil shock in GDP growth rates. We include a dummy variable in the model, say \(D_{73}\) :
\[
\begin{aligned}
D_{73, i} & =1 & & \text { if observation } i \text { occurred after October } 1973 \\
& =0 & & \text { otherwise. }
\end{aligned}
\]

Then,
\[
y_{i}=\beta_{0}+\boldsymbol{\beta}_{1}{ }^{\prime} \boldsymbol{x}_{\boldsymbol{i}}+\beta_{2} D_{73, i}+\gamma_{1}{ }^{\prime} \boldsymbol{x}_{\boldsymbol{i}} D_{73, i}+\varepsilon_{i}
\]

In the model, the oil shock affects the constant and the slopes.
- Constant:

Before oil shock \(\left(D_{73}:=0\right)\) : \(\quad \beta_{0}\)
After oil shock \(\left(D_{73}:=1\right): \quad \beta_{0}+\beta_{2}\)
- Slopes:

Before oil shock \(\left(D_{73}:=0\right)\) : \(\quad \boldsymbol{\beta}_{1}\)
After oil shock \(\left(D_{73}:=1\right)\) : \(\quad \boldsymbol{\beta}_{1}+\gamma_{1}\)
We can estimate the above model and do an F-test to test if \(\mathrm{H}_{0}\) (No structural change): \(\beta_{2}=0\) \& \(\gamma_{1}=0\).

Example: We introduce an Oct 1973 dummy in the \(\operatorname{AR}(1)\) GDP growth rate model.
T1 <- T - t_s \# Number of Observations after SB
D73_0 <- rep(0,t_s) \# Dummy_t \(=0\) if \(\mathrm{t}<=\mathrm{t}\) _s
D73_1 <- rep(1,T1) \# Dummy_t \(=1\) of \(\mathrm{t}>\mathrm{t}\) _s
D73 <- c(D73_0,D73_1) \# SB Dummy variable t_s <- 108
```

lr_gdp1_D73 <- lr_gdp1 * D73 \# interactive dummy (effect on slope)
fit_ar1_d_2 <- lm(lr_gdp0 ~ lr_gdp1 + D73 + lr_gdp1_D73)
summary(fit_ar1_d_2)

```

Coefficients:
\begin{tabular}{llllll} 
& Estimate & Std. Error & t value & \(\operatorname{Pr}(>\mid \mathrm{t})\) & \\
(Intercept) & 0.009139 & 0.001939 & 4.712 & \(3.75 \mathrm{e}-066^{* * *}\) & \\
lr_gdp1 & 0.457011 & 0.090716 & 5.038 & \(8.15 \mathrm{e}-077^{* * *}\) & \\
D73 & 0.003499 & 0.002362 & 1.482 & 0.13947 & \(\Rightarrow\) no significant effect on constant \\
lr_gdp1_D73 & -0.316005 & 0.114197 & -2.767 & \(0.00601{ }^{* *}\) & \(\Rightarrow\) significant effect on slope
\end{tabular}

Signif. codes: \(0{ }^{\text {'***’ } 0.001 ~ ' * * ’ ~} 0.01^{\prime *} 0.05^{\prime} .{ }^{\prime} 0.1^{\prime}{ }^{\prime} 1\)
Residual standard error: 0.01234 on 300 degrees of freedom
Multiple R-squared: 0.09523, Adjusted R-squared: 0.08618
F-statistic: 10.53 on 3 and 300 DF, p-value: 1.333e-06
Conclusion: After the oil shock, the slope significantly changed from 0.457011 to \(\mathbf{0 . 1 4 1 0 0 6}\) ( \(=\) \(0.457011+(-0.316005))\). \(\|\)

\section*{Chow Test: Structural Change - Unknown Break}

The previous example, computes the Chow test assuming that we know exactly when the break occurred -say, October 73 or Dec 2001.

That is, the results are conditional on the assumed breaking point.
In general, breaking points are unknown, we need to estimate them.
One quick approach is to do a rolling Chow test -that is we run the Chow test for all dates in the sample- and pick the date that maximizes the F-test.

This test was proposed by Quandt (1958):
\[
Q L R_{T}=\max _{\tau \in\left\{\tau_{\min }, \ldots, \tau_{\max }\right\}} F_{T}(\tau)
\]

The max (supremum) is taken over all potential breaks in ( \(\tau_{\min }, \tau_{\max }\) ). For example, \(\tau_{\min }=T^{*} .15\); \(\tau_{\max }=T^{*} .85\); that is we trim \(30 \%\) of the observations ( \(\pi_{0}=15 \%\) in each side) to run the test.

The problem with this approach is that the technical conditions under which the asymptotic distribution is derived are not met in this setting (the F-test are correlated, they are not independent).

Andrews (1993) showed that under appropriate conditions, the QLR statistic, also known as SupLR statistic, has a non-standard limiting distribution ("non-standard" = no existing table; needs a new one).

Andrews (1993) tabulated the non-standard distribution for different number of parameters in model \((k)\), trimming values \(\left(\pi_{0}\right), \&\) significance level \((\alpha)\). Andrews' table is in the next slide.

For example, for \(k=4, \pi_{0}=\tau_{\min } / T=(1-\tau \max / T)=.15, \& \alpha=.05\), the critical value is \(=16.45\). For the \(k=2\) and same trimming and \(\alpha\) values, the critical values is \(=11.79\).

Critical values of the QLR test Distribution, taken from Andrews (1993). Note: \(p=\#\) of parameters \((k), \pi_{0}=\) trimming value. (Ignore \(\lambda\).)

840
DONALD W. K. ANDREWS
TABLE I
Asymptotic Critical Values
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\(\pi_{0}\)} & \multirow[b]{2}{*}{\(\lambda\)} & \multicolumn{3}{|c|}{\(p=1\)} & \multicolumn{3}{|c|}{\(p=2\)} & \multicolumn{3}{|c|}{\(p=3\)} & \multicolumn{3}{|c|}{\(p=4\)} & \multicolumn{3}{|c|}{\(p-5\)} \\
\hline & & 10\% & 5\% & 1\% & 10\% & 5\% & 1\% & 10\% & 5\% & 1\% & 10\% & \(5 \%\) & 1\% & 10\% & 5\% & 1\% \\
\hline . 50 & 1.00 & 2.71 & 3.84 & 6.63 & 4.61 & 5.99 & 9.21 & 6.25 & 7.81 & 11.34 & 7.78 & 9.49 & 13.28 & 9.24 & 11.07 & 15.09 \\
\hline . 49 & 1.08 & 3.47 & 4.73 & 7.82 & 5.42 & 6.86 & 10.30 & 7.19 & 8.83 & 12.58 & 8.93 & 10.63 & 14.64 & 10.39 & 12.28 & 16.34 \\
\hline . 48 & 1.17 & 3.79 & 5,10 & 8.26 & 5.80 & 7.31 & 10.71 & 7.64 & 9.29 & 13.05 & 9.42 & 11.17 & 15.17 & 10.96 & 12.88 & 16.83 \\
\hline . 47 & 1.27 & 4.02 & 5.38 & 8.65 & 6.12 & 7.67 & 11.01 & 7.98 & 9.62 & 13.39 & 9.82 & 11.63 & 15.91 & 11.40 & 13.27 & 17.32 \\
\hline . 45 & 1.49 & 4.38 & 5.91 & 9.00 & 6.60 & 8.11 & 11.77 & 8.50 & 10.15 & 14.23 & 10.35 & 12.27 & 16.64 & 12.05 & 14.00 & 18.06 \\
\hline . 40 & 2.25 & 5.10 & 6.57 & 9.82 & 7.45 & 9.02 & 12.91 & 9.46 & 11.17 & 14,88 & 11.39 & 13.32 & 17.66 & 13.09 & 15.16 & 19.23 \\
\hline . 35 & 3.45 & 5.59 & 7.05 & 10.53 & 8.06 & 9.67 & 13.53 & 10.16 & 12.05 & 15.71 & 12.10 & 14.12 & 18.54 & 13.86 & 15.93 & 19.99 \\
\hline . 30 & 5.44 & 6.05 & 7.51 & 10.91 & 8.57 & 10.19 & 14.16 & 10.76 & 12.58 & 16,24 & 12.80 & 14.79 & 19.10 & 14.58 & 16.48 & 20.67 \\
\hline . 25 & 9.00 & 6.46 & 7.93 & 11.48 & 9.10 & 10.75 & 14,47 & 11.29 & 13.16 & 16,60 & 13.36 & 15.34 & 19.78 & 15.17 & 17.25 & 21.39 \\
\hline . 20 & 16,00 & 6.80 & 8.45 & 11.69 & 9.59 & 11.26 & 15.09 & 11.80 & 13.69 & 17.28 & 13.82 & 1584 & 20.24 & 15.63 & 17.88 & 21.90 \\
\hline .15 & 32.11 & 7.17 & 8.85 & 12.35 & 10.01 & 11.79 & 15.51 & 12.27 & 14.15 & 17,68 & 14.31 & 16.45 & 20.71 & 16.20 & 18.35 & 22.49 \\
\hline . 10 & 81.00 & 7.63 & 9.31 & 12.69 & 10.50 & 12.27 & 16.04 & 12.81 & 14.62 & 18.28 & 14.94 & 16.98 & 21.04 & 16.87 & 18.93 & 23.34 \\
\hline . 05 & 361.00 & 8.19 & 9.84 & 13.01 & 11.20 & 12.93 & 16.44 & 13.47 & 15.15 & 19.06 & 15.62 & 17.56 & 21.54 & 17.69 & 19.61 & 24.18 \\
\hline & & \multicolumn{3}{|c|}{\(p=6\)} & \multicolumn{3}{|c|}{\(p=7\)} & \multicolumn{3}{|c|}{\(p=8\)} & \multicolumn{3}{|c|}{\(p-9\)} & \multicolumn{3}{|c|}{\(p=10\)} \\
\hline \(\pi 0_{0}\) & \(\lambda\) & 10\% & 5\% & 1\% & 10\% & 5\% & 1\% & 10\% & 5\% & 1\% & 10\% & 5\% & 1\% & 10\% & 5\% & 1\% \\
\hline . 50 & 1.00 & 10.64 & 12.59 & 16.81 & 12.02 & 14.07 & 18.48 & 13.36 & 15.51 & 20.09 & 14.68 & 16.92 & 21.67 & 15,99 & 18.31 & 23.21 \\
\hline . 49 & 1.08 & 11.81 & 13.74 & 18.32 & 13.27 & 15.52 & 19.93 & 13.29 & 15.63 & 20.53 & 16.17 & 18.56 & 23.05 & 17.35 & 19.79 & 24.62 \\
\hline . 48 & 1.17 & 12.42 & 14.45 & 19.12 & 13.92 & 16.14 & 20.64 & 13.89 & 16.31 & 21,14 & 16.82 & 19.25 & 23.83 & 18.08 & 20.35 & 25.75 \\
\hline . 47 & 1.27 & 12.90 & 14.86 & 19.64 & 14.32 & 16.63 & 21.14 & 14.43 & 16.74 & 21.72 & 17.26 & 19.74 & 24.80 & 18.67 & 20.92 & 26.43 \\
\hline . 45 & 1.49 & 13.53 & 15.59 & 20.45 & 14.97 & 17.38 & 22.32 & 15.05 & 17.53 & 22.28 & 18.10 & 20.59 & 25.52 & 19.39 & 21.78 & 27.30 \\
\hline . 40 & 2.25 & 14.71 & 16.91 & 21.60 & 16.23 & 18.41 & 23.35 & 16.26 & 18.73 & 23.63 & 19.56 & 22.12 & 26.86 & 20.74 & 23.15 & 28.86 \\
\hline 35 & 3.45 & 15.56 & 17.75 & 22.33 & 17.09 & 19.34 & 24.10 & 17.06 & 19.46 & 24.64 & 20.49 & 22.93 & 27.77 & 21.87 & 24.17 & 29.76 \\
\hline . 30 & 5.44 & 16.32 & 18.46 & 23.06 & 17.74 & 20.01 & 24.86 & 17.90 & 20.36 & 25.64 & 21.27 & 23.65 & 28.50 & 22.73 & 25.05 & 30.74 \\
\hline . 25 & 9,00 & 17,00 & 19.07 & 23.65 & 18.38 & 20.63 & 25.11 & 18.61 & 20.95 & 26.10 & 21.93 & 24.31 & 29.23 & 23.32 & 25.80 & 31.32 \\
\hline .20 & 16.00 & 17.56 & 19.64 & 24.27 & 19.04 & 21.07 & 25.72 & 19.17 & 21.47 & 26.76 & 22.54 & 24.91 & 29.92 & 24,00 & 26.42 & 31.98 \\
\hline . 15 & 32.11 & 18.12 & 20.26 & 24.79 & 19.69 & 21.84 & 26.23 & 19.82 & 22.13 & 27.25 & 23.15 & 25.47 & 30.52 & 24.62 & 27.03 & 32.33 \\
\hline . 10 & 81.00 & 18.78 & 20.82 & 25.21 & 20.32 & 22.51 & 26.91 & 20.45 & 22.87 & 27.69 & 23.77 & 26.16 & 31.15 & 25.39 & 27.87 & 32.95 \\
\hline . 05 & 361.00 & 19.49 & 21.56 & 25.96 & 21.02 & 23.22 & 27.53 & 21.23 & 23.60 & 28.77 & 24.64 & 26.94 & 31.61 & 26.24 & 28.63 & 33.86 \\
\hline
\end{tabular}

Example (continuation): We search for breaking points for GDP growth rate in \(\operatorname{AR}(1)\) model. Below, we plot all F-tests starting at \(T^{* 15}\) (observation 46):


Maximum F is 22.08 occurs in Jan 2009 (observation \#250). Then, Using Andrews' tabulated critical value of 11.79 , we have
\[
\widehat{Q L R}=\mathbf{2 2 . 0 8}>\mathbf{1 1 . 7 9 \Rightarrow} \Rightarrow \text { Reject } \mathrm{H}_{0} \text { at } 5 \% \text { level. }
\]

Conclusion: We find strong evidence that the AR(1) GDP growth model suffered a structural break during the sample. The QLR tests points toward January 2009 as the date of the structural break, not October 1973!.

Example: We search for breaking points for IBM returns in the 3-factor FF model. Below, we plot all starting at \(T^{*} 15\) :


Maximum F is 3.83 occurs in May 1993 (observation \#243). Using Andrews' tabulated critical value of 16.45 , we have
\[
\widehat{Q L R}=\mathbf{3 . 8 3}<\mathbf{1 6 . 4 5} \Rightarrow \text { cannot reject } \mathrm{H}_{0} \text { at } 5 \% \text { level. }
\]

Conclusion: We do not find evidence that the 3-factor F-F model IBM excess returns suffered a structural break during the sample. IT

\section*{Chow Test: Structural Change - Script in \(\mathbf{R}\)}

Chow Test for different breaking points, starting at T1.
y<- ibm_x;
x1 <- Mkt_RF
\(\mathrm{x} 2<-\mathrm{SMB}\)
x \(3<-\) HML
\(\mathrm{T}<\) - length \((\mathrm{x} 1)\)
\(\mathrm{x} 0<-\operatorname{matrix}(1, \mathrm{~T}, 1)\)
\(\mathrm{x}<-\operatorname{cbind}(\mathrm{x} 0, \mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3)\)
\(\mathrm{k}<-\operatorname{ncol}(\mathrm{x})\)
\(\mathrm{b}<-\operatorname{solve}(\mathrm{t}(\mathrm{x}) \% * \% \mathrm{x}) \% * \% \mathrm{t}(\mathrm{x}) \% * \% \mathrm{y} \quad \# \mathrm{~b}=\left(\mathrm{X}^{\prime} \mathrm{X}\right)-1 \mathrm{X}^{\prime} \mathrm{y}\) (OLS regression)
e <- y - x\%*\%b
\# regression residuals, e
RSS_R <- as.numeric \((\mathrm{t}(\mathrm{e}) \% * \% \mathrm{e}) \quad\) \# RSS for Restricted (no structural change)
\(\begin{array}{ll}\mathrm{T} 1<-\operatorname{round}\left(\mathrm{T}^{*} 1 / 5\right) & \text { \# Trim . } 20 \text { of data } \\ \mathrm{t}<-\mathrm{T} 1 & \text { \# t will be the counter for loop. Starts at T1. } \\ \mathrm{T} 2<-\operatorname{round}\left(\mathrm{T}^{*} 4 / 5\right) & \text { \# Trim . } 20 \text { of data } \\ \mathrm{T} \text { _sam }<-\mathrm{T} 2-\mathrm{T} 1 & \text { \# Matrix to accumulate the }(\mathrm{T} 2-\mathrm{T} 1) \mathrm{F} \text {-tests } \\ \text { All_F }<-\operatorname{matrix}\left(0, \mathrm{~T}_{-} \operatorname{sam}, 1\right) & \text { \# Start while loop with counter } \mathrm{t}\end{array}\)
\(y \_1<-y[1: t]\)
x_u1 <-x[1:t,]
b_1 <- solve(t(x_u1)\%*\% x_u1)\%*\%t(x_u1)\%*\%y_1 \#b = (X'X)-1 X'y (OLS regression)
e1<-y_1-x_u1\%*\%b_1 \# regression residuals, e
RSS1 \(<\) - as.numeric \((\mathrm{t}(\mathrm{e} \overline{1}) \% * \% \mathrm{e} 1) \quad\) \# RSS for regime 1
\(\mathrm{kk}=\mathrm{t}+1\)
y_2<- y[kk:T]
x _u2 \(<-\mathrm{x}[\mathrm{kk}: T\), \(]\)
b_2 <- solve(t \(\left.\left(x \_u 2\right) \% * \% x \_u 2\right) \% * \% t\left(x \_u 2\right) \% * \% y_{-} 2 \quad \# b=\left(X^{\prime} X\right)-1 X^{\prime} y\) (OLS regression)
e \(2<-\mathrm{y}\) _2 - \(\mathrm{x} \_\mathrm{u} 2 \% * \% \mathrm{~b}\) _2 2 \# regression residuals, e
RSS2 \(<-\) as.numeric \((\mathrm{t}(\mathrm{e} 2) \% * \% \mathrm{e} 2) \quad\) \# RSS for regime 2
F <- ((RSS_R - (RSS1+RSS2))/k)/((RSS1+RSS2)/(T-2*k))
\(\mathrm{kt}<-\mathrm{t}-\mathrm{T} 1+1 \quad\) \# kt is an index that start at 1
All_F[kt] <- F \# add F-test to All_F according to kt
\(\mathrm{t}=\overline{\mathrm{t}}+\mathrm{l}\)
\}
plot(All_F, col="red",ylab ="F-test", xlab ="Break Point") title("F-test at different Break Points")
F_max \(<-\max (\) All_F) \# Find the maximum F-test (QLR)

\section*{Chow Test: Structural Change - Remarks}

The results are conditional on the breaking point-say, October 73 or Dec 2001.
The breaking point is usually unknown. It needs to be estimated.
It can deal only with one structural break -i.e., two categories!
The number of breaks is also unknown.
Characteristics of the data (heteroscedasticity -for example, regimes in the variance- and unit roots (high persistence) complicate the test.

In general, only asymptotic (consistent) results are available.
There are many modern tests that take care of these issues, but usually also with non-standard distributions.

\section*{Forecasting and Prediction}

Objective: Forecast
Distinction: Ex post vs. Ex ante forecasting
- Ex post: RHS data are observed
- Ex ante (true forecasting): RHS data must be forecasted

Prediction and Forecast
- Prediction: Explaining an outcome, which could be a future outcome.
- Forecast: A particular prediction, focusing in a future outcome.

Example: Prediction: Given \(\mathbf{x}^{0} \quad \Rightarrow\) predict \(\boldsymbol{y}^{\mathbf{0}}\). Forecast: \(\quad\) Given \(\mathbf{x}^{0}{ }_{t+1} \quad \Rightarrow\) predict \(\boldsymbol{y}_{\mathrm{t}+1}\). \(\mathbb{I}\)
- Two types of predictions:
- In sample (prediction): The expected value of \(\mathbf{y}\) (in-sample), given the estimates of the parameters. In sample prediction produces fitted values, \(\hat{y}\).
- Out of sample (forecasting): The value of a future \(\mathbf{y}\) that is not observed by the sample.

Notation: Let \(T\) be the forecast origin and \(l\) is the forecast horizon.
- Prediction for \(T\) made at \(T: \widehat{Y}_{T}\).
- Forecast for \(T+l\) made at \(T: \hat{Y}_{T+l}, \hat{Y}_{T+l \mid T}, \hat{Y}_{T}(l)\).
- \(\hat{Y}_{T}(l)\) : l-step ahead forecast \(=\) Forecasted value \(Y_{T+l}\) at time \(T\).
- Any prediction or forecast needs an information set, It. This includes data, models and/or assumptions available at time \(T\). The predictions and forecasts will be conditional on IT.

For example, in-sample, \(\mathrm{I}_{\mathrm{T}}=\left\{\mathbf{x}^{0}\right\}\) to predict \(\mathbf{y}^{0}\).
Or in a time series context, \(\mathrm{I}_{\mathrm{T}}=\left\{\mathbf{x}^{0} \mathrm{~T}_{\mathrm{T}-1}, \mathbf{x}^{0}{ }_{\mathrm{T}-2}, \ldots, \mathbf{x}^{0}{ }_{\mathrm{T}-\mathrm{q}}\right\}\) to predict \(\mathbf{y}_{\mathrm{t}+l /}\).
Then, the forecast is just the conditional expectation of \(Y_{T+l}\), given the observed sample:
\[
\hat{Y}_{T+l}=E\left[Y_{T+l} \mid X_{T}, X_{T-1}, \ldots, X_{1}\right]
\]

Example: If \(X_{T}=Y_{T}\), then, the one-step ahead forecast is:
\[
\hat{Y}_{T+1}=E\left[Y_{T+1} \mid Y_{T}, Y_{T-1}, \ldots, Y_{1}\right] .
\]
- The conditional expectation of \(Y_{T+l}\) is, in general, based on a model, the experience of the forecaster or a combination of both.

Example: We base the conditional expectation for excess returns on the 3 FF factor model:
\[
\hat{Y}_{T+l}=\mathrm{E}\left[\left(\beta_{0}+\beta_{1}\left(r_{m, t+l}-r_{f}\right)+\beta_{2} S M B_{t+l}+\beta_{3} H M L_{t+l} \mid \mathrm{I}_{\mathrm{T}}\right.\right.
\]

Note: The forecast of \(Y_{T+l}\) also needs a forecast for the driving variables in the model. We need a forecast for \(\mathrm{E}\left[\left(r_{m, t+l}-r_{f}\right) \mid \mathrm{I}_{\mathrm{T}}\right], \mathrm{E}\left[S M B_{t+l} \mid \mathrm{I}_{\mathrm{T}}\right]\), and \(\mathrm{E}\left[H M L_{t+l} \mid \mathrm{I}_{\mathrm{T}}\right]\). ब

In general, we will need a model for \(\hat{X}_{T+l}\). Things can get complicated very quickly.
Keep in mind that the forecasts are a random variable. Technically speaking, they can be fully characterized by a pdf.

In general, it is difficult to get the pdf for the forecast. In practice, we get a point estimate (the forecast) and a C.I.
- Q: What is a good forecast? We need metrics to evaluate the forecasting performance of different models. In general, the evaluation of forecasts relies on MSE.

Later in this class, when we cover time series (Brooks Chapter 6), we go deeper into forecasting.

\section*{Forecasting and Prediction: Variance-bias Trade-off}

We start with general model (DGP):
(A1) DGP: \(\quad y=f(\mathbf{X}, \theta)+\varepsilon\).
Given \(\mathbf{x}^{\mathbf{0}}\), we predict \(y^{0}\), using the expectation: \(\mathrm{E}\left[y \mid \mathbf{X}, \mathbf{x}^{\mathbf{0}}\right]=f\left(\mathbf{x}^{\mathbf{0}}, \theta\right)\); which we estimate with
\[
\hat{y}^{0}=f\left(\mathbf{x}^{0}, \hat{\theta}\right)
\]

The realization \(y^{0}\) is just:
\[
y^{0}=f\left(\mathbf{x}^{0}, \theta\right)+\varepsilon^{0}
\]

With \(y^{0}\) observed, we compute the prediction error: \(\hat{y}^{0}-y^{0}\) and its associated expected squared error, which can be written as:
\[
\begin{aligned}
\mathrm{E}\left[\left(\hat{y}^{0}-y^{0}\right)^{2}\right] & =\mathrm{E}\left[\left(\hat{y}^{0}-\left(f\left(\mathbf{x}^{0}, \theta\right)+\varepsilon^{0}\right)\right)^{2}\right] \\
& \left.=\mathrm{E}\left[\left(f\left(\mathbf{x}^{0}, \hat{\theta}\right)-f\left(\mathbf{x}^{0}, \theta\right)\right)-\varepsilon^{0}\right)^{2}\right] \\
& =\operatorname{Var}\left[\hat{y}^{0}\right]+\left[\operatorname{Bias}\left(\hat{y}^{0}\right)\right]^{2}+\operatorname{Var}[\varepsilon]
\end{aligned}
\]

We want to minimize this squared error. Note that there is nothing a forecaster can do regarding the last term, called the irreducible error. All efforts are devoted to minimize the sum of a variance and a squared bias (the MSE). This creates the variance-bias trade-off in forecasting.

It is possible that biased forecast can produce a lower MSE than an unbiased one. In this lecture, we based our forecasts on OLS estimates, which under the CLM assumptions, produce unbiased forecast.

Note: The variance-bias trade-off is always present in forecasting. In general, more flexible models have less bias and more variance. The key is to pick an "optimal" mix of both.

\section*{Forecasting and Prediction: Point Estimate}

Prediction: Given \(\mathbf{x}^{0} \Rightarrow\) predict \(\boldsymbol{y}^{\mathbf{0}}\).
Given the CLM, we have:
\[
\begin{aligned}
\text { Expectation: } & \mathrm{E}\left[\mathbf{y} \mid \mathbf{X}, \mathbf{x}^{\mathbf{0}}\right] & =\boldsymbol{\beta}^{\prime} \mathbf{x}^{\mathbf{0}} ; \\
\text { Predictor: } & \hat{y}^{0} & =\mathbf{b}^{\prime} \mathbf{x}^{0} \\
\text { Realization: } & y^{0} & =\boldsymbol{\beta}^{\prime} \mathbf{x}^{\mathbf{0}}+\varepsilon^{0}
\end{aligned}
\]

Note: The predictor includes an estimate of \(\varepsilon^{0}\) :
\[
\hat{y}^{0}=\mathbf{b}^{\prime} \mathbf{x}^{0}+\text { estimate of } \varepsilon^{0} . \text { (Estimate of } \varepsilon^{0}=0 \text {, but with variance.) }
\]
- Associated with the prediction (a point estimate), there is a forecast error:
\[
\hat{y}^{0}-y^{0}=\mathbf{b}^{\prime} \mathbf{x}^{\mathbf{0}}-\boldsymbol{\beta}^{\prime} \mathbf{x}^{\mathbf{0}}-\varepsilon^{0}=(\mathbf{b}-\boldsymbol{\beta})^{\prime} \mathbf{x}^{\mathbf{0}}-\varepsilon^{0}
\]
and a variance:
\[
\begin{gathered}
\operatorname{Var}\left[\left(\hat{y}^{0}-y^{0}\right) \mid \mathbf{x}^{\mathbf{0}}\right]=\mathrm{E}\left[\left(\hat{y}^{0}-y^{0}\right)^{\prime}\left(\hat{y}^{0}-y^{0}\right) \mid \mathbf{x}^{\mathbf{0}}\right] \\
=\mathbf{x}^{\mathbf{0} \prime} \operatorname{Var}\left[(\mathbf{b}-\boldsymbol{\beta}) \mid \mathbf{x}^{\mathbf{0}}\right] \mathbf{x}^{\mathbf{0}}+\sigma^{2}
\end{gathered}
\]

Example: We have already estimated the 3 Factor Fama-French Model for IBM returns:
> summary(fit_ibm_ff3)
\begin{tabular}{lcccc} 
& Estimate & Std. Error & t value \(\operatorname{Pr}(>|t|)\) \\
(Intercept) & -0.005089 & 0.002488 & -2.046 & \(0.0412 *\) \\
Mkt_RF & 0.908299 & 0.056722 & 16.013 & \(<2 \mathrm{e}-16^{* * *}\) \\
SMB & -0.212460 & 0.084112 & -2.526 & \(0.0118^{*}\) \\
HML & -0.171500 & 0.084682 & -2.025 & 0.0433 *
\end{tabular}

Suppose we are given \(\mathbf{x}^{0}=[1.0000-0.0189-0.0142-0.0027]\)
Then,
\[
\hat{y}^{0}=-0.005089+0.908299 *(-0.0189)-0.212460 *-0.0142-0.171500 *(-0.0027)=
\]
\(=-0.01877582\)
Suppose we observe \(y^{0}=0.1555214\). Then, the forecast error is
\[
\hat{y}^{0}-y^{0}=-0.01877582-0.1555214=-0.1742973
\]
- Computations in R:
\(x \_0<-r b i n d(1.0000,-0.0189,-0.0142,-0.0027)\)
y_ \(0<-0.1555214\)
y_f0<- t(b) \(\% * \%\) x_00
\(>y \_f 0\)
[,1]
[1,] -0.01877582
ef_0<-y_f0 - y_0
\(>\) ef_0
[,1]
[1,] -0.1742973. ब

\section*{Forecasting and Prediction: Confidence Intervals}

How do we estimate the uncertainty behind the forecast? Form a confidence interval.
Two cases:
(1) If \(\mathbf{x}^{0}\) is given-i.e., constants. Then,
\[
\operatorname{Var}\left[\hat{y}^{0}-y^{0} \mid \mathbf{x}^{0}\right]=\mathbf{x}^{0 \prime} \operatorname{Var}\left[\mathbf{b} \mid \mathbf{x}^{0}\right] \mathbf{x}^{0}+\sigma^{2}
\]
\(\Rightarrow\) Form confidence interval as usual.
Note: In out-of-sample forecasting, \(\mathbf{x}^{\mathbf{0}}\) is unknown, it has to be estimated.
(2) If \(\mathbf{x}^{0}\) has to be estimated, then we use a random variable. What is the variance of the product? One possibility: Use bootstrapping.
- Assuming \(\mathbf{x}^{0}\) is known, the variance of the forecast error is
\[
\sigma^{2}+\mathbf{x}^{0,} \operatorname{Var}\left[\mathbf{b} \mid \mathbf{x}^{\mathbf{0}}\right] \mathbf{x}^{0}=\sigma^{2}+\sigma^{2}\left[\mathbf{x}^{0,}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{x}^{0}\right]
\]

If the model contains a constant term, this is
\[
\operatorname{Var}\left[e^{0}\right]=\sigma^{2}\left[1+\frac{1}{N}+\sum_{j=1}^{K-1} \sum_{k=1}^{K-1}\left(x_{j}^{0}-\bar{x}_{j}\right)\left(x_{k}^{0}-\bar{x}_{k}\right)\left(Z^{\prime} M^{0} Z\right)^{j k}\right]
\]
(where \(\mathbf{Z}\) is \(\mathbf{X}\) without \(\mathbf{x}_{\mathbf{1}}=\mathbf{i}\) ). In terms squares and cross products of deviations from means.
Note: Large \(\sigma^{2}\), small \(N\), and large deviations from the means, decrease the precision of the forecasting error.

Interpretation: Forecast variance is smallest in the middle of our "experience" and increases as we move outside it.

Then, the \((1-\alpha) \%\) C.I. is given by: \(\left[\hat{\mathrm{y}}^{0} \pm t_{T-k, \alpha / 2} * \operatorname{sqrt}\left(\operatorname{Var}\left[e^{0}\right]\right)\right]\)
As \(\mathbf{x}^{0}\) moves away from its mean, the C.I increases, this is known as the "butterfly effect."


FIGURE 6.1 Prediction Intervals.

Example (continuation): We want to calculate the variance of the forecast error: for thee given \(\mathbf{x}^{0}=[1.0000-0.0189-0.0142-0.0027]\)
Recall we got \(\hat{\mathbf{y}}^{0}=\mathbf{b}^{\prime} \mathbf{x}^{0}=\mathbf{- 0 . 0 1 8 7 7 5 8 7}\)

Then,
Estimated \(\operatorname{Var}\left[\hat{\mathbf{y}}^{0}-\mathrm{y}^{0} \mid \mathbf{x}^{0}\right]=\mathbf{x}^{0 \prime} \operatorname{Var}\left[\mathbf{b} \mid \mathbf{x}^{0}\right] \mathbf{x}^{0}+s^{2}=0.003429632\)
var_ef_0<- \(\mathfrak{t}\left(\mathrm{x} \_0\right) \% * \%\) Var_b\%*\% x_0 + Sigma2
\(>\) var_ef_0
[,1]
[1,] 0.003429632
> sqrt(var_ef_0) [,1]
[1,] 0.05856306
Check: What is the forecast error if \(\mathbf{x}^{0}=\operatorname{colMeans}(\mathrm{x})\) ?
\# (1-alpha) \% C.I. for prediction \(\quad(\) alpha \(=.05)\)
CI_lb <- y_f0 - 1.96 * \(\operatorname{sqrt}(\) var_ef_0)
\(>\) CI_lb
\(>\) [1]-0.1335594
CI_ub \(<-y_{-} \mathrm{f} 0+1.96\) * sqrt(var_ef_0)
\(>\) CI_ub
\(>\) [1] 0.09600778

That is, CI for prediction: \([-\mathbf{0 . 1 3 3 5 6} ; \mathbf{0 . 0 9 6 0 1}] \quad\) with \(95 \%\) confidence. A wide interval, which makes clear the uncertainty surrounding the point forecast: \(\hat{y}^{0}=-\mathbf{0 . 0 1 8 7 7 5 8 7}\). II

\section*{Forecasting and Prediction - Model Validation}

Model validation refers to establishing the statistical adequacy of the assumptions behind the model-i.e., (A1)-(A5) in this lecture. Predictive power can be used to do model validation.

In the context of prediction and forecasting, model validation is done by fitting a model insample, but keeping a small part of the sample, the hold-out-sample, to check the accuracy of OOS forecasts.

Hold out sample: We estimate the model using only a part of the sample (say, up to time \(T_{1}\) ). The rest of the observations, the hold out sample, ( \(\mathrm{T}-\mathrm{T}_{1}\) observations) are used to check the predictive power of the model -i.e., the accuracy of predictions, by comparing \(\widehat{\boldsymbol{y}}^{\mathbf{0}}\) with actual \(\boldsymbol{y}^{0}\).


Steps to measure forecast accuracy:
Step 1. Select a (long) part of the sample (say, first \(\mathrm{T}_{1}\) observations) to estimate the parameters of the model. (Get in-sample forecasts, \(\hat{y}\).) We call this sample, the estimation period.

Step 2. Keep a (short) part of the sample (say, (T-T1) observations) to check the model's forecasting skills, This is the validation step. (Get OSS \(\hat{\mathbf{y}}^{0}\), but \(\mathbf{y}^{0}\) is known.) Since \(\mathbf{y}^{0}\) is known calculate true MSE or MAE. For example:
\[
M S E=\frac{1}{\left(T-T_{1}\right)} \sum_{i=\left(T_{1}+1\right)}^{\left(T-T_{1}\right)}\left(\hat{y}_{i}^{0}-y_{i}^{0}\right)^{2}
\]

Step 3. If happy with Step 2, proceed to do out-of-sample forecasts.

Note: In the Machine Learning literature, the terminology used for model validation is slightly different.

Step 1 is called "training," the data used (first \(\mathrm{T}_{1}\) observations) are called training data/set. In this step, we estimate the parameters of the model, subject to the assumptions, for example, (A1)-(A4).

Step 2 has the same name, validation (or "single-split" validation). This step can be used to "tune (hyper-)parameters." In our CLM, we can "tune" the model for departures of (A1)-(A4), for example, by including more or different variables (A1) and re-estimating the model accordingly using "training data" alone. We choose the model with lower MSE or MAE.

Remark: The idea of this step is to simulate out-of-sample accuracy. But, the "tuned" parameters selected in Step 2 are fed back to Step 1.

Step 3 tests the true out-of-sample forecast accuracy of model selected by Step \(1 \&\) Step 2. This last part of the sample is called "testing sample."

\section*{Forecasting and Prediction - Cross Validation}

Step 2 is used as a testing ground of the model before performing OOS forecasting. There are many ways to approach the validation step.

Instead of a single split, split the data in \(K\) parts. This is called \(K\)-fold cross-validation. For \(j=1\), \(2, \ldots, K\), use all folds but fold \(j\) to estimate model; use fold \(j\) to check model's forecasting skills by computing MSE, \(M S E_{j}\). The \(K\)-fold CV estimate is an average of each fold MSE's:
\[
C V_{K}=\frac{1}{K} \sum_{j=1}^{K} M S E_{j}
\]

Usual choices for \(K\) are \(5 \& 10\). This is an arbitrary choice.
Random and non-random splits of data can be used. The non-random splits are used for some special cases, such as qualitative data, to make sure the splits are "representative."
- Use a single observation for validation. This is called leave-one-out cross-validation (LOOCV), which is a special case of \(K\)-fold cross-validation with \(K=\mathrm{T}\). That is, use ( \(\mathrm{T}-1\) ) observations for estimation, and, then, use the observation left out, \(i=1, \ldots, \mathrm{~T}\), to compute \(M S E_{(-i)}\), which is just \(\left(\hat{y}_{(-i)}-y_{i}\right)^{2}\), where \(\hat{y}_{(-i)}\) is the prediction for observation \(i\) based on the full sample but observation \(i\). Then, compute:
\[
C V_{n}=\frac{1}{n} \sum_{i=1}^{n} M S E_{(-i)}
\]

Instead of just one, it is possible to leave p observations for validation. This is called leave-p-out cross-validation (LpOCV).

Remark: In time series, since the order of the data matters, cross validation is more complicated. In general, rolling windows are used.

Example: We do cross-validation on the 3-factor Fama-French Model for IBM returns with \(K=5\) :
y <-ibm_x
ff_cv_data <- data.frame(Mkt_RF, SMB, HML)
```


CV: Cross-Validation K-fold Code Function

CV <- function(dats, n.folds){
folds <- list() \# flexible object for storing folds
fold.size <- nrow(dats)/n.folds
remain<- 1:nrow(dats) \# all obs are in
for (i in 1:n.folds){
select <- sample(remain, fold.size, replace = FALSE) \#randomly sample fold_size from
remaining obs)
folds[[i]] <- select \# store indices (write a special statement for last fold if 'leftover
points')
if (i == n.folds){
folds[[i]] <- remain
}

```
remain <- setdiff(remain, select) \# update remaining indices to reflect what was taken out
remain
    \}
    results \(<-\) matrix \((0,1\), n.folds) \# Vector to accumulate accuracy measures (MSE)
    for (i in 1:n.folds) \(\{\)
        \# fold i
        indis \(<\) - folds[[i]] \# unpack into a vector
        estim \(<\) - dats[-indis, ] \# split into estimation (train) \& validation (test) sets
        test <- dats[indis, ]
    lm.model \(<-\operatorname{lm}(y[\)-indis] \(\sim\)., data \(=\) estim \() \quad\) \# OLS with estimation data
    pred \(<-\) predict \((l m . m o d e l\), newdata \(=\) test \() \quad\) \# predicted values for fold not used
    MSE <- mean((y[indis] - pred) \({ }^{\wedge} 2\) ) \# MSE (any other evaluation measure can be used)
    results[[i]]<- MSE \# Accumulate MSE in vector
\}
    return(results)
\}
CV_ff_5 <- CV(ff_cv_data, 5)
> CV_ff_5
    \([, 1] \quad[, 2] \quad[, 3] \quad[, 4] \quad[, 5]\)
```

>mean(CV_ff 5)

```
[1] 0.00346262
K_T <- length (y)
LOOCV_ff_5 <- CV(ff_cv_data, K_T)
\(>\) mean(LOOCV_ff_5)
[1] 0.003516136. ब

\section*{Evaluation of Forecasts: Measures of Accuracy}

Summary measures of out-of-sample forecast accuracy, after \(m\) forecasts:
Mean Error \(=\frac{1}{m} \sum_{i=T+1}^{T+m}\left(\hat{y}_{i}-y_{i}\right)=\frac{1}{m} \sum_{i=T+1}^{T+m} e_{i}\)
Mean Absolute Error (MAE) \(=\frac{1}{m} \sum_{i=T+1}^{T+m}\left|\hat{y}_{i}-y_{i}\right|=\frac{1}{m} \sum_{i=T+1}^{T+m}\left|e_{i}\right|\)
Mean Squared Error (MSE) \(=\frac{1}{m} \sum_{i=T+1}^{T+m}\left(\hat{y}_{i}-y_{i}\right)^{2}=\frac{1}{m} \sum_{i=T+1}^{T+m} e_{i}{ }^{2}\)
Root Mean Square Error (RMSE) \(=\sqrt{\frac{1}{m} \sum_{i=T+1}^{T+m} e_{i}{ }^{2}}\)
Theil's U-stat \(=\frac{\sqrt{\frac{1}{m} \sum_{i=T+1}^{T+m} e_{i}{ }^{2}}}{\sqrt{\frac{1}{T} \sum_{i=1}^{T} y_{i}{ }^{2}}}\)
Theil's \(U\) statistics has the interpretation of an \(R^{2}\). But, it is not restricted to be smaller than 1 .
The lower the above criteria, say MSE, the better the forecasting ability of our model.
- An OOS R \({ }^{2}\) can be computed as:
with \(\quad M S E_{A}=\sum_{t=1}^{m}\left(y_{t+\tau}-\hat{y}_{t+\tau}\right)^{2}\)
\[
M S E_{N}=\sum_{t=1}^{m}\left(y_{t+\tau}-\bar{y}_{t}\right)^{2}
\]
where \(\tau\) is the forecasting horizon. (See Goyal and Welch (2008) for a well-known finance application.)
- Again, cross-validation measures can be used to evaluate forecasting performance.

Example: We want to check the forecast accuracy of the 3 FF Factor Model for IBM returns. We estimate the model using only 1973 to 2017 data ( \(\mathrm{T}=539\) ), leaving 2018-2020 ( \(m=30\) observations) for validation of predictions.
T0 <-1
T1 \(<-539\)
\# End of Estimation Period
\(\mathrm{T} 2<-\mathrm{T} 1+1\)
\# Start of Validation Period
\(\mathrm{y} 1<-\mathrm{y}[\mathrm{T} 0: \mathrm{T} 1]\)
```

x1<- x[T0:T1,]

```
```

fit2<- lm(y1~ x1 - 1)

Estimation Period Regression from T0 to T1

b1<- fit2\$coefficients

```
\(>\) summary(fit2)
\begin{tabular}{llcll} 
& Estimate & Std. Error & t value \(\operatorname{Pr}(>|t|)\) \\
x1 & -0.003848 & 0.002571 & -1.497 & 0.13510 \\
x1Mkt_RF & 0.865579 & 0.059386 & 14.575 & \(<2 \mathrm{e}-16 * *\) \\
x1SMB & -0.224914 & 0.085505 & -2.630 & \(0.00877 * *\) \\
x1HML & -0.230838 & 0.090251 & -2.558 & \(0.01081 *\)
\end{tabular}

We condition on the observed data (no model to predict FF factors used) from 2018: Jan to 2020: Jun.
```

x_0<- x[T2:T,] \# Validation data
y_0<- y[T2:T] \# Validation data
y_f0<- x_0%*% b1 \# Forecast
ef_0<- y_f0-y_0
mse_ef_0 <- sum(ef_0^2)/nrow(x_0) \# MSE
> mse_ef_0
[1] 0.003703207

```
mae_ef_0<- sum(abs(ef_0))/nrow(x_0) \# MAE
> mae_ef_0
[1] 0.04518326
That is, MSE \(=\mathbf{0 . 0 0 3 7 0 3 2 0 7}\)
    \(M A E=0.04518326\)
- Plot of actual IBM returns and forecasts.
plot(y_f0, type="l", col="red", main = "IBM: Actual vs. Forecast (2018-2020)", xlab = "Obs",
ylab = "Forecast")
lines(y_0, type = "l", col = "blue")
legend("topleft", legend = c("Actual", "Forecast"), col = c("blue", "red"), lty = 1)


From the plot, some forecasts are very good, some are very bad. ब

\section*{Evaluation of forecasts: Testing Accuracy}

Above, we have competing forecasting models and we computed measures of accuracy for each model. So far we have implicitly judged the model with the best (usually, the lower) measure of accuracy as the best forecasting model. But, measures of accuracy are RV, thus, in order to say one model forecasts better than other, we need a test.

Suppose two competing forecasting procedures produce a vector of errors: \(e^{(1)} \& e^{(2)}\). We decide to use the expected MSE as the criterion to judge the forecasting accuracy of a model.
- We want to test \(H_{0}: \operatorname{MSE}(1)=\operatorname{MSE}(2)\)
\(\mathrm{H}_{1}: \operatorname{MSE}(1) \neq \operatorname{MSE}(2)\).
Assumptions: forecast errors are unbiased, normal, and uncorrelated. If forecasts are unbiased, then MSE = Variance.

Consider, the pair of RVs: \(\left(e^{(1)}+e^{(2)}\right) \&\left(e^{(1)}-e^{(2)}\right)\). Now,
\[
E\left[\left(e^{(1)}+e^{(2)}\right)\left(e^{(1)}-e^{(2)}\right)\right]=\sigma_{1}^{2}-\sigma_{2}^{2}
\]

That is, we test \(\mathrm{H}_{0}\) by testing that the two RVs are not correlated! Under \(\mathrm{H}_{0}\),
\[
E\left[\left(e^{(1)}+e^{(2)}\right)\left(e^{(1)}-e^{(2)}\right)\right]=0
\]

This idea is due to Morgan, Granger and Newbold (MGN, 1977).
- There is a simpler way to do the MGN test. Let,
\[
\begin{aligned}
& z_{t}=e^{(1)}+e^{(2)} \\
& x_{t}=e^{(1)}-e^{(2)}
\end{aligned}
\]
(1) Do a regression: \(z_{t}=\beta x_{t}+\varepsilon_{t}\)
(2) Test \(\mathrm{H}_{0}: \beta=0 \quad \Rightarrow\) a simple \(t\)-test.

The MGN test statistic is exactly the same as that for testing the null hypothesis that \(\beta=0\) in this regression (recall: \(\mathbf{b}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}\) ). This is the approach taken by Harvey, Leybourne and Newbold (1997).

If the assumptions are violated, these tests have problems.
A non-parametric HLN variation: Spearman's rank test for zero correlation between \(x_{\mathrm{t}}\) and \(z_{\mathrm{t}}\).
Example: We produce IBM returns one-step-ahead forecasts for 2018-2020 using the 3 FF Factor Model for IBM returns:
\[
\left(r_{i}-r_{f}\right)_{t}=\beta_{0}+\beta_{1}\left(r_{m}-r_{f}\right)_{t}+\beta_{2} S M B_{t}+\beta_{3} H M L_{t}+\varepsilon_{t}
\]

Taking expectations at time \(t+1\), conditioning on time \(t\) information set, \(\mathrm{I}_{\mathrm{t}}=\{(\mathrm{MktRet}-\mathrm{r}) \mathrm{t}, \mathrm{SMB} \mathrm{t}\), HMLt \(\}\)
\[
\mathrm{E}\left[\left(r_{i}-r_{f}\right)_{t+1} \mid I_{t}\right]=\beta_{0}+\beta_{1} \mathrm{E}\left[\left(r_{m}-r_{f}\right)_{t+1} \mid I_{t}\right]+\beta_{2} \mathrm{E}\left[S M B_{t+1} \mid I_{t}\right]+\beta_{3} \mathrm{E}\left[H M L_{t+1} \mid I_{t}\right]
\]

In order to produce forecast, we will make a naive assumption: The best forecast for the FF factors is the previous observation. Then,
\[
\mathrm{E}\left[\left(r_{i}-r_{f}\right)_{t+1} \mid I_{t}\right]=\beta_{0}+\beta_{1}\left(r_{m}-r_{f}\right)_{t}+\beta_{2} S M B_{t}+\beta_{3} H M L_{t} .
\]

Now, replacing the \(\beta\) by the estimated \(\mathbf{b}\), we have our one-step-ahead forecasts. We produce one forecast at a time.

We compare the forecast accuracy relative to a random walk model for IBM returns. That is,
\[
\mathrm{E}\left[\left(r_{i}-r_{f}\right)_{t+1} \mid I_{t}\right]=\left(r_{i}-r_{f}\right)_{t}
\]

Using R, we create the forecasting errors for both models and MSE:
\begin{tabular}{|c|c|}
\hline x_01 <-x[T1:(T-1),] & \# By assumption on the X , it starts at T1. \\
\hline \(\mathrm{y}_{-} 0<-\mathrm{y}[\mathrm{T} 2: \mathrm{T}]\) & \\
\hline y_f0 <- x_01\%*\% bl & \# b1 coefficients from previous regresssion \\
\hline ef_0<-y_f0-y_0 & \(\# e^{(2)}\) \\
\hline mse_ef_0 <- sum(ef_0^2)/nrow(x_0) & \\
\hline \(>\) mse ef 0 & \# MSE(2) \\
\hline
\end{tabular}
[1] 0.01106811
ef_rw_0 <- y[T1:(T-1)] - y_0 \# \(e^{(1)}\)
mse_ef_rw_0 <- sum(ef_rw_0^2)/nrow(x_0)
\(>\) mse_ef_rw_0 - \# MSE (1) \(<=(1)\) is the higher MSE.
[1] 0.02031009
- Now, we create
\[
z_{t}=e^{(1)}+e^{(2)}, \& x_{t}=e^{(1)}-e^{(2)}
\]

Then, regress:
\[
z_{t}=\beta x_{t}+\varepsilon_{t} \text { and test } \mathrm{H}_{0}: \beta=0 .
\]
```

z_mgn <- ef_rw_0 + ef_0
x_mgn <- ef_rw_0 - ef_0
fit_mgn <- lm(z_mgn ~ x_mgn)
> summary(fit_mgn)
Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) $0.05688 \quad 0.03512 \quad 1.619 \quad 0.117$
$\begin{array}{llll}\mathrm{x} _m g n & 2.77770 & 0.58332 \quad 4.7625 .32 \mathrm{e}-05 & \text { *** }\end{array}$
Conclusion: We reject that both MSE are equal $\quad \Rightarrow$ MSE of RW is higher. ब

```

\section*{Evaluation of forecasts: MSE/MAE?}

MSE and MAE are very popular criteria to judge the forecasting power of a model. However, it may not be the best measure for everybody.

Richard Levich's textbook compares forecasting services to the freely available forward rate. He finds that forecasting services may have some ability to predict direction (appreciation or depreciation).

For some investors, the direction is what really matters, since direction determines potential profits, not the error.

Example: Two forecasts: Forward Rate \(\left(\mathrm{F}_{\mathrm{t}, \mathrm{T}}\right)\) and Forecasting Service (FS)
\(\mathrm{S}_{\mathrm{t}}=.7330\) USD/CAD (Today's market spot rate.)
\(\mathrm{F}_{\mathrm{t}, \mathrm{T}=1 \text {-month }}=.7335 \mathrm{USD} / \mathrm{CAD} \quad\) (Today's market forward rate.)
Efs, \(^{\text {t }}\left[\mathrm{S}_{\mathrm{t}+1 \text {-month }}\right]=.7342\) USD/CAD. \(\Rightarrow\) Today, FS forecasts an appreciation of CAD.
Investor's strategy: Buy CAD forward if FS forecasts CAD appreciation, greater than the implied by the forward rate.

Based on the FS forecast, Ms. Sternin decides to buy CAD forward at \(\mathrm{F}_{\mathrm{t}, 1 \text {-month. }}\).
(A) Suppose that the CAD appreciates to \(\mathrm{S}_{\mathrm{t}+1}=.7390\) USD/CAD.
\(M A E F S=|.7390-.7342|=.0052\) USD/CAD.
Investor makes a profit of . \(7390-.7335=\) USD .055 USD.
(B) Suppose that the CAD depreciates to \(\mathrm{S}_{\mathrm{t}+1}=.7315\) USD/CAD.
\(\mathrm{MAE}_{\mathrm{FS}}=|.7315-.7342|=.0027\) USD/CAD. \(\quad \Rightarrow\) smaller MAE!
Investor takes a loss of .7315-. 7335 = USD -. 0020 .
Conclusion: A small forecast error is not that relevant for investor, the direction of the error matter much more. \(\boldsymbol{\square}\)

\section*{Forecasting Application: Fundamental Approach}

There are two pure approaches to forecasting. Based on how we select the "driving" variables \(X_{t}\), we have:
- Fundamental (based on data considered fundamental)
- Technical analysis (based on data that incorporates only past prices)
- Fundamental Approach to Forecast Exchange Rates, \(S_{t}\) (USD/JPY)

Suppose we have an built an economic model, \(S_{t}=f\left(X_{t}\right)\), where \(X_{t}\) is a dataset regarded as fundamental economic variables:
- GNP growth rate,
- Current Account,
- Interest rates,
- Inflation rates, etc.

The economic model usually incorporates:
- Statistical characteristics of data (seasonality, autocorrelation, etc.)
- Experience of the forecaster (what information to use, lags, etc.)
\(\Rightarrow\) Mixture of art and science.
Then, based on the economic model, we generate at time \(t\) a forecast for the exchange rate next period, \(S_{t+1}\) :
\[
\mathrm{E}_{\mathrm{t}}\left[S_{t+1}\right]=\mathrm{E}_{\mathrm{t}}\left[f\left(X_{t+1}\right)\right]=\mathrm{g}\left(X_{t}\right)
\]
- Steps for building a forecast:
(1) The economic model (also called structural model) provides the structure for the forecasts. The economic model is the starting point of the fundamental approach.
(2) Once we selected the economic model, we proceed to estimate the parameter on the model. We need to collect data and decide on how to estimate the model (OLS, MLE, etc.).
(3) Then, we test the model. We have to make sure that we have a good model. If the model survives the tests, then we use the model to forecast.
(4) We evaluate the forecasts by comparing the economic model's performance with the performance of other models, for example, in our case, a simpler model, the Random Walk model (RWM). The RMW is found to be very good model for forecasting \(S_{t}\) in the short-run. The forecasts for the RWM are given by:
\[
\mathrm{E}_{\mathrm{t}}\left[S_{t+1}\right]=S_{t}
\]

FIGURE 6.2-Steps for building a forecast

- Fundamental Forecasting: Steps (example: \(S_{t}=\) USD/JPY)
(1) Select a Model: Based on Theory (IFE, \& Asset Approach) we model percentage changes in FX rates, \(e_{f, t}=\log \left(S_{t}\right)-\log \left(S_{t-1}\right)\) :
\[
\begin{aligned}
& e_{f, t}=\beta_{0}+\beta_{1}\left(\mathrm{i}_{\mathrm{iUS}, \mathrm{t}}-\mathrm{i}_{\mathrm{JAP}, \mathrm{t}}+\beta_{2}\left(\mathrm{yUS}, \mathrm{t}-\mathrm{yJAP}_{\mathrm{t}}\right)+\beta_{3}\left(\mathrm{mUS}, \mathrm{t}-\mathrm{m}_{\mathrm{JAP}, \mathrm{t}}\right)+\varepsilon_{\mathrm{t}}\right. \\
& \mathrm{E}_{[ }\left[e_{f, t+1}\right]=\beta_{0}+\beta_{1} \mathrm{E}_{\mathrm{t}}\left[\mathrm{i}_{\mathrm{US}, \mathrm{t}+1}-\mathrm{i}_{\mathrm{JAP}, \mathrm{t}+1}\right]+\beta_{2} \mathrm{E}\left[\mathrm{yUS}, \mathrm{t}+1-\mathrm{y}_{\mathrm{JAP}, \mathrm{t}+1}\right]+\beta_{3} \mathrm{E}\left[\mathrm{mUS}, \mathrm{t}+1-\mathrm{m}_{\mathrm{JAP}, \mathrm{t}+1}\right] \\
& \quad \Rightarrow \mathrm{E}_{\mathrm{t}}\left[S_{t+1}\right]=S_{t+1}^{F}=S_{t} *\left(1+\mathrm{E}_{\mathrm{t}}\left[e_{f, t+1}\right]\right)
\end{aligned}
\]
(2) Collect data: \(S_{t}, \boldsymbol{X}_{t}\) (Interest rates (i), GDP growth rates (y) and money growth (m) data needed.)
(3) Estimation of Model (using estimation period): OLS \(\Rightarrow\) get \(\mathbf{b}\).
(4) Generate forecasts. Assumptions about \(\boldsymbol{X}_{t}\) are needed.
\[
\begin{aligned}
& \mathrm{E}_{\mathrm{t}}\left[\boldsymbol{X}_{t+1}\right]=\delta_{1}+\delta_{2}\left(\boldsymbol{X}_{t}\right) \quad \text {-an AR(1) model. } \\
& \Rightarrow \quad \mathrm{Et}_{\mathrm{t}}\left[e_{f, t+1}\right]=\mathrm{E}_{\mathrm{t}}\left[\boldsymbol{X}_{\boldsymbol{t + 1}}\right]^{\prime} \mathbf{b} \\
& \Rightarrow \quad \mathrm{E}_{\mathrm{t}}\left[S_{t+1}\right]=S_{t}^{*}\left(1+\mathrm{E}_{\mathrm{t}}\left[e_{f, t+1}\right]\right)
\end{aligned}
\]
(5) Evaluation of Forecasts: MSE (\& compare with RW's MSE).
\[
\begin{aligned}
& \text { Model's Forecast Error }{ }_{t+1}=\mathrm{E}_{\mathrm{t}}\left[S_{t+1}\right]-S_{t+1} \\
& \text { RW's Forecast Error }{ }_{t+1}=S_{t}-S_{t+1}
\end{aligned}
\]

Example: (1) \& (2) Based on above model, I collect quarterly data (FX_USA_JAP.csv) from 1978:II - 2020:II. I read the data and transform it to estimate model:
```


Step (2) - Read Data

FX_da <- read.csv("https://www.bauer.uh.edu/rsusmel/4397/FX_USA_JAP.csv", head=TRUE,
sep=",")
us_I <- FX_da$US_INF # Extract US Money growth (mus) data from FX_da
us_i<- FX_da$US_I3M \# Extract US 3-mo Interest rate (ius) data
us_y <- FX_da$US_GDP_g # Extract US GDP growth (yus) data
us_tb<- FX_da$US_CA_c \# Extract US Current account change (tbus) data
jp_I <- FX_\overline{da$JAP_INF # Extract Japan Inflation (IUS) data}
jp_mg<- FX_da$JAPP_MI_c \# Extract Japan Money growth (m, mP) data
jp_i <- FX_da$JAP_I3M # Read Japan 3-mo Interest rate (iJP) data
jp_y<- FX_da$JAP_GDP_g \# Extract Japan GDP growth ysP) data
jp_tb<- FX_da$JAP_CA_c # Extract Japan Current account change (tbsp) data
e_f}<-\mathrm{ FX_/\a$JPY.USD_-

Step (2) - Transform variables (create differentials)

inf_dif<- us_I - jp_I \# Define inflation rate differential (inf_dif)
int_dif <- us_i - jp_i \# Define interest rate differential (int_dif)
mg_dif <- us_mg-jp_mg \# Define money growth rate differential (mg_dif)
y_dif <- us_y -jp_y \# Define income growth rate differential (y_dif)
tb_dif <- us_tb - jp_tb \# Define Trade balance differential (tb_dif)
xx <- cbind(int_dif, mg_dif, y_dif)
T <- length(e_f)
T_est<-161 \# Define final observation for estimation period.
e_fl<- e_f[1:T_est] \# Adjust sample size to T_est
xx_1<- xx[1:T_est,] \# Adjust sample size to T_est

```
\# Step (3) - Estimation of model(using only estimation period ( \(T=161\) ): Get \(\mathbf{b}\).
fit_ef \(<-\operatorname{lm}\left(\mathrm{e}\right.\) _fl \(\left.\sim x x \_1\right)\)
\(>\) summary(fit_ef)

Call:
\(\operatorname{lm}\left(\right.\) formula \(=\) e_fl \(\sim x_{-}\))
Coefficients:
Estimate Std. Error t value \(\operatorname{Pr}(>|\mathrm{t}|)\)
(Intercept) \(1.72460 .6971 \quad 2.474 \quad 0.0144\) *
xx_1int_dif \(-0.5281 \quad 0.2478\)-2.131 0.0346 *
\(\begin{array}{lllll}x x \_1 m g \_d i f & 0.1104 & 0.1912 & 0.577 & 0.5647\end{array}\)
xx_1y_dif \(-0.20340 .4538-0.448 \quad 0.6546\)
---

Residual standard error: 6.293 on 157 degrees of freedom
Multiple R-squared: 0.04673, Adjusted R-squared: 0.02851
F-statistic: 2.565 on 3 and 157 DF, p-value: 0.05661
\# Step (4) - Generate Forecasts. Need first to estimate model for \(\mathbf{X}\) variables. (using estimation period data only)
- \(\operatorname{AR}(1)\) for (ius,t \(\left.-i_{\mathrm{JAP}, \mathrm{t}}\right)\)
int_dif_lag1 <- int_dif[1:T_est-1] \# Lag (ius,t - iJAP,t \(^{\text {I }}\) )
int_dif_lag0 <- int_dif[2:T_est] \# Adjust sample size (lost one observation
above)
fit_int \(<-\operatorname{lm}(\) int_dif_lag0 \(\sim\) int_dif_lag1) \# Fit AR(1) model
\(>\) summary(fit_int)
Coefficients:
Estimate Std. Error t value \(\operatorname{Pr}(>|t|)\)
(Intercept) 0.227740 .110742 .0570 .0414 *
int_dif_lag1 \(0.875370 .03772 \mathbf{2 3 . 2 1 0}<2 \mathrm{e}-16^{* * *}\)
---
Signif. codes: \(0{ }^{\prime * * * '} 0.001^{\prime * * \prime} 0.01^{\prime *} 0.05^{\prime} .{ }^{\prime} 0.1^{\prime}{ }^{\prime} 1\)
Residual standard error: 1.045 on 158 degrees of freedom
Multiple R-squared: 0.7732, Adjusted R-squared: 0.7718
F-statistic: 538.7 on 1 and \(158 \mathrm{DF}, \mathrm{p}\)-value: \(<2.2 \mathrm{e}-16\)
- \(\operatorname{AR}(1)\) for (mus,t - muap, t )
```

mg_dif_lag1 <- mg_dif[1:T_est-1]
mg_dif_lag0 <- mg_dif[2:T_est]
fit_mg <- lm(mg_dif_lag0 ~ mg_dif_lag1)
> summary(fit_mg)

```

Coefficients:

Estimate Std. Error t value \(\operatorname{Pr}(>|t|)\)
(Intercept) -0.008708 0.216621 -0.040 0.967986
mg_dif_lag1 \(0.2965970 .076124 \mathbf{3 . 8 9 6} 0.000144\) ***
Signif. codes: \(0{ }^{\text {'***' } 0.001 ~ ' * * ' ~} 0.01^{\text {'*' }} 0.05^{\prime} .{ }^{\prime} 0.1^{\text {' }}{ }^{\prime} 1\)
Residual standard error: 2.74 on 158 degrees of freedom
Multiple R-squared: 0.08766, Adjusted R-squared: 0.08188
F-statistic: 15.18 on 1 and 158 DF , p-value: 0.000144
- AR(1) for (yus,t - yJAP,t
y_dif_lag1 <- y_dif[1:T_est-1] \# Lag (yus,t - yJAP,t)
y_dif_lag0<- y_dif[2:T_est] \# Adjust sample size (lost one observation above)
fit_y \(<-\operatorname{lm}\) (y_dif_lag0 \(\sim\) y_dif_lag1) \# Fit AR(1) model
\(>\) summary(fit_y)
Coefficients:
Estimate Std. Error \(t\) value \(\operatorname{Pr}(>|t|)\)
(Intercept) \(0.166258 \quad 0.086575 \quad 1.920 \quad 0.0566\).
\(\begin{array}{lllll}\text { y_dif_lag1 } & -0.008828 & 0.077255 & \mathbf{- 0 . 1 1 4} & 0.9092\end{array}\)
Signif. codes: 0 '***’ \(0.001^{\prime * * \prime} 0.01^{\text {'*' }} 0.05^{\prime} .{ }^{\prime} 0.1^{\prime}{ }^{\prime} 1\)
Residual standard error: 1.08 on 158 degrees of freedom
Multiple R-squared: 8.263e-05, Adjusted R-squared: -0.006246
F-statistic: 0.01306 on 1 and 158 DF, p-value: 0.9092
- Now, we can do one-step-ahead forecast for the \(\mathbf{X}\) variables:

T_val <- T_est+1
\(x_{x}\) cons \(<-\) rep \(\left(1, T-T_{-} v a l+1\right)\)
int_dif_0 <- cbind(xx_cons,xx[T_val:T,1]) \(\% * \%\) fit_int \(\$\) coeff
mg_dif_0 <- cbind(xx_cons,xx[T_val:T,2]) \(\% * \%\) fit_mg\$coeff y_dif_0 <- cbind(xx_cons,xx[T_val:T,3]) \%*\% fit_y\$coeff
\# start of Validation period
\# create the constant vector \# 8 forecasts for (ius,t \(-\mathrm{i}_{\mathrm{JAP}, \mathrm{t}}\) ) \# 8 forecasts for (mus,t \(-\mathrm{m}_{\mathrm{JAP}, \mathrm{t}}\) ) \# 8 forecasts for (yus,t - yJAP,t)
- Finally, we compute the one-step-ahead forecast for \(\mathbf{e}\) and MSE:
e_Mod_0 <- cbind(xx_cons,int_dif_0,mg_dif_0,y_dif_0)\%*\%fit_ef\$coeff \# Model's forecast f_e_Mod <- e_f[T_val:T] - e_Mod_0 \# Model's forecast error mse_e_f <- sum(f_e_Mod^2)/(T-T_val+1) \# Model's MSE \(>\) mse_e_f
[1] 3.974203
- Compute the one-step-ahead forecast for RW Model and MSE e:
```

e_f_RW_0<- rep(0,T-T_val+1) \# RW forecast = 0 (always 0, for all t+T!)
f_e_RW <- e_f[T_val:T] - e_f_RW_0
mse_e_RW <- sum(f_e_RW^2)/(T-T_val+1)
> mse_e_RW
[1] 3.381597 }\quad=>\mathrm{ Lower MSE than Model. Not good for Model.

```
- Compare MSEs: The RW model has a better MSE (usual finding).
- A MGN test is usually done. But, we have only \(m=8\) observations, we can do the test, but the results are very likely not to be taken seriously.
```


Step (5) - Evaluation of Forecasts

```
- MGN/HLN test:
z_mgn <- e_Mod + e_RW
x_mgn <- e_Mod - e_RW
fit_mgn \(<-\operatorname{lm}\left(z \_m g n \sim x \_m g n\right)\)
\(>\) summary(fit_mgn)
Coefficients:
Estimate Std. Error t value \(\operatorname{Pr}(>|t|)\)
\(\begin{array}{lllll}\text { (Intercept) } & 1.355 & 2.680 & 0.506 & 0.631\end{array}\)
\(\begin{array}{llllll}\mathrm{x} \_\mathrm{mgn} & 1.798 & 2.759 & 0.651 & 0.539 \Rightarrow \text { not significant, but unreliable (small sample). }\end{array}\)
Residual standard error: 3.026 on 6 degrees of freedom \(\quad \Rightarrow\) very small df to make inferences. Multiple R-squared: 0.05322, Adjusted R-squared: -0.1046
F-statistic: 0.3373 on 1 and 6 DF, p-value: 0.5826
- Suppose you are happy with the Model, you believe the difference in MSEs is not significant), now you generate out-of-sample forecasts.
\# Step (6) - Out-of-sample one-step-ahead forward forecast for \(S_{t}\) :
\[
\mathrm{E}_{\mathrm{t}=2020: \mathrm{II}}\left[S_{t+1=2020: \mathrm{III}}\right]=S_{t=2020: I \mathrm{II}} *\left(1+\mathrm{E}_{\left.\mathrm{t}=2020: \mathrm{II}\left[e_{f, t+1}=2020: \mathrm{IIII}\right]\right)}\right]
\]

We observe \(S_{t}\) today (2020:II): \(S_{t=2020: I I}=100.77 \mathrm{JPY} / \mathrm{USD}\), which we invert since we work with direct quotes: \(S_{t=2020: \mathrm{II}}=0.009279\) USD/JPY.

We need to forecast the independent variables, based on \(\operatorname{AR}(1)\) results,
\[
\mathbf{X}_{\mathbf{t}}=\left\{\left(\mathrm{i} \cup \mathrm{~S}, \mathrm{t}-\mathrm{i}_{\mathrm{JAP}, \mathrm{t}}\right),\left(\mathrm{y} \mathrm{yUS}_{\mathrm{t}} \mathrm{t}-\mathrm{y}_{\mathrm{JAP}, \mathrm{t}}\right),\left(\mathrm{m}_{\mathrm{US}, \mathrm{t}}-\mathrm{m}_{\mathrm{JAP}, \mathrm{t}}\right)\right\}
\]
- Forecasting (ius,t+1 - iJAP,t+1): \(\left.\left.\mathrm{E}_{\mathrm{t}=2020: \mathrm{II}(\mathrm{ius}, \mathrm{t}}-\mathrm{i}_{\mathrm{JAP}}\right) \mathrm{t}+1=2020: \mathrm{III}\right]\)
int_dif_p1 <- cbind(1,int_dif[T]) \(\%\) *\% fit_int\$coeff\# int_dif_p1 = Et=2020:II[(ius,t \(\left.-\mathrm{i}_{\mathrm{JAP}}\right)_{\mathrm{t}+1=2020: \mathrm{III}]}\) \(>\) int_dif_p1
[,1]
[1,] 0.4684645
- Forecasting (mus,t \(\left.\left.\left.-\mathrm{m}_{\mathrm{JAP}, \mathrm{t}}\right): \mathrm{E}_{\mathrm{t}=2020: \mathrm{III}(\mathrm{mUS}, \mathrm{t}}-\mathrm{m}_{\mathrm{JAP}}\right)_{\mathrm{t}+1=2020: I I I}\right]\)
 \(>\) mg_dif_p1
[,1]
[1,] 4.921977
- Forecasting (yus,t - yJAP,t): Et=2020:III(yus,t - yJAP) \({ }_{\mathrm{t}+1=2020: \mathrm{III}]}\)
 \(>y\) _dif_p1
[,1]
[1,] 0.176617
- Forecasting \(\mathrm{E}_{\mathrm{t}=2020: \mathrm{II}\left[\mathrm{S}_{\mathrm{t}+1=2020: I I I}\right]}\)
\(\mathrm{S}<-0.009279 \quad\) \# Today's value of \(S_{t=2020: \text { II }}\)
e_f p1 <- cbind(1,int_dif_p1,mg_dif_p1,y_dif_p1)\%*\%fit_ef\$coeff \# Today's forecast: \(e_{t=2020: I I I}\)
\(>\) e_f_p1 \# Print forecast for \(e_{f, t+1=2020: I I I}\)
[,1]
\([1] ,1.984401 \quad \Rightarrow \mathbf{2 \%}\) depreciation of USD against JPY in \(3^{\text {rd }}\) Quarter.
\(\mathrm{S} \_\mathrm{p} 1<-\mathrm{S} *\left(1+\mathrm{e} \_\right.\)f_p1/100) \# Today's forecast for \(S_{t+1=2020: I I I}\)
\(>\) S_p1<-S* \((1+\) e_f_p1/100) \#e is in \(\%\), we divide by 100 to put it decimal from
\(>S \_p 1\)
[,1]
\([1] ,0.009463133 \quad \Rightarrow\) Model's forecast for \(S_{t+1=2020: I I I}\)
\(\Rightarrow\) Model's forecast for \(\mathrm{S}_{\mathrm{t}+1=2020: \text { III }}=\mathrm{E}_{\mathrm{t}=2020: \mathrm{II}}\left[S_{t+1=2020: \mathrm{III}}\right]=\mathbf{0 . 0 0 9 4 6 3 1 3 3} \mathbf{U S D} / \mathrm{JPY}\).

- We can use the one-step-ahead forecasts to generate two-step-ahead forecasts. That is, we

S1 <- S_p1 \# Today's forecast for \(\mathrm{S}_{\mathrm{t}+1=2020 \text { :III }}\) int_dif_p2 <- cbind(1,int_dif_p1)\%*\%fit_int\$coeff \# Today's forecast for (ius - iJP) t \(_{t+2}\)
mg_dif_p2 <- cbind(1,mg_dif_p1) \%*\%fit_mg\$coeff \# Today's forecast for (mus \(\left.-\mathrm{m}_{\mathrm{JP}}\right)_{\mathrm{t}+2}\) y_dif_p2 <- cbind(1,y_dif_p1)\%*\%fit_y\$coeff \# Today's forecast for (yus - ysp)t+2 e_f_p2 <- cbind(1,int_dif_p2,mg_dif_p2,y_dif_p2) \(\% * \%\) fit_ef \(\$\) coeff \# forecast for \(\mathrm{e}_{\mathrm{t}=2020: \mathrm{IV}}\) \(>\mathrm{e}\) _f p 2
[,1]
\([1] ,1.514363 \quad \Rightarrow \mathbf{1 . 1 1 \%}\) depreciation of USD against JPY in \(4^{\text {th }}\) Quarter.
S_p2 <-S \(1 *\left(1+e \_f \_p 2 / 100\right)\)
\(>\) S_p2
[,1]
[1,] 0.009606439
\(\Rightarrow \mathrm{E}_{\mathrm{t}=2020: \mathrm{II}}\left[S_{t+1=2020: \mathrm{III}}\right]=\mathbf{0 . 0 0 9 6 0 6 4 3 9} \mathbf{U S D} / \mathrm{JPY}\).
Note: We can use the two-step-ahead forecast to generate three-step-ahead forecasts. Obviously, we can continue this process to generate l-step-ahead forecasts for \(S_{t}\) (a simple do loop will do it).

Eventually, we will collect \(m\) of out-of-sample forecasts ( \(m\) one-step-ahead forecasts, \(m\) two-stepahead forecasts, \(m\) three-step-ahead forecasts, etc.) to get an MSE and run a MGN/HLN test on them. \(\mathbb{I}\)

It is possible that one model is the best in the short-term (say, up to 3 steps ahead); other is better in the medium-term (say, from 4 to 6 steps ahead); and another is best for longer-term. For example, the RW model is very good ("unbeatable") up to 3 months ahead. Then, other models start to produce better forecasts, especially after 6 months.

\section*{Forecasting Application: Fundamental Approach}

Practical Issues in Fundamental Forecasting
- Are we using the "right model?"
- Estimation of the model (OLS, MLE, other methods).
- Some explanatory variables \(\left(\mathrm{X}_{\mathrm{t}+\mathrm{T}}\right)\) are contemporaneous.
\(\Rightarrow\) We also need a model to forecast the \(\mathrm{X}_{\mathrm{t}+\mathrm{T}}\) variables.
- Does Forecasting Work?

For many financial assets (stock prices, exchange rates), we expect forecasting to be difficult. The Efficient Markets Hypothesis posits that financial asset returns closely follows a "Random Walk" process, therefore forecasting asset returns is fruitless. Burton Malkiel in his book " \(A\) Random Walk Down Wall Street," first published in 1973, popularized this point.

Example: For exchange rates, in the short-run, the Random Walk consistently models beat structural (and other) models, like PPP, IFE, Monetary Approach: Lower MSE, MAE. That is bad news for the beaten models, since the RW forecast uses today's price to forecast any future price. No model or estimation is needed.

Note: Many argue that the structural models used to forecast exchange rates are not the "right model." "

\section*{Model Selection Strategies}

Specifying the DGP in (A1) is the most important step in applied work. We have assumed "correct specification," which, in practice, is an unrealistic assumption, since we do not really observed the true DGP.

A bad model can create a lot of problems: biases, wrong inferences, bad forecasts, etc.
So far, we have implicitly used a simple strategy:
(1) We started with a DGP, which we assumed to be true.
(2) We tested some \(\mathrm{H}_{0}\) (from economic theory).
(3) We used the model (restricted, if needed) for prediction \& forecasting.

Question: How do we propose and select a model (a DGP)?
Potentially, we have a huge number of possible models. We can have models with different functional form: \(f(),. g(\).\() , , or h(\).\() , and/or different explanatory variables: \mathbf{X}, \mathbf{Z}, \mathbf{W}\) and dummy variables, D. For example, we may have four different formulations to choose from:
\begin{tabular}{ll} 
Model 1 & \(\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}\) \\
Model 2 & \(\mathbf{Y}=\mathbf{Z} \boldsymbol{\gamma}+\boldsymbol{\xi}\) \\
Model 3 & \(\mathbf{Y}=(\mathbf{W} \boldsymbol{\gamma})^{\lambda}+\boldsymbol{\eta}\) \\
Model 4 & \(\mathbf{Y}=\exp (\mathbf{Z} \mathbf{D} \boldsymbol{\delta})+\boldsymbol{\epsilon}\)
\end{tabular}

We want to select the best model, the one that is closest to the true and unobserved DGP. In practice, we aim for a "good" model, a model that passes a barrage of specification tests and has good forecasting power.

\section*{Model Selection Strategies: Views}

A model is a simplification. There are many approaches to specify a model:
- "Pre-eminence of theory." Economic theory should drive a model. Data is only used to quantify theory. Econometric methods offer sophisticated ways 'to bring data into line' with a particular theory.
- Purely data driven models. Success of ARIMA models (late 60s - early 70s), discussed in Lecture 6: No theory, only exploiting the time-series characteristics of the data to build models.
- Modern (LSE) view. A compromise: theory and the characteristics of the data are used to build a model.
- Theory and practice play a role in deriving a good model. David Hendry (2009) emphasizes:
"This implication is not a tract for mindless modeling of data in the absence of economic analysis, but instead suggests formulating more general initial models that embed the available economic theory as a special case, consistent with our knowledge of the institutional framework, historical record, and the data properties."
"Applied econometrics cannot be conducted without an economic theoretical framework to guide its endeavours and help interpret its findings. Nevertheless, since economic theory is not complete, correct, and immutable, and never will be, one also cannot justify an insistence on deriving empirical models from theory alone."

\section*{Model Selection Strategies: A Good Model}

According to David Hendry, a good model should be:
- Data admissible -i.e., modeled and observed \(\mathbf{y}\) should have the same properties.
- Theory consistent -our model should "make sense"
- Predictive valid -we should expect out-of-sample validation
- Data coherent -all information should be in the model. Nothing left in the errors (white noise errors).
- Encompassing -our model should explain earlier models.

That is, we are searching for a statistical model that can generate the observed data \((\mathbf{y}, \mathbf{X})\), this is usually referred as statistical adequacy, makes theoretical sense and can explain other findings.

\section*{Model Selection Strategies: FAQ}

FAQ in practice:
- Should I include all the variables in the database in my model?
- How many explanatory variables do I need in my model?
- How many models do I need to estimate?
- What functional form should I be using?
- Should the model allow for structural breaks?
- Should I include dummies \& interactive dummies?
- Which regression model will work best and how do I arrive at it?

\section*{Model Selection Strategies: Important Concepts}

Diagnostic testing: We test assumptions behind the model. In our case, assumptions (A1)-(A5) in the CLM.
Example: Test \(\mathrm{E}[\varepsilon \mid \mathbf{X}]=0 \quad\)-i.e., the residuals are zero-mean, uncorrelated with anything (that is, white noise distributed errors).

In selecting a model, this is a very important step. We run a lot of test to check the residuals are acceptable or the model is not misspecified: Ramsey's reset test, tests for autocorrelation, etc.

Parameter testing: We test economic Ho's.
Example: Test \(\boldsymbol{\beta}_{k}=0 \quad\)-say, there is no size effect on the expected return equation.

\section*{Model Selection Strategies: Two Methods}

There are several model-selection methods. We will consider two:
- Specific to General
- General to Specific
- Specific to General. Start with a small "restricted model," do some testing and make model bigger model in the direction indicated by the tests (for example, add variable \(x_{k}\) when test reject \(\mathrm{H}_{0}\) : \(\beta k=0\) ).
- General to Specific. Start with a big "general unrestricted model," do some testing and reduce model in the direction indicated by the tests (for example, eliminate variable \(x_{k}\) when test cannot reject \(\mathrm{H}_{0}: \beta_{k}=0\) ).

\section*{Model Selection Strategies: Specific to General}

Steps:
(1) Begin with a small theoretical model - for example, the CAPM
\[
\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon} .
\]
(2) Estimate the model
(3) Do some diagnostic testing
- say, using OLS.
- are residuals white noise (uncorrelated)?

If the assumptions do not hold, then use:
- More advanced econometrics - GLS instead of OLS?
- A more general model - More regressors? Lags?
(4) Test economic \(\mathrm{H}_{0}\) on the parameters - Is SMB and HML significant?
(5) Modify model in (1) in the direction of rejections of \(\mathrm{H}_{0}\).
- This strategy is known as specific to general. In the machine learning literature, this strategy is also called forwards selection.

Example: Specific-to-general strategy to model IBM returns:
(1) We start with the 3-factor FF model for IBM:
\[
\left(r_{i=I B M}-r_{f}\right)_{t}=\beta_{0}+\beta_{1}\left(r_{m}-r_{f}\right)_{t}+\beta_{2} S M B_{t}+\beta_{3} H M L_{t}+\varepsilon_{t}
\]
(2) Estimate the 3-factor FF model for IBM:
fit_ibm_ff3 <- lm (ibm_x \(\sim\) Mkt_RF + SMB + HML)
\(>\) summary(fit_ibm_ff3)
Coefficients:
Estimate Std. Error \(t\) value \(\operatorname{Pr}(>|t|)\)
(Intercept) -0.005191 \(0.002482-2.0910 .0369\) *
Mkt_RF \(0.910379 \quad 0.05678416 .032<2 \mathrm{e}-16^{* * *}\)
\(\begin{array}{lllll}\text { SMB } & -0.221386 & 0.084214 & \mathbf{- 2 . 6 2 9} & 0.0088 \text { ** }\end{array}\)
HML \(\quad-0.1391790 .084060-1.6560 .0983\).
---

Residual standard error: 0.05842 on 566 degrees of freedom Multiple R-squared: 0.3393, Adjusted R-squared: 0.3358 F-statistic: 96.9 on 3 and 566 DF , p-value: \(<2.2 \mathrm{e}-16\)
(3) Diagnostic tests: Check \(t\)-values \(\& R^{2}\), F-test goodness of fit, etc.
(4) LM Test to test if there is a January Effect ( \(\mathrm{H}_{0}\) : No January effect):
> LM_test
[1] \(9.084247 \quad \Rightarrow\) LM_test \(>3.84 \Rightarrow\) Reject \(H_{0}\).
(5) Given this result, we modify the 3 -factor FF and add the January Dummy to the FF model:
fit_ibm_new <- lm (ibm_x ~Mkt_RF + SMB + HML + Jan_1)
> summary(fit_ibm_new)
Coefficients:
\begin{tabular}{lllll} 
& Estimate & Std. Error & t value \(\operatorname{Pr}(>|\mathrm{t}|)\) \\
(Intercept) & -0.007302 & 0.002561 & -2.851 & \(0.004522^{* *}\) \\
Mkt_RF & 0.905182 & 0.056405 & 16.048 & \(<2 \mathrm{e}-16^{* * *}\) \\
SMB & -0.247691 & 0.084063 & -2.946 & \(0.00335^{* *}\) \\
HML & -0.154093 & 0.083606 & -1.843 & 0.06584. \\
Jan_1 & \(\mathbf{0 . 0 2 6 9 6 6}\) & 0.008906 & \(\mathbf{3 . 0 2 8}\) & \(0.00258^{* *}\)
\end{tabular}

Note: We can continue our search to see if an expansion of the specific model is needed. For example, we could have tested for a 2008 Financial crisis dummy or Dot.com dummy. ब
- Some remarks based on the previous example:
- The specific-to-general method makes assumptions along the way.
(1) Very likely the starting model is based on theory and experience (HML is not significant at the usual \(5 \%\) level). Not clear how to proceed from there to a more general model.
(2) We tested for a January effect and then added to the model. However, we could have tested for a Dot.com effect or for an interactive Dot.com/January effect with the 3 FF factors. Not clear when to stop the search.
(3) Selection step uses a p-value to add variables to the model. In this case, we use the standard \(5 \%\) for the tests.

\section*{Model Selection Strategies: Specific to General - Stepwise Regression}

Note that in the previous example, we started with a model. What happens if we are skeptical regarding models?
- A popular implementation of the specific-to-general model selection is the stepwise regression, where we start with only a set of potential explanatory variables and let the data determine, starting from all potential one-variable models, which variables to add.

Overall structure of Stepwise Regression:
- The method begins with a \(k\) potential regressors.
- Do \(k\) one-variable regressions. Pick the one that shows the biggest t-stat or maximizes a goodness of fit measure, say, Adjusted- \({ }^{2}, \bar{R}^{2}\). Suppose \(x_{j}\) is selected.
- Then, do \((k-1)\)-variable regressions all with \(x_{j}\). Select the regressor (in addition to \(x_{j}\) ) that has the highest t -stat or that maximizes \(\bar{R}^{2}\).
- Continue. But, when we start adding regressors, we usually check if the added regressor(s) change the significance of previous steps. (Note: at each step, we remove or add a regressor(s) based on t- or F-tests.)
- Stop: Additional regressors do not have significant t -stats/increase \(\bar{R}^{2}\).
- Decisions: We nned to select the \(k\) initial variables, the \(\alpha\) level for tests ( \(\alpha=5 \%, 10 \%, 30 \%\) ?) and/or the goodness of fit statistic.

Remark: Always keep in mind that the selected (final) model is not necessarily better than others. Type I and Type II errors are likely to occur, thus the final model may have irrelevant and/or omitted variables.

Example: Stepwise regression strategy to model IBM returns. We start with the 5 FF factors as candidates for IBM. We use the function ols_step_forward \(p\) in the olsrr package, which uses \(p\) values to select variables. (You can also use other criteria to select the model, for example, ols_step_forward_aic uses aic to select variables.) The final output is long (details = TRUE), below we present the last two results:
library(olsrr)
ff_step_data \(<-\) data.frame(Mkt_RF, SMB, HML, RMW, CMA)
ibm_ff_model \(<-\operatorname{lm}(\mathrm{ibm} \quad \mathrm{x} \sim\)., data \(=\) ff_step_data \()\)
ols_step_forward_p(ibm_ff_model, details = TRUE) \# default p-value (penter) is 0.3
Parameter Estimates
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline model & \multicolumn{2}{|l|}{Beta Std. Erro} & \multicolumn{2}{|l|}{or Std. Beta} & \multicolumn{2}{|r|}{Sig} & wer \\
\hline (Intercept) & \multicolumn{2}{|l|}{-0.005 0.002} & & & 999 & 0.046 & -0.010 \\
\hline Mkt_RF & 0.8870 & . 055 & 50.574 & & . 227 & 0.000 & 0.780 \\
\hline SMB & -0.261 0. & & -0.111 & & 960 & 0.003 & -0.435 \\
\hline RMW & \multicolumn{2}{|l|}{-0.128 0.114} & \(4-0.042\) & & 122 & 0.262 & -0.351 \\
\hline \multicolumn{8}{|c|}{Selection Summary} \\
\hline \multicolumn{2}{|l|}{Variable} & \multicolumn{3}{|c|}{Adj.} & & & \\
\hline Step Entered & \multicolumn{2}{|l|}{R -Square} & R-Square & C(p) & AI & & RMSE \\
\hline 1 Mkt_RF & 0.3087 & & . 3075 & 7.7108 & -166 & 5.5551 & 0.0594 \\
\hline 2 SMB & 0.3174 & & . 3151 & 2.2117 & -167 & 1.0548 & 0.0590 \\
\hline 3 RMW & 0.3188 & & 0.3154 & 2.9552 & -167 & 0.3207 & 0.0590 \\
\hline
\end{tabular}

Conclusion: The Stepwise Regression method selects Market excess returns, SMB \& RMW as the drivers of IBM excess returns. If we change the p-value to 0.1 , RMW will be drop from final model. \(\|\)

Technical Note: In general, the selection of variables based on p-values is not advised, since the distribution of the OLS coefficients is affected. We mentioned this above, when we discussed pre-testing.

\section*{Model Selection Strategies: General to Specific}

Begin with a general unrestricted model (GUM), which nests restricted models and, thus, allows any restrictions to be tested. Say:
\[
\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{Z} \boldsymbol{\gamma}+\mathbf{W}^{\boldsymbol{\lambda}} \boldsymbol{\delta}+(\mathbf{X} * \mathbf{W}) \boldsymbol{\zeta}+(\mathbf{Z} * \mathbf{D}) \boldsymbol{\psi}+\boldsymbol{\varepsilon} .
\]

Then, reduction of the GUM starts. Mainly using \(t\)-tests, and \(F\)-tests, we move from the GUM to a smaller, more parsimonious, specific model. If competing models are selected, encompassing tests or information criteria (AIC, BIC) can be used to select a final model. This is the discovery stage. After this reduction, we keep a final (restricted GUM) model:
\[
\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon} .
\]

Creativity is needed for the specification of a GUM. Theory and empirical evidence play a role in designing a GUM.

\section*{- Steps:}

Step 1 - First ensure that the GUM does not suffer from any diagnostic problems. Check residuals in the GUM to ensure that they possess acceptable properties. (For example, test for white noise in residuals, incorrect functional form, autocorrelation, etc.).

Step 2 - Test the restrictions implied by the specific model against the general model - either by exclusion tests or other tests of linear restrictions.

Step 3 - If the restricted model is accepted, test its residuals to ensure that this more specific model is still acceptable on diagnostic grounds.
- This strategy is called general to specifics ("gets"), LSE, TTT (Test, test, test). It was pioneered by Sargan (1964). The properties of gets are discussed in Hendy and Krolzig (2005, Economic Journal).
- The role of diagnostic testing is two-fold.
- In the discovery steps (Steps \(1 \& 2\) ), the tests are being used as design criteria. Testing plays the role of checking that the original GUM was a good starting point after the GUM has been simplified.
- In the context of model evaluation (Step 3), the role of testing is clear cut. Suppose you use the model to produce forecasts. These forecasts can be evaluated with a test. This is the critical evaluation of the model.

Example: General-to-specific strategy to model IBM returns:
Step 1 - Start with a GUM: the 3-factor FF model for IBM + January Dummy + Dot.com Dummy + non-linear \& interactive effects:
\[
\begin{aligned}
\left(r_{i=I B M}-r_{f}\right)_{t} & =\beta_{0}+\beta_{1}\left(r_{m}-r_{f}\right)_{t}+\beta_{2} S M B_{t}+\beta_{3} H M L_{t}+\beta_{4} \text { January }+\beta_{5}\left(r_{m}-r_{f}\right)_{t}^{2} \\
& +\beta_{6} S M B_{t}^{2}+\beta_{7} H M L_{t}^{2}+\beta_{8}\left(r_{m}-r_{f}\right)_{t} * S M B_{t}+\beta_{9}\left(r_{m}-r_{f}\right)_{t} * H M L_{t}+ \\
& +\beta_{10} \text { Dot.com }_{\mathrm{t}}+\beta_{11}\left(r_{m}-r_{f}\right)_{t} * \text { Januaryt }+\beta_{12} H M L_{t} * \text { Januaryt }
\end{aligned}
\]
\[
+\beta_{13}\left(r_{m}-r_{f}\right)_{t} * \text { Dot.com }_{\mathrm{t}}+\beta_{14} H M L_{t} * \text { Dot.com }+\beta_{15} S M B_{t} * \text { Dot.com }+\varepsilon_{\mathrm{t}}
\]

Estimate GUM:
\begin{tabular}{|c|}
\hline sb <- 342 \\
\hline T_s_1<- T \\
\hline d_0 <- matrix (0, t_sb, 1) \\
\hline d_1<-matrix \(\left(1, T_{\text {d_s }}\right.\) d, 1) \\
\hline Dot_com <- rbind(d_0,d_1) \\
\hline Mkt_Jan <- Mkt_RF * Jan_1 \\
\hline HML_Jan <- HML * Jan_1 \\
\hline Mkt_Dot <- Mkt_RF * Dot_com \\
\hline HML_Dot <- HML * Dot_com \\
\hline MB_Dot <- SMB * Dot_c \\
\hline
\end{tabular}
fit_ibm_gum <- lm (ibm_x \(\sim\) Mkt_RF + SMB + HML + Jan_1 + Mkt_RF_2 + SMB_2 + HML_2 + Mkt_HML + Mkt_SMB + SMB_HML + Mkt_Jan + HML_Jan + Mkt_Dot + HML_Dot + SMB_Dot)
> summary(fit_ibm_gum)
Coefficients:

\section*{Estimate Std. Error t value \(\operatorname{Pr}(>|t|)\)}
(Intercept) \(\quad-0.0078360 .003063-2.5590 .010772\) *
Mkt_RF \(0.7918660 .0904748 .752<2 \mathrm{e}-16^{* * *}\)
SMB \(\quad-0.2957900 .110655-2.6730 .007738\) **
HML \(\quad-0.2339420 .135146-1.7310 .084004 \Rightarrow\) practice says "keep it." Judgement call.
\(\begin{array}{llllll}\text { Jan_1 } & 0.031769 & 0.009349 & 3.398 & 0.000727 \text { *** }\end{array}\)
Mkt_RF_2 -0.433762 0.850899 -0.510 0.610417
SMB_2 \(\quad-0.9272711 .470645-0.6310 .528615\)
HML_2 \(2.7079921 .670366 \quad 1.6210 .105545 \Rightarrow\) almost \(10 \%\), I keep it. Judgement call.
Mkt_HML \(\quad 0.628721 \quad 1.557090 \quad 0.4040 .686531\)
Mkt_SMB \(\quad 0.7916251 .7469390 .4530 .650618\)
SMB_HML -1.044806 2.029091 -0.5150 .606819
Mkt Jan \(\quad-0.0694130 .189309-0.3670 .714008\)
HML_Jan \(\quad-0.2596970 .255484-1.0160 .309841\)
\(\begin{array}{llllll}\text { Mkt_Dot } & 0.323382 & 0.130645 & 2.475 & 0.013612 \text { * }\end{array}\)
\(\begin{array}{lllll}\text { HML_Dot } & 0.059742 & 0.208277 & 0.287 & 0.774342\end{array}\)
SMB_Dot 0.0769980 .1989640 .3870 .698910
Signif. codes: 0 '***’ \(0.001^{\text {'**' }} 0.01^{\text {'*' }} 0.05^{\prime} .^{\prime} 0.1^{\prime}{ }^{\prime} 1\)
Residual standard error: 0.05788 on 553 degrees of freedom
Multiple R-squared: 0.3663, Adjusted R-squared: 0.3491
F-statistic: 21.31 on 15 and 553 DF, p-value: \(<2.2 \mathrm{e}-16\)
Step 1 - Check GUM residuals for departures of (A2)-(A3). A Ramsey's reset test can be done (using the resettest in the lmtest library).
> resettest(fit_ibm_gum, type="fitted") RESET test
data: fit_gumHomework 1 Review <br>
RESET \(=1.2645, \mathrm{df} 1=2, \mathrm{df} 2=552, \mathrm{p}\)-value \(=0.2832\)
Step 2 - Reduce Model with t-test and F-tests. Say, we keep all the variables with a p-value close to \(10 \%\) (we still keep HML, using previous experience). We estimate a restricted GUM:
fit_ibm_gum_r <- lm (ibm_x \(\sim\) Mkt_RF + SMB + HML + Jan_1 + HML_2 + Mkt_Dot \()\) > summary(fit_ibm_gum_r)

Coefficients:
\begin{tabular}{lllll} 
& \multicolumn{5}{c}{ Estimate } & Std. Error t value \(\operatorname{Pr}(>|t|)\) \\
(Intercept) & -0.008696 & 0.002788 & \(\mathbf{- 3 . 1 1 9}\) & \(0.00191^{* *}\) \\
Mkt_RF & 0.779336 & 0.072453 & \(\mathbf{1 0 . 7 5 6}\) & \(<2 \mathrm{e}-16^{* * *}\) \\
SMB & -0.280018 & 0.083891 & \(\mathbf{- 3 . 3 3 8}\) & \(0.00090^{* * *}\) \\
HML & -0.250480 & 0.088504 & \(\mathbf{- 2 . 8 3 0}\) & 0.00482 ** \\
Jan_1 & 0.028499 & 0.008937 & \(\mathbf{3 . 1 8 9}\) & \(0.00151^{* *}\) \\
HML_2 & 1.676011 & 1.331161 & 1.259 & 0.20853 \\
Mkt_Dot & 0.344030 & 0.116685 & \(\mathbf{2 . 9 4 8}\) & \(0.00333^{* *}\)
\end{tabular}

Signif. codes: \(0{ }^{\prime * * * '} 0.001^{\prime * * \prime} 0.01^{\prime *} 0.05^{\prime} .{ }^{\prime} 0.1^{\prime}{ }^{\prime} 1\)
Residual standard error: 0.05761 on 562 degrees of freedom
Multiple R-squared: 0.3618, Adjusted R-squared: 0.355
F-statistic: 53.11 on 6 and \(562 \mathrm{DF}, \mathrm{p}\)-value: \(<2.2 \mathrm{e}-16\)
Step 2 - Test the restrictions implied by the specific model against the general model. Using an F-test, we test \(J=9\) restrictions:
\[
H_{0}: \beta_{5}=\beta_{6}=\beta_{8}=\beta_{9}=\beta_{10}=\beta_{11}=\beta_{12}=\beta_{14}=\beta_{15} .
\]
```

e_u <- fit_ibm_gum$residuals # GUM residuals
RSS_u <- t(e_u)%*%e_u
e_r<- fit_ibm_gum_r$residuals \# Restricted GUM residuals
RSS_r <- t(e_r)%*%%_r
f_test_gum <- ((RSS_r}-\textrm{r}\mathrm{ RSS_u)/9)/(RSS_u/(T-16)) \# F-test
> f_test_gum
[,1]
[1,] 0.4299497 列 we cannot reject H0 (f_test_gum < qchisq(.95,9, 553) = 1.896801)
>qf(.95, df1=9, df2=T-16)
[1] 1.896801
p_val<- 1-pf(f_test_gum, df = 9, df2=T-16) \# p-value of F-test
> p_val

```


Step 2 - Further specification checks of Restricted GUM, for example, perform a Ramsey's reset test (using the resettest in the lmtest library).
> resettest(fit_gum_r, type="fitted")
RESET test
data: fit_ibm_gum_r
RESET \(=1.1361, d \bar{f} 1=2, d f 2=561, p\)-value \(=0.3218\)
Step 3 - Test if Restricted GUM residuals are acceptable -i.e., do diagnostic tests (mainly, make sure they are white noise). If Restricted GUM passes all the diagnostic tests, it becomes the "final model."

Note: With the final model, we use it to justify/explain financial theory and features, and do forecasting. \(\|\)
- Some remarks based on the previous example:

The general-to-specific method makes assumptions along the way.
(1) Select a p-value for the tests of significance in the discovery stage (we use \(\mathbf{1 0 \%}\) ). Given that we performed \(15 t\)-tests, we should not be surprised we rejected the GUM, since we had an overall significance, \(\alpha^{*}=.79\left[=1-(1-.10)^{\wedge} 15\right]\). Mass significance is an issue.
(2) Judgement calls are also made.
(3) The reduction of the GUM involves "pre-testing" -i.e., data mining. We are likely rejecting a true \(\mathrm{H}_{0}\) (false positives) and not rejecting a true \(\mathrm{H}_{1}\), (false negatives) along the way. This increases the probability that the final model is not a good approximation. It is common to ignore (or not even acknowledge) pre-testing issues.

Note: Similar to stepwise regression, we can remove use p-values to remove one step at a time variables from the GUM. R can do this using the function ols_step_backward_p in the olsrr package.

\section*{Model Selection Strategies: Best Subset}

Begin with a big model, with \(k\) regressors:
\[
\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon} .
\]

The idea is to select the "best" subset of the \(k\) regressors in \(\mathbf{X}\), where "best" is defined by the researcher, say MSE, Adjusted-R \({ }^{2}\), etc.

In theory, it requires \(2^{k}\) regressions. It can take a while if \(k\) is \(\operatorname{big}(k<40\) is no problem). There are many tricks are used to reduce the number of regressions.

In practice, we use best subset to reduce the number of models to consider. For example, from the regressions with one-variable, keep the best one-variable model, from the regression with two-variables, keep the best two-variable model, etc.

Example: We want to select a model for IBM excess returns, using the \(k=3\) Fama-French factors: Market excess returns (Mkt_RF), SMB, \& HML. We have \(8\left(=2^{3}\right)\) models and, thus, regressions:
1) Constant;
2) \(M k t \_R F\) (CAPM)
3) SMB
4) HML
5) Mkt_RF \& SMB
6) Mkt_Rf \& HML
7) SMB \& HML
8) Mkt_RF, SMB, \& HML (the 3-factor F-F Model).

We select the model with the lower MSE. Or, we can carry two or three models of the best models to do cross-validation and, then, pick the best model. \(\mathbb{I}\)

\section*{Model Selection Strategies: Properties}

A modeling strategy is consistent if its probability of finding the true model tends to 1 as \(T\)-the sample size- increases.
- Properties for strategies
(1) Specific to General
- It is not consistent if the original model is incorrect.
- It need not be predictive valid, data coherent, \& encompassing.
- No clear stopping point for an unordered search.
(2) General to Specific
- It is consistent under some circumstances. But, it needs a large \(T\).
- It uses data mining, which can lead to incorrect models for small \(T\).
- The significance levels are incorrect. This is the problem of mass significance.

\section*{Lecture 7 - Departures from CLM Assumptions \& the Generalized Regression Model}

\section*{Review of CLM Results}

Recall the CLM Assumptions
(A1) DGP: \(\mathbf{y}=\mathbf{X} \beta+\boldsymbol{\varepsilon}\) is correctly specified.
(A2) \(\mathrm{E}[\varepsilon \mid \mathbf{X}]=0\)
(A3) \(\operatorname{Var}[\varepsilon \mid \mathbf{X}]=\sigma^{2} \mathbf{I}_{T}\)
(A4) X has full column \(\operatorname{rank}-\operatorname{rank}(\mathbf{X})=k\)-, where \(\mathrm{T} \geq k\).
- OLS estimation:
\(\mathbf{b}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}\)
\(\operatorname{Var}[\mathbf{b} \mid \mathbf{X}]=\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\)
\(\Rightarrow \mathbf{b}\) unbiased and efficient (MVUE)
- If (A5) \(\varepsilon\left|\mathbf{X} \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}_{\mathrm{T}}\right) \quad \Rightarrow \mathbf{b}\right| \mathbf{X} \sim \mathrm{N}\left(\boldsymbol{\beta}, \sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right)\)

Under (A5), \(\mathbf{b}\) is also the MLE (consistency, efficiency, invariance, etc). (A5) gives us finite sample results for \(\mathbf{b}\) (and for tests: \(t\)-test, \(F\)-test, Wald tests).

\section*{CLM: Departures from the Assumptions}

So far, we have discussed some violations of CLM Assumptions:
(1) (A1) - OLS can easily deal with some non-linearities in the DGP.
\(\Rightarrow\) as long as we have intrinsic linearity, \(\mathbf{b}\) keeps its nice properties.
- Wald, F, \& LM tests to check for misspecification
(2) (A4) - Perfect multicollinearity means the model needs to be changed. Multicollinearity is a potential problem. In general, exogenous to the researcher. We need to be aware of this problem.
- In this lecture, we examine assumptions (A2), (A3) and (A5). That is, we check
(i) \(\mathbf{X}\) is stochastic. That is, it has a distribution.
(ii) \(\operatorname{Var}[\varepsilon \mid \mathbf{X}] \neq \sigma^{2} \mathbf{I}_{\text {t }}\).
(iii) \(\boldsymbol{\varepsilon} \mid \mathbf{X}\) is \(\operatorname{not} \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}_{\mathrm{T}}\right)\).

\section*{CLM: Departures from (A2)}

The traditional derivation of the CLM assumes \(\mathbf{X}\) as non-stochastic. In our derivation, however, we allowed \(\mathbf{X}\) to be stochastic, but we conditioned on observing its realizations (an elegant trick, but not very realistic).

With stochastic \(\mathbf{X}\) we need additional assumptions to get unbiasedness and consistency for the OLS b.
- We need independence between \(\mathbf{X} \& \varepsilon:\left\{x_{i}, \varepsilon_{i}\right\} i=1,2, \ldots ., T\) is a sequence of independent observations.
- We require that \(\mathbf{X}\) have finite means and variances. Similar requirement for \(\varepsilon\), but we also require \(\mathrm{E}[\varepsilon]=\mathbf{0}\).

Then,
\[
\mathrm{E}[\mathbf{b}]=\boldsymbol{\beta}+\mathrm{E}\left[\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\varepsilon}\right]=\boldsymbol{\beta}+\mathrm{E}\left[\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\right] \mathrm{E}[\boldsymbol{\varepsilon}]=\boldsymbol{\beta}
\]

Technical Note: To get consistency (\& asymptotic normality) for \(\mathbf{b}\), we need an additional (asymptotic) assumption regarding \(\mathbf{X}\) :
\[
\mathbf{X}^{\prime} \mathbf{X} / T \xrightarrow{p} \mathbf{Q} \quad(\mathbf{Q} \text { a pd }(k \mathrm{x} k) \text { matrix of finite elements })
\]
or \(\quad \operatorname{plim}\left(\mathbf{X}^{\prime} \mathbf{X} / T\right)=\mathbf{Q}\)
Question: Why do we need this assumption in terms of a ratio divided by \(T\) ? Each element of \(\mathbf{X}^{\prime} \mathbf{X}\) matrix is a sum of \(T\) numbers.
\[
\boldsymbol{X}^{\prime} \boldsymbol{X}=\left[\begin{array}{cccc}
\sum_{i=1}^{T} x_{i 1}^{2} & \sum_{i=1}^{T} x_{i 1} x_{i 2} & \ldots & \sum_{i=1}^{T} x_{i 1} x_{i K} \\
\Sigma_{i=1}^{T} x_{i 2} x_{i 1} & \Sigma_{i=1}^{T} x_{i 2}^{2} & \ldots & \sum_{i=1}^{T} x_{i 2} x_{i K} \\
\ldots & \ldots & \ldots & \ldots \\
\sum_{i=1}^{T} x_{i K} x_{i 1} & \sum_{i=1}^{T} x_{i K} x_{i 2} & \ldots & \Sigma_{i=1}^{T} x_{i K}^{2}
\end{array}\right]
\]

As \(T \rightarrow \infty\), these sums will become large. We divide by \(T\) so that the sums will not be too large.
Note: This assumption is not a difficult one to make since the LLN suggests that the each component of \(\mathbf{X}^{\prime} \mathbf{X} / T\) goes to the mean values of \(\mathbf{X}^{\prime} \mathbf{X}\). We require that these values are finite. - Implicitly, we assume that there is not too much dependence in \(\mathbf{X}\).

\section*{CLM: Departures from (A2) - Endogeneity}

If there is dependence between \(\mathbf{X} \& \varepsilon, \mathrm{OLS} \mathbf{b}\) is no longer unbiased or consistent. Easy to see the biased result: we cannot longer separate \(\mathrm{E}\left[\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \varepsilon\right]\) into a product of two expectations:
\[
\mathrm{E}\left[\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\varepsilon}\right] \neq \mathrm{E}\left[\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\right] \mathrm{E}[\varepsilon]
\]

Then,
\[
\mathrm{E}[\mathbf{b}]=\boldsymbol{\beta}+\mathrm{E}\left[\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\varepsilon}\right] \neq \boldsymbol{\beta}
\]

Dependence between \(\mathbf{X} \& \boldsymbol{\varepsilon}\) occurs when \(\mathbf{X}\) is also an endogenous variable, like \(\mathbf{y}\). This is common, especially in Corporate Finance. For example, we study CEO compensation as function of size of firm, and Board composition. Board Composition and size of firm are endogenous -i.e., determined by the firm, dependent on CEO's decisions.

Inconsistency is a fatal flaw in an estimator. In these situations, we use different estimation methods. The most popular is Instrumental Variable (IV) estimation.

\section*{CLM: Departures from (A2) - Asymptotics}

Now, we have a new set of assumptions in the CLM:
(A1) DGP: \(\mathbf{y}=\mathbf{X} \beta+\varepsilon\).
(A2') \(\mathbf{X}\) stochastic, but \(\mathrm{E}\left[\mathbf{X}^{\prime} \quad\right]=0\) and \(\mathrm{E}[\varepsilon]=\mathbf{0}\).
(A3) \(\operatorname{Var}[\varepsilon \mid \mathbf{X}]=\sigma^{2} \mathbf{I}_{T}\)
\(\left(\mathbf{A} 4^{\prime}\right) \operatorname{plim}\left(\mathbf{X}^{\prime} \mathbf{X} / T\right)=\mathbf{Q} \quad\) (p.d. matrix with finite elements, rank=k)
With these new assumptions and using properties of plims and the CLT, we can show the following asymptotic results:
1. \(\mathbf{b}\) and \(s^{2}\) are consistent.
2. \(\sqrt{ } T(\mathbf{b}-\boldsymbol{\beta}) \xrightarrow{d} \mathrm{~N}\left(\mathbf{0}, \sigma^{2} \mathbf{Q}^{-1}\right) \quad \Rightarrow \mathbf{b} \xrightarrow{a} \mathrm{~N}\left(\boldsymbol{\beta},\left(\sigma^{2} / T\right) \mathbf{Q}^{-1}\right)\)
3. test \(t \xrightarrow{d} \mathrm{~N}(0,1)\)

F-tests \& Wald tests \(\xrightarrow{d} \chi^{2}{ }^{\mathrm{J}}\)

\section*{CLM: Departures from (A5)}

Notice that asymptotic results 2 and 3 state the asymptotic distribution of \(\mathbf{b}\) and the \(t\)-, \(F\) - and Wald test. All derived from the new set of assumptions and the CLT. (A5) was not used.

That is, we relax (A5), but, now, we require large samples \((T \rightarrow \infty)\).
Note: In practice, we use the asymptotic distribution as an approximation to the finite sample i.e., for any \(T\) - distribution. This is why we used the \(\xrightarrow{a}\) notation in:
\[
\mathbf{b} \xrightarrow{a} \mathrm{~N}\left(\boldsymbol{\beta},\left(\sigma^{2} / T\right) \mathbf{Q}^{-1}\right)
\]

We should be aware that this approximation may not be accurate in many situations.
- Two observations regarding relaxing (A5) \(\boldsymbol{\varepsilon} \mid \mathbf{X} \sim\) i.i.d. \(\mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}_{\mathrm{T}}\right)\) :
- Throwing away the normality for \(\boldsymbol{\varepsilon} \mid \mathbf{X}\) is not bad. In many econometric situations, normality is not a realistic assumption (daily, weekly, or monthly stock returns do not follow a normal).
- Removing the i.i.d. assumption for \(\boldsymbol{\varepsilon} \mid \mathbf{X}\) is also not bad. In many econometric situations, identical distributions are not realistic, since different means and variances are common.

Questions:
- Do we need to throw away normality for \(\varepsilon \mid \mathbf{X}\) ?

Not necessarily. We can test for normality on the residuals using a Jarque-Bera test, though, for financial assets we usually reject normality is rejected, especially at the monthly, weekly, daily, and intra-daily frequencies.
- Why are we interested in large sample properties, like consistency, when in practice we have finite samples?
As a first approximation, the answer is that if we can show that an estimator has good large sample properties, then we may be optimistic about its finite sample properties. For example, if an estimator is inconsistent, we know that for finite samples it will definitely be biased.

\section*{CLM: Departures from (A3)}

Now, we relax (A3). The CLM assumes that errors are uncorrelated and all are drawn from a distribution with the same variance, \(\sigma^{2}\).
(A3) \(\operatorname{Var}[\varepsilon \mid \mathbf{X}]=\sigma^{2} \mathbf{I}_{T}\)
Instead, we will assume:
\(\left(\mathbf{A 3}{ }^{\prime}\right) \operatorname{Var}[\varepsilon \mid \mathbf{X}]=\boldsymbol{\Sigma} \quad\) (sometimes written \(=\sigma^{2} \boldsymbol{\Omega}\), where \(\boldsymbol{\Omega} \neq \mathbf{I}_{\mathrm{T}}\) )
\[
\boldsymbol{\Sigma}=\left[\begin{array}{cccc}
\sigma_{1}^{2} & \sigma_{12} & \cdots & \sigma_{1 T} \\
\sigma_{21} & \sigma_{2}^{2} & \cdots & \sigma_{2 T} \\
\vdots & \vdots & \vdots & \vdots \\
\sigma_{T 1} & \sigma_{T 2} & \cdots & \sigma_{T}^{2}
\end{array}\right]
\]
- Two Leading Cases:
- Pure heteroscedasticity: We model only the diagonal elements.
- Pure cross/auto-correlation: We model only the off-diagonal elements.

\section*{CLM: Departures from (A3) - Heteroscedasticity}

Pure heteroscedasticity: \(\mathrm{E}\left[\varepsilon_{i} \varepsilon_{j} \mid \mathbf{X}\right]=\sigma_{i j}=\sigma_{i}^{2} \quad\) if \(i=j\)
\[
\begin{aligned}
& \Rightarrow \operatorname{Var}\left[\varepsilon_{\mathbf{i}} \mid \mathbf{X}\right]=\sigma_{i}^{2} \\
& \boldsymbol{\Sigma}=\left[\begin{array}{cccc}
\sigma_{1}^{2} & 0 & \cdots & 0 \\
0 & \sigma_{2}^{2} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & \sigma_{T}^{2}
\end{array}\right]
\end{aligned}
\]

This type of variance-covariance structure is common in time series, where we observe the variance of the errors changing over time or subject to different regimes (say, bear and bull regimes).

Relative to pure heteroscedasticity, LS gives each observation a weight of \(1 / T\). But, if the variances are not equal, then some observations (low variance ones) are more informative than others.


\section*{CLM: Departures from (A3) - Cross-correlation}

Pure cross/auto-correlation:
\[
\begin{aligned}
\mathrm{E}\left[\varepsilon_{i} \varepsilon_{j} \mid \mathbf{X}\right] & =\sigma_{i j} & & \text { if } i \neq j \\
& =\sigma^{2} & & \text { if } i=j
\end{aligned}
\]
\[
\mathbf{\Sigma}=\left[\begin{array}{cccc}
\sigma^{2} & \sigma_{12} & \cdots & \sigma_{1 T} \\
\sigma_{21} & \sigma^{2} & \cdots & \sigma_{2 T} \\
\vdots & \vdots & \vdots & \vdots \\
\sigma_{T 1} & \sigma_{T 2} & \cdots & \sigma^{2}
\end{array}\right]
\]

This type of variance-covariance structure is common in cross sections, where errors can show strong correlations, for example, when we model returns, the errors of two firms in the same industry can be subject to common (industry) shocks. Also common in time series, where we observe clustering of shocks over time.

Relative to pure cross/auto-correlation, LS is based on simple sums, so the information that one observation (today's) might provide about another (tomorrow's) is never used.

Note: Heteroscedasticity and autocorrelation are different problems and generally occur with different types of data. But, the implications for OLS are the same.

\section*{CLM: Departures from (A3) - Implications}

OLS \(\mathbf{b}\) is still unbiased and consistent. (Proofs do not rely on (A3).
OLS b still follows an asymptotic normal distribution. It is
- Easy to show this result for the pure heteroscedasticity case using a version of the CLT that assumes only independence
- More complicated derivation-i.e., with new assumptions- for the cross/auto-correlation case.

But, OLS b is no longer BLUE. There are more efficient estimators; estimators that take into account the heteroscedasticity in the data.

Note: We used (A3) to derive our test statistics. A revision is needed!

\section*{Finding Heteroscedasticity}

There are several theoretical reasons why the \(\sigma_{i}^{2}\) may be related to some variables \(z_{1}, \ldots, z_{j}\) and/or \(z_{1}{ }^{2}, \ldots, z_{j}{ }^{2}\).
1. Following the error-learning models, as people learn, their errors of behavior become smaller over time. Then, \(\sigma_{i}^{2}\) is expected to decrease.
2. As data collecting techniques improve, \(\sigma_{i}^{2}\) is likely to decrease. Companies with sophisticated data processing techniques are likely to commit fewer errors in forecasting customer's orders. 3. As incomes grow, people have more discretionary income and, thus, more choice about how to spend their income. Hence, \(\sigma_{i}^{2}\) is likely to increase with income.
4. Similarly, companies with larger profits are expected to show greater variability in their dividend/buyback policies than companies with lower profits.

Heteroscedasticity can also be the result of outliers (either very small or very large). The inclusion/exclusion of an outlier, especially if \(T\) is small, can affect the results of regressions.

Violations of (A1) -model is correctly specified-, can produce heteroscedasticity, due to omitted variables from the model or incorrect functional form (e.g., linear vs log-linear models).

Skewness in the distribution of one or more regressors included in the model can induce heteroscedasticity. Examples are economic variables such as income, wealth, and education.

Heteroscedasticity is usually modeled using one the following specifications:
\(-\mathrm{H} 1: \sigma_{t}^{2}\) is a function of past \(\varepsilon_{t}^{2}\) and past \(\sigma_{t}^{2}\) (ARCH models).
\(-\mathrm{H} 2: \sigma_{t}^{2}\) increases monotonically with one (or several) exogenous variable(s) \(\left(z_{1}, \ldots, z_{j}\right)\).
- H3 : \(\sigma_{t}^{2}\) increases monotonically with \(E\left(y_{t}\right)\).
\(-\mathrm{H} 4: \sigma_{t}^{2}\) is the same within \(p\) subsets of the data but differs across the subsets (grouped heteroscedasticity). This specification allows for structural breaks.

These are the usual alternatives hypothesis \(\left(\mathrm{H}_{1}\right)\) in the heteroscedasticity tests.
- Visual test

In a plot of residuals against dependent variable or other variable will often produce a fan shape.


\section*{Testing for Heteroscedasticity}

Question: Why do we want to test for heteroscedasticity if \(\mathbf{b}\) is unbiased?
OLS is no longer efficient. There is an estimator with lower asymptotic variance (the GLS/FGLS estimator).

We want to test: \(\mathrm{H}_{0}: \mathrm{E}\left(\varepsilon^{2} \mid x_{1}, x_{2}, x_{3}, \ldots, x_{k}\right)=\mathrm{E}\left(\varepsilon^{2}\right)=\sigma^{2}\)
\(\mathrm{H}_{1}\) and the structure of the test depend on what we consider the drivers of \(\sigma_{i}^{2}\) - i.e., in the previous examples: H1, H2, H3, H4, etc.

The key is whether \(\mathrm{E}\left[\varepsilon^{2}\right]=\sigma_{i}^{2}\) is related to \(\mathbf{X}\) and/or \(\mathbf{X}^{2}\). Suppose we suspect a particular independent variable, say \(\boldsymbol{x}_{j}\), is driving \(\sigma_{i}^{2}\).

Then, a simple test: Check the RSS for large values of \(\boldsymbol{x}_{\boldsymbol{j}}\), and the RSS for small values of \(\boldsymbol{x}_{\boldsymbol{j}}\). This is the Goldfeld-Quandt (GQ) test.

\section*{Testing for Heteroscedasticity: GQ Test}

GQ tests \(H_{0}: \sigma_{i}^{2}=\mathrm{s}^{2}\)
\[
\mathrm{H}_{1}: \sigma_{i}^{2}=f\left(\mathbf{X}_{\mathrm{j}}\right)
\]
- Easy to compute:
- Step 1. Arrange the data from small to large values of the independent variable suspected of causing heteroscedasticity, \(\boldsymbol{x}_{\boldsymbol{j}}\).
- Step 2. Run two separate regressions, one for small values of \(\boldsymbol{x}_{\boldsymbol{j}}\) and one for large values of \(\boldsymbol{x}_{\boldsymbol{j}}\), omitting \(d\) middle observations ( \(\approx 20 \%\) ). Get the RSS for each regression: \(\mathrm{RSS}_{1}\) for small values of \(\boldsymbol{x}_{j}\) and \(\mathrm{RSS}_{2}\) for large \(\boldsymbol{x}_{\boldsymbol{j}}\) 's.
- Step 3. Calculate the F ratio
\[
\mathrm{GQ}=\frac{\mathrm{RSS}_{2}}{\mathrm{RSS}_{1}}, \sim F_{d f, d f}, \text { with } d f=[(T-d)-2(k+1)] / 2
\]
(A5 holds).

If (A5) does not hold, the F distribution becomes an approximation. Other tests may be preferred.
Note: When we suspect more than one variable is driving \(\sigma_{i}^{2}\), the GQ test is not very useful.
- But, the GQ test is a popular test for structural breaks (two regimes) in variance. For these tests, we rewrite step 3 to allow for a different sample size in the sub-samples 1 and 2 , since the breaking point does not have to be in the middle of the sample.
- Step 3. Calculate the F-test ratio
\(\mathrm{GQ}=\left[\mathrm{RSS}_{2} /\left(T_{2}-k\right)\right] /\left[\mathrm{RSS}_{1} /\left(T_{1}-k\right)\right]\)
Note: The package lmtest computes this test using function gqtest. It splits the sample in the middle. You need to specify the \(d\) of middle observations not included in test. Recall, you need to install the package before using it: install.packages("lmtest").

Example: We test if the 3-factor FF model for IBM and GE returns shows heteroscedasticity with a GQ test, using gqtest in package lmtest.

\section*{- IBM returns}
library(lmtest)
\(>\) gqtest \((\) ibm_x \(\sim\) Mkt_RF + SMB + HML, fraction \(=.20)\)
Goldfeld-Quandt test
data: ibm_x ~ Mkt_RF + SMB + HML
\(\mathrm{GQ}=1.1006, \mathrm{df} 1=224, \mathrm{df} 2=223, \mathrm{p}\)-value \(=0.2371 \quad \Rightarrow\) cannot reject \(\mathrm{H}_{0}\) at \(5 \%\) level.
alternative hypothesis: variance increases from segment 1 to 2
- GE returns
gqtest (ge_x \(\sim\) Mkt_RF + SMB + HML, fraction \(=.20\) )
Goldfeld-Quandt test
data: ge_x ~Mkt_RF + SMB + HML
\(\mathrm{GQ}=\mathbf{2 . 7 4 4}, \mathrm{df} 1=281, \mathrm{df} 2=281, \mathrm{p}\)-value \(<2.2 \mathrm{e}-16 \quad \Rightarrow\) reject \(\mathrm{H}_{0}\) at \(5 \%\) level.
alternative hypothesis: variance increases from segment 1 to 2 . \(\mathbb{}\)

\section*{Testing for Heteroscedasticity: LM Tests}

Popular heteroscedasticity LM tests:
- Breusch and Pagan (1979)'s LM test (BP).
- White (1980)'s general test.

Both tests are based on OLS residuals, e, and calculated under \(\mathrm{H}_{0}\) (No heteroscedasticity): \(\sigma^{2}\). The squared residuals are used to estimate \(\sigma_{i}^{2}\).
- The BP test is an LM test, derived under normality -i.e., (A5). It is a general tests designed to detect any linear forms of heteroscedasticity, driven by some variables, \(\mathbf{z}\). That is, the BP tests:
\[
\begin{aligned}
& \mathrm{H}_{0}: \sigma_{i}^{2}=\sigma^{2} \\
& \mathrm{H}_{1}: \sigma_{i}^{2}=f\left(\mathbf{z}_{i}\right)
\end{aligned}
\]
- The White test is an asymptotic Wald-type test, where normality is not needed. It allows for nonlinearities by using squares and cross-products of all the \(x\) 's in the auxiliary regression -i.e., as the drivers of \(\sigma_{i}^{2}\). That is, the White tests:
\[
\begin{aligned}
& \mathrm{H}_{0}: \sigma_{i}^{2}=\sigma^{2} \\
& \mathrm{H}_{1}: \sigma_{i}^{2}=f\left(x_{1}^{2}, x_{2}^{2}, \ldots, x_{J}^{2}, x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{3}, \ldots\right)
\end{aligned}
\]

\section*{Testing for Heteroscedasticity: BP Test}

The derivation of the BP test is complicated, it relies on the likelihood function, which is constructed under normality, and its first derivative, the score. However, the implementation of the BP test is simple, based on the squared OLS residuals, \(e_{i}^{2}\).
- Calculation of the Breusch-Pagan test
- Step 1. Run OLS on DGP:
\[
\boldsymbol{y}=\mathbf{X} \beta+\boldsymbol{\varepsilon} . \quad-\text { Keep } e_{i} \text { and compute } \sigma_{R}^{2}=\mathrm{RSS} / T
\]
- Step 2. (Auxiliary Regression). Run the regression of \(e_{i}^{2} / \sigma_{R}^{2}\) on the \(m\) explanatory variables, \(\mathbf{z}\). In our example,
\[
e_{i}^{2} / \sigma_{R}^{2}=\alpha_{0}+\alpha_{1} z_{1, i}+\ldots .+\alpha_{m} z_{m, i}+v_{i} \quad-K e e p \operatorname{RSS}\left(R S S_{e}\right)
\]
- Step 3. With the RSS \(\left(R S S_{e}\right)\) from Step 2 regression and the Total Sum of Squares (TSS) also from Step 2, compute:
\[
\mathrm{LM}=\left(\mathrm{TSS}-R S S_{e}\right) / 2 \xrightarrow{d} \chi_{m}^{2} .
\]
- There is version of the BP, which is robust to departures from normality. It is the "studentized" version of Koenker (1981). The BP test is asymptotically equivalent to a \(T^{*} \mathrm{R}^{2}\) test, where \(\mathrm{R}^{2}\) is calculated from a regression of \(e_{i}^{2} / \sigma_{R}^{2}\) on the variables \(\mathbf{Z}\). (Omitting \(\sigma_{R}^{2}\) from the denominator is OK.)
- We have different Steps 2 \& 3:
- Step 2. (Auxiliary Regression). Run the regression of \(e_{i}^{2}\) on the \(m\) explanatory variables, z. In our example,
\[
e_{i}^{2}=\alpha_{0}+\alpha_{1} z_{1, i}+\ldots .+\alpha_{m} z_{m, i}+v_{i} \quad-\operatorname{Keep~R}^{2}\left(R_{e 2}^{2}\right)
\]
- Step 3. Using the \(\mathrm{R}^{2}\) from Step 2. Let's call it \(R_{e 2}^{2}\). Compute
\[
\mathrm{LM}=T R_{e 2}^{2} \xrightarrow{d} \chi_{m}^{2} .
\]

Example: We suspect that squared Mkt_RF (x1) -a measure of the overall market's variancedrives heteroscedasticity. We do a studentized LM-BP test for IBM in the 3-factor FF model:
fit_ibm_ff3 <- lm (ibm_x \(\sim\) Mkt_RF + SMB + HML) \# Step \(1-\) OLS in DGP
\(\mathrm{e}<-\) fit_ibm_ff3\$residuals
\# Step 1 - keep residuals
e2 \(<-\mathrm{e}^{\wedge} 2\)
Mkt_RF_2 <- Mkt_RF^2
fit_BP \(<-\operatorname{lm}(\mathrm{e} 2 \sim\) Mkt_RF_2) \# Step 2 - Auxiliary regression
Re_2 <- summary(fit_BP)\$r.squared
\# Step 2 - keep R^2
LM_BP_test \(<-\operatorname{Re} 2\) * T
\(>\) LM_BP_test \# Step 3 - Compute LM-BP test: \(\mathbf{R}^{2}\) * T
[1] 0.25038
p_val <- 1 - pchisq(LM_BP_test, \(\mathrm{df}=1) \quad\) \# p-value of LM_test
> p_val
[1] 0.6168019

LM-BP Test: \(\mathbf{0 . 2 5 0 2 8} \Rightarrow\) cannot reject \(H_{0}\) at \(5 \%\) level \(\left(\chi^{2}[1], 05 \approx 3.84\right)\); with a \(p\)-value \(=.6168\).

R Note: The bptest in the lmtest package performs a studentized LM-BP test for the same variables used in the model (Mkt, SMB and HML). For IBM in the 3-factor FF model:
\(>\) bptest \(\left(\mathrm{ibm} \_\mathrm{x} \sim\right.\) Mkt_RF \(\left.+\mathrm{SMB}+\mathrm{HML}\right)\) \#bptest only allows to test \(\mathrm{H}_{1}: \sigma_{i}^{2}=f\left(\mathbf{x}_{i}=\right.\) model variables studentized Breusch-Pagan test
data: ibm_x \(\sim\) Mkt_RF + SMB + HML
\(B P=4.1385, \mathrm{df}=3, \mathrm{p}\)-value \(=\mathbf{0 . 2 4 6 9}\)

LM-BP Test: \(\mathbf{4 . 1 3 8 5} \Rightarrow\) cannot reject \(\mathrm{H}_{0}\) at \(5 \%\) level \(\left(\chi^{2}[3], .05 \approx 7.815\right)\); with a \(p\)-value \(=\mathbf{0 . 2 4 6 9}\).

Conclusion: Using the Breusch-Pagan test with Mkt_RF^2 as the driver of heteroscedasticity, we cannot reject \(\mathrm{H}_{0}\). That is, we cannot reject homocedasticity for the residuals of the 3-factor FF model for IBM excess returns. \(\boldsymbol{\|}\)

Note: Heteroscedasticity in financial time series is very common. In general, it is driven by squared market returns or squared past errors, thus the default setup of R's bptest is not very useful.

Example: We suspect that squared Market returns drive heteroscedasticity. We do an LM-BP (studentized) test for Disney:
\begin{tabular}{|c|c|}
\hline \[
\begin{aligned}
& \operatorname{lr}_{\_} \text {dis }<-\log \left(\mathrm{x}_{\mathrm{s}} \text { dis }[-1] / \mathrm{x}_{-} \text {dis }[-\mathrm{T}]\right) \\
& \text { dis_ } \mathrm{x}<-\mathrm{lr}_{\mathrm{C}} \text { dis }-\mathrm{RF}
\end{aligned}
\] & \begin{tabular}{l}
\# Log returns for DIS \\
\# Disney excess returns
\end{tabular} \\
\hline fit_dis_ff3 <-1m (dis_x \(\sim\) Mkt_RF + SMB & \# Step 1 - OLS in DGP (3-factor FF model) \\
\hline e_dis \(<-\) fit_dis_ff3\$residuals & \# Step 1 - keep residuals \\
\hline \(\mathrm{e} 2<-\mathrm{e}\) _ dis \({ }^{\wedge} 2\) & \# Step 2 - squared residuals \\
\hline fit_dis_BP <- lm (e2 ~ Mkt_RF_2) & \# Step 2 - Auxiliary regression \\
\hline Re_2<- summary(fit_dis_BP)\$r.squared & \# Step 2 - Keep R^2 from Auxiliary reg \\
\hline LM_BP_test \(<-\mathrm{Re}_{-} 2 *\) T & \# Step 3 - Compute LM Test: \(\mathrm{R}^{\wedge} 2\) * T \\
\hline > LM_BP_test & \\
\hline [1] 14.15224 & \\
\hline \(>\) p_val <- \(1-\mathrm{pchisq}(\) LM_BP_test, \(\mathrm{df}=1)\) & \# p-value of LM_test \\
\hline > p_val & \\
\hline [1] 0.0001685967 & \\
\hline
\end{tabular}

LM-BP Test: \(\mathbf{1 4 . 1 5} \Rightarrow\) reject \(\mathrm{H}_{0}\) at \(5 \%\) level \(\left(\chi^{2}{ }_{[1], .05} \approx \mathbf{3 . 8 4}\right)\); with a \(p\)-value \(=.0001\).
- We do the same test but with SMB squared for Disney:

SMB_2<- SMB^2
fit_dis_BP_2<-1m(e2~SMB_2)
\(\boldsymbol{\operatorname { R e }} 2<-\) summary(fit_dis_BP_2)\$r.squared
LM_BP_test_2 <-Re_2 * T
\(>\) LM_BP_test
[1] 7.564692
p_val <- 1 - pchisq(LM_BP_test_2, df = 1) \# p-value of LM_test
> p_val
[1] 0.005952284

LM-BP Test: \(\mathbf{7 . 5 6} \Rightarrow\) reject \(\mathrm{H}_{0}\) at \(5 \%\) level \(\left(\chi^{2}{ }_{[1], 05} \approx 3.84\right)\); with a \(p\)-value \(=.006\).
Conclusion: Using the Breusch-Pagan test, we reject homocedasticity for the residuals of the 3factor FF model for Disney excess returns.
- If we do use the lmtest package, we get:
\(>\) bptest \((\) dis_x \(\sim\) Mkt_RF + SMB + HML)
studentized Breusch-Pagan test
data: dis_x \(\sim\) Mkt_RF + SMB + HML
\(\mathrm{BP}=\mathbf{6 . 9 9 3 5}, \mathrm{df}=3, \mathrm{p}\)-value \(=0.07211\)

LM-BP Test: \(\mathbf{6 . 9 9} \Rightarrow\) cannot reject \(\mathrm{H}_{0}\) at \(5 \%\) level \(\left(\chi^{2}[3], .05 \approx 7.815\right)\); with a p-value \(=.07211\).

Note: Again, in general, you need squared values when model heteroscedasticity in financial assets. \(\dagger\)

Example: We suspect that squared interest rate differentials drive heteroscedasticity for residuals in the encompassing (IFE + PPP) model for changes in the USD/GBP. We do an LMBP (studentized) test, considering the squares of interest differentials as drivers of heteroscedasaticity:
\(\mathrm{y}<-\mathrm{lr}_{-}\)usdgbp
fit_gbp <- lm ( \(\mathrm{y} \sim\) inf_dif + int_dif)
e_gbp <- fit_gbp\$residuals
e_gbp2 <- e_gbp^2
int_dif_2 <- int_dif 22
fit_BP \(<-\operatorname{lm}(\) e_gbp2 \(\sim\) int_dif_2)
Re_2<- summary(fit_BP)\$r.squared
LM_BP_test \(<-\operatorname{Re}_{-} 2^{*}\) T
> LM_BP_test
[1] 21.11134
p_val <- 1 - pchisq(LM_BP_test, \(\mathrm{df}=1)\) \# p-value of LM_test
> p_val
[1] \(4.333567 \mathrm{e}-06\)

LM-BP Test: \(\mathbf{2 1 . 1 1 1 3 4} \Rightarrow\) reject \(\mathrm{H}_{0}\) at \(5 \%\) level \((p\)-value \(<.00001)\).

Conclusion: Using the BP LM test, we have a strong rejection of homocedasticity for the residuals of the encompassing (PPP + IFE) model for changes in the USD/GBP. al

\section*{Testing for Heteroscedasticity: White Test}

The White test derivation is also complicated, but, the usual calculation of the White test is a known one for us:
- Step 1. (Same as BP's Step 1). Run OLS on DGP:
\(\mathbf{y}=\mathbf{X} \beta+\boldsymbol{\varepsilon}\). Keep residuals, \(\mathrm{e}_{\mathrm{i}}\).
- Step 2. (Auxiliary Regression). Regress \(e^{2}\) on all the explanatory variables \(\left(x_{j}\right)\), their squares \(\left(x_{j}^{2}\right), \&\) all their cross products \(\left(x_{j} * x_{i}\right)\).

For example, when the model contains \(k=2\) explanatory variables, the test is based on:
\[
e_{i}^{2}=\beta_{0}+\beta_{1} x_{1, i}+\beta_{2} x_{2, i}+\beta_{3} x_{1, i}^{2}+\beta_{4} x_{2, i}^{2}+\beta_{5} x_{1, i} x_{2, i}+v_{i}
\]

Let \(m\) be the number of regressors in auxiliary regression (in the above example, \(m=5\) ). Keep \(\mathrm{R}^{2}\), say \(R_{e 2}^{2}\).
- Step 3. Compute the statistic: \(\quad \mathrm{LM}=T R_{e 2}^{2} \xrightarrow{d} \chi_{m}^{2}\).

Example: White Test for the 3-factor F-F model for IBM excess returns ( \(T=569\) ). We also run the White Test for DIS and GE excess returns. In the case of IBM excess returns we have:
\[
\mathrm{IBM} M_{\text {Ret }}-\mathrm{r}_{\mathrm{f}}=\beta_{0}+\beta_{1}\left(\mathrm{Mkt}_{\text {Ret }}-\mathrm{rf}\right)+\beta_{2} \mathrm{SMB}+\beta_{3} \mathrm{HML}+\varepsilon
\]
e \(<\) - fit_ibm_ff3\$residuals
e_ibm \(2<-e_{-} i b m{ }^{\wedge} 2\)
Mkt_HML <- Mkt_RF*HML
Mkt_SMB <- Mkt_RF*SMB
SMB_HML \(<-\) SMB*HML
xx2 <- cbind(Mkt_RF_2, SMB_2, HML_2, Mkt_HML,Mkt_SMB, SMB_HML)
fit_ibm_2 <-1m(e_ibm2~Mkt_RF + SMB + HML + xx2) \# Not including original variables in Aux Reg (Mkt_RF,SMB \& HML) is OK
r2_e2 <- summary(fit_ibm_2)\$r.squared \# Keep R^2 from Auxiliary regression
> r2_e2
[1] 0.0166492
\(\operatorname{lm}_{-} \mathrm{t}<-\mathrm{T} * \mathrm{r} 2 \_\mathrm{e} 2 \quad\) \# Compute LM test: \(\mathrm{R} \wedge 2\) * sample size ( T )
\(>\operatorname{lm}_{-} \mathrm{t}\)
[1] 10.93483
df_lm <- ncol(xx2)
\(>\) df_lm
[1] 6
\(>\) qchisq(. \(95, \mathrm{df}=\mathrm{df}\) _lm)
[1] 12.59159

Conclusion: The White Test (LM-White Test: 10.93) cannot reject \(\mathrm{H}_{0}\) at \(5 \%\) level for the residuals of the 3 -factor F-F model. (LM-White Test \(<\chi^{2}[6], .05 \approx 12.59\) ).
- Now, we do a White Test for the 3 factor F-F model for DIS and GE excess returns ( \(T=569\) ).
- For DIS, we get:
e_dis <- fit_dis_ff3\$residuals
```

e_dis2 <- e_dis^2
fit_dis_W <- lm (e_dis2 ~ Mkt_RF + SMB + HML + xx2)
Re_2W <- summary(fit_dis_W)\$r.squared
LM_W_test <- Re_2W * T
> LM_W_test
[1] 25.00148 }\quad=>\mathrm{ reject H0 at 5% level ((}\mp@subsup{}{[[6],05\approx12.59).}{
p_val <- 1 - pchisq(LM_W_test, df=6) \# p-value of LM_test
> p_val
[1] 0.0003412389

```
- For GE, we get:

LM-White Test: \(20.15(p\)-value \(=\mathbf{0 . 0 0 2 6}) \Rightarrow\) reject \(\mathrm{H}_{0}\) at \(5 \%\) level.

Conclusion: Using the White test, we strongly reject homoscedasticity for the errors of the 3factor FF model for DIS returns and GE returns. व|

Example: We do a White Test for the residuals in the encompassing (IFE + PPP) model for changes in the USD/GBP ( \(T=363\) ):
```

e_gbp <- fit_gbp\$residuals
e_gbp2 <- e_gbp^2
int_dif2 <- int_dif $\wedge 2 ;$ inf_dif2 $<-$ inf_dif $\wedge 2 ;$ int_inf_dif $<-$ int_dif*inf_dif
fit_gbp_W <- lm (e_gbp2 ~int_dif + inf_dif + int_dif2 + inf_dif2+ int_inf_dif)
Re_2W <- summary(fit_gbp_W)\$r.squared
LM_W_test $<-\operatorname{Re}_{-} \mathbf{2 W}$ * T
> LM_W_test
[1] 15.46692
p_val <- 1 - pchisq(LM_W_test, $\mathrm{df}=3$) \# p-value of LM_test
> p_val
[1] $0.001458139 \quad \Rightarrow$ reject H_{0} at 5% level

```

Conclusion: Using the White test, we strongly reject homoscedasticity for the residuals of the encompassing (PPP + IFE) for changes in the USD/GBP. If

\section*{Testing for Heteroscedasticity: LR Test}

We define the likelihood function, assuming normality -i.e. (A5)-, for a general case, where we have \(g\) different variances:
\[
\ln L=-\frac{T}{2} \ln 2 \pi-\sum_{i=1}^{g} \frac{T_{i}}{2} \ln \sigma_{i}^{2}-\frac{1}{2} \sum_{i=1}^{g} \frac{1}{\sigma_{i}^{2}}\left(y_{i}-X_{i} \beta\right)^{\prime}\left(y_{i}-X_{i} \beta\right)
\]

We have two models:
(R) Restricted under \(\mathrm{H}_{0}: \sigma_{\mathrm{i}}{ }^{2}=\sigma^{2}\). From this model, we calculate \(\ln L\)
\[
\ln L_{R}=-\frac{T}{2}[\ln (2 \pi)+1]-\frac{T}{2} \ln \left(\hat{\sigma}^{2}\right)
\]
(U) Unrestricted. From this model, we calculate the log likelihood.
\[
\ln L_{U}=-\frac{T}{2}[\ln (2 \pi)+1]-\sum_{i=1}^{g} \frac{T_{i}}{2} \ln \hat{\sigma}_{i}^{2} ; \quad \hat{\sigma}_{i}^{2}=\frac{1}{T_{i}}\left(y_{i}-X_{i} b\right)^{\prime}\left(y_{i}-X_{i} b\right)
\]
- Now, we can estimate the Likelihood Ratio (LR) test:
\[
L R=2\left(\ln L_{U}-\ln L_{R}\right)=T \ln \hat{\sigma}^{2}-\sum_{i=1}^{g} T_{i} \ln \hat{\sigma}_{i}{ }^{2} \xrightarrow{a} \rightarrow \chi_{g-1}^{2}
\]

Under the usual regularity conditions, LR is approximated by a \(\chi_{g-1}^{2}\).

\section*{Testing for Heteroscedasticity: Remarks}

Drawbacks of the Breusch-Pagan test:
- It is sensitive to violations of the normality assumption. The studentized version of Koenker is more robust and, then, more used.

Drawbacks of the White test
- If a model has several regressors, the test can consume a lot of df's.
- In cases where the White test statistic is statistically significant, heteroscedasticity may not necessarily be the cause, but model specification errors.
- It is general. It does not give us a clue about how to model heteroscedasticity to do FGLS. The BP test points us in a direction.
- In simulations, it does not perform well relative to others, especially, for time-varying heteroscedasticity, typical of financial time series.

\section*{Finding Auto-correlation}

There are several reasons why the \(\varepsilon_{i}\) may be related to \(\varepsilon_{j}\). In general, we find autocorrelation (or serial correlation) in time series, where \(\varepsilon_{i=t}\) is correlated to \(\varepsilon_{j=t-l}\). Typical situation: it takes time to absorb a shock, then, shocks show persistence over time.

The shocks can also be correlated over the cross-section, causing cross-correlation. For example, if an unexpected new tax is imposed on the technology sector, all the companies in the sector are going to share this shock.

Usually, we model autocorrelation using two models: autoregressive (AR) and moving averages (MA):
- In an AR model, the errors, \(\varepsilon\) t, show a correlation over time.
- In an MA model, the errors, \(\varepsilon \mathrm{t}\), are a function (similar to a weighted average) of previous errors, now denoted ut's.

\section*{Examples:}
- First-order autoregressive autocorrelation: \(\operatorname{AR}(1)\)
\[
\varepsilon_{t}=\rho_{1} \varepsilon_{t-1}+u_{t}
\]
- \(\mathrm{p}^{\text {th }}\)-order autoregressive autocorrelation: \(\operatorname{AR(p)}\)
\[
\varepsilon_{t}=\rho_{1} \varepsilon_{t-1}+\rho_{2} \varepsilon_{t-2}+\cdots+\rho_{p} \varepsilon_{t-p}+u_{t}
\]
- Third-order moving average autocorrelation: MA(3)
\[
\varepsilon_{t}=u_{t}+\lambda_{1} u_{t-1}+\lambda_{2} u_{t-2}+\lambda_{3} u_{t-3}
\]

Note: The last example is described as third-order moving average autocorrelation, denoted MA(3), because it depends on the three previous innovations as well as the current one.

\section*{Finding Auto-correlation - Visual Check}

Plot data, usually residuals from a regression, to see if there is a pattern:
- Positive autocorrelation: A positive (negative) observation tends to be followed by a positive (negative) observation. We tend to see continuation in the series.
- Negative autocorrelation: A positive (negative) observation tends to be followed by a negative (positive) observation. We tend to see reversals.
- No autocorrelation: A positive (negative) observation has the same probability of being followed by a negative or positive (positive or negative) observation. We tend to see no pattern.

Example: I simulate a \(y_{t}\) series, with \(\mathrm{N}(0,1) u_{t}\) errors:
\[
y_{t}=\rho_{1} y_{t-1}+u_{t}
\]

Three cases:
(1) Positive autocorrelation: \(\rho_{1}=.70\)
(2) Negative autocorrelation: \(\rho_{1}=-.70\)
(3) No correlation: \(\rho_{1}=-0\)
- R code for simulation:

T_sim <- 200
\(\mathrm{u}<-\operatorname{rnorm}(200) \quad\) \# Draw T_sim normally distributed errors
\(y_{-} \operatorname{sim}<-\operatorname{matrix}\left(0, T \_\right.\)sim, 1\()\)
rho \(<-.7\) \# Change to create different correlation
patterns
a <- 2
while \(\left(\mathrm{a}<=\mathrm{T}_{-}\right.\)sim \()\)\{
\(y_{-} \operatorname{sim}[a]=\) rho * y_sim\([a-1]+u[a] \quad\) \# y_sim simulated autocorrelated values
```

a<-a+1
}
plot(y_sim, type="l", col="blue", ylab ="Simulated Series", xlab ="Time")
title("Visual Test: Autocorrelation?")

```
(1) Positive autocorrelation: \(\rho_{1}=.70\)

(2) Negative autocorrelation: \(\rho_{1}=-.70\)

(3) No autocorrelation: \(\rho_{1}=0\)


Example: Residual plot for the 3 factor F-F model for IBM returns and GE returns:


Conclusion: It looks like a small \(\rho_{1}\), but not very clear pattern from the graphs. ब

\section*{Testing for Autocorrelation: LM Test}

There are several autocorrelation tests. All autocorrelations tests described in this lecture have an \(\operatorname{AR}(p)\) structure, as an alternative hypothesis:
\[
\varepsilon_{t}=\rho_{1} \varepsilon_{t-1}+\rho_{2} \varepsilon_{t-2}+\cdots+\rho_{p} \varepsilon_{t-p}+u_{t}
\]

In this section, we describe a popular LM test, the Breusch-Godfrey (BG, 1978) LM test. BG use the \(\mathrm{AR}(p)\) model as the basis of \(\mathrm{H}_{1}\) and, thus, the test:
\(\mathrm{H}_{0}: \rho_{1}=\ldots=\rho_{p}=0\).
\(\mathrm{H}_{1}\) : at least one : \(\rho_{i} \neq 0\), for \(i=1,2, \ldots, p\)
Under \(\mathrm{H}_{0}\), BG use OLS residuals, \(e_{t}\), to construct an LM test (BG test), similar to the BP test.
- Steps for the Breusch-Godfrey (1978):
- Step 1. (Same as BP's Step 1). Run OLS on DGP:
\[
\mathbf{y}=\mathbf{X} \beta+\varepsilon . \quad \text { - Keep residuals, } e_{t}
\]
- Step 2. (Auxiliary Regression). Run the regression of \(e_{t}\) on all the explanatory variables, \(\mathbf{X}\), and \(p\) lags of residuals, \(e_{t}\) :
\[
e_{t}=\boldsymbol{x}_{t}^{\prime} \gamma+\alpha_{1} e_{t-1}+\ldots .+\alpha_{p} e_{t-p}+v_{t} \quad-\operatorname{Keep~R}^{2}\left(R_{e}^{2}\right)
\]
- Step 3. Keep the \(\mathrm{R}^{2}\) from this regression. Let's call it \(R_{e}^{2}\). Then, calculate:
\[
\mathrm{LM}=(T-p) R_{e}^{2} \xrightarrow{d} \chi_{p}^{2} . \quad-(T-p)=\text { we lost } p \text { observation by taking lags of e. }
\]

Note: In general, in Step 2, if we do not include \(\boldsymbol{x}_{t}\), the LM test is not that different.
Example: LM-AR Test for the 3 factor F-F model for IBM excess returns ( \(\mathrm{p}=\mathbf{1 2}\) lags):
```

e_ibm <- fit_ibm_ff3$residuals # OLS residuals
p_lag <-12 # Select # of lags for test (set p)
e_lag<- matrix(0,T-p_lag,p_lag) # Matrix to collect lagged residuals
a<-1
while (a<=p_lag) { # Do loop creates matrix (e_lag) with lagged e
 za <- e_ibm[a:(T-p_lag+a-1)]
 e_lag[,a]<- za
a<-a+1
}
Mkt_RF_p <- Mkt_RF[(p_lag+1):T] # Adjust for new sample size: T - p_lag
SMB_p <- SMB[(p_lag+1):T]
HML_p <- HML[(p_lag+1):T]
fit_lm1 <- lm(e_ibm[(p_lag+1):T] ~ e_lag + Mkt_RF_p + SMB_p + HML_p) # Auxiliary Reg
r2_e1<- summary(fit_lm1)$r.squared \# get R^2 from Auxiliary Regression
> r2_e1
[1] 0.0303721
> (T-p_lag)
[1] 557
lm_t<- (T-p_lag)* r2_e1 \# LM-test wih p lags
> lm_t
[1] 16.91726
df<- ncol(e_lag) \# degrees of freedom for the LM Test
> 1 - pchisq(lm_t,df)
[1] 0.1560063
LM-AR(12) Test: 16.91726 }\quad=>\mathrm{ cannot reject H0 at 5% level (p-value > .05).

- If I run the test with $\mathrm{p}=4$ lags, I get
LM-AR(4) Test: $2.9747(p$-value $=0.56) \quad \Rightarrow$ cannot reject H_{0} at 5% level $(p$-value $>.05)$.

```

Conclusion: No evidence of autocorrelation for the residuals of the 3-factor FF model for IBM excess returns at the \(5 \%\) level. व

R Note: The package lmtest, performs this test, bgtest, (and many others, used in this class, encompassing, jtest, waldtest, etc). Recall that you need to install it first: install.packages("lmtest"), then call the library(lmtest).
library(lmtest)
> bgtest(ibm_x \(\sim\) Mkt_RF + SMB + HML, order=12)
Breusch-Godfrey test for serial correlation of order up to \(\mathbf{1 2}\)
data: lr ibm ~ Mkt RF + SMB + HML
LM test \(=\mathbf{1 6 . 2 5 9}, \mathrm{df}=12, \mathrm{p}\)-value \(=\mathbf{0 . 1 7 9 7}\) (minor difference with the previous test, likely due to multiplication by \(T\). Results do not change much)

Note: If you do not include in the Auxiliary Regression the original regressors (Mkt_RF, SMB, HML) the test do not change much. You get
LM-AR(12) Test: \(\mathbf{1 6 . 8 3 2 5 3} \Rightarrow\) very similar. Not entirely correct, but it works well. \(\boldsymbol{\|}\)
Example: Autocorrelation is very common. If I run the test for Disney, CNP, or GE, instead, we get significant test results.
```

- For DIS:
1 r _dis $<-\log \left(\mathrm{x}_{-}\right.$dis[-1]/x_dis[-T])
dis_ $\mathrm{x}<-\operatorname{lr}_{\mathrm{C}}$ dis -RF
$>$ bgtest(dis_x \sim Mkt_RF + SMB + HML, order=4)
Breusch-Godfrey test for serial correlation of order up to $\mathbf{4}$
data: dis_x \sim Mkt_RF + SMB + HML
LM test $=\mathbf{8 . 6 3 8 2}, \mathrm{df}=\mathbf{4}, \mathrm{p}$-value $=\mathbf{0 . 0 7 0 8 1} \Rightarrow$ cannot reject H_{0} at 5% level $(p$-value $>.05)$
> bgtest(dis_x \sim Mkt_RF + SMB + HML, order=12)
Breusch-Godfrey test for serial correlation of order up to $\mathbf{1 2}$
data: dis_x \sim Mkt_RF + SMB + HML
LM test $=\mathbf{3 0 . 0 6 8}, \mathrm{df}=\mathbf{1 2}, \mathrm{p}$-value $=0.002728 \quad \Rightarrow$ reject H_{0} at 5% level $(p$-value $<.05)$
- For GE (with 12 lags):
lr_ge $<-\log \left(x _g e[-1] / x _g e[-T]\right)$;
ge_x $<-1 r$ _ge $-R F$
$>$ bgtest (ge_x \sim Mkt_RF + SMB + HML, order=4)
Breusch-Godfrey test for serial correlation of order up to $\mathbf{4}$
data: ge_x ~Mkt_RF + SMB + HML
LM test $=\mathbf{2 8 . 2 5 7}, \mathrm{df}=4, \mathrm{p}$-value $=0.005073 \quad \Rightarrow$ cannot reject H_{0} at 5% level $(p$-value $>.05)$
- For CNP (with 12 lags):
$1 r_{-} \mathrm{cnp}<-\log \left(\mathrm{x}_{-} \mathrm{cnp}[-1] / \mathrm{x}_{-} \mathrm{cnp}[-\mathrm{T}]\right)$;
cnp_x <- lr_cnp - RF
$>$ bgtest(cnp_x \sim Mkt_RF + SMB + HML, order=12)

```

Breusch-Godfrey test for serial correlation of order up to \(\mathbf{1 2}\)
data: \(\mathrm{cnp}_{-} \mathrm{x} \sim \mathrm{Mkt}\) RF \(+\mathrm{SMB}+\mathrm{HML}\)
LM test \(=\mathbf{3 1 . 7 1 8}, \mathrm{df}=\mathbf{1 2}, \mathrm{p}\)-value \(=0.00153 \quad \Rightarrow\) reject \(\mathrm{H}_{0}\) at \(5 \%\) level \((p\)-value \(<.05)\)
Conclusion: Significant evidence of autocorrelation for the residuals of the 3-factor F-F model for DIS, GE \& CNP excess returns. \(\mathbb{I}\)
- Question: How many lags are needed in the test?

Enough to make sure there is no auto-correlation left in the residuals. There are some popular rule of thumbs: for daily data, 5 or 20 lags; for weekly, 4 or 12 lags; for monthly data, 12 lags; for quarterly data, 4 lags.

\section*{Testing for Autocorrelation: Durbin-Watson}

The Durbin-Watson (1950) (DW) test for AR(1) autocorrelation: \(H_{0}: \rho_{1}=0\) against \(H_{1}: \rho_{1} \neq 0\). Based on simple correlations of \(\boldsymbol{e}\).
\[
d=\frac{\sum_{t=2}^{T}\left(e_{t}-e_{t-1}\right)^{2}}{\sum_{t=1}^{T} e_{t}^{2}}
\]

It is easy to show that when \(T \rightarrow \infty, d \approx 2\left(1-\rho_{1}\right)\).
It is estimated using the sample correlation \(r\).
Under \(\mathrm{H}_{0}, \rho_{1}=0\). Then, \(d\) should be distributed randomly around 2 .
Small values (close to 0 ) or Big values (close to 4 ) of \(d\) lead to rejection of \(H_{0}\). The distribution depends on \(\mathbf{X}\). Durbin-Watson derived bounds for the test. Since there are better tests, in practice, the DW is used "visually:" Is \(d\) close to 2 ?.

R Note: The function dwtest from the lmtest package computes \(d\) (DW test) and produces also a p-value.

Example: DW Test for the 3 factor F-F model for IBM returns

- Similar finding for Disney returns:
\([1] ,2.1609 \quad \Rightarrow\) DW statistic \(\approx 2 \Rightarrow\) But, DIS suffers from autocorrelation!
\(\Rightarrow\) This is why DW are not that informative. They only test for \(\operatorname{AR(1)~in~residuals.~}\)
R Note: The package lmtest performs this test too, using dwtest:
\(>\) dwtest \((\mathrm{y} \sim\) Mkt_RF + SMB + HML)
\(\mathrm{DW}=2.0427, \mathrm{p}\)-value \(=0.7087\)
Conclusion: No evidence of first order autocorrelation in the residuals of the 3-factor F-F model for IBM excess returns. 9

Example: DW Test for the residuals of the encompassing model (IFE + PPP) for changes in USD/GBP:
e_gbp <- fit_gbp\$residuals
\(>\) dwtest(fit_gbp)
Durbin-Watson test
data: fit_gbp
\(D W=1.8588, p\)-value \(=0.08037 \quad \Rightarrow\) not significant at \(5 \%\) level.
alternative hypothesis: true autocorrelation is greater than 0
Conclusion: No evidence of first order autocorrelation in the residuals of the encompassing model (IFE + PPP) for changes in USD/GBP. \(\boldsymbol{\|}\)

\section*{Testing for Autocorrelation: Portmanteu tests}

Portmanteu tests are tests with a well-defined \(\mathrm{H}_{0}\), but not specific, or loosely defined, \(\mathrm{H}_{1}\). We present two Portmanteu test for autocorrelation: the Box-Pierce (1970) test and its modification, the Ljung-Box (1978) test.
- Box-Pierce (1970) test (Q test).

For a series \(y_{t}\), it tests \(H_{0}: \rho_{1}=\ldots=\rho_{\mathrm{p}}=0\) using the sample correlation:
\[
r_{j}=\frac{\widehat{\gamma}_{j}}{\widehat{\gamma}_{0}} .
\]
where, using time series notation, we have:
\(\hat{\gamma}_{j}=\) sample covariance between \(y_{t}\) and \(y_{t-j}=\frac{\sum_{t=j+1}^{T}\left(y_{t}-\bar{y}\right)\left(y_{t-j}-\bar{y}\right)}{T-j}\)
\(\hat{\gamma}_{0}=\) sample variance.
In the case of analyzing residuals of a regression, \(e_{t}\), we compute \(r_{j}\) as:
\[
r_{j}=\frac{\sum_{t=j+1}^{T-j} e_{t} e_{t-j}}{\sum_{t=1}^{T} e_{t}^{2}}
\]

Then, under \(H_{0}: \quad \mathrm{Q}=T \sum_{j=1}^{p} r_{j}^{2} \xrightarrow{d} \chi_{p}^{2}\).
- Ljung-Box (1978) test (LB test).

A variation of the Box-Pierce test. It has a small sample correction, which improves the performance of the test:
\[
\mathrm{LB}=T^{*}(T+2) * \sum_{j=1}^{p} \frac{r_{j}^{2}}{T-j} \xrightarrow{d} \chi_{p}^{2} .
\]

Both statistics test whether a group of autocorrelations are different from zero. Both are general tests, not testing zero-autocorrelation at each lag.

Technical note: The asymptotic distribution is based on the fact that, under the null hypothesis of independent data, \(\sqrt{T} \boldsymbol{r} \xrightarrow{d} \mathrm{~N}(0, \mathbf{I})\).

Both tests are widely used, especially the LB test. But, the Breusch-Godfrey (1978) LM tests conditions on \(\mathbf{X}\). Thus, LM tests are more powerful.

Example: Q and LB tests with \(\mathbf{p}=\mathbf{1 2}\) lags for the residuals in the 3-factor FF model for IBM excess returns:
RSS \(<-\operatorname{sum}\left(\mathrm{e}_{-} \mathrm{ibm}^{\wedge} 2\right)\)
r_sum <- 0
lb_sum \(<-0\)
p_lag \(<-12\)
a <-1
while ( \(\mathrm{a}<=\mathrm{p}_{-}\)lag ) \{
za \(<-\) as.numeric(t(e_ibm[(p_lag+1):T]) \(\% * \%\) e_ibm[a:(T-p_lag+a-1)])
\(r_{-}\)sum \(<-r_{-}\)sum \(+(z a / R S S)^{\wedge} 2\) \# sum \(\operatorname{cor}\left(e_{\left.[(p-l a g+1): T], ~ e\left[a:\left(T-p \_l a g+a-1\right)\right]\right) \wedge 2 ~}^{2}\right.\)
lb _sum \(<-\mathrm{lb}\) _sum \(+(\mathrm{za} / \mathrm{RSS})^{\wedge} 2 /(\mathrm{T}-\mathrm{a}) \quad\) \# sum with LB correction
\(\mathrm{a}<-\mathrm{a}+1\)
\}
\(\mathrm{Q}<-\mathrm{T}^{*} \mathrm{r}_{-}\)sum
\(>\) Q
[1] \(16.39559 \quad(p\)-value \(=0.1737815) \quad \Rightarrow\) cannot reject \(\mathrm{H}_{0}\) at \(5 \%\) level.
\(\mathrm{LB}<-\mathrm{T}^{*}(\mathrm{~T}-2)^{*}\) lb_sum
\(>\) LB
[1] \(16.46854(p\)-value \(=0.1707059) \quad \Rightarrow\) cannot reject \(\mathrm{H}_{0}\) at \(5 \%\) level.

R Note: The Box.test function computes Q \& LB:
- Q test
e_ibm <- fit_ibm_ff3\$residuals
\(>\) Box.test(e_ibm, lag = 12, type="Box-Pierce")
Box-Pierce test
data: e_ibm
\(X\)-squared \(=16.304, \mathbf{d f}=\mathbf{1 2}, p\)-value \(=0.1777\)
- LB test
> Box.test(e_ibm, lag = 12, type="Ljung-Box")
Box-Ljung test
data: e_ibm
\(X\)-squared \(=16.61, \mathrm{df}=12, \mathrm{p}\)-value \(=0.1649\)
Note: There is a minor difference between the previous code and the code in Box.test. They are based on how the correlations of e are computed (centered around the mean, or assumed zero mean).

Conclusion: Using the Q and LB tests, with different lags, we find no evidence of autocorrelation in the residuals of the 3-factor F-F model for IBM excess returns.
- Same tests \((p=12\) lags \() \&\) same model: for Disney \& GE.
- For DIS (e_dis), we get:

e_ge \(<\) - fit_dis_ff3\$residuals \# OLS residuals
\(>\) Q
[1] \(25.563 \quad(p\)-value \(=0.01237) \quad \Rightarrow\) reject \(\mathrm{H}_{0}\) at \(5 \%\) level.
\(>\) LB
[1] \(25.879 \quad(p\)-value \(=0.01117) \quad \Rightarrow\) reject \(\mathrm{H}_{0}\) at \(5 \%\) level.
- For GE (e_ge), we get
fit_ge_ff3 <- lm(ge_x \(\sim\) Mkt_RF + SMB + HML) \# OLS regression
e_ge \(<\) - fit_ge_ff3\$residuals \# OLS residuals
\(>\) Q
[1] \(27.087 \quad(p\)-value \(=0.007507) \quad \Rightarrow\) reject \(\mathrm{H}_{0}\) at \(5 \%\) level.
> LB
[1] \(27.523 \quad(p\)-value \(=0.006493) \quad \Rightarrow\) reject \(\mathrm{H}_{0}\) at \(5 \%\) level.

Conclusion: Using the Q and LB test, we find evidence of autocorrelation in the residuals of the 3-factor F-F model for DIS \& GE excess returns. II
- Autocorrelation in financial asset returns is a usual finding in monthly, weekly and daily data.

Example: Same Q and LB tests ( \(\mathrm{p}=12\) lags) for the USD/GBP residuals in the encompassing (PPP + IFE) model:
e_gbp <- fit_gbp\$residuals
> Box.test(e_gbp, lag = 12, type="Box-Pierce")
Box-Pierce test
data: e_gbp
\(X\)-squared \(=19.587, \mathrm{df}=12, \mathrm{p}\)-value \(=0.0753 \Rightarrow\) cannot reject \(\mathrm{H}_{0}\) at \(5 \%\) level, but close.
> Box.test(e_gbp, lag = 12, type="Ljung-Box")
Box-Ljung test
data: e_gbp
X -squared \(=\) 20.032, \(\mathrm{df}=12, \mathrm{p}\)-value \(=0.06649 \Rightarrow\) cannot reject \(\mathrm{H}_{0}\) at \(5 \%\) level, but close.
Conclusion: Using the Q and LB tests, with different lags, we find no evidence of autocorrelation in the residuals of the encompassing (PPP + IFE) model for changes in the USD/GBP. \(\mathbb{}\)

Above, we mentioned that the \(\mathrm{Q} \& \mathrm{LB}\) tests are widely used. But, they present two main limitations:
(1) The test was developed under the independence assumption.

If there is dependence in the data, such as heteroscedasticity, the asymptotic variance of \(\sqrt{T} \boldsymbol{r}\) is no longer \(\mathbf{I}\), but a non-diagonal matrix.

There are several proposals to "robustify" both Q \& LB tests, see Diebold (1986), Robinson (1991), Lobato et al. (2001). The "robustified" Portmanteau statistic uses \(\widetilde{r}_{j}\) instead of \(r_{j}\) :
\[
\widetilde{r}_{j}=\frac{\widehat{\gamma}_{j}^{2}}{\tau_{j}}=\frac{\sum_{t=j+1}^{T}\left(y_{t}-\bar{y}\right)\left(y_{t-j}-\bar{y}\right)}{\sum_{t=j+1}^{T}\left(y_{t}-\bar{y}\right)^{2}\left(y_{t-j}-\bar{y}\right)^{2}}
\]

Thus, for Q we have:
\[
\mathrm{Q}^{*}=T \sum_{j=1}^{p} \tilde{r}_{j}^{2} \xrightarrow{d} \chi_{p}^{2} .
\]
(2) The selection of the number of autocorrelations \(p\) is arbitrary.

The traditional approach is to try different \(p\) values, say \(3,6 \& 12\). Another popular approach is to let the data "select" \(p\), for example, using AIC or BIC, an approach sometimes referred as "automatic selection."

Escanciano and Lobato (2009) propose combining BIC's and AIC's penalties to select \(p\) in \(\mathrm{Q}^{*}\) (BIC for small \(r\) and AIC for bigger \(r\) ). The Auto.Q function in the R package \(v r t e s t\) computes Q* with this automatic selection of \(p\).

It is possible to reach very different conclusion from Q and \(\mathrm{Q}^{*}\).
Example: Q* tests with automatic selection of \(\mathbf{p}\) for the residuals in the 3-factor FF model for IBM, DIS and GE excess returns:
- For IBM (e_ibm), we get:
\(>\) library(vrtest)
\(>\) Auto.Q(e_ibm, 12) \#Maximum potential lag = 12
\$Stat
[1] 0.2781782
\$Pvalue
[1] 0.5978978
- For DIS (e_dis), we get:
> Auto.Q(e_dis, 12)
\$Stat
[1] 2.649553
\$Pvalue
[1] 0.103579
- For GE (e_ge), we get:
\(>\) Auto.Q(e_ge, 12)
\$Stat
[1] 0.6437697
\$Pvalue
[1] 0.422349
Conclusion: Using the \(\mathrm{Q}^{*}\) test, with automatic lag selection, we find no evidence of autocorrelation in the residuals of the 3-factor F-F model for IBM excess returns. Same conclusion we reached with the \(\mathrm{Q} \& \mathrm{LB}\) tests above. But, for DIS residuals and GE residuals we get a different conclusion. Now, once we take into consideration heteroscedasticity, we cannot reject at the \(5 \%\) level the null hypothesis of no autocorrelation, \(\mathbb{\|}\)

Time-varying volatility is very common in financial time series. We can use the tests for autocorrelation to check for autocorrelation in squared returns, \(\mathrm{e}_{i}^{2}\), which based on White's idea, we use to estimate \(\sigma_{i}^{2}\).

\section*{Testing for Autocorrelation: Heteroscedasticity}

We can use a Portmanteu test on the squared residuals to check for this particular kind of heteroscedasticity.
\(\mathrm{H}_{0}: \sigma_{i}^{2}=\mathrm{s}^{2}\)
\(\mathrm{H}_{1}: \sigma_{i}^{2}=f\left(\mathrm{e}_{i-1}^{2}, \mathrm{e}_{i-2}^{2}, \ldots, \mathrm{e}_{i-p}^{2}\right)\)
- Of course, an LM-BP test can also be used, using lagged squared residuals as the drivers of heteroscedasticity (more on this topic in Lecture 10).

Example: Q and LB tests with p=12 lags for the squared residuals in the 3-factor FF model for IBM returns:
e_ibm <- fit_ibm_ff3\$residuals
e_ibm \(2<-\) e_ibm^2
- Q test
> Box.test(e_ibm2, lag = 12, type="Box-Pierce")
Box-Pierce test
data: e_ibm2
X -squared \(=37.741, \mathrm{df}=12, \mathrm{p}\)-value \(=0.0001693\)
- LB test
> Box.test(e_ibm2, lag = 12, type="Ljung-Box")
Box-Ljung test
data: e_ibm2
X -squared \(=\mathbf{3 8 . 4 3 5}, \mathrm{df}=12, \mathrm{p}\)-value \(=0.0001304\)
- Q and LB tests with \(\mathrm{p}=12\) lags for the squared residuals in the 3-factor FF model for DIS \& GE returns:
- For DIS (dis_x), we get
\(>\) Box.test(e_dis2, lag = 12, type="Ljung-Box")

\section*{Box-Ljung test}
data: e_dis2
\(X\)-squared \(=73.798, d f=12, p\)-value \(=6.195 \mathrm{e}-11\)
- For GE (ge_x), we get
> Box.test(e_ge2, lag = 12, type="Ljung-Box")

Box-Ljung test
data: e_ge2
X -squared \(=115.9, \mathrm{df}=12, \mathrm{p}\)-value \(<2.2 \mathrm{e}-16\)
Conclusion: Using Q and LB tests for squared residuals, we find strong evidence for timevarying heteroscedasticity in the residuals of the 3-factor F-F model for IBM \& DIS excess returns. \(\|\)

\section*{Generalized Regression Model (GRM)}

Now, we go back to the CLM Assumptions:
(A1) DGP: \(\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}\) is correctly specified.
(A2) or (A2')
(A3') \(\operatorname{Var}[\varepsilon \mid \mathbf{X}]=\boldsymbol{\Sigma} \quad\) (sometimes written \(\operatorname{Var}[\varepsilon \mid \mathbf{X}]=\sigma^{2} \Omega\) )
\[
\boldsymbol{\Sigma}=\left[\begin{array}{cccc}
\sigma_{1}^{2} & \sigma_{12} & \cdots & \sigma_{1 T} \\
\sigma_{21} & \sigma_{2}^{2} & \cdots & \sigma_{2 T} \\
\vdots & \vdots & \vdots & \vdots \\
\sigma_{T 1} & \sigma_{T 2} & \cdots & \sigma_{T}^{2}
\end{array}\right] \quad-\mathrm{a}(T \mathrm{x} T) \text { symmetric matrix }
\]
(A4) or (A4')

This is the generalized regression model (GRM), which allows the variances to differ across observations and allows correlation across observations.

OLS is still unbiased. Can we still use OLS?

\section*{GR Model: True Variance for b}

From (A3) \(\operatorname{Var}[\boldsymbol{\varepsilon} \mid \mathbf{X}]=\sigma^{2} \mathbf{I}_{\mathrm{T}} \quad \Rightarrow \operatorname{Var}[\mathbf{b} \mid \mathbf{X}]=\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\).
Now, we have ( \(\mathbf{A 3}^{\prime}\) ) \(\operatorname{Var}[\boldsymbol{\varepsilon} \mid \mathbf{X}]=\boldsymbol{\Sigma}\)
The true variance of \(\mathbf{b}\) under ( \(\mathbf{A} \mathbf{3}^{\prime}\) ) should be:
\[
\begin{aligned}
\operatorname{Var}_{\mathrm{T}}[\mathbf{b} \mid \mathbf{X}] & =\mathrm{E}\left[(\mathbf{b}-\boldsymbol{\beta})(\mathbf{b}-\boldsymbol{\beta})^{\prime} \mid \mathbf{X}\right] \\
& =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathrm{E}\left[\mathbf{X} \mathbf{X}^{\prime} \boldsymbol{\varepsilon} \varepsilon^{\prime} \mathbf{X} \mid \mathbf{X}\right]\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \\
& =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{\Sigma} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
\end{aligned}
\]

Example: We compute the true variance for the simplest case, a regression with only one explanatory variable and uncorrelated error term:
\[
\mathbf{y}=\mathbf{X} \beta+\varepsilon
\]

Then,
\[
\operatorname{Var}_{\mathrm{T}}[\mathbf{b} \mid \mathbf{X}]=\left(\frac{1}{\sum_{i}^{T}\left(x_{i}-\bar{x}\right)^{2}}\right)^{2} \sum_{i}^{T} \sigma_{i}^{2}\left(x_{i}-\bar{x}\right)^{2}
\]

If we compute the OLS variance, we see how both estimators differ:
\[
\operatorname{Var}[\mathbf{b} \mid \mathbf{X}]=\frac{\sigma^{2}}{\sum_{i}^{T}\left(x_{i}-\bar{x}\right)^{2}} \neq \operatorname{Var}_{\mathrm{T}}[\mathbf{b} \mid \mathbf{X}]
\]

Note: In the special case that \(\sigma_{i}^{2}\) is independent of (uncorrelated with) of \(\left(x_{i}-\bar{x}\right)^{2}\), then both variances are (asymptotically) the same since
\[
\sum_{i}^{T} \sigma_{i}^{2}\left(x_{i}-\bar{x}\right)^{2} \xrightarrow{p} \sigma^{2} \sum_{i}^{T}\left(x_{i}-\bar{x}\right)^{2} .
\]

Under ( \(\mathbf{A 3}^{\prime}\) ), the usual OLS estimator of \(\operatorname{Var}[\mathbf{b} \mid \mathbf{X}]-\) i.e., \(s^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\) - is biased. If we want to use OLS for inferences (say, with \(t\)-test or \(F\)-test), we need to estimate \(\operatorname{Var}_{T}[\mathbf{b} \mid \mathbf{X}]\). That is, we need to estimate the unknown \(\boldsymbol{\Sigma}\). But, it has \(T^{*}(T+1) / 2\) parameters. Too many parameters to estimate with only \(T\) observations!

\section*{GR Model: Robust Covariance Matrix}

We will not be estimating \(\boldsymbol{\Sigma}\). Impossible with \(T\) data points.
We will estimate \(\mathbf{X}^{\prime} \boldsymbol{\Sigma} \mathbf{X}=\sum_{i=1}^{T} \sum_{j=1}^{T} \sigma_{i j} \boldsymbol{x}_{i} \boldsymbol{x}_{j}{ }^{\prime}\), a \((k x k)\) matrix. That is, we are estimating \(\left[k^{*}(k+1)\right] / 2\) elements.

This distinction is very important in modern applied econometrics:
- The White estimator
- The Newey-West estimator

Both estimators produce a consistent estimator of \(\operatorname{Vart}[\mathbf{b} \mid \mathbf{X}]\).
Since \(\mathbf{b}\) consistently estimates \(\beta\), the OLS residuals, \(\mathbf{e}\), are also consistent estimators of \(\boldsymbol{\varepsilon}\). We use e to consistently estimate \(\mathbf{X}^{\prime} \boldsymbol{\Sigma X}\).

\section*{Covariance Matrix: The White Estimator}

The White estimator simplifies the estimation since it only assumes heteroscedasticity. Then, \(\boldsymbol{\Sigma}\) is a diagonal matrix, with elements \(\sigma_{i}{ }^{2}\).
\[
\boldsymbol{\Sigma}=\left[\begin{array}{cccc}
\sigma_{1}^{2} & 0 & \cdots & 0 \\
0 & \sigma_{2}^{2} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & \sigma_{T}^{2}
\end{array}\right]
\]

Thus, we need to estimate:
\[
\mathbf{Q}^{*}=(1 / T) \mathbf{X}^{\prime} \mathbf{\Sigma} \mathbf{X}
\]
where
\[
\boldsymbol{X}^{\prime} \boldsymbol{\Sigma} X=\left[\begin{array}{ccc}
\sum_{i=1}^{T} \boldsymbol{x}_{\mathbf{1}}^{2} \sigma_{i}^{2} & \cdots & \sum_{i=1}^{T} \boldsymbol{x}_{\mathbf{1} i} \boldsymbol{x}_{\boldsymbol{k} i} \sigma_{i}^{2} \\
\vdots & \ddots & \vdots \\
\sum_{i=1}^{T} x_{\boldsymbol{k} i} x_{1 i} \sigma_{i}^{2} & \cdots & \sum_{i=1}^{T} \boldsymbol{x}_{\boldsymbol{k i}}^{2} \sigma_{i}^{2}
\end{array}\right]=\sum_{i=1}^{T} \sigma_{i}^{2} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{\prime}
\]

Question: How do we estimate \(\sigma_{i}^{2}\) ?
We need to estimate: \(\mathbf{Q}^{*}=(1 / T) \mathbf{X}^{\prime} \mathbf{\Sigma} \mathbf{X}=(1 / T) \sum_{i=1}^{T} \sigma_{i}^{2} \boldsymbol{x}_{i} \boldsymbol{x}_{i}{ }^{\prime}\)
The OLS residuals, \(e\), are consistent estimators of \(\varepsilon\). This suggests using \(e_{i}^{2}\) to estimate \(\sigma_{i}^{2}\). That is,
we estimate
\[
\begin{aligned}
& \mathbf{Q}^{*}=(1 / T) \sum_{i=1}^{T} \sigma_{i}^{2} \boldsymbol{x}_{i} \boldsymbol{x}_{i}{ }^{\prime} \\
& \mathbf{S}_{\mathbf{0}}=(1 / T) \sum_{i=1}^{T} e_{i}^{2} \boldsymbol{x}_{\boldsymbol{i}} \boldsymbol{x}_{\boldsymbol{i}}{ }^{\prime}
\end{aligned}
\]
with

Example: Back to the simplest case, a regression with only one explanatory variable, but now with a heteroscedastic error term, we have that the variance of \(\mathbf{b}\) is given by:
\[
\operatorname{Var}[\mathbf{b} \mid \mathbf{X}]=\left(\frac{1}{\sum_{i}^{T}\left(x_{i}-\bar{x}\right)^{2}}\right)^{2} \sum_{i}^{T} \sigma_{i}^{2}\left(x_{i}-\bar{x}\right)^{2}
\]
which we estimate using OLS residuals, \(e_{i}\) :
\[
\text { Est } \operatorname{Var}[\mathbf{b} \mid \mathbf{X}]=\left(\frac{1}{\sum_{i}^{T}\left(x_{i}-\bar{x}\right)^{2}}\right)^{2} \sum_{i}^{T} e_{i}^{2}\left(x_{i}-\bar{x}\right)^{2} \cdot \boldsymbol{\top}
\]

White (1980) shows that a consistent estimator of \(\operatorname{Var}[\mathbf{b} \mid \mathbf{X}]\) is obtained if \(e_{i}^{2}\) is used as an estimator of \(\sigma_{i}^{2}\). Taking the square root, we get a heteroscedasticity-consistent \((\mathrm{HC})\) standard errors.
(A3') was not specified. That is, the White estimator is robust to a potential misspecifications of heteroscedasticity in ( \(\left.\mathbf{A 3} \mathbf{3}^{\prime}\right)\).

The White estimator allows us to make inferences using the OLS estimator \(\mathbf{b}\) in situations where heteroscedasticity is suspected, but we do not know enough to identify its nature.

Note: The estimator is also called the sandwich estimator or the White estimator (also known as Eiker-Huber-White estimator).
- Remarks:
(1) Since there are many refinements of the White estimator, the White estimator is usually referred as HC 0 (or just "HC"):
\[
\mathrm{HC} 0=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \operatorname{Diag}\left[\mathrm{e}_{\mathrm{i}}^{2}\right] \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
\]
(2) In large samples, SEs, \(t\)-tests and \(F\)-tests are asymptotically valid.
(3) The OLS estimator remains inefficient. But inferences are asymptotically correct.
(4) The HC standard errors can be larger or smaller than the OLS ones. It can make a difference to the tests.
(5) It is used, along the Newey-West estimator, in almost all finance papers. Included in all the packaged software programs
(6) White SEs are easy to program:
\# White SE in R
```

White_f $<-$ function $(\mathrm{y}, \mathrm{X}, \mathrm{b})$ \{
$\mathrm{T}<-$ length(y); $\mathrm{k}<-$ length(b);
yhat $<-\mathrm{X} \% * \% \mathrm{~b}$ \# fitted values
e $<-$ y-yhat \# residuals
hhat $<-\mathrm{t}(\mathrm{X})^{*}$ as.vector($\left.\mathrm{t}(\mathrm{e})\right) \quad$ \# xie e_{i}
$\mathrm{G}<-\operatorname{matrix}(0, \mathrm{k}, \mathrm{k}) \quad$ \# Create kxk matrix to fill with $\left.\mathrm{X}^{\prime} \operatorname{Diag}^{\operatorname{Di}} \mathrm{e}^{2}\right] \mathbf{X}$
za <- hhat[,1:k]\%*\%t(hhat[,1:k]) \# X' diag[ei] X
$\mathrm{G}<-\mathrm{G}+\mathrm{za} \quad$ \# X' $\operatorname{diag}\left[\mathrm{e}_{\mathrm{i}}\right] \mathrm{X}$
$\mathrm{F}<-\mathrm{t}(\mathrm{X}) \%$ *\% X \# X'X
$\mathrm{V}<-\operatorname{solve}(\mathrm{F}) \% * \% \mathrm{G} \% * \% \operatorname{solve}(\mathrm{~F}) \quad$ \# So
white_se <- sqrt($\operatorname{diag}(\mathrm{V}))$ \# White SE
ols_se $<-\operatorname{sqrt}(\operatorname{diag}(\operatorname{solve}(\mathrm{F}) * \operatorname{drop}((\mathrm{t}(\mathrm{e}) \% * \% \mathrm{e})) /(\mathrm{T}-\mathrm{k})))$
$1 _$se $=$list(white_se,olse_se)
return(l_se)
\}

```

R Note: The library "sandwich" calculates White SEs. Remember to install it first and, then, call the library before you use it.

Example 1: We estimate \(t\)-values using OLS and White SE, for the 3 factor F-F model for IBM returns:
\[
\left(r_{i=I B M, t}-r_{f}\right)=\beta_{0}+\beta_{1}\left(r_{m, t}-r_{f}\right)+\beta_{2} S M B_{t}+\beta_{3} H M L_{t}+\varepsilon_{t}
\]
```

fit_ibm_ff3 <-lm(ibm_x \sim Mkt_RF + SMB + HML) \# OLS Regression with lm
b_ibm <-fit_ibm_ff3\$coefficients \# Extract OLS coefficients
SE_OLS <- sqrt(diag(vcov(fit_ibm_ff3))) \# Extract OLS SE from fit_ibm_ff3
t_OLS $<$ - b_ibm/SE_OLS \# Calculate OLS t-values
>b_ibm
(Intercept) Mkt_RF SMB HML
-0.005191356 0.910379487-0.221385575-0.139179020
> SE_OLS
(Intercept) Mkt_RF SMB HML
0.0024823050 .0567844740 .0842137610 .084060299
$>$ t OLS
(Intercept) Mkt_RF SMB HML
-2.091345 $16.032190-2.628853-1.655705 \quad \Rightarrow$ HML significant at 10% level
$>$ library(sandwich)
White <- vcovHC(fit_ibm_ff3, type = "HC0") \# White Variance-covariance Matrix
SE_White $<-\operatorname{sqrt}(\operatorname{diag}$ (White))
t_White <- b_ibm/SE_White
> SE_White
(Intercept) Mkt_RF SMB HML
\# White SE HC0

```
0.0025059780 .0624810800 .1056454590 .096087035
> t_White
\begin{tabular}{cccc} 
(Intercept) & Mkt_RF & SMB & HML \\
-2.071589 & 14.570482 & -2.095552 & \(\mathbf{- 1 . 4 4 8 4 6 8}\)
\end{tabular}

White <- vcovHC(fit_ibm_ff3, type = "HC3") \# White SE HC3 (refinement)
SE_White <- sqrt(diag(White))\# White SE HC0
t_White <- b_ibm /SE_White
> SE_White
(Intercept) Mkt_RF SMB HML
0.0025334610 .0638183780 .1083160560 .098800721
\(>\) t_White
(Intercept) Mkt_RF SMB HML
\(-2.049116 \quad 14.265162-2.043885 \quad-1.408684 \Longrightarrow\) similar results with HC 3 refinement

Conclusion: White SEs make a difference in the test results. HML is not longer significant at the \(10 \%\) level, once we adjust the SEs for heteroscedasticity. II

Example 2: We estimate Mexican interest rates ( \(\mathbf{i}_{\mathbf{M x}}\) ) with a linear model including US interest rates, changes in exchange rates (MXN/USD), Mexican inflation and Mexican GDP growth, using quarterly data 1978:II - 2020:II ( \(\mathrm{T}=166\) ):
\[
\mathrm{i}_{\mathrm{MX}, \mathrm{t}}=\beta_{0}+\beta_{1} \mathrm{ius,t}_{\mathrm{t}}+\beta_{2} \mathrm{e}_{\mathrm{t}}+\beta_{3} \mathrm{mx}_{-} \mathrm{It}_{\mathrm{t}}+\beta_{4} \mathrm{mx} \mathrm{y}_{\mathrm{t}}+\varepsilon_{\mathrm{t}}
\]

FMX_da <- read.csv("https://www.bauer.uh.edu/rsusmel/4397/FX_USA_MX.csv", head=TRUE, sep=",")
us_i \(<-\) FMX_da\$US_int
\(m x\) _CPI <- FMX_da\$MX_CPI
mx_M1 <- FMX_da\$MX_M1
\(m x \_i<-\) FMX_da\$MX_int
mx_GDP <- FMX_da\$MX_GDP
S_mx <- FMX_da\$MXN_USD
\(\mathrm{T}<\) - length(mx_CPI)
\(m x \_I<-\log \left(m x \_C P I[-1] / m x \_C P I[-T]\right)\)
\(m x \_y<-\log \left(m x \_G D P[-1] / m x \_G D P[-T]\right)\)
\(m x \_m g<-\log \left(m x \_M 1[-1] / m x \_M 1[-T]\right)\)
e_mx \(<-\log \left(S \_m x[-1] / S \_m x[-T]\right)\)
us_i_1<-us_i[-1]/100
mx - \(\mathrm{i} 1<-\mathrm{mx}\) _i \([-1] / 100\)
\(m x \_i \_0<-m x \_i[-T] / 100\)
\# US short-term interest rates (ius)
\# Mexican CPI
\# Mexican Money Supply (M1)
\# Mexican short-term int rates (imx)
\# Mexican GDP
\# \(\mathrm{S}_{\mathrm{t}}=\) exchange rates (MXN/USD)
\# Mexican Inflation: Log changes in CPI
\# Mexican growth: Log changes in GDP
\# Money growth: Log changes in M1
\# Log changes in St.
\# Adjust sample size.
fit_i \(<-\operatorname{lm}\left(m x \_i \_1 \sim u s \_i \_1+e_{-} m x+m x \_I+m x \_y\right)\)
\(>\) summary(fit_i)
Coefficients:
Estimate Std. Error t value \(\operatorname{Pr}(>|t|)\)
```

(Intercept) 0.04022 0.01506 2.671 0.00834 **
us_i_1 0.85886 0.31211 2.752 0.00661 **
e_mx
mx_I }\quad3.34581 0.19439 17.212<2e-16 *****
mx_y -0.49851 0.73717 -0.676 0.49985
--
Signif. codes: 0 '***` 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
b_i <- fit_i\$coefficients
\# Extract OLS coefficients
White $<-$ vcovHC(fit_i, type $=$ "HC0") \# White Variance-covariance Matrix HC0
SE_White <- sqrt(diag(White)) \# White SE HC0
t_White <- b_i/SE_White
> SE_White
(Intercept) us_i_1 e_mx mx_I mx_y
0.0096657590 .4801302210 .0263628200 .5239252261 .217901733
$>$ t_White
(Intercept) us_i_1 e_mx mx_I mx_y
$4.1613603 \quad 1.7888018-0.4035554 \quad 6.3860367-0.4093221 \quad \Rightarrow$ ius,t not significant at 5%.

```


Conclusion: Again, White SEs make a difference in the test results. U.S. interest rates are not a significant driver (\& big drop in t-value!), once we adjust the SE for heteroscedasticity. \(\mathbb{I}\)

\section*{Newey-West Estimator}

Now, we also have autocorrelation. We need to estimate
\[
\mathbf{Q}^{*}=(1 / T) \mathbf{X}^{\prime} \mathbf{\Sigma} \mathbf{X}=(1 / T) \sum_{i=1}^{T} \sum_{j=1}^{T} \sigma_{i j} \boldsymbol{x}_{i} \boldsymbol{x}_{j}^{\prime}
\]

Newey and West (1987) follow White (1980) to produce a HAC (Heteroscedasticity and Autocorrelation Consistent) estimator of \(\mathbf{Q}^{*}\), also referred as long-run variance (LRV): Use \(e_{i} e_{j}\) to estimate \(\sigma_{\mathrm{ij}}\).

The natural estimator of \(\mathbf{Q}^{*}\) becomes:
\[
\mathbf{S}_{\mathrm{T}}=(1 / T) \sum_{i=1}^{T} \sum_{j=1}^{T} e_{i} e_{j} \boldsymbol{x}_{\boldsymbol{i}} \boldsymbol{x}_{j}^{\prime}
\]

Or using time series notation, estimator of \(\mathbf{Q}^{*}\) :
\[
\mathbf{S}_{\mathrm{T}}=(1 / T) \sum_{t=1}^{T} \sum_{s=1}^{T} \boldsymbol{x}_{t} e_{t} e_{s} \boldsymbol{x}_{s}^{\prime}
\]

There are some restrictions that need to be imposed:
- Q* needs to be a pd matrix \(\quad \Rightarrow\) use a quadratic form.
- The double sum cannot explode \(\Rightarrow\) use decaying weights to cut the sum short.
- Two components for the NW HAC estimator:
(1) Start with Heteroscedasticity Component:
\[
\mathbf{S}_{\mathbf{0}}=(\mathbf{1} / \boldsymbol{T}) \sum_{t=1}^{T} e_{t}^{2} x_{t} x_{t}^{\prime} \quad-\text { the White estimator }
\]
(2) Add the Autocorrelation Component
\[
\mathbf{S}_{\mathbf{T}}=\mathbf{S}_{\mathbf{0}}+(1 / T) \sum_{\boldsymbol{l}=\mathbf{1}}^{L} k(l) \sum_{\boldsymbol{t}=\boldsymbol{l}+\mathbf{1}}^{T}\left(\boldsymbol{x}_{\boldsymbol{t}-\boldsymbol{l}} e_{t-l} e_{t} \boldsymbol{x}_{\boldsymbol{t}}{ }^{\prime}+\boldsymbol{x}_{\boldsymbol{t}} e_{t} e_{t-l} \boldsymbol{x}_{\boldsymbol{t}-\boldsymbol{l}}{ }^{\prime}\right)
\]
where
\[
k\left(\frac{j}{L(T)}\right)=\frac{L+1-|j|}{L+1} \quad \text {-decaying weights (Bartlett kernel) }
\]
\(L\) is the cut-off lag, which is a function of \(T\). (More data, longer \(L\) ).
The weights are linearly decaying, suppose \(L=30\). Then,
\(k(1)=30 / 31=0.9677419\)
\(k(2)=29 / 31=0.9354839\)
\(k(3)=28 / 31=0.9032258\)
\[
\mathbf{S}_{\mathbf{T}}=\mathbf{S}_{\mathbf{0}}+(1 / T) \sum_{l=\mathbf{1}}^{L} k(l) \sum_{\boldsymbol{t}=\boldsymbol{l}+\mathbf{1}}^{T}\left(\boldsymbol{x}_{\boldsymbol{t}-\boldsymbol{l}} e_{t-l} e_{t} \boldsymbol{x}_{\boldsymbol{t}}{ }^{\prime}+\boldsymbol{x}_{\boldsymbol{t}} e_{t} e_{t-l} \boldsymbol{x}_{\boldsymbol{t}-\boldsymbol{l}}{ }^{\prime}\right)
\]

Then,
Est. Var \([\mathbf{b}]=(1 / T)\left(\mathbf{X}^{\prime} \mathbf{X} / T\right)^{-1} \mathbf{S}_{\mathrm{T}}\left(\mathbf{X}^{\prime} \mathbf{X} / T\right)^{-1} \quad-\) NW's HAC Var.
Under suitable conditions, as \(L, T \rightarrow \infty\), and \(L / T \rightarrow 0, \mathbf{S}_{\mathrm{T}} \rightarrow \mathbf{Q}^{*}\). Asymptotic inferences can be based on OLS \(\mathbf{b}\), with \(t\)-tests and Wald tests using \(\mathrm{N}(0,1)\) and \(\chi^{2}\) critical values, respectively.

There are many refinements of the NW estimators. Today, all HAC estimators are usually referred as NW estimators, regardless of the weights (kernel) used if they produce a positive (semi-) definite covariance matrix.
- All econometric packages (SAS, SPSS, Eviews, etc.) calculate NW SE.

R Note: You can use the library "sandwich," to calculate NW SEs: library(sandwich)
\(>\) NeweyWest(x, lag = NULL, order.by = NULL, prewhite \(=\) TRUE, adjust \(=\) FALSE, diagnostics \(=\) FALSE, sandwich \(=\) TRUE, ar.method \(=\) "ols", data \(=\) list () , verbose \(=\) FALSE \()\)

You need to install the package sandwich and then call the library(sandwich).

\section*{Example:}
\# fit the 3 factor Fama French Model for IBM returns:
fit_ibm_ff3 <- lm(ibm_x \(\sim\) Mkt_RF + SMB + HML \()\)
\# NeweyWest computes the NW SEs. It requires lags= \(L\) \& suppression of prewhitening NeweyWest(fit_ibm_ff3, lag = 4, prewhite \(=\) FALSE)

Note: It is usually found that the NW SEs are downward biased.
- You can also program the NW SEs yourself. In R:

NW_f \(<-\) function \((y, X, b, l a g)\)
\{
T <- length(y);
\(\mathrm{k}<-\) length(b);
yhat \(<-\mathrm{X} \% * \% \mathrm{~b}\)
\(\mathrm{e}<-\mathrm{y}-\mathrm{yhat}\)
hhat \(<-\mathrm{t}(\mathrm{X})\) *as.vector( \(\mathrm{t}(\mathrm{e})\) )
\(\mathrm{G}<-\operatorname{matrix}(0, \mathrm{k}, \mathrm{k})\)
\(\mathrm{a}<-0\)
w <- numeric(T)
while ( \(\mathrm{a}<=\) lag) \(\{\)
\(\mathrm{Ta}<-\mathrm{T}-\mathrm{a}\)
ga \(<-\) matrix \((0, k, k)\)
\(\mathrm{w}[\) lag \(+1+\mathrm{a}]<-(\mathrm{lag}+1-\mathrm{a}) /(\operatorname{lag}+1)\)
za \(<-\) hhat[,(a+1):T] \%*\% t(hhat[,1:Ta])
ga \(<-\) ga + za
\(\mathrm{G}<-\mathrm{G}+\mathrm{w}[\operatorname{lag}+1+\mathrm{a}] * \mathrm{ga}\)
\(\mathrm{a}<-\mathrm{a}+1\}\)
F <- \(\mathrm{t}(\mathrm{X}) \% * \% \mathrm{X}\)
V <- solve(F)\%*\%G\%*\%solve(F)
nw_se \(<-\operatorname{sqrt}(\operatorname{diag}(V))\)
ols_se \(<-\operatorname{sqrt}(\operatorname{diag}(\operatorname{solve}(\mathrm{F}) * \operatorname{drop}((\mathrm{t}(\mathrm{e}) \% * \% \mathrm{e})) /(\mathrm{T}-\mathrm{k})))\)
1_se = list(nw_se,ols_se)
return(l_se)
\}
NW_f \((\mathrm{y}, \mathrm{X}, \mathrm{b}, \operatorname{lag}=4)\)
Example 1: We estimate the 3 factor F-F model for IBM returns with NW SE with 4 lags:
>t_OLS
(Intercept) Mkt_RF SMB HML
\(-2.091345 \quad 16.032190 \quad\)-2.628853 \(-1.655705 \quad \Rightarrow\) SMB significant at \(1 \%\) level
NW <- NeweyWest(fit_ibm_ff3, lag=4, prewhite = FALSE) \# NW Var Matrix with 4 lags
SE_NW <- diag(sqrt(abs(NW)))
```

t_NW <- b_ibm/SE_NW
> SE_NW
(Intercept) Mkt_RF SMB HML
0.002527425 0.0699187060.114355320 0.104112705
> t_NW
(Intercept) Mkt_RF SMB HML
-2.054010 13.020543 -1.935945 -1.336811 }\quad=>\mathrm{ SMB close to significant at 5% level

```
- If we add more lags in the NW function (lag=8)
NW <- NeweyWest(fit_ibm_ff3, lag = 8, prewhite \(=\) FALSE)
SE_NW <- diag(sqrt(abs(NW)))
t_NW <- b_ibm/SE_NW
\(>\) t NW
(Intercept) Mkt_RF SMB HML
\(-2.033648 \quad 12.779060-1.895993-1.312649 \quad \Rightarrow\) not very different results.

Conclusion: Newey-West SEs make a difference in the test results. Now, SMB is not longer significant at the \(5 \%\) level, though borderline, once we adjust the SEs not only for heteroscedasticity and autocorrelation. II

Example 2: Mexican short-term interest rates with NW SE with 4 lags \& 8 lags.. For comparison we reproduced the regression (with OLS t-varlues and the White t -values): fit_i \(<-\operatorname{lm}\left(m x \_i \_1 \sim u s \_i \_1+e_{-} m x+m x \_I+m x \_y\right)\)
\(>\) summary(fit_i)
Coefficients:
\begin{tabular}{lllll} 
& Estimate & Std. Error t value \(\operatorname{Pr}(>|t|)\) \\
(Intercept) & 0.04022 & 0.01506 & 2.671 & \(0.00834 * *\) \\
us_i_1 & 0.85886 & 0.31211 & \(\mathbf{2 . 7 5 2}\) & \(0.00661 * *\) \\
e_mx & -0.01064 & 0.02130 & -0.499 & 0.61812 \\
mx_I \(^{*}\) & 3.34581 & 0.19439 & 17.212 & \(<2 \mathrm{e}-166^{* * *}\) \\
mx_y \(^{*}\) & -0.49851 & 0.73717 & -0.676 & 0.49985
\end{tabular}

```

> t_White3
(Intercept)

```
NW <- NeweyWest(fit_i, lag = 4, prewhite = FALSE)
SE_NW <- diag(sqrt(abs(NW)))
t_NW <- b_i/SE_NW
> SE_NW
(Intercept) us_i_1 e_mx mx_I mx_y
0.011070690 .558107580 .014729610 .516757710 .93960295
```

> t_NW

```
\begin{tabular}{ccccc} 
(Intercept) & us_i_1 & e_mx & mx_I & mx_y \\
3.6332593 & \(\mathbf{1 . 5 3 8 8 7 5 0}\) & -0.7222770 & 6.4746121 & \(-0.5305582 \Rightarrow\) ius,t not significant at \(10 \%\).
\end{tabular}
- If we add more lags in the text (lag=8)

NW <- NeweyWest(fit_i, lag = 8, prewhite = FALSE)
SE_NW \(<-\operatorname{diag}(\operatorname{sqrt}(\operatorname{abs}(\mathrm{NW})))\)
t_NW <- b_i/SE_NW
> t_NW
(Intercept) us_i_1 e_mx mx_I mx_y
\(3.01749831 .4318654-0.8279016 \quad 6.5897816-0.5825521 \Rightarrow\) similar results.

Conclusion: Newey-West SEs make a difference in the test results, but in this case, the results are not that different from the White SEs. \(\|\)
- There are many estimators of \(\mathbf{Q}^{*}\) based on a specific parametric model for \(\boldsymbol{\Sigma}\). Thus, they are not robust to misspecification of (A3'). This is the appeal of White \& NW.

NW SEs are used almost universally in academia. However:
- NW SEs perform poorly in Monte Carlo simulations:
- NW SEs tend to be downward biased.
- The finite-sample performance of tests using NW SE is not well approximated by the asymptotic theory.
- Tests have size distortions.

Question: What happens if we know the specific form of (A3')?
We can do much better than using OLS with NW SEs. In this case, we can do Generalized LS (GLS), a method that delivers the most efficient estimators.

\section*{Generalized Least Squares (GLS)}

GRM: Assumptions (A1), (A2), (A3') \& (A4) hold. That is,
(A1) DGP: \(\mathbf{y}=\mathbf{X} \beta+\boldsymbol{\varepsilon} \quad\) is correctly specified.
(A2) \(\mathrm{E}[\varepsilon \mid \mathbf{X}]=0\)
( \(\mathbf{A 3}^{\prime}\) ) \(\operatorname{Var}[\boldsymbol{\varepsilon} \mid \mathbf{X}]=\boldsymbol{\Sigma}=\sigma^{2} \boldsymbol{\Omega} \quad\left(\boldsymbol{\Omega}\right.\) is symmetric \(\left.\Rightarrow \mathbf{T}^{\mathbf{\prime}} \mathbf{T}=\boldsymbol{\Omega}\right)\)
(A4) X has full column rank-i.e., \(\operatorname{rank}(\mathbf{X})=k-\), where \(\mathrm{T} \geq k\).
Question: What happens if we know the specific form of (A3')?
We can use this information to gain efficiency.
When we know ( \(\mathbf{A} \mathbf{3}^{\prime}\) ), we transform the \(\mathbf{y}\) and \(\mathbf{X}\) in such a way, that we can do again OLS with the transformed data.

To do this transformation, we exploit a property of symmetric matrices, like the variancecovariance matrix, \(\Omega\) :
\[
\Omega \text { is symmetric } \quad \Rightarrow \text { exists } \mathbf{T} \ni \mathbf{T}^{\prime} \mathbf{T}=\Omega \quad \Rightarrow \mathbf{T}^{\prime-1} \Omega \mathbf{T}^{-1}=\mathbf{I}
\]

Note: Think of \(\mathbf{T}\) as \(\boldsymbol{\Omega}^{1 / 2}\)
We transform the linear model in (A1) using \(\mathbf{P}=\boldsymbol{\Omega}^{-1 / 2}\).
\[
\begin{aligned}
& \mathbf{P}=\mathbf{\Omega}^{-1 / 2} \quad \Rightarrow \mathbf{P}^{\prime} \mathbf{P}=\Omega^{-1} \\
& \mathbf{P y}=\mathbf{P X} \boldsymbol{\beta}+\mathbf{P} \varepsilon \text { or } \\
& \mathbf{y}^{*}=\mathbf{X}^{*} \boldsymbol{\beta}+\boldsymbol{\varepsilon}^{*} . \\
& \mathrm{E}\left[\varepsilon^{*} \varepsilon^{*} \mid \mathbf{X}^{*}\right]=\mathbf{P} \mathrm{E}\left[\varepsilon \varepsilon^{\prime} \mid \mathbf{X}^{*}\right] \mathbf{P}^{\prime}=\mathbf{P} \mathrm{E}\left[\varepsilon \varepsilon^{\prime} \mid \mathbf{X}\right] \mathbf{P}^{\prime}=\sigma^{2} \mathbf{P} \Omega \mathbf{P}^{\prime} \\
& \quad=\sigma^{2} \Omega^{-1 / 2} \boldsymbol{\Omega} \Omega^{-1 / 2}=\sigma^{2} \mathbf{I} \mathrm{~T} \quad \Rightarrow \text { back to }(\mathbf{A} 3)
\end{aligned}
\]
- The transformed model is homoscedastic: We have the CLM framework back \(\Rightarrow\) we can use OLS!
\[
\begin{aligned}
\mathbf{b}_{\mathrm{GLS}} & =\mathbf{b}^{*}=\left(\mathbf{X}^{* \prime} \mathbf{X}^{*}\right)^{-1} \mathbf{X}^{* \prime} \boldsymbol{y}^{*} \\
& =\left(\mathbf{X}^{\prime} \mathbf{P}^{\prime} \mathbf{P} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{P}^{\prime} \mathbf{P} \boldsymbol{y} \\
& =\left(\mathbf{X}^{\prime} \mathbf{\Omega}^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{\Omega}^{-1} \boldsymbol{y}
\end{aligned}
\]

Remarks:
- The transformed model is homoscedastic:
\[
\operatorname{Var}\left[\varepsilon^{*} \mid \mathbf{X}^{*}\right]=\mathrm{E}\left[\varepsilon^{*} \varepsilon^{* \prime} \mid \mathbf{X}^{*}\right]=\mathbf{P E}\left[\varepsilon \varepsilon^{\prime} \mid \mathbf{X}^{*}\right] \mathbf{P}^{\prime}=\sigma^{2} \mathbf{P} \Omega \mathbf{P}^{\prime}=\sigma^{2} \mathbf{I}_{\mathrm{T}}
\]
- We have the CLM framework back: We do OLS with the transformed model, we call this OLS estimator, the GLS estimator:
\[
\begin{aligned}
\mathbf{b}_{\mathrm{GLS}}=\mathbf{b}^{*} & =\left(\mathbf{X}^{* \prime} \mathbf{X}^{*}\right)^{-1} \mathbf{X}^{* \prime} \boldsymbol{y}^{*}=\left(\mathbf{X}^{\prime} \mathbf{P}^{\prime} \mathbf{P X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{P}^{\prime} \mathbf{P} \boldsymbol{y} \\
& =\left(\mathbf{X}^{\prime} \boldsymbol{\Omega}^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\Omega}^{-1} \boldsymbol{y}
\end{aligned}
\]
- Key assumption: \(\Omega\) is known, and, thus, \(\mathbf{P}\) is also known; otherwise we cannot transformed the model.

Big Question: Is \(\Omega\) known?
The GLS estimator is:
\[
\mathbf{b}_{\mathrm{GLS}}=\left(\mathbf{X}^{\prime} \boldsymbol{\Omega}^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\Omega}^{-1} \boldsymbol{y}
\]

Note I: \(\mathbf{b}_{\mathrm{GLS}} \neq \mathbf{b}\). \(\mathbf{b}_{\mathrm{GLS}}\) is BLUE by construction, \(\mathbf{b}\) is not.
- Check unbiasedness:
\[
\begin{aligned}
& \mathbf{b}_{\mathrm{GLS}}=\left(\mathbf{X}^{\prime} \mathbf{\Omega}^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{\Omega}^{-1} \boldsymbol{y}=\left(\mathbf{X}^{\prime} \mathbf{\Omega}^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{\Omega}^{-1}(\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}) \\
&=\boldsymbol{\beta}+=\left(\mathbf{X}^{\prime} \mathbf{\Omega}^{-\mathbf{1}} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{\Omega}^{-1} \boldsymbol{\varepsilon} \\
& \Rightarrow \mathrm{E}\left[\mathbf{b}_{\mathrm{GLS}} \mid \mathbf{X}\right]=\boldsymbol{\beta}
\end{aligned}
\]
- Efficient Variance
bgls is BLUE. The "best" variance can be derived from
\[
\operatorname{Var}\left[\mathbf{b}_{\mathrm{GLS}} \mid \mathbf{X}\right]=\sigma^{2}\left(\mathbf{X}^{*} \mathbf{X}^{*}\right)^{-1}=\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{\Omega}^{-1} \mathbf{X}\right)^{-1}
\]

Then, the usual OLS variance for \(\mathbf{b}\) is biased and inefficient!
Note II: Both unbiased and consistent. In practice, both estimators will be different, but not that different. If they are very different, something is not kosher.
- Steps for GLS:

Step 1. Find transformation matrix \(\mathbf{P}=\boldsymbol{\Omega}^{-1 / 2}\) (in the case of heteroscedasticity, \(\mathbf{P}\) is a diagonal matrix).

Step 2. Transform the model: \(\mathbf{X}^{*}=\mathbf{P X} \& \mathbf{y}^{*}=\mathbf{P} \mathbf{y}\).
Step 3. Do GLS; that is, OLS with the transformed variables.
Key step to do GLS: Step 1, getting the transformation matrix:
\[
\mathbf{P}=\boldsymbol{\Omega}^{-1 / 2}
\]

Technical detail: If we relax the CLM assumptions (A2) and (A4), as we did in Lecture 7-a, we only have asymptotic properties for GLS:
- Consistency - "well behaved data."
- Asymptotic distribution under usual assumptions.
(easy for heteroscedasticity, complicated for autocorrelation.)
- Wald tests and \(F\)-tests with usual asymptotic \(\chi^{2}\) distributions.

\section*{(Weighted) GLS: Pure Heteroscedasticity}

Find the transformation matrix \(\mathbf{P}=\boldsymbol{\Omega}^{-1 / 2}\) for:
(A3') \(\operatorname{Var}[\varepsilon]=\boldsymbol{\Sigma}=\sigma^{2} \boldsymbol{\Omega}=\sigma^{2}\left[\begin{array}{cccc}\omega_{1} & 0 & \ldots & 0 \\ 0 & \omega_{2} & \ldots & 0 \\ 0 & 0 & & 0 \\ 0 & 0 & \ldots & \omega_{T}\end{array}\right]\)
\[
\boldsymbol{\Omega}^{-1 / 2}=\mathbf{P}=\left[\begin{array}{cccc}
1 / \sqrt{\omega_{1}} & 0 & \ldots & 0 \\
0 & 1 / \sqrt{\omega_{2}} & \ldots & 0 \\
0 & 0 & \ldots & 0 \\
0 & 0 & \ldots & 1 / \sqrt{\omega_{T}}
\end{array}\right]
\]
- Now, transform \(\mathbf{y} \& \mathbf{X}\) :
\[
\boldsymbol{y}^{*}=\mathbf{P y}=\left[\begin{array}{cccc}
1 / \sqrt{\omega_{1}} & 0 & \cdots & 0 \\
0 & 1 / \sqrt{\omega_{2}} & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 1 / \sqrt{\omega_{\mathrm{T}}}
\end{array}\right] *\left[\begin{array}{c}
\mathrm{y}_{1} \\
\mathrm{y}_{2} \\
\vdots \\
\mathrm{y}_{\mathrm{T}}
\end{array}\right]=\left[\begin{array}{c}
\mathrm{y}_{1 / \sqrt{\omega_{1}}} \\
\mathrm{y}_{2} / \sqrt{\omega_{2}} \\
\vdots \\
\mathrm{y}_{\mathrm{T}} / \sqrt{\omega_{\mathrm{T}}}
\end{array}\right]
\]
- Each observation of \(\mathrm{y}, \mathrm{y}_{i}\), is divided by \(\sqrt{\omega_{i}}\). Similar transformation occurs with \(\mathbf{X}\) :
\[
\begin{aligned}
\boldsymbol{X}^{*}=\mathbf{P X} & =\left[\begin{array}{cccc}
1 / \sqrt{\omega_{1}} & 0 & \ldots & 0 \\
0 & 1 / \sqrt{\omega_{2}} & \ldots & 0 \\
0 & 0 & \ldots & 0 \\
0 & 0 & \ldots & 1 / \sqrt{\omega_{T}}
\end{array}\right] *\left[\begin{array}{cccc}
1 & x_{21} & \cdots & x_{k 1} \\
1 & x_{22} & \cdots & x_{k 2} \\
\vdots & \vdots & \cdots & \vdots \\
1 & x_{2 T} & \cdots & x_{k T}
\end{array}\right]= \\
= & {\left[\begin{array}{cccc}
1 / \sqrt{\omega_{1}} & x_{21} / \sqrt{\omega_{1}} & \ldots & x_{k 1} / \sqrt{\omega_{1}} \\
1 / \sqrt{\omega_{2}} & x_{22} / \sqrt{\omega_{2}} & \ldots & x_{k 2} / \sqrt{\omega_{2}} \\
\vdots & \vdots & \ldots & \vdots \\
1 / \sqrt{\omega_{T}} & x_{2 T} / \sqrt{\omega_{T}} & \ldots & x_{k T} / \sqrt{\omega_{T}}
\end{array}\right] }
\end{aligned}
\]

Now, we can do OLS with the transformed variables:
\[
\mathbf{b}_{\mathrm{GLS}}=\mathbf{b}^{*}=\left(\mathbf{X}^{*} \mathbf{X}^{*}\right)^{-1} \mathbf{X}^{*} \mathbf{y}^{*}=\left(\mathbf{X}^{\prime} \boldsymbol{\Omega}^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\Omega}^{-1} \boldsymbol{y}
\]

In the case of heteroscedasticity, GLS is also called Weighted Least Squares (WLS): Think of \(1 / \sqrt{\omega_{i}}\). as weights. The GLS estimator is:
\[
\mathbf{b}_{\mathrm{GLS}}=\left(\mathbf{X}^{\prime} \mathbf{\Omega}^{-1} \mathbf{X}\right)^{-1}\left(\mathbf{X}^{\prime} \mathbf{\Omega}^{-1} \boldsymbol{y}\right)=\left(\sum_{i=1}^{T} \frac{1}{\omega_{i}} x_{i} x_{i}^{\prime}\right)^{-1}\left(\sum_{i=1}^{T} \frac{1}{\omega_{i}} x_{i} y_{i}\right)
\]

Observations with lower (bigger) variances -i.e., lower (bigger) \(\omega_{i-}\) are given higher (lower) weights in the sums: More precise observations, more weight!

The GLS variance is given by:
\[
\hat{\sigma}_{G L S}^{2}=\frac{\sum_{i=1}^{T}\left(\frac{y_{i}-x_{i}^{\prime} \mathbf{b}_{G L S}}{\omega_{i}}\right)^{2}}{T-K}
\]

Example: Last Lecture, we found that squared market returns \(\left(r_{m, t}-r_{f}\right)^{2}\) influence the heteroscedasticity in DIS returns. Suppose we assume:
(A3') \(\sigma_{t}^{2}=\left(r_{m, t}-r_{f}\right)^{2}\).
Steps for GLS:
Step 1. Find transformation matrix, \(\mathbf{P}\), with \(i^{\text {th }}\) diagonal element: \(1 / \sqrt{\sigma_{i}^{2}}\)
Step 2. Transform model: Each \(\mathrm{y}_{\mathrm{i}}\) and \(\mathrm{x}_{\mathrm{i}}\) is divided ("weighted") by
\[
\sigma_{t}=\operatorname{sqrt}\left[\left(r_{m, t}-r_{f}\right)^{2}\right] .
\]

Step 3. Do GLS, that is, OLS with transformed variables.
T \(<\) - length (dis_x)
Mkt_RF_2<- Mkt_RF^2 \# (A3')
y_w <- dis_x/sqrt(Mkt_RF_2)
\# transformed \(\mathbf{y}=\mathbf{y}^{*}\)
\(\mathrm{x} 0<-\operatorname{matrix}(1, \mathrm{~T}, 1)\)
xx_w <- cbind(x0, Mkt_RF, SMB, HML)/sqrt(Mkt_RF2) \# transformed \(\mathbf{X}=\mathbf{X}^{*}\)
fit_dis_wls <- lm(y_w ~ xx_w) \# GLS
> summary(fit_dis_wls)
Call:
\(\operatorname{lm}\left(\right.\) formula \(\left.=y_{-} w \sim x x \_w\right)\)

Residuals:
\begin{tabular}{ccccc} 
Min & 1Q & Median & 3Q & Max \\
-59.399 & -0.891 & 0.316 & 1.503 & 77.434
\end{tabular}

Coefficients:
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Estimate & Std. Erro & , & \(\operatorname{Pr}(>|t|)\) & \\
\hline xx_w & -0.006607 & 0.001586 & -4.165 & \(3.59 \mathrm{e}-05\) *** & \\
\hline xx_wMkt_RF & 1.588057 & 0.334771 & 4.74 & \(2.66 \mathrm{e}-06\) *** & \(\Rightarrow\) OLS b: 1.26056 \\
\hline xx_wSMB & -0.200423 & 0.067498 & -2.969 & 0.00311 ** & \(\Rightarrow\) OLS b: -0.02899 \\
\hline xx_wHML & -0.042032 & 0.072821 & -0.577 & 0.56404 & \(\Rightarrow\) OLS b: 0.174545 \\
\hline
\end{tabular}

Residual standard error: 7.984 on 566 degrees of freedom
Multiple R-squared: 0.09078, Adjusted R-squared: 0.08435
F-statistic: 14.13 on 4 and 566 DF, p-value: \(5.366 \mathrm{e}-11\)
Conclusion: Quite different results, including a change in sign in HML, from positive \& significant at the \(10 \%\) level (OLS) to negative \& not significant (GLS) and change in significance in SMB, from not significant (OLS) to very significant (GLS). व

\section*{GLS: First-order Autocorrelation Case}

We assume an \(\operatorname{AR}(1)\) process for the \(\varepsilon_{\mathrm{t}}\) :
\[
\varepsilon_{\mathrm{t}}=\rho \varepsilon_{\mathrm{t}-1}+\mathrm{u}_{\mathrm{t}}, \quad \mathrm{ut}_{\mathrm{t}} \text { non-autocorrelated error } \sim \mathrm{D}\left(0, \sigma_{u}^{2}\right)
\]

We need to find the transformation matrix \(\mathbf{P}=\boldsymbol{\Omega}^{-1 / 2}\) for:
(A3') \(\operatorname{Var}[\varepsilon]=\boldsymbol{\Sigma}=\sigma^{2} \boldsymbol{\Omega}=\sigma^{2}\left[\begin{array}{cccc}\omega & \omega_{12} & \cdots & \omega_{1 T} \\ \omega_{21} & \omega & \ldots & \omega_{2 T} \\ \vdots & \vdots & & \vdots \\ \omega_{T 1} & \omega_{T 2} & \ldots & \omega\end{array}\right]\),
where \(\sigma^{2} \omega_{i k}\) is the covariance between errors \(\varepsilon_{i}\) and \(\varepsilon_{j} \quad\left(\sigma_{i j}=\mathrm{E}\left[\varepsilon_{i} \varepsilon_{j}\right]=\sigma^{2} \omega_{i j}=\gamma_{l=i-j}\right)\). and \(\quad \sigma^{2} \omega=\sigma_{i i}=\operatorname{Var}\left[\varepsilon_{t}\right] \quad\) (homoscedasticity, constant for all \(t\).)

Notation: We use \(\gamma_{l}\) to denote a covariance between two observations --in this case, errors-separated by \(l\) periods. For example, when \(l=1\) :
\[
\gamma_{1}=\sigma_{21}=\sigma_{32}=\ldots=\sigma_{T(T-1)}=\operatorname{Cov}\left[\varepsilon t, \varepsilon_{t-1}\right]=\mathrm{E}\left[\varepsilon_{\mathrm{t}} \varepsilon \mathrm{t}-1\right]
\]
we compute the covariance between two errors separated by one period.
- Steps for GLS:

Step 1. To find the transformation matrix \(\mathbf{P}\), we need to derive the implied ( \(\mathbf{A 3}^{\prime}\) ') based on the AR(1) process for \(\varepsilon t\) :
(1) Find diagonal elements of \(\Omega: \operatorname{Var}\left[\varepsilon_{t}\right]=\sigma_{i i}=\sigma_{\varepsilon}^{2}\)
\[
\begin{array}{lll} 
& \varepsilon_{t}=\rho \varepsilon_{t-1}+u_{t} \text { (the autoregressive form) } \\
\Rightarrow & \operatorname{Var}\left[\varepsilon_{t}\right]=\rho^{2} \operatorname{Var}\left[\varepsilon_{t-1}\right]+\operatorname{Var}\left[u_{t}\right] \quad\left(\operatorname{Var}\left[\varepsilon_{t}\right]=\operatorname{Var}\left[\varepsilon_{t-1}\right]=\sigma_{\varepsilon}^{2}\right) \\
\Rightarrow & \sigma_{\varepsilon}^{2}=\frac{\sigma_{u}^{2}}{\left(1-\rho^{2}\right)} & \text {-we need to assume }|\rho|<1 .
\end{array}
\]

Using the above \(\gamma_{l}\) notation, we have
\[
\gamma_{0}=\sigma_{i}^{2}=\mathrm{E}\left[\varepsilon_{t} \varepsilon_{t}\right]=\operatorname{Var}\left[\varepsilon_{t}\right]=\sigma_{u}^{2} /\left(1-\rho^{2}\right)
\]
(2) Find the off-diagonal elements of \(\Omega\) : \(\sigma_{i j}=\gamma_{l=j-i}\) :
\[
\Rightarrow \quad \sigma_{i j}=\gamma_{l}=\operatorname{Cov}\left[\varepsilon_{i}, \varepsilon_{j}\right]=\mathrm{E}\left[\varepsilon_{i} \varepsilon_{j}\right] \quad l=i-j
\]
\[
\gamma_{1}=\operatorname{Cov}\left[\varepsilon_{t}, \varepsilon_{t-1}\right]=E\left[\left(\rho \varepsilon_{t-1}+u_{t}\right) \varepsilon_{t-1}\right]
\]
\[
=\rho E\left[\varepsilon_{t-1} \varepsilon_{t-1}\right]+E\left[u_{t} \varepsilon_{t-1}\right]
\]
\[
=\rho \operatorname{Var}\left[\varepsilon_{t-1}\right]=\rho \sigma_{\varepsilon}^{2}
\]
\[
=\frac{\rho \sigma_{u}^{2}}{\left(1-\rho^{2}\right)}
\]
\[
\begin{aligned}
\gamma_{2}=\operatorname{Cov}\left[\varepsilon_{t}, \varepsilon_{t-2}\right] & =E\left[\left(\rho \varepsilon_{t-1}+u_{t}\right) \varepsilon_{t-2}\right] \\
& =\rho E\left[\varepsilon_{t-1} \varepsilon_{t-2}\right]+E\left[u_{t} \varepsilon_{t-2}\right] \\
& =\rho \operatorname{Cov}\left[\varepsilon_{t}, \varepsilon_{t-1}\right]=\rho \gamma_{1}
\end{aligned}
\]
\[
\gamma_{3}=\operatorname{Cov}\left[\varepsilon_{t}, \varepsilon_{t-3}\right]=E\left[\left(\rho \varepsilon_{t-1}+u_{t}\right) \varepsilon_{t-3}\right]
\]
\[
=\rho E\left[\varepsilon_{t-1} \varepsilon_{t-3}\right]+E\left[u_{t} \varepsilon_{t-3}\right]
\]
\[
=\rho \operatorname{Cov}\left[\varepsilon_{t}, \varepsilon_{t-2}\right]=\rho \gamma_{2}
\]
\[
=\rho^{2} \gamma_{1}=\frac{\rho^{3} \sigma_{u}^{2}}{\left(1-\rho^{2}\right)}
\]
:
\(\gamma_{l}=\operatorname{Cov}\left[\varepsilon_{t}, \varepsilon_{t-l}\right]=\rho^{l-1} \gamma_{1}\)
- If we define \(\gamma_{0}=\sigma_{\varepsilon}^{2}=\sigma_{u}^{2} /\left(1-\rho^{2}\right)\), then we generalize the autocovariance function, \(\gamma_{l}\) :
\[
\gamma_{l}=\rho^{l} \gamma_{0}
\]
- Now, we get ( \(\mathbf{A 3}^{\prime}\) ) \(\boldsymbol{\Sigma}=\sigma^{2} \boldsymbol{\Omega}\).
(A3')
\[
\boldsymbol{\sigma}^{2} \boldsymbol{\Omega}=\left(\frac{\sigma_{u}^{2}}{1-\rho^{2}}\right)\left[\begin{array}{ccccc}
1 & \rho & \rho^{2} & \cdots & \rho^{T-1} \\
\rho & 1 & \rho & \cdots & \rho^{T-2} \\
\rho^{2} & \rho & 1 & \cdots & \rho^{T-3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\rho^{T-1} & \rho^{T-2} & \rho^{T-3} & \cdots & 1
\end{array}\right]
\]
\[
\mathbf{\Omega}^{\mathbf{- 1} / \mathbf{2}}=\left[\begin{array}{ccccc}
\sqrt{1-\rho^{2}} & 0 & 0 & \ldots & 0 \\
-\rho & 1 & 0 & \ldots & 0 \\
0 & -\rho & 1 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & -\rho & 0
\end{array}\right]
\]

Step 2. With \(\mathbf{P}=\boldsymbol{\Omega}^{-1 / 2}\), we transform the data \((\mathbf{y} \& \mathbf{X})\) to do GLS:
\[
\begin{gathered}
\mathbf{P}=\mathbf{\Omega}^{\mathbf{- 1 / 2}}=\left[\begin{array}{ccccc}
\sqrt{1-\rho^{2}} & 0 & 0 & \ldots & 0 \\
-\rho & 1 & 0 & \ldots & 0 \\
0 & -\rho & 1 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & -\rho & 0
\end{array}\right] \\
\mathbf{y}^{*}=\mathbf{P} \boldsymbol{y}=\left(\begin{array}{c}
\left(\sqrt{1-\rho^{2}}\right) y_{1} \\
y_{2}-\rho y_{1} \\
y_{3}-\rho y_{2} \\
\ldots \\
y_{T}-\rho_{T-1}
\end{array}\right) \\
\boldsymbol{x}_{k}^{*}=\mathbf{P} \boldsymbol{x}_{k}=\left(\begin{array}{c}
\left(\sqrt{1-\rho^{2}}\right) x_{k 1} \\
x_{k 2}-\rho x_{k 1} \\
x_{k 3}-\rho x_{k 2} \\
\ldots \\
x_{T}-\rho x_{T-1}
\end{array}\right)
\end{gathered}
\]

Step 3. GLS is done with transformed data. In (A3') we assume \(\rho\) known. In practice, we need to estimate it.

\section*{GLS: The Autoregressive Transformation}

With AR models, sometimes it is easier to transform the data by taking pseudo differences.
- For the AR(1) model, we multiply the DGP by \(\rho\) and subtract it from it. That is,
\[
\begin{aligned}
& y_{t}=\boldsymbol{x}_{t}^{\prime} \boldsymbol{\beta}+\varepsilon_{t}, \quad \varepsilon_{\mathrm{t}}=\rho \varepsilon_{t-1}+u_{t} \\
& \rho y_{t-1}=\rho \boldsymbol{x}_{t-1}^{\prime} \boldsymbol{\beta}+\rho \varepsilon_{t-1} \\
& y_{t}-\rho y_{t-1}=\left(\boldsymbol{x}_{t}-\rho \boldsymbol{x}_{t-1}\right)^{\prime} \boldsymbol{\beta}+\left(\varepsilon_{t}-\rho \varepsilon_{t-1}\right) \\
& y_{t}^{*}=\boldsymbol{x}_{t}^{* \prime} \boldsymbol{\beta}+u_{t}
\end{aligned}
\]

Now, we have the errors, \(u_{t}\), which are uncorrelated. We can do OLS with pseudo differences.
Note: \(y_{t}^{*}=y_{t}-\rho y_{t-1} \& \boldsymbol{x}_{t}^{*}=\boldsymbol{x}_{t}-\rho \boldsymbol{x}_{t-1}\) are \(p\) seudo differences.

\section*{FGLS: Unknown \(\Omega\)}

The problem with GLS is that \(\Omega\) is unknown. For example, in the \(\operatorname{AR}(1)\) case, \(\rho\) is unknown.
Solution: Estimate \(\Omega . \quad \Rightarrow\) Feasible GLS (FGLS).
In general, there are two approaches for GLS
(1) Two-step, or Feasible estimation:- First, estimate \(\Omega\) first.
- Second, do GLS.

Similar logic to HAC procedures: We do not need to estimate \(\boldsymbol{\Omega}\), difficult with \(T\) observations. We estimate \((1 / T) \mathbf{X}^{\prime} \Omega^{-1} \mathbf{X}\).
-Nice asymptotic properties for FGLS estimator. Not longer BLUE
(2) ML estimation of \(\beta, \sigma^{2}\), and \(\Omega\) at the same time (joint estimation of all parameters). With some exceptions, rare in practice.

\section*{FGLS: Specification of \(\Omega\)}
- \(\Omega\) must be specified first.
- \(\boldsymbol{\Omega}\) is generally specified (modeled) in terms of a few parameters. Thus, \(\boldsymbol{\Omega}=\boldsymbol{\Omega}(\theta)\) for some small parameter vector \(\theta\). Then, we need to estimate \(\theta\).

\section*{Examples:}
(1) \(\operatorname{Var}\left[\varepsilon_{i} \mid \mathbf{X}\right]=\sigma^{2} f\left(\gamma^{\prime} \mathbf{z}_{\mathbf{i}}\right)\). Variance a function of \(\gamma\) and some variable \(\mathbf{z}_{\mathbf{i}}\) (say, market volatility, firm size, country dummy, etc). In general, \(f\) is an exponential to make sure the variance is positive.
(2) \(\varepsilon_{i}\) with \(\operatorname{AR}(1)\) process. We have already derived \(\sigma^{2} \Omega\) as a function of \(\rho\).

Technical note: To achieve full efficiency, we do not need an efficient estimate of the parameters in \(\Omega\), only a consistent one.

\section*{FGLS: Estimation - Steps}

Steps for FGLS:
Step 1. Estimate the model proposed in (A3'). Get \(\widehat{\sigma}_{i}^{2} \& \widehat{\sigma}_{i j}\).
Step 2. Find transformation matrix, \(\mathbf{P}\), using the estimated \(\widehat{\sigma}_{i}^{2} \& \widehat{\sigma}_{i j}\).
Step 3. Using \(\mathbf{P}\) from Step 2, transform model: \(\mathbf{X}^{*}=\mathbf{P X}\) and \(\boldsymbol{y}^{*}=\mathbf{P} \boldsymbol{y}\).
Step 4. Do FGLS, that is, OLS with \(\mathbf{X}^{*} \& \boldsymbol{y}^{*}\).
Example: In the pure heteroscedasticity case ( \(\mathbf{P}\) is diagonal):
1. Estimate the model proposed in ( \(\left.\mathbf{A 3}{ }^{\prime}\right)\). Get \(\widehat{\sigma}_{i}^{2}\).
2. Find transformation matrix, \(\mathbf{P}\), with \(i^{\text {th }}\) diagonal element: \(1 / \hat{\sigma}_{i}\)
3. Transform model: Each \(y_{i}\) and \(x_{i}\) is divided ("weighted") by \(\hat{\sigma}_{i}\).
4. Do FGLS, that is, OLS with transformed variables.

\section*{FGLS Estimation: Heteroscesdasticity}

Example: Last lecture, we found that \(\left(r_{m, t}-r_{f}\right)^{2} \&\left(S M B_{t}\right)^{2}\) are drivers of the heteroscedasticity in DIS returns: Suppose we assume:
(A3') \(\sigma_{t}^{2}=\gamma_{0}+\gamma_{1}\left(r_{m, t}-r_{f}\right)^{2}+\gamma_{3}\left(S M B_{t}\right)^{2}\)
- Steps for FGLS:
1. Use OLS squared residuals to estimate ( \(\mathbf{A 3}^{\prime}\) ):
fit_dis_ff3 \(<-\operatorname{lm}(\) dis_x \(\sim\) Mkt_RF + SMB + HML)
e_dis <- fit_dis_ff3\$residuals
e_dis2 \(<-\) e_dis \({ }^{\wedge} 2\)
fit_dis2 <- lm(e_dis2 ~ Mkt_RF2 + SMB2)
summary(fit_dis2)
var_dis2 <- fit_dis2\$fitted \# Estimated variance vector, with elements \(\widehat{\sigma}_{i}^{2}\).
2. Find transformation matrix, \(\mathbf{P}\), with \(i^{\text {th }}\) diagonal element: \(1 / \hat{\sigma}_{i}\)
w_fgls \(<-\) sqrt(var_dis2) \# 1/ \(\hat{\sigma}_{i}\)
3. Transform model: Each \(\mathrm{y}_{\mathrm{i}}\) and \(\mathrm{x}_{\mathrm{i}}\) is divided ("weighted") by \(\hat{\sigma}_{i}\).
y_fw <- dis_x/w_fgls \# transformed \(\boldsymbol{y}\)
\(\mathrm{xx} \_\mathrm{fw}<-\mathrm{cbind}\left(\overline{\mathrm{x} 0} 0, \mathrm{Mkt}\right.\) RF, SMB, HML)\(/ \mathrm{w} \_\mathrm{fgls} \quad\) \# transformed \(\mathbf{X}\)
4. Do GLS, that is, OLS with transformed variables.
fit_dis_fgls \(<-\operatorname{lm}\left(y \_f w \sim x x \_f w-1\right)\)
\(>\) summary(fit_dis_fgls)
Coefficients:
Estimate Std. Error t value \(\operatorname{Pr}(>|\mathrm{t}|)\)
xx_fw \(\quad-0.0030970 .002696-1.149 \quad 0.251\)
xx_fwMkt_RF \(1.208067 \quad 0.07334416 .471<2 \mathrm{e}-16\) ***
xx_fwSMB \(\quad-0.0437610 .105280-0.416 \quad 0.678\)
\(x\) x_fwHML \(0.125125 \quad 0.100853 \quad 1.241 \quad 0.215 \Rightarrow\) not longer significant at \(10 \%\).
---
Signif. codes: \(0{ }^{\prime * * * '} 0.001^{\prime * * \prime} 0.01^{\prime *} 0.05^{\prime} .{ }^{\prime} 0.1^{\prime}{ }^{\prime} 1\)
Residual standard error: 0.9998 on 566 degrees of freedom
Multiple R-squared: 0.3413, Adjusted R-squared: 0.3366
F-statistic: 73.31 on 4 and 566 DF, p-value: \(<2.2 \mathrm{e}-16\)
- Comparing OLS, GLS \& FGLS results:
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline & boLS & SE & \(\mathbf{b}_{\text {GLS }}\) & SE & \(\mathbf{b}_{\text {FGLS }}\) & SE \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Intercept & 0.00417 & 0.00279 & -0.00661 & 0.00159 & -0.00310 & 0.00270 \\
\hline Mkt_RF & 1.26056 & 0.06380 & \(\mathbf{1 . 5 8 8 0 6}\) & 0.33477 & \(\mathbf{1 . 2 0 8 0 7}\) & 0.07334 \\
\hline SMB & -0.02899 & 0.09461 & -0.20042 & 0.06750 & -0.04376 & 0.10528 \\
\hline HML & 0.17455 & 0.09444 & -0.04203 & 0.07282 & 0.12513 & 0.10085 \\
\hline
\end{tabular}
- Comments:
- The GLS estimates are quite different than OLS estimates (remember OLS is unbiased and consistent). Very likely the assumed functional form in (A3') was not a good one.
- The FGLS results are similar to the OLS, as expected, if model is OK. FGLS is likely a more precise estimator (HML is not longer significant at \(10 \%\) ). ब

\section*{FGLS Estimation: AR(1) Case - Cochrane-Orcutt}

In the \(\operatorname{AR}(1)\) case, it is easier to estimate the model in pseudo differences:
\[
\begin{gathered}
y_{t}^{*}=\mathbf{X}_{\mathrm{t}}^{*} \beta+u_{t} \\
y_{t}-\rho y_{t-1}=\left(\mathbf{X}_{\mathrm{t}}-\rho \mathbf{X}_{\mathrm{t}-1}\right) \beta+\varepsilon_{t}-\rho \varepsilon_{t-1} \\
\Rightarrow y_{t}=\rho y_{t-1}+\mathbf{X}_{\mathrm{t}}^{\prime} \beta-\mathbf{X}_{\mathrm{t}-1} \rho \beta+u_{t}
\end{gathered}
\]

We have a linear model, but it is nonlinear in parameters. OLS is not possible, but non-linear estimation is possible.

Before today's computer power, Cochrane-Orcutt's (1949) iterative procedure was an ingenious way to do this estimation.
- Steps for Cochrane-Orcutt:
(1) Do OLS in (A1) model: \(\boldsymbol{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon} . \quad \Rightarrow\) Get residuals, \(\boldsymbol{e}, \&\) RSS.
(2) Estimate \(\rho\) with a regression of \(\boldsymbol{e}_{t}\) against \(\boldsymbol{e}_{t-1} \Rightarrow \operatorname{Get} \hat{\rho}\) (the estimator of \(\rho\) ).
(3) FGLS Step. Use \(\hat{\rho}\) transform the model to get \(\boldsymbol{y}^{*}\) and \(\mathbf{X}^{*}\).

Do OLS with \(\boldsymbol{y}^{*}\) and \(\mathbf{X}^{*} \quad \Rightarrow\) get \(\mathbf{b}\) to estimate \(\beta\).
Get residuals, \(\boldsymbol{e}^{*}=\boldsymbol{y}-\mathbf{X} \mathbf{b}\), and new RSS. Go back to (1).
(4) Iterate until convergence, usually achieved when the difference in RSS of two consecutive iterations is lower than some tolerance level, say . 0001 . Then, stop when \(\mathrm{RSS}_{\mathrm{i}}-\mathrm{RSS}_{\mathrm{i}-1}<.0001\).

Example: Cochrane-Orcutt in R
\# C.O. function requires Y, X (with constant), OLS b.
c.o.proc <- function(Y,X,b_0,tol)
\{
T <- length(Y)
e <- Y - X\%*\%b_0
\# OLS residuals
rss \(<-\operatorname{sum}\left(\mathrm{e}^{\wedge} 2\right)\)
\# Initial RSS of model, RSS9
rss_1<- rss
\# RSS_1 will be used to reset RSS after each
iteration
```

d_rss = rss
e}2<- e[-1
e3<- e[-T]
ols_e0<- lm(e2~e3-1)
rho <- ols_e0$coeff[1]
 i<-1
while (d_rss > tol) {
rss <- rss_1 # RSS at iter (i-1)
 YY <- Y}[2:T] - rho * Y[1:(T-1)]
 XX <- X[2:T,] - rho * X[1:(T-1),]
ols_yx <- lm(YY ~ XX - 1)
b}<-\mathrm{ ols_yx$coef

b[1]<- b[1]/(1-rho)

el <- Y - X%*%b
e2 <- e1[-1]
e3<- e1[-T]
ols_e1 <- lm(e2~e3-1)
rho <- ols_e1$coeff[1]
rss_1<- sum(e1^2)
d_rss <- abs(rss_1 - rss)
i<-i+1
 }
result <-list()
result$Cochrane-Orc.Proc <- summary(ols_yx)
result\$rho.regression <- summary(ols_e1)

result\$Corrected.b_1<- b[1]

result\$Iterations <-i-1
return(result)
}

```
\# initialize d_rss: difference between \(\mathrm{RSS}_{\mathrm{i}} \& \mathrm{RSS}_{\mathrm{i}-1}\)
\# adjust sample size for \(e_{t}\)
\# adjust sample size for \(\mathrm{e}_{\mathrm{t}-1}\)
\# OLS to estimate rho
\# initial value for rho, \(\rho_{0}\)
\# tolerance of do loop. Stop when diff in RSS \(<\) tol
\# pseudo-diff Y
\# pseudo-diff X
\# adjust if constant included in X
\# updated OLS b at iteration i
\# If constant not pseudo-differenced remove tag \#
\# updated residuals at iteration i
\# adjust sample size for updated \(e_{t}\)
\# adjust sample size for updated e_t-1 (lagged et)
\# updated regression to value for rho at iteration i
\# updated value of rho at iteration i, \(\rho_{i}\)
\# updated value of RSS at iteration \(\mathrm{i}, \mathrm{RSS}_{\mathrm{i}}\)
\# diff in RSS ( \(\mathrm{RSS}_{\mathrm{i}}-\mathrm{RSS}_{\mathrm{i}-1}\) )

Example: In the model for Mexican interest rates (imx), we suspect an \(\operatorname{AR}(1)\) in the residuals:
\[
\begin{aligned}
& \mathrm{i}_{\mathrm{MX}, \mathrm{t}}=\beta_{0}+\beta_{1} \mathrm{i}_{\mathrm{US}, \mathrm{t}}+\beta_{2} \mathrm{e}_{\mathrm{t}}+\beta_{3} \mathrm{mx} \mathrm{I}_{\mathrm{t}}+\beta_{4} \mathrm{mx} \mathrm{y}_{\mathrm{t}}+\varepsilon_{\mathrm{t}} \\
& \varepsilon_{\mathrm{t}}=\rho \varepsilon_{t-1}+u_{t}
\end{aligned}
\]
- Cochrane-Orcutt estimation.
y \(<-\mathrm{mx}\) _i_1
T_mx <- length (mx_i_1)
\(x_{x}{ }^{1}<-\) cbind(us_i_1, e_mx, mx_I, mx_y)
\(\mathrm{x} 0<-\operatorname{matrix}\left(1, \mathrm{~T}_{-} \mathrm{mx}, 1\right)\)
\(\mathrm{X}<-\operatorname{cbind}\left(\mathrm{x} 0, \mathrm{xx} \_\mathrm{i}\right) \quad\) \# X matrix
fit_i \(<-\operatorname{lm}\left(m x \_i \_1 \sim u s \_i \_1+e_{-} m x+m x \_I+m x \_y\right)\)
b_i <-fit_i\$coefficients
\(>\) summary(fit_i)

Coefficients:
\begin{tabular}{lllll} 
& Estimate & Std. Error & \multicolumn{1}{l}{\(\operatorname{t~value} \operatorname{Pr}(>|t|)\)} \\
(Intercept) & 0.04022 & 0.01506 & 2.671 & \(0.008344^{* *}\) \\
us_i_1 & 0.85886 & 0.31211 & \(\mathbf{2 . 7 5 2}\) & \(0.00661 * *\) \\
e_mx & -0.01064 & 0.02130 & -0.499 & 0.61812 \\
mx_I & 3.34581 & 0.19439 & \(\mathbf{1 7 . 2 1 2}<2 \mathrm{e}-16 * * *\) \\
mx_y & -0.49851 & 0.73717 & -0.676 & 0.49985
\end{tabular}
\(>\) c.o.proc(y, X,b,.0001)
\$Cochrane.Orcutt.Proc
Call:
\(\operatorname{lm}\) (formula \(=\mathrm{YY} \sim \mathrm{XX}-1\) )
Residuals:
Min 1Q Median 3Q Max
-0.69251-0.02118-0.01099 0.005380 .49403
Coefficients:
Estimate Std. Error t value \(\operatorname{Pr}(>|t|)\)
\(\begin{array}{llllll}\mathrm{XX} & 0.16639 & 0.07289 & 2.283 & 0.0238 \text { * }\end{array}\)
XXus_i_1 \(1.23038 \quad 0.76520 \quad 1.608 \quad 0.1098 \Rightarrow\) not longer significant at \(5 \%\) level.
\(\begin{array}{lllll}\text { XXe mx } & -0.00535 & 0.01073 & -0.499 & 0.6187\end{array}\)
XXmx_I \(0.41608 \quad 0.27260 \quad \mathbf{1 . 5 2 6} \quad 0.1289 \quad \Rightarrow\) not longer significant at \(5 \%\) level.
\(\begin{array}{lllll}\text { XXmx_y } & -0.44990 & 0.53096 & -0.847 & 0.3981\end{array}\)
Signif. codes: \(0{ }^{\prime * * * ’} 0.001^{\prime * *} 0.01^{\prime *} 0.05^{\prime} .{ }^{\prime} 0.1^{\prime}{ }^{\prime} 1\)
Residual standard error: 0.09678 on 160 degrees of freedom
Multiple R-squared: 0.1082, Adjusted R-squared: 0.08038
F-statistic: 3.884 on 5 and 160 DF , p-value: 0.002381
\$rho
e3
0.8830857
\$Corrected.b_1
XX
0.1663884
\(\Rightarrow\) Constant corrected if X does not include a constant
\$Number.Iteractions
[1] \(10 \quad \Rightarrow\) algorithm converged in 10 iterations.
Conclusion: Quite high the autocorrelation in the residuals ( \(\rho=0.8830857\) ), which has a big effect on the results. Once we account for the autocorrelation in the residuals, U.S. interest rates and Mexican Inflation rates are not longer significant drivers of Mexican interest rates. The model needs to be reformulated. \(\mathbb{I}\)

\section*{GLS: General Remarks}

GLS is great (BLUE) if we know \(\boldsymbol{\Omega}\). Very rare situation.

It needs the specification of \(\Omega\)-i.e., the functional form of autocorrelation and heteroscedasticity.

If the specification is bad \(\quad \Rightarrow\) estimates are biased.
In general, GLS is used for larger samples, because more parameters need to be estimated.
Feasible GLS is not BLUE (unlike GLS); but, it is consistent and asymptotically more efficient than OLS.

We use GLS for inference and/or efficiency. OLS is still unbiased and consistent.
OLS and GLS estimates will be different due to sampling error. But, if they are very different, then it is likely that some other CLM assumption is violated.

\section*{Lecture 8 - Time Series}

\section*{Time Series: Introduction}

A time series \(y_{t}\) is a (stochastic) process observed in sequence over time,
\(t=1, \ldots, T \quad \Rightarrow \mathbf{Y}_{\mathrm{t}}=\left\{y_{1}, y_{2}, y_{3}, \ldots, y_{t}\right\}\).
Examples: IBM monthly stock prices from 1973:January to 2020:September (plot below); or USD/GBP daily exchange rates from February 15, 1923 to March 19, 1938.


R Note: There are different ways to do the above plot in R:
- Using plot.ts, creating a timeseries object in R:
ts_ibm <- ts(x_ibm,start=c(1973,1),frequency=12)
\# the function ts creates a timeseries object, start = starting year,
plot.ts(ts_ibm,xlab="Time",ylab="IBM price", main="Time Series: IBM Stock Price")
```

- Using R package ggplot2
library(ggplot2)
ggplot(data= SFX_da, aes(x = x_date1, y = x_ibm)) +
geom_line() +
labs(x = "Date",
y = "IBM price",
title = "Time Series: IBM ",
subtitle = "Monthly: 1973-2020")

```

\section*{Time Series: Introduction - Types}

Usually, time series models are separated into two categories:
- Univariate ( \(y_{t} \in R\), it is a scalar)

Example: We are interested in the behavior of IBM stock prices as function of its past.
\(\Rightarrow\) Primary model: Autoregressions (ARs).
- Multivariate ( \(y_{t} \in R^{m}\), it is a vector-valued)

Example: We are interested in the joint behavior of IBM stock and bond prices as function of their joint past.
\(\Rightarrow\) Primary model: Vector autoregressions (VARs). \(\uparrow\)

\section*{Time Series: Introduction - Dependence}

Given the sequential nature of \(\mathrm{Y}_{\mathrm{t}}\), we expect \(\mathrm{y}_{\mathrm{t}} \& \mathrm{y}_{\mathrm{t}-1}\) to be dependent. This is the main feature of time series: dependence. It creates statistical problems.

In classical statistics, we usually assume we observe several i.i.d. realizations of \(\mathrm{Y}_{\mathrm{t}}\). We use \(\bar{Y}\) to estimate the mean.

With several independent realizations we are able to sample over the entire probability space and obtain a "good" -i.e., consistent or close to the population mean- estimator of the mean.

But, if the samples are highly dependent, then it is likely that \(\mathrm{Y}_{\mathrm{t}}\) is concentrated over a small part of the probability space. Then, the sample mean will not converge to the mean as the sample size grows.

Technical note: With dependent observations, the classical results (based on LLN \& CLT) are not to valid. New assumptions and tools are needed: stationarity, ergodicity, CLT for martingale difference sequences (MDS CLT).

Roughly speaking, stationarity requires constant moments for \(\mathrm{Y}_{\mathrm{t}}\); ergodicity requires that the dependence is short-lived, eventually yt has only a small influence on \(\mathrm{y}_{\mathrm{t}+k}\), when \(k\) is relatively large.

The amount of dependence in \(\mathrm{Y}_{\mathrm{t}}\) determines the 'quality' of the estimator. There are several ways to measure the dependence. The most common measure: Covariance.
\[
\operatorname{Cov}\left(Y_{t}, Y_{t+k}\right)=E\left[\left(Y_{t}-\mu\right)\left(Y_{t+k}-\mu\right)\right]
\]

Note: When \(\mu=0\), then \(\operatorname{Cov}\left(Y t, Y_{t+k}\right)=E\left[Y_{t} Y_{t+k}\right]\)

\section*{Time Series: Introduction - Forecasting}

In a time series model, we describe how \(y_{t}\) depends on past \(y_{t}\) 's. That is, the information set is \(I_{\mathrm{t}}\) \(=\left\{y_{t-1}, y_{t-2}, y_{t-3}, \ldots.\right\}\)

The purpose of building a time series model: Forecasting.
We estimate time series models to forecast out-of-sample. For example, the l-step ahead forecast:
\[
\hat{\mathrm{y}}_{\mathrm{T}+1}=\mathrm{E}_{\mathrm{t}}\left[y_{t+l} \mid I_{t-1}\right]
\]

In the 1970s it was found that very simple time series models out-forecasted very sophisticated (big) economic models. This finding represented a big shock to the big multivariate models that were very popular then. It forced a re-evaluation of these big models.

\section*{Time Series: Introduction - White Noise}

In general, we assume the error term, \(\varepsilon\) t, is uncorrelated with everything, with mean 0 and constant variance, \(\sigma^{2}\). We call a process like this a white noise (WN) process.

We denote a WN process as
\[
\varepsilon_{t} \sim \mathrm{WN}\left(0, \sigma^{2}\right)
\]

The WN is a very simple example of a stochastic process. We think of a white noise process as the basic building block of all time series. It can be written as:
\[
\mathrm{z}_{t}=\sigma u_{t}, \quad u_{t} \sim \text { i.i.d }(0,1) \quad \Rightarrow \mathrm{z}_{t} \sim \mathrm{WN}\left(0, \sigma^{2}\right)
\]

The \(\mathrm{z}_{t}\) 's are random shocks, with no dependence over time, representing unpredictable events. It represents a model of news.

Technical note: There may be dependence in the higher order moments of \(\varepsilon_{t}\). For example, \(E\left[\varepsilon_{s}^{2} \varepsilon_{t}^{2}\right]=E\left[\varepsilon_{s}^{2}\right] * E\left[\varepsilon_{t}^{2}\right]\). If we assume \(\varepsilon_{t}\) is \(i . i . d\)., this dependence is excluded.

\section*{Time Series: Introduction - Conditionality}

We make a key distinction: Conditional vs Unconditional moments. In time series we model the conditional mean as a function of its past, for example in an AR(1) process, we have:
\[
y_{t}=\alpha+\beta y_{t-1}+\varepsilon_{t} .
\]

Then, the conditional mean forecast at time \(t\), conditioning on information at time \(I_{t-1}\), is:
\[
\mathrm{E}_{\mathrm{t}}\left[y_{t} \mid I_{t-1}\right]=\mathrm{E}_{\mathrm{t}}\left[y_{t}\right]=\alpha+\beta y_{t-1}
\]

Notice that the unconditional mean is given by:
\[
\mathrm{E}\left[y_{t}\right]=\alpha+\beta \mathrm{E}\left[y_{t-1}\right]=\alpha /(1-\beta)=\mathrm{constant}
\]

The conditional mean is time varying; the unconditional mean is not!
Key distinction: Conditional vs. Unconditional moments.

\section*{Time Series: Introduction - AR and MA models}

Two popular models for \(\mathrm{E}_{\mathrm{t}}\left[y_{t} \mid I_{t-1}\right]\) :
- An autoregressive (AR) process models \(\mathrm{E}_{\mathrm{t}}\left[y_{t} \mid I_{t-1}\right]\) with lagged dependent variables:
\[
\mathrm{E}_{\mathrm{t}}\left[y_{t} \mid I_{t-1}\right]=f\left(y_{t-1}, y_{t-2}, y_{t-3}, \ldots\right)
\]

Example: \(\operatorname{AR}(1)\) process, \(y_{t}=\alpha+\beta y_{t-1}+\varepsilon_{t}\). \|
- A moving average (MA) process models \(\mathrm{E}_{\mathrm{t}}\left[y_{t} \mid I_{t-1}\right]\) :with lagged errors, \(\varepsilon_{\mathrm{t}}\) :
\[
\mathrm{E}_{\mathrm{t}}\left[y_{t} \mid I_{t-1}\right]=f\left(\varepsilon_{t-1}, \varepsilon_{t-2}, \varepsilon_{t-3}, \ldots .\right)
\]

Example: MA(1) process, \(y_{t}=\mu+\theta_{1} \varepsilon_{t-1}+\varepsilon_{t}\). .
- There is a third model, ARMA, that combines lagged dependent variables and lagged errors.
- We want to select an appropriate time series model to forecast \(\mathrm{y}_{\mathrm{t}}\). In this class, we will use linear model, with choices: \(\operatorname{AR}(p), \operatorname{MA}(q)\) or \(\operatorname{ARMA}(p, q)\).
- Steps for forecasting:
(1) Identify the appropriate model. That is, determine p, q.
(2) Estimate the model.
(3) Test the model.
(4) Forecast.

\section*{Time Series: CLM Revisited \& New Assumptions}

With autocorrelated data, we get dependent observations. For example, with autocorrelated errors:
\[
\varepsilon_{t}=\rho \varepsilon_{t-1}+u_{t}, \quad . \quad \text { with } u_{t} \sim \mathrm{WN}\left(0, \sigma^{2}\right)
\]
the independence assumption (A2) is violated. The LLN and the CLT cannot be easily applied in this context. We need new tools.

We introduce the concepts of stationarity and ergodicity. The ergodic theorem will give us a counterpart to the LLN.

To get asymptotic distributions, we also need a CLT for dependent variables, using new technical concepts: mixing and stationarity. Or we can rely on a new CLT: The martingale difference sequence CLT.
- We will not cover these technical points in detail.

\section*{Time Series - Stationarity}

Consider the joint probability distribution of the collection of RVs:
\[
F\left(y_{t_{1}}, y_{t_{2}}, \ldots, y_{t_{T}}\right)=F\left(Y_{t_{1}} \leq y_{t_{1}}, Y_{t_{2}} \leq y_{t_{2}}, \ldots, Y_{t_{T}} \leq y_{t_{T}}\right)
\]

To do statistical analysis with dependent observations, we need some extra assumptions. We need some form of invariance on the structure of the time series.

If the distribution \(F\) is changing with every observation, estimation and inference become very difficult.

Stationarity is an invariant property: the statistical characteristics of the time series do not change over time.

There different definitions of stationarity, they differ in how strong is the invariance of the distribution over time.

We say that a process is stationary of
\(1^{s t}\) order if \(F\left(y_{t_{1}}\right)=F\left(y_{t_{1+k}}\right) \quad\) for any \(t_{1}, k\)
\(2^{\text {nd }}\) order if \(\quad F\left(y_{t_{1}}, y_{t_{2}}\right)=F\left(y_{t_{1+k}}, y_{t_{2+k}}\right) \quad\) for any \(t_{1}, t_{2}, k\)
\(N^{\text {th }}\)-order if \(\quad F\left(y_{t_{1}}, \ldots, y_{t_{T}}\right)=F\left(y_{t_{1+k}}, \ldots, y_{t_{T+k}}\right)\) for any \(t_{1}, \ldots, t_{T}, k\)
\(N^{\text {th }}\)-order stationarity is a strong assumption (\& difficult to verify in practice). \(2^{\text {nd }}\) order stationarity is weaker: only consider mean and covariance (easier to verify in practice).

Moments describe a distribution. We calculate moments as usual:
\[
\begin{aligned}
& \mathrm{E}\left[Y_{t}\right]=\mu \\
& \operatorname{Var}\left(Y_{t}\right)=\sigma^{2}=E\left[\left(Y_{t}-\mu\right)^{2}\right] \\
& \operatorname{Cov}\left(Y_{t_{1}}, Y_{t_{2}}\right)=E\left[\left(Y_{t_{1}}-\mu\right)\left(Y_{t_{2}}-\mu\right)\right]=\gamma\left(t_{1}-t_{2}\right)
\end{aligned}
\]

\section*{Time Series - Stationarity, Autocovariances \& Autocorrelations}
\(\operatorname{Cov}\left(Y_{t_{1}}, Y_{t_{2}}\right)=\gamma\left(t_{1}-t_{2}\right)\) is called the auto-covariance function.
Notes: \(\gamma\left(t_{1}-t_{2}\right)\) is a function of \(k=t_{1}-t_{2}\) \(\gamma(0)\) is the variance.

The autocovariance function is symmetric. That is,
\[
\gamma\left(t_{1}-t_{2}\right)=\operatorname{Cov}\left(Y_{t_{1}}, Y_{t_{2}}\right)=\operatorname{Cov}\left(Y_{t_{2}}, Y_{t_{1}}\right)=\gamma\left(t_{1}-t_{2}\right)
\]

Autocovariances are unit dependent. We will have different values if we calculate the autocovariance for IBM returns in \% terms or in decimal terms.

Remark: The autocovariance measures the (linear) dependence between the \(\mathrm{Y}_{\mathrm{t}}\) 's separated by \(k\) periods.

From the autocovariances, we derive the autocorrelations:
\[
\operatorname{Corr}\left(Y_{t_{1}}, Y_{t_{2}}\right)=\rho\left(Y_{t_{1}}, Y_{t_{2}}\right)=\frac{\gamma\left(t_{1}-t_{2}\right)}{\sigma_{t_{1}} \sigma_{t_{2}}}=\frac{\gamma\left(t_{1}-t_{2}\right)}{\gamma(0)}
\]
the last step takes assumes: \(\sigma_{t_{1}}=\sigma_{t_{2}}=\sqrt{\gamma(0)}\)
\(\operatorname{Corr}\left(Y_{t_{1}}, Y_{t_{2}}\right)=\rho\left(Y_{t_{1}}, Y_{t_{2}}\right)\) is called the auto-correlation function (ACF), -think of it as a function of \(k=t_{1}-t_{2}\). The ACF is also symmetric.

Unlike autocovoriances, autocorrelations are not unit dependent. It is easier to compare dependencies across different time series.

Stationarity requires all these moments to be independent of time. If the moments are time dependent, we say the series is non-stationary.

For strictly stationary process (constant moments), we need:
\[
\begin{aligned}
\mu_{t} & =\mu \\
\sigma_{t} & =\sigma
\end{aligned}
\]
because \(F\left(y_{t_{1}}\right)=F\left(y_{t_{1+k}}\right) \Rightarrow \quad \mu_{t_{1}}=\mu_{t_{1+k}}=\mu\)
\[
\sigma_{t_{1}}=\sigma_{t_{1+k}}=\sigma
\]

Then,
\[
\begin{aligned}
F\left(y_{t_{1}}, y_{t_{2}}\right)= & F\left(y_{t_{1+k}}, y_{t_{2+k}}\right) \Rightarrow \operatorname{Cov}\left(y_{t_{1}}, y_{t_{2}}\right)=\operatorname{Cov}\left(y_{t_{1+k}}, y_{t_{2+k}}\right) \\
& \Rightarrow \rho\left(t_{1}, t_{2}\right)=\rho\left(t_{1}+k, t_{2}+k\right)
\end{aligned}
\]

Let \(t_{1}=t-k \& \quad t_{2}=t\)
\[
\Rightarrow \rho\left(t_{1}, t_{2}\right)=\rho(t-k, t)=\rho(t, t-k)=\rho(k)=\rho_{k}
\]

The correlation between any two RVs depends on the time difference. Given the symmetry, we have \(\rho(k)=\rho(-k)\).

\section*{Time Series - Weak Stationarity}

A Covariance stationary process (or 2nd -order weakly stationary) has:
- constant mean
- constant variance
- covariance function depends on time difference between RVs.

That is, \(Z_{t}\) is covariance stationary if:
\[
\begin{aligned}
& \mathrm{E}\left(Z_{t}\right)=\text { constant }=\mu \\
& \operatorname{Var}\left(Z_{t}\right)=\operatorname{constant}=\sigma \\
& \operatorname{Cov}\left(Z_{t_{1}}, Z_{t_{2}}\right)=\mathrm{E}\left[\left(Z_{t_{1}}-\mu_{t_{1}}\right)\left(Z_{t_{2}}-\mu_{t_{2}}\right)\right]=\gamma\left(t_{1}-t_{2}\right)=f\left(t_{1}-t_{2}\right)
\end{aligned}
\]

Remark: Covariance stationarity is only concerned with the covariance of a process, only the mean, variance and covariance are time-invariant. \(N^{\text {th }}\)-order stationarity is stronger and assumes that the whole distribution is invariant over time.

Example: Stationary time series. Assume \(\varepsilon_{t} \sim \mathrm{WN}\left(0, \sigma^{2}\right)\).
\[
y_{t}=\phi y_{t-1}+\varepsilon_{t} \quad(\mathrm{AR}(1) \text { process })
\]

\section*{- Mean}

Taking expectations on both sides --or applying the expectations operator ( \(\mathrm{E}[])\).-- :
\[
\begin{aligned}
& \mathrm{E}\left[y_{t}\right]=\phi \mathrm{E}\left[y_{t-1}\right]+\mathrm{E}\left[\varepsilon_{t}\right] \\
& \mu=\phi \mu+0 \\
& \Rightarrow \mathrm{E}\left[y_{t}\right]=\mu=0 \quad \text { (assuming } \phi \neq 1 \text { ) }
\end{aligned}
\]
- Variance

Computing the variance --or applying the variance operator (Var[.])-- on both sides:
\[
\begin{aligned}
& \operatorname{Var}\left[y_{t}\right]=\gamma(0)=\phi^{2} \operatorname{Var}\left[y_{t-1}\right]+\operatorname{Var}\left[\varepsilon_{t}\right] \\
& \gamma(0)=\sigma^{2} /\left(1-\phi^{2}\right) \quad \quad(\text { assuming }|\phi|<1)
\end{aligned}
\]
- Autocovariances
\[
\begin{aligned}
\gamma(1)=\operatorname{Cov}\left[y_{t}, y_{t-1}\right] & =\mathrm{E}\left[y_{t} y_{t-1}\right]=\mathrm{E}\left[\left(\phi y_{t-1}+\varepsilon_{t}\right) y_{t-1}\right] \\
& =\mathrm{E}\left[\phi y_{t-1} y_{t-1}\right]+\mathrm{E}\left[\varepsilon_{t} y_{t-1}\right] \\
& =\phi \mathrm{E}\left[y_{t-1}^{2}\right]+0 \\
& =\phi \operatorname{Var}\left[y_{t-1}\right] \\
& =\phi \gamma(0) \\
& =\phi\left[\sigma^{2} /\left(1-\phi^{2}\right)\right] \\
\gamma(2)=\operatorname{Cov}\left[y_{t}, y_{t-2}\right] & \left.=\mathrm{E}\left[y_{t} y_{t-2}\right]\right]=\mathrm{E}\left[\left(\phi y_{t-1}+\varepsilon_{t}\right) y_{t-2}\right] \\
& =\mathrm{E}\left[\phi y_{t-1} y_{t-2}\right]+\mathrm{E}\left[\varepsilon_{t} y_{t-2}\right] \\
& =\phi \mathrm{E}\left[y_{t-1} y_{t-2}\right]+0 \\
& =\phi \mathrm{E}\left[y_{t-1} y_{t-2}\right] \\
& =\phi \operatorname{Cov}\left[y_{t-1}, y_{t-2}\right] \\
& =\phi \phi \gamma(0) \\
& =\phi^{2} \gamma(0) \\
& =\phi^{2}\left[\sigma^{2} /\left(1-\phi^{2}\right)\right]
\end{aligned}
\]
\[
\gamma(k)=\operatorname{Cov}\left[y_{t}, y_{t-k}\right]=\phi^{k} \gamma(0)
\]
\(\Rightarrow\) If \(|\phi|<1\), the process is covariance stationary: mean, variance and covariance are constant.
Note: From the autocovariance function, we can derive the auto-correlation function:
\[
\rho(k)=\frac{\gamma(k)}{\gamma(0)}=\frac{\phi^{k} \gamma(0)}{\gamma(0)}=\phi^{k} .
\]

Example: Non-stationary time series. Assume \(\varepsilon_{\mathrm{t}} \sim \mathrm{WN}\left(0, \sigma^{2}\right)\).
\[
y_{t}=\mu+y_{t-1}+\varepsilon_{t}
\]
(Random Walk with drift process)
Doing backward substitution:
\[
\begin{aligned}
y_{t} & =\mu+\left(\mu+y_{t-2}+\varepsilon_{t-1}\right)+\varepsilon_{t} \\
& =2 * \mu+y_{t-2}+\varepsilon_{t}+\varepsilon_{t-1} \\
& =2^{*} \mu+\left(\mu+y_{t-3}+\varepsilon_{t-2}\right)+\varepsilon_{t}+\varepsilon_{t-1} \\
& =3^{*} \mu+y_{t-3}+\varepsilon_{t}+\varepsilon_{t-1}+\varepsilon_{t-2} \\
\Rightarrow & y_{t}=\mu \mathrm{t}+\sum_{j=0}^{t-1} \varepsilon_{t-j}+\mathrm{y}_{0}
\end{aligned}
\]
- Mean \& Variance
\[
\begin{aligned}
& \mathrm{E}\left[y_{t}\right]=\mu \mathrm{t}+\mathrm{y}_{0} \\
& \operatorname{Var}\left[y_{t}\right]=\gamma(0)=\sum_{j=0}^{t-1} \sigma^{2}=\sigma^{2} \mathrm{t}
\end{aligned}
\]
\(\Rightarrow\) the process is non-stationary; that is, moments are time dependent. I

\section*{Stationary Series - Examples}

Examples: Assume \(\varepsilon_{t} \sim \mathrm{WN}\left(0, \sigma^{2}\right)\).
\[
\begin{array}{ll}
y_{t}=0.08+\varepsilon_{t}+0.4 \varepsilon_{t-1} & -\mathrm{MA}(1) \text { process } \\
y_{t}=0.13 y_{t-1}+\varepsilon_{t} & -\mathrm{AR}(1) \text { process }
\end{array}
\]


Changes in the JPY/USD exchange rate (ef,t is an example of a stationary series. व

\section*{Non-Stationary Series - Examples}

Examples: Assume \(\varepsilon_{t} \sim \mathrm{WN}\left(0, \sigma^{2}\right)\).
\(y_{t}=\mu t+\varphi_{1} y_{t-1}+\varphi_{2} y_{t-2}+\varepsilon_{t} \quad-\operatorname{AR}(2)\) with deterministic trend
\(y_{t}=\mu+y_{t-1}+\varepsilon_{t} \quad\) - Random Walk with drift


The level of the JPY/USD exchange rate \(\left(\mathrm{S}_{\mathrm{t}}\right)\) is an example of a non-stationary series. ब

\section*{Time Series - Stationarity: Remarks}

The main characteristic of time series is that observations are dependent.
To analyze time series, however, we need to assume that some features of the series are not changing. If we have non-stationary series (say, mean or variance are changing with each observation), it is not possible to make inferences.

Stationarity is an invariant property: the statistical characteristics of the time series do not vary over time.

If IBM is weak stationary, then, the returns of IBM may change month to month or year to year, but the average return and the variance in two equal lengths time intervals will be more or less the same.

In the long run, say 100-200 years, the stationarity assumption may not be realistic. After all, technological change has affected the return of IBM over the long run. But, in the short-run, stationarity seems likely to hold.

In general, time series analysis is done under the stationarity assumption.

\section*{Time Series - Ergodicity}

We want to estimate the mean of the process \(\left\{Z_{t}\right\}, \mu\left(Z_{t}\right)\). But, we need to distinguishing between ensemble average (with \(m\) observations) and time average (with \(T\) observations):
- Ensemble Average: \(\overline{\bar{z}}=\frac{\sum_{i=1}^{m} z_{i}}{m}\)
- Time Series Average: \(\bar{z}=\frac{\sum_{t=1}^{T} Z_{t}}{T}\)

Question: Which estimator is the most appropriate?
A: Ensemble Average. But, it is impossible to calculate. We only observe one \(Z_{t}\), with dependent observations.

Question: Under which circumstances we can use the time average (with only one realization of \(\left.\left\{Z_{t}\right\}\right)\) ? Is the time average an unbiased and consistent estimator of the mean?
The Ergodic Theorem gives us the answer.
- Intuition behind Ergodicity:

We go to a casino to play a game with \(20 \%\) return, but on average, one gambler out of 100 goes bankrupt. If 100 gamblers play the game, there is a \(99 \%\) chance of winning and getting a \(20 \%\) return. This is the ensemble scenario. Suppose that gambler 35 is the one that goes bankrupt. Gambler 36 is not affected by the bankruptcy of gamble 35.

Suppose now that instead of 100 gamblers you play the game 100 times. This is the time series scenario. You win \(20 \%\) every day until day 35 when you go bankrupt. There is no day 36 for you (dependence at work!).

Result: The probability of success from the group (ensemble scenario) does not apply to one person (time series scenario).

Ergodicity describes a situation where the ensemble scenario outcome applies to the time series scenario.
- With dependent observation, we cannot use the LLN used before. The ergodicity theorem plays the role of the LLN with dependent observations.

The formal definition of ergodicity is complex and is seldom used in time series analysis. One consequence of ergodicity is the ergodic theorem, which is extremely useful in time series.

It states that if \(Z_{t}\) is an ergodic stochastic process then
\[
\frac{1}{T} \sum_{t=1} g\left(Z_{t}\right) \xrightarrow{\text { a.s. }} \mathrm{E}[g(Z)]
\]
for any function \(\mathrm{g}(\).\() . And, for any time shift \mathrm{k}\)
\[
\left.\frac{1}{T} \sum_{t=1} g\left(Z_{t_{1}+k}, Z_{t_{2}+k}, \ldots, Z_{t_{\tau}+k}\right) \xrightarrow{a . s} \mathrm{E}\left[g\left(Z_{t_{1}}, Z_{t_{2}}, \ldots, Z_{t_{\tau}}\right)\right)\right]
\]
where a.s. means almost sure convergence, a strong form of convergence.
Definition: A covariance-stationary process is ergodic for the mean if
\[
\bar{Z} \xrightarrow{p} \mathrm{E}\left[\mathrm{Z}_{\mathrm{t}}\right]=\mu
\]

This result needs the variance of \(\bar{z}\) to collapse to 0 . It can be shown that the \(\operatorname{var}[\bar{z}]\) can be written as a function of the autocorrelations, \(\rho_{k}\) :
\[
\begin{aligned}
\operatorname{var}[\bar{z}] & =\operatorname{var}\left[\left(z_{1}+z_{2}+\cdots+z_{T}\right) / T\right] \\
& =\left\{\operatorname{var}\left[z_{1}\right]+\operatorname{var}\left[z_{2}\right]+\cdots+\operatorname{var}\left[z_{T}\right]\right. \\
& +2 \operatorname{cov}\left[z_{1}, z_{2}\right]+2 \operatorname{cov}\left[z_{1}, z_{3}\right]+\ldots+2 \operatorname{cov}\left[z_{1}, z_{T}\right] \\
& +2 \operatorname{cov}\left[z_{2}, z_{3}\right]+2 \operatorname{cov}\left[z_{2}, z_{4}\right]+\ldots+2 \operatorname{cov}\left[z_{2}, z_{T}\right] \\
& +2 \operatorname{cov}\left[z_{3}, z_{4}\right]+2 \operatorname{cov}\left[z_{3}, z_{5}\right]+\ldots+2 \operatorname{cov}\left[z_{3}, z_{T}\right] \\
& \ldots \\
& \left.+2 \operatorname{cov}\left[z_{T-1}, z_{T}\right]\right\} / T^{2} \\
& =\frac{\gamma_{0}}{T^{2}}\left\{T \rho_{0}+2(T-1) \rho_{1}+2(T-2) \rho_{2}+\ldots+2 \rho_{T-1}\right\} \\
& =\frac{\gamma_{0}}{T^{2}}\left\{T \rho_{0}+2 \sum_{k=1}^{T-1}(T-k) \rho_{k}\right\}
\end{aligned}
\]

Recalling that \(\rho_{k}=\rho_{-k}\), then
\[
\begin{aligned}
\operatorname{var}[\bar{Z}] & =\frac{\gamma_{0}}{T^{2}} \sum_{k=-(T-1)}^{T-1}(T-|k|) \rho_{k} \\
& =\frac{\gamma_{0}}{T} \sum_{k=-(T-1)}^{T-1}\left(1-\frac{|k|}{T}\right) \rho_{k}
\end{aligned}
\]

Theorem: A sufficient condition for ergodicity for the mean is that the autocorrelations \(\rho_{k}\) between two observations, say \(\left(y_{t_{i}}, y_{t_{j}}\right), \rho\left(t_{i}, t_{j}\right)=\rho_{t_{i}-t_{j}}\), go to zero as \(t_{i} \& t_{j}\) grow further apart.

Condition for ergodicity: \(\quad \rho_{k} \rightarrow 0\), as \(k \rightarrow \infty\)

\section*{Time Series - Lag Operator}

Define the operator \(L\) as
\[
L^{k} z_{t}=z_{t-k} .
\]

It is usually called Lag operator. But it can produce lagged or forward variables (for negative values of \(k\) ). For example:
\[
L^{-3} z_{t}=z_{t+3} .
\]

Also note that if \(c\) is a constant \(\quad \Rightarrow L c=c\).
Sometimes the notation for \(L\) when working as a lag operator is \(B\) (backshift operator), and when working as a forward operator is \(F\).

Important application: Differencing
\[
\begin{aligned}
\Delta z_{t} & =(1-L) z_{t}=z_{t}-z_{t-1} \\
\Delta^{2} z_{t} & =(1-\mathrm{L})^{2} z_{t}=z_{t}-2 z_{t-1}+z_{t-2}
\end{aligned}
\]

\section*{Time Series - Useful Result: Geometric Series}

The function \(f(x)=(1-x)^{-1}\) can be written as an infinite geometric series (use a Maclaurin series around \(c=0\) ):
\[
f(x)=\frac{1}{1-x}=1+x+x^{2}+x^{3}+x^{4}+\ldots=\sum_{n=0}^{\infty} x^{n}
\]

If we multiply \(f(x)\) by a constant, \(a\) :
\[
\sum_{n=0}^{\infty} a x^{n}=\frac{a}{1-x} \rightarrow \quad \sum_{n=1}^{\infty} a x^{n}=a\left(\frac{1}{1-x}-1\right)
\]

Example: In Finance we have many applications of the above results.
- A stock price, \(P\), equals the discounted some of all futures dividends. Assume dividends are constant, \(d\), and the discount rate is \(r\). Then:
\[
P=\sum_{t=1}^{\infty} \frac{d}{(1+r)^{t}}=d\left(\frac{1}{1-\frac{1}{1+r}}-1\right)=d\left(\frac{1}{\frac{1+r-1}{1+r}}-1\right)=\frac{d}{r}
\]
where \(x=\frac{1}{1+r}\). \(\boldsymbol{\|}\)
We will use this geometric series result when, under certain conditions, we invert a lag polynomial (say, \(\theta(L)\) ) to convert an AR (MA) process into an infinite MA (AR) process.

Example: Suppose we have an MA(1) process:
\[
y_{t}=\mu+\theta_{1} \varepsilon_{t-1}+\varepsilon_{t}=\mu+\theta(L) \varepsilon_{t}
\]
with
\[
\theta(L)=\left(1+\theta_{1} L\right) \quad(\theta(L): \text { lag polynomial })
\]

Recall,
\[
f(x)=\frac{1}{1-x}=1+x+x^{2}+x^{3}+x^{4}+\ldots=\sum_{n=0}^{\infty} x^{n}
\]

Let \(x=-\theta_{1} L\). Then,
\[
\begin{aligned}
\theta(L)^{-1}= & \frac{1}{1-\left(-\theta_{1} \mathrm{~L}\right)}=1+\left(-\theta_{1} \mathrm{~L}\right)+\left(-\theta_{1} \mathrm{~L}\right)^{2}+\left(-\theta_{1} \mathrm{~L}\right)^{3}+\left(-\theta_{1} \mathrm{~L}\right)^{4}+\ldots \\
& =\sum_{n=0}^{\infty}\left(-\theta_{1} L\right)^{n}=1-\theta_{1} L+\theta_{1}^{2} L^{2}-\theta_{1}^{3} L^{3}+\theta_{1}{ }^{4} L^{4}+\cdots
\end{aligned}
\]

That is, we get an \(\operatorname{AR}(\infty)\), by multiplying both sides by \(\theta(L)^{-1}\) :
\[
\theta(L)^{-1} y_{t}=\theta(L)^{-1} \mu+\varepsilon_{t}=\mu^{*}+\varepsilon_{t}
\]

Or
\[
\theta(L)^{-1} y_{t}=y_{t}-\theta_{1} y_{t-1}+\theta_{1}^{2} y_{t-2}-\theta_{1}^{3} y_{t-3}+\theta_{1}^{4} y_{t-4}+\cdots=\mu^{*}+\varepsilon_{t}
\]

Solving for yt :
\[
y_{t}=\mu^{*}+\theta_{1} y_{t-1}-\theta_{1}^{2} y_{t-2}+\theta_{1}^{3} y_{t-3}-\theta_{1}^{4} y_{t-4}+\cdots+\varepsilon_{t} \cdot \boldsymbol{\|}
\]

\section*{Moving Average Process}

An MA process models \(\mathrm{E}\left[y_{t} \mid I_{t-1}\right]\) with lagged error terms. An MA \((q)\) model involves \(q\) lags. We keep the white noise assumption for \(\varepsilon_{\mathrm{t}}: \quad \varepsilon_{\mathrm{t}} \sim \mathrm{WN}\left(0, \sigma^{2}\right)\)

Example: A linear MA \((q)\) model:
\[
y_{t}=\mu+\theta_{1} \varepsilon_{t-1}+\theta_{2} \varepsilon_{t-2}+\ldots+\theta_{\mathrm{q}} \varepsilon_{t-q}+\varepsilon_{t}=\mu+\theta(L) \varepsilon_{t}
\]
where
\[
\theta(L)=1+\theta_{1} \mathrm{~L}+\theta_{2} \mathrm{~L}^{2}+\theta_{3} \mathrm{~L}^{3}+\ldots+\theta_{\mathrm{q}} \mathrm{~L}^{q}
\]

In time series, the constant does not affect the properties of AR and MA process. It is usually removed (think of the data analyze as demeaned). Thus, in this situation we say "without loss of generalization", we assume \(\mu=0\).

\section*{Moving Average Process - Stationarity}

To check if an \(\operatorname{MA}(q)\) process is stationary, we check the moments (assume \(\mu=0\) ).
\[
\begin{aligned}
& y_{t}=\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}+\theta_{2} \varepsilon_{t-2}+\ldots+\theta_{\mathrm{q}} \varepsilon_{t-q} \\
& y_{t-1}=\varepsilon_{t-1}+\theta_{1} \varepsilon_{t-2}+\theta_{2} \varepsilon_{t-3}+\ldots+\theta_{\mathrm{q}-1} \varepsilon_{t-q}+\theta_{\mathrm{q}} \varepsilon_{t-(q+1)}
\end{aligned}
\]
- Mean
\[
\mathrm{E}\left[y_{t}\right]=\mathrm{E}\left[\varepsilon_{t}\right]+\theta_{1} \mathrm{E}\left[\varepsilon_{t-1}\right]+\theta_{2} \mathrm{E}\left[\varepsilon_{t-2}\right]+\ldots+\theta_{\mathrm{q}} \mathrm{E}\left[\varepsilon_{t-q}\right]=0
\]
- Variance
\[
\begin{aligned}
\operatorname{Var}\left[y_{t}\right] & =\operatorname{Var}\left[\varepsilon_{t}\right]+\theta_{1}{ }^{2} \operatorname{Var}\left[\varepsilon_{t-1}\right]+\theta_{2}{ }^{2} \operatorname{Var}\left[\varepsilon_{t-2}\right]+\ldots+\theta_{\mathrm{q}}{ }^{2} \operatorname{Var}\left[\varepsilon_{t-q}\right] \\
& =\left(1+\theta_{1}{ }^{2}+\theta_{2}{ }^{2}+\ldots+\theta_{\mathrm{q}}{ }^{2}\right) \sigma^{2} .
\end{aligned}
\]

To get a positive variance, we require \(\left(1+\theta_{1}{ }^{2}+\theta_{2}^{2}+\ldots+\theta_{q}{ }^{2}\right)>0\).
- Autocovariances
\[
\begin{aligned}
& y_{t}=\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}+\theta_{2} \varepsilon_{t-2}+\theta_{3} \varepsilon_{t-3}+\ldots+\theta_{\mathrm{q}} \varepsilon_{t-q} \\
& \begin{aligned}
y_{t-1} & =\varepsilon_{t-1}+\theta_{1} \varepsilon_{t-2}+\theta_{2} \varepsilon_{t-3}+\ldots+\theta_{\mathrm{q}} \varepsilon_{t-q}+\theta_{\mathrm{q}} \varepsilon_{t-(q+1)} \\
\gamma(1) & =\operatorname{Cov}\left[y_{t}, y_{t-1}\right]=\mathrm{E}\left[y_{t} y_{t-1}\right] \\
& =\mathrm{E}\left[\left(\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}+\theta_{2} \varepsilon_{t-2}+\ldots+\theta_{\mathrm{q}} \varepsilon_{t-q}\right)^{*}\left(\varepsilon_{t-1}+\theta_{1} \varepsilon_{t-2}+\theta_{2} \varepsilon_{t-3}+\ldots+\theta_{\mathrm{q}} \varepsilon_{t-(q+1)}\right)\right] \\
& =\mathrm{E}\left[\varepsilon_{t} \varepsilon_{t-1}\right]+\theta_{1} \mathrm{E}\left[\varepsilon_{t} \varepsilon_{t-2}\right]+\theta_{2} \mathrm{E}\left[\varepsilon_{t} \varepsilon_{t-3}\right]+\ldots .
\end{aligned}
\end{aligned}
\]
\[
\begin{aligned}
& +\theta_{1} \mathrm{E}\left[\varepsilon_{t-1} \varepsilon_{t-1}\right]+\theta_{1}{ }^{2} \mathrm{E}\left[\varepsilon_{t-1} \varepsilon_{t-2}\right]+\theta_{1} \theta_{2} \mathrm{E}\left[\varepsilon_{t-1} \varepsilon_{t-3}\right]+\ldots \\
& +\theta_{2} \mathrm{E}\left[\varepsilon_{t-2} \varepsilon_{t-1}\right]+\theta_{2} \theta_{1} \mathrm{E}\left[\varepsilon_{t-2} \varepsilon_{t-2}\right]+\theta_{2} \theta_{1} \mathrm{E}\left[\varepsilon_{t-2} \varepsilon_{t-3}\right]+\ldots \\
& \ldots \\
& +\theta_{\mathrm{q}} \mathrm{E}\left[\varepsilon_{t-q} \varepsilon_{t-1}\right]+\theta_{\mathrm{q}} \theta_{1} \mathrm{E}\left[\varepsilon_{t-q} \varepsilon_{t-2}\right]+\ldots+\theta_{\mathrm{q}} \theta_{\mathrm{q}-1} \mathrm{E}\left[\varepsilon_{t-q} \varepsilon_{t-q}\right] \\
& +\theta_{\mathrm{q}}^{2} \mathrm{E}\left[\varepsilon_{t-q} \varepsilon_{t-(q+1)}\right] \\
& =\theta_{1} \sigma^{2}+\theta_{2} \theta_{1} \sigma^{2}+\theta_{3} \theta_{2} \sigma^{2}+\ldots+\theta_{\mathrm{q}} \theta_{\mathrm{q}-1} \sigma^{2}+0 \\
& \left.=\sigma^{2} \sum_{j=1}^{q} \theta_{\mathrm{j}} \theta_{\mathrm{j}-1} \quad \text { (where } \theta_{0}=1\right)
\end{aligned}
\]

We can also derive \(\gamma(1)\) without computing the expectation of the cross products of errors. It is easier to look at the sum of \(\mathrm{E}\left[\begin{array}{ll}y_{t} & \varepsilon_{\mathrm{t}-\mathrm{j}}\end{array}\right]\) 's:
\[
\begin{aligned}
\gamma(1) & =\mathrm{E}\left[y_{t} y_{t-1}\right] \\
& =\mathrm{E}\left[y_{t} *\left(\varepsilon_{t-1}+\theta_{1} \varepsilon_{t-2}+\theta_{2} \varepsilon_{t-3}+\ldots+\theta_{\mathrm{q}-1} \varepsilon_{t-q}+\theta_{\mathrm{q}} \varepsilon_{t-(q+1)}\right)\right] \\
& =\mathrm{E}\left[y_{t} \varepsilon_{t-1}\right]+\theta_{1} \mathrm{E}\left[y_{t} \varepsilon_{t-2}\right]+\theta_{2} \mathrm{E}\left[y_{t} \varepsilon_{t-3}\right]+\ldots+\theta_{\mathrm{q}-1} \mathrm{E}\left[y_{t} \quad \varepsilon_{t-q}\right]+\theta_{\mathrm{q}} \mathrm{E}\left[y_{t} \varepsilon_{t-\mathrm{q}-1}\right] \\
& =\theta_{1} \sigma^{2}+\theta_{2} \theta_{1} \sigma^{2}+\theta_{3} \theta_{2} \sigma^{2}+\ldots+\theta_{\mathrm{q}} \theta_{\mathrm{q}-1} \sigma^{2}+0 \\
& =\sigma^{2} \sum_{j=1}^{q} \theta_{\mathrm{j}} \theta_{\mathrm{j}-1} \quad \text { (where } \theta_{0}=1 \text { ) }
\end{aligned}
\]

We continue with the derivations of the \(\gamma(k)\) function. It is easier to derive it by rewriting \(y_{t} \&\) \(y_{t-2}\) :
\[
\begin{aligned}
& y_{t}=\varepsilon_{\mathrm{t}}+\theta_{1} \varepsilon_{t-1}+\theta_{2} \varepsilon_{t-2}+\theta_{3} \varepsilon_{t-3}+\ldots+\theta_{\mathrm{q}} \varepsilon_{t-q} \\
& y_{t-2}=\varepsilon_{t-2}+\theta_{1} \varepsilon_{t-3}+\theta_{2} \varepsilon_{t-4}+\theta_{3} \varepsilon_{t-5}+\ldots+\theta_{\mathrm{q}} \varepsilon_{t-(q+2)}
\end{aligned}
\]
\[
\begin{aligned}
\gamma(2) & =\operatorname{Cov}\left[y_{t}, y_{t-2}\right]=\mathrm{E}\left[\begin{array}{ll}
y_{t} & y_{t-2}
\end{array}\right] \\
& =\mathrm{E}\left[y_{t} \varepsilon_{t-2}\right]+\theta_{1} \mathrm{E}\left[y_{t} \varepsilon_{t-3}\right]+\theta_{2} \mathrm{E}\left[y_{t} \varepsilon_{t-4}\right]+\ldots+\theta_{\mathrm{q}} \mathrm{E}\left[y_{t} \varepsilon_{t-q-2}\right] \\
& =\theta_{2} \sigma^{2}+\theta_{3} \theta_{1} \sigma^{2}+\theta_{4} \theta_{2} \sigma^{2}+\ldots+\theta_{\mathrm{q}} \theta_{\mathrm{q}-2} \sigma^{2}+0 \\
& =\sigma^{2} \sum_{j=2}^{q} \theta_{\mathrm{j}} \theta_{\mathrm{j}-2} \quad \text { (where } \theta_{0}=1 \text { ) }
\end{aligned}
\]
!
\[
\begin{aligned}
\gamma(q)= & \left.\mathrm{E}\left[y_{t} y_{t-q}\right]\right]= \\
& =\mathrm{E}\left[\varepsilon_{t} y_{t-q}\right]+\theta_{1} \mathrm{E}\left[\varepsilon_{t-1} y_{t-q}\right]+\theta_{2} \mathrm{E}\left[\varepsilon_{t-2} y_{t-q}\right]+\ldots+\theta_{\mathrm{q}} \mathrm{E}\left[\varepsilon_{t-q} y_{t-q}\right] \\
& =\theta_{\mathrm{q}} \sigma^{2} \quad \\
& \left.=\sigma^{2} \sum_{j=q}^{q} \theta_{\mathrm{j}} \theta_{\mathrm{j}-\mathrm{q}} \quad \quad \text { (where } \theta_{0}=1\right)
\end{aligned}
\]

In general, for the \(k\) autocovariance:
\[
\begin{array}{ll}
\gamma(k)=\sigma^{2} \sum_{j=k}^{q} \theta_{\mathrm{j}} \theta_{\mathrm{j}-k} & \text { for }|k| \leq q \\
\gamma(k)=0 & \text { for }|k|>q
\end{array}
\]

Remark: After lag \(q\), the autocovariances are 0 .

\section*{- Autocorrelations}

From the autocovariances, we define the autocorrelations, by dividing the autocorrelations by \(\gamma(0)\) :
\[
\rho(q)=\frac{\sigma^{2} \sum_{j=q}^{q} \theta_{i j} \theta_{j-q}}{\left(1+\theta_{1}{ }^{2}+\theta_{2}{ }^{2}+\ldots .+\theta_{q}{ }^{2}\right) \sigma^{2}}=\frac{\sum_{j=q}^{q} \theta_{j} \theta_{j-q}}{\left(1+\theta_{1}{ }^{2}+\theta_{2}{ }^{2}+\ldots+\theta_{q}{ }^{2}\right)} \quad\left(\theta_{0}=1\right)
\]

In general, for the \(k\) autocorrelation function (ACF):
\[
\begin{array}{ll}
\rho(k)=\frac{\sum_{j=q}^{q} \theta_{j} \theta_{j-q}}{\left(1+\theta_{1}{ }^{2}+\theta_{2}{ }^{2}+\ldots+\theta_{q}^{2}\right)} & \text { for }|k| \leq q \\
\rho(k)=0 & \text { for }|k|>q
\end{array}
\]

Remark: After lag \(q\), the ACF is 0 .
- It can be shown that for \(\varepsilon_{t}\) with same distribution (say, normal) the ACF are non-unique. For example, for the MA(1) processes:
\[
\begin{array}{ll}
y_{t}=\varepsilon_{t}+0.5 \varepsilon_{t-1} & \Rightarrow \rho(1)=\theta_{1} /\left(1+\theta_{1}^{2}\right)=0.4 \\
y_{t}=\varepsilon_{t}+2 \varepsilon_{t-1} & \Rightarrow \rho(1)=\theta_{1} /\left(1+\theta_{1}^{2}\right)=0.4
\end{array}
\]
- It is easy to verify that the sums \(\sum_{j=k}^{q} \theta_{\mathrm{j}} \theta_{\mathrm{j}-\mathrm{k}}\) are finite. Then, mean, variance and covariance are constant.
\[
\Rightarrow \mathrm{MA}(q) \text { is always stationary. }
\]

\section*{Moving Average Process - Invertibility}

As mentioned above, it is possible that different time-series processes produce the same ACF.
Example: Two MA(1) produce the same \(\gamma(k)\) :
\[
\begin{array}{ll}
y_{t}=\varepsilon_{t}+.2 \varepsilon_{t-1}, & \varepsilon_{t} \sim \text { i.i.d. } \mathrm{N}(0,25) \\
z_{t}=v_{t}+5 \mathrm{v}_{t-1}, & v_{t} \sim \text { i.i.d. } \mathrm{N}(0,1)
\end{array}
\]

We only observe the time series, \(y_{t}\) or \(z_{t}\), and not the noise, \(\varepsilon_{t}\) or \(v_{t}\), thus, we cannot distinguish between the models. Thus, we select only one of them. Which one? We select the model with an \(\mathrm{AR}(\infty)\) representation.

Assuming \(\theta(L) \neq 0\), we can invert \(\theta(L)\). Then, by inverting \(\theta(L)\), an MA \((q)\) process generates an AR process:
\[
y_{t}=\mu+\theta(L) \varepsilon_{t} \quad \Rightarrow \theta(L)^{-1} y_{t}=\Pi(L) y_{t}=\mu^{*}+\varepsilon_{t}
\]

Then, we have an infinite sum polynomial on \(\theta L\). (Recall the geometric series result.) That is, we convert an \(\operatorname{MA}(q)\) into an \(\operatorname{AR}(\infty)\) :
\[
\sum_{j=0}^{\infty} \pi_{j}(L) y_{t}=\mu^{*}+\varepsilon_{t}
\]

We need to make sure that \(\Pi(L)=\theta(L)^{-1}\) is defined: We require \(\theta(L) \neq 0\). When this condition is met, we can write \(\varepsilon_{\mathrm{t}}\) as a causal function of \(\mathrm{y}_{\mathrm{t}}\). We say the MA is invertible. For this to hold, we require:
\[
\sum_{j=0}^{\infty}\left|\pi_{j}(L)\right|<\infty
\]

Technical note: An invertible \(\mathrm{MA}(q)\) is typically required to have roots of the lag polynomial equation \(\theta(z)=0\) greater than one in absolute value ("outside the unit circle"). In the MA(1) case, we require \(\left|\theta_{1}\right|<1\).

In the previous example, we select the model with \(\theta_{1}=.20\).

\section*{Moving Average Process - MA(1)}

Example: \(\quad y_{t}=\theta_{1} \varepsilon_{t-1}+\varepsilon_{t}=\mu+\theta(L) \varepsilon_{t}, \quad\) with \(\theta(L)=\left(1+\theta_{1} L\right)\)
- Moments
\[
\begin{aligned}
& \mathrm{E}\left[y_{t}\right]=0 \\
& \operatorname{Var}\left[y_{t}\right]=\gamma(0)=\sigma^{2}+\theta_{1}{ }^{2} \sigma^{2}=\sigma^{2}\left(1+\theta_{1}{ }^{2}\right) \\
& \operatorname{Cov}\left[y_{t}, y_{t-1}\right]=\gamma(1)=\mathrm{E}\left[y_{t} y_{t-1}\right] \\
& =\mathrm{E}\left[\left(\theta_{1} \varepsilon_{t-1}+\varepsilon_{t}\right) *\left(\theta_{1} \varepsilon_{t-2}+\varepsilon_{t-1}\right)\right] \\
& =\theta_{1} \sigma^{2} \\
& \operatorname{Cov}\left[y_{t}, y_{t-2}\right]=\gamma(2) \mathrm{E}\left[y_{t} y_{t-2}\right] \\
& =\mathrm{E}\left[\left(\theta_{1} \varepsilon_{t-1}+\varepsilon_{t}\right) *\left(\theta_{1} \varepsilon_{t-3}+\varepsilon_{t-2}\right)\right] \\
& =0 \\
& \text { : } \\
& \left.\left.\left.\gamma(k)=\mathrm{E}\left[y_{t} y_{t-k}\right]=\mathrm{E}\left[\left(\theta_{1} \varepsilon_{t-1}+\varepsilon_{t}\right)\right) *\left(\theta_{1} \varepsilon_{t-(k+1)}+\varepsilon_{t-k}\right)\right]\right)\right]=0 \quad(\text { for } k>1)
\end{aligned}
\]

That is, for \(|k|>1, \quad \gamma(k)=0\).
To get the ACF, we divide the autocovariances by \(\gamma(0)\). Then, the autocorrelation function (ACF):
\[
\rho(1)=\gamma(1) / \gamma(0)=\theta_{1} \sigma^{2} / \sigma^{2}\left(1+\theta_{1}^{2}\right)=\theta_{1} /\left(1+\theta_{1}^{2}\right)
\]
:
\[
\rho(k)=\gamma(k) / \gamma(0)=0 \quad(\text { for } k>1)
\]

Remark: The autocovariance function is zero after lag 1. Similarly, the ACF is also zero after lag 1.

Note that \(|\rho(1)| \leq 0.5\).
When \(\theta_{1}=0.5 \quad \Rightarrow \rho(1)=0.4\).
\(\theta_{1}=-0.9 \quad \Rightarrow \rho(1)=-0.497238\).
\(\theta_{1}=-2 \quad \Rightarrow \rho(1)=-0.4 \quad\) (same \(\rho(1)\) for \(\left.\theta_{1} \& 1 / \theta_{1}\right)\)

\section*{Moving Average Process - MA(1): Simulations}

We simulate and plot three MA(1) processes, with standard normal \(\varepsilon_{t}\)-i.e., \(\sigma=1\) :
\[
\begin{aligned}
& y_{t}=\varepsilon_{t}+0.5 \varepsilon_{t-1} \\
& y_{t}=\varepsilon_{t}-0.9 \varepsilon_{t-1} \\
& y_{t}=\varepsilon_{t}-2 \varepsilon_{t-1}
\end{aligned}
\]

R Note: We use the arima.sim function to simulate the behavior of different ARIMA models (or ARMA, by setting the orden of Integration (I) equal to 0 ). Below we plot differen MA(1) process. On the first panel, we use the script below to plot \(y_{t}=\varepsilon_{t}+\mathbf{0 . 5} \varepsilon_{t-1}\) with 100 simulations. The other panels are straightforward to get.
\(>\operatorname{plot}(\operatorname{arima} \cdot \operatorname{sim}(\operatorname{list}(\operatorname{order}=\mathrm{c}(0,0,1), \mathrm{ma}=0.5), \mathrm{n}=100), \mathrm{ylab}=" \mathrm{ACF} "\),
main=(expression(MA(1)~~~theta==+.5)))


Note: The process \(\theta_{1}>0\) is smoother than the ones with \(\theta_{1}<0\).
Below, we compute and plot the ACF for the 3 simulated process, using the \(\operatorname{acf} \mathrm{R}\) function.
1)
\[
y_{t}=\varepsilon_{t}+0.5 \varepsilon_{t-1}
\]
sim_ma1_5 <- arima.sim(list(order=c(0,0,1), ma=0.5), \(\mathrm{n}=200\) )
acf_ma1_5 <- acf(sim_ma1_5, main=(expression(MA(1)~~~theta==+.5)))
\(>\) acf_ma1_5
Autocorrelations of series 'sim_ma1_6', by lag
\begin{tabular}{llllllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13
\end{tabular}
\(1.000 \quad 0.4380 .069 \quad 0.0140 .103 \quad 0.1730 .107 \quad 0.015-0.080-0.0540 .011-0.006\)
\(\begin{array}{llllllllll}14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23\end{array}\)
\(-0.094-0.147-0.129-0.082-0.150-0.196-0.251-0.235-0.021 \quad 0.110\)

2)
\[
y_{t}=\varepsilon_{t}-0.9 \varepsilon_{t-1}
\]
sim_mal_9<- arima.sim(list(order \(=c(0,0,1)\), ma=-0.9), \(n=200)\)
acf_mal_9<- acf(sim_ma1_5, main=(expression(MA(1)~~~theta==-0.9))) \(>\) acf_mal_9
Autocorrelations of series 'sim_ma1_9', by lag
\(\begin{array}{llllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13\end{array}\)
\(\begin{array}{lllllllllllllllll}1.000 & -0.584 & 0.093 & 0.061 & -0.132 & 0.147 & -0.181 & 0.122 & -0.013 & -0.023 & 0.014 & -0.012 & 0.092 & -0.199\end{array}\)
\(\begin{array}{llllllllll}14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23\end{array}\)
\(\begin{array}{lllllllllllllllllll}0.193 & -0.155 & 0.143 & -0.107 & 0.014 & 0.174 & -0.244 & 0.196 & -0.154 & 0.105\end{array}\)

3) \(\quad y_{t}=\varepsilon_{t}-2 \varepsilon_{t-1}\)
sim_mal_2 <- arima.sim(list(order=c(0,0,1), ma=-2), \(\mathrm{n}=200)\)
acf_ma1_2 <- acf(sim_ma1_2, main=(expression(MA(1)~~~theta==-2)))
> acf_ma1_2
Autocorrelations of series 'sim_ma1_2', by lag
\(\begin{array}{llllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13\end{array}\)
\(1.000-0.524 \quad 0.150-0.064 \quad 0.006-0.0140 .022-0.070 \quad 0.068-0.015-0.002 \quad 0.054-0.1210 .055\)
\(\begin{array}{llllllllll}14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23\end{array}\)
\(-0.029 \quad 0.026-0.0540 .121-0.156 \quad 0.106-0.009 \quad 0.037-0.080 \quad 0.104\)

- Invertibility: If \(\left|\theta_{1}\right|<1\), we can write \(\left(1+\theta_{1} L\right)^{-1} y_{t}+\mu^{*}=\varepsilon_{\mathrm{t}}\)

Or expanding
\(\left(1-\theta_{1} L+\theta_{1}{ }^{2} L^{2}+\ldots+\theta_{1}{ }^{j} L^{j}+\ldots\right) y_{t}+\mu^{*}=\mu^{*}+\sum_{i=1}^{\infty} \pi_{i}(L) y_{t}=\varepsilon_{t}\)
That is, \(\pi_{\mathrm{i}}=\left(-\theta_{1}\right)^{i}\).
The simulated process with \(\theta_{1}=-2\) is non-invertible, the infinite sum of \(\pi_{i}\) would explode. We would select the \(\mathrm{MA}(1)\) with \(\theta_{1}=-.5\).

\section*{Moving Average Process - MA(2)}

Example: \(\quad y_{t}=\mu+\theta_{2} \varepsilon_{\mathrm{t}-2}+\theta_{1} \varepsilon_{\mathrm{t}-1}+\varepsilon_{\mathrm{t}}=\mu+\theta(L) \varepsilon_{\mathrm{t}}\),
with
\[
\theta(L)=\left(1+\theta_{1} L+\theta_{2} L^{2}\right)
\]

\section*{- Moments}
\[
\begin{aligned}
& E\left(Y_{t}\right)=\mu \\
& \gamma_{k}=\left\{\begin{array}{rr}
\sigma^{2}\left(1+\theta_{1}^{2}+\theta_{2}^{2}\right), & k=0 \\
-\theta_{1} \sigma^{2}\left(1-\theta_{2}^{2}\right), & |k|=1 \\
-\theta_{2} \sigma^{2}, & |k|=2 \\
0, & |k|>2
\end{array}\right.
\end{aligned}
\]

Remark: The autocovariance function is zero after lag 2. Similarly, the ACF is also zero after lag 2.
- Invertibility: The roots of \(\lambda^{2}-\theta_{1} \lambda-\theta_{2}=0\) all lie inside the unit circle. It can be shown the invertibility condition for an MA(2) process is:
\[
\begin{aligned}
& \theta_{1}+\theta_{2}<1 \\
& \theta_{1}-\theta_{2}<1 \\
& -1<\theta_{2}<1 .
\end{aligned}
\]

\section*{Moving Average Process - Estimation}

MA processes are more complicated to estimate. In particular, there are nonlinearities. Consider an MA(1):
\[
y_{t}=\theta \varepsilon_{t-1}+\varepsilon_{t}, \quad \varepsilon_{t} \sim \mathrm{WN} .
\]

We cannot do OLS, since we do not observe \(\varepsilon_{t-1}\). But, based on the ACF, we can estimate \(\theta\).
- The auto-correlation is \(\rho_{1}=\theta /\left(1+\theta^{2}\right)\). Then, we can use the method of moments (MM), which sets the theoretical moments equal to the sample moments and, then, solve for parameters of interest. In the MA(1) case, the theoretical formula for \(\rho_{1}\) is:
\[
\rho_{1}=\theta /\left(1+\theta^{2}\right) .
\]

Then, we use the estimated \(\rho_{1}, r_{1}\), to estimate \(\theta\) :
\[
r_{1}=\frac{\widehat{\theta}}{\left(1+\hat{\theta}^{2}\right)} \Rightarrow \hat{\theta}=\frac{1 \pm \sqrt{1-4 r_{1}^{2}}}{2 r_{1}}
\]

A nonlinear solution and difficult to solve.
- Alternatively, if \(|\theta|<1\), we can invert the MA(1) process. Then, based on the AR representation, we can try finding \(a \in(-1 ; 1)\),
\[
\varepsilon_{\mathrm{t}}(a)=y_{t}+a y_{t-1}+a^{2} y_{t-2}+\ldots
\]
and look (numerically) for the least-square estimator
\[
\hat{\theta}=\arg _{a} \min \left\{S_{T}(a)=\sum_{t=1}^{T} \varepsilon_{t}^{2}(a)\right\}
\]

\section*{The Wold Decomposition}

Theorem - Wold (1938).
Any covariance stationary \(\left\{\mathrm{y}_{\mathrm{t}}\right\}\) has infinite order, moving-average representation:
\[
y_{t}=S_{t}+\kappa_{t}
\]
where
\(\kappa_{t}\) is a deterministic term-i.e., completely predictable. For example, \(\kappa_{t}=\mu\) or a linear combination of past (known) values of \(\kappa_{t}\).
\(S_{t}=\sum_{j=0}^{\infty} \psi_{j} \varepsilon_{t-j} \quad\left(=\psi(L) \varepsilon_{t}\right.\), with \(\psi(L)=\) infinite lag polynomial \()\)
\(\sum_{j=0}^{\infty} \psi_{j}^{2}<\infty \quad\) (assumption for the stability of polynomial, "square summability")
\(\psi_{j}\) only depend on j (weights of innovations are not time dependent)
\(\psi_{0}=1 \quad\) (a convenient assumption)
\(\varepsilon_{t} \sim \mathrm{WN}\left(0, \sigma^{2}\right) \quad\left(\varepsilon_{t}\right.\) independent and uncorrelated with \(\left.S_{t}\right)\)
Thus, yt is a linear combination of innovations over time plus a deterministic part.
- A stationary process can be decomposed into a sum of two parts, one represented as an MA( \(\infty\) ) and the other a deterministic "trend."

Example: Let \(\mathrm{x}_{\mathrm{t}}=\mathrm{y}_{\mathrm{t}}-\kappa_{t} .\left(\mathrm{x}_{\mathrm{t}}=\mathrm{MA}(\infty)\right.\) part \()\) Then, check moments:
\[
\begin{aligned}
& E\left[x_{t}\right]=E\left[y_{t}-\kappa_{t}\right]=\sum_{j=0}^{\infty} \psi_{j} E\left[\varepsilon_{t-j}\right]=0 . \\
& E\left[x_{t}^{2}\right]=\sum_{j=0}^{\infty} \psi_{j}^{2} E\left[\varepsilon_{t-j}^{2}\right]=\sigma^{2} \sum_{j=0}^{\infty} \psi_{j}^{2}<\infty . \\
& E\left[x_{t}, x_{t-j}\right]=E\left[\left(\varepsilon_{t}+\psi_{1} \varepsilon_{t-1}+\psi_{2} \varepsilon_{t-2}+\ldots\right)\left(\varepsilon_{t-j}+\psi_{1} \varepsilon_{t-j-1}+\psi_{2} \varepsilon_{t-j-2}+\ldots\right)\right. \\
& \quad=\sigma^{2}\left(\psi_{j}+\psi_{1} \psi_{j+1}+\psi_{2} \psi_{j+2}+\ldots\right)=\sigma^{2} \sum_{k=0}^{\infty} \psi_{k} \psi_{k+2}
\end{aligned}
\]
\(X_{t}\) is a covariance stationary process. I
Remark: This old theorem is the backbone of time series analysis. We will approximate the Wold infinite lag polynomial \(\psi(L)\) with a ratio of two finite lag polynomials. This approximation is the basis of ARMA modeling.

\section*{Autoregressive (AR) Process}

We model the conditional expectation of \(y_{t}, \mathrm{E}\left[y_{t} \mid I_{\mathrm{t}-1}\right]\), as a function of its past history. We assume \(\varepsilon_{t}\) follows a \(\mathrm{WN}\left(0, \sigma^{2}\right)\).

The most common models are AR models. An AR(1) model involves a single lag, while an \(\mathrm{AR}(p)\) model involves \(p\) lags. Then, the \(\operatorname{AR}(p)\) process is given by:
\[
y_{t}=\mu+\phi_{1} y_{t-1}+\phi_{2} y_{t-2}+\ldots+\phi_{\mathrm{p}} y_{t-p}+\varepsilon_{t}, \quad \varepsilon_{t} \sim W N .
\]

Using the lag operator, we write the \(\operatorname{AR}(p)\) process:
\[
\phi(L) y_{t}=\varepsilon_{t}
\]
with
\[
\phi(L)=1-\phi_{1} L-\phi_{2} L^{2}-\ldots-\phi_{\mathrm{p}} L^{\mathrm{p}}
\]
- We can look at an \(\operatorname{AR}(p)\) process:
\[
y_{t}=\mu+\phi_{1} y_{t-1}+\phi_{2} y_{t-2}+\ldots+\phi_{\mathrm{p}} y_{t-p}+\varepsilon_{t}
\]
as a stochastic (linear) difference equation (SDE). With difference equations we try to get a solution-i.e., given some initial conditions/history, we know the value of \(y_{t}\) for any \(t-\) and, then, we study its characteristics (stability, long-run value, etc.).

The solution to a difference equation can be written as a sum of two solutions:
1) Homogeneous equation (the part that only depends on the \(y_{t}\) 's):
\[
y_{t}=\phi_{1} y_{t-1}+\phi_{2} y_{t-2}+\ldots+\phi_{\mathrm{p}} y_{t-p} \quad\left(\text { set } \mu+\varepsilon_{t}=0\right)
\]
2) A particular solution to the equation.

Once we get a solution, we study its stability. We want a stable one.
- We get a solution to the simple case, the \(\operatorname{AR}(1)\) process.
\[
y_{t}=\mu+\phi_{1} y_{t-1}+\varepsilon_{t}, \quad \quad \varepsilon_{t} \sim W N
\]

We use the backward substitution method:
\[
\begin{aligned}
y_{t} & =\mu+\phi_{1}\left(\mu+\phi_{1} y_{t-2}+\varepsilon_{t-1}\right)+\varepsilon_{t} \\
& =\mu\left(1+\phi_{1}\right)+\phi_{1}^{2} y_{t-2}+\varepsilon_{t}+\phi_{1} \varepsilon_{t-1} \\
& =\mu\left(1+\phi_{1}\right)+\phi_{1}^{2}\left(\mu+\phi_{1} y_{t-3}+\varepsilon_{t-2}\right)+\varepsilon_{t}+\phi_{1} \varepsilon_{t-1} \\
& =\mu\left(1+\phi_{1}+\phi_{1}^{2}\right)+\phi_{1}^{3} y_{t-3}+\varepsilon_{t}+\phi_{1} \varepsilon_{t-1}+\phi_{1}^{2} \varepsilon_{t-2} \\
& \quad \vdots \\
\Rightarrow & y_{t}=\mu\left(1+\phi_{1}+\phi_{1}^{2}+\ldots+\phi_{1}^{t-1}\right)+\sum_{j=0}^{t-1} \phi_{1}^{j} \varepsilon_{t-j}+\phi_{1}^{t} y_{0}
\end{aligned}
\]

The solution is a function of \(t\), the whole sequence \(\varepsilon_{t}, \varepsilon_{t-1}, \ldots, \varepsilon_{1}\) and the initial condition \(y_{0}\). The effect of \(y_{0}\) "dies out" if \(\left|\phi_{1}\right|<1\).
- The stability of the solution is crucial. With a stable solution, \(\mathrm{Y}_{\mathrm{t}}\) does not explode. This is good: We need well defined moments.

It turns out that the stability of the equation depends on the solution to the homogenous equation. In the \(\operatorname{AR}(1)\) case:
\[
y_{t}=\phi_{1} y_{t-1}
\]
with solution \(y_{t}=\phi_{1}^{t} y_{0}\)
If \(\left|\phi_{1}\right|<1, y_{t}\) never explodes, as \(t \rightarrow \infty\). In this case, in the solution to the \(\operatorname{AR}(1)\) process, the effect of \(y_{0}\) "dies out" as \(t \rightarrow \infty\).
- We can analyze the stability from the point of view of the roots, \(z\), of the characteristic equation of the \(\operatorname{AR}(p)\) process, \(\phi(L)=0\).

For the \(\mathrm{AR}(1)\) process
\[
\phi(z)=1-\phi_{1} z=0 \quad \Rightarrow|z|=1 /\left|\phi_{1}\right|>1 .
\]

That is, the \(\operatorname{AR}(1)\) process is stable if the root of \(\phi(z)\) is greater than one (also said as "the roots lie outside the unit circle").

This result generalizes to \(\mathrm{AR}(p)\) process. For example, for the \(\mathrm{AR}(3)\) process
\[
\begin{aligned}
& y_{t}=\phi_{1} y_{t-1}+\phi_{2} y_{t-2}+\phi_{3} y_{t-3}+\varepsilon_{t}, \\
& \phi(z)=1-\phi_{1} z-\phi_{2} z^{2}-\phi_{3} z^{3} \quad \Rightarrow \text { the roots, } z_{1}, z_{2} \& z_{3} \text {, should lie outside the unit circle. }
\end{aligned}
\]

For an \(\operatorname{AR}(p)\), we need the roots of \(\phi(z)\) to be outside the unit circle.
For the \(\operatorname{AR}(2), \quad y_{t}=\phi_{1} y_{t-1}+\phi_{2} y_{t-2}\).
We need the roots of \(\phi(z)\) to be outside the unit circle.
The characteristic polynomial of the \(\mathrm{AR}(2)\) can be written as:
\[
\phi(z)=1-\left(\lambda_{1}+\lambda_{2}\right) z-\lambda_{1} \lambda_{2} z^{2}=\left(1-\lambda_{1} z\right)\left(1-\lambda_{2} z\right)=0
\]
where \(\phi_{1}=\lambda_{1}+\lambda_{2}\), and \(\phi_{2}=\lambda_{1} \lambda_{2} . \quad\left(\lambda_{1} \& \lambda_{2}\right.\) are eigenvalues or characteristic roots.)
If \(\left|\lambda_{1}\right|<1\), and \(\left|\lambda_{2}\right|<1\), the roots lie outside the unit root \(\Rightarrow\) stationary.

Then, some implications for \(\phi_{1} \& \phi_{2}\) :
\[
\begin{array}{ll}
\left|\lambda_{1}+\lambda_{2}\right|<2 & \Rightarrow\left|\phi_{1}\right|<2 \\
\left|\lambda_{1} \lambda_{2}\right|<1 & \Rightarrow\left|\phi_{2}\right|<1
\end{array}
\]
- Summary:

We say the process is globally (asymptotically) stable if the solution of the associated homogenous equation tends to 0 , as \(\mathrm{t} \rightarrow \infty\).

\section*{Theorem}

A necessary and sufficient condition for global asymptotical stability of a \(p^{\text {th }}\) order deterministic difference equation with constant coefficients is that all roots of the associated lag polynomial equation \(\phi(z)=0\) have moduli strictly more than 1 .

For the case of real roots, moduli means "absolute values."

\section*{AR(1) Process - Stationarity \& ACF}

An AR(1) model:
\[
y_{t}=\phi_{1} y_{t-1}+\varepsilon_{t}, \quad \varepsilon_{t} \sim W N .
\]

Recall that in a previous example, under the stationarity condition \(\left|\phi_{1}\right|<1\), we derived the moments:
\[
\begin{aligned}
& \mathrm{E}\left[y_{t}\right]=\mu=0 \quad \text { (assuming } \phi_{1} \neq 1 \text { ) } \\
& \left.\operatorname{Var}\left[y_{t}\right]=\gamma(0)=\sigma^{2} /\left(1-\phi_{1}{ }^{2}\right) \quad \text { (assuming }\left|\phi_{1}\right|<1\right) \\
& \gamma(1)=\mathrm{E}\left[y_{t} y_{t-1}\right]=\mathrm{E}\left[\left(\phi_{1} y_{t-1}+\varepsilon_{t}\right) * y_{t-1}\right]=\phi_{1} \gamma(0) \\
& \gamma(2)=\mathrm{E}\left[y_{t} y_{t-2}\right]=\mathrm{E}\left[\left(\phi_{1} y_{t-1}+\varepsilon_{t}\right) * y_{t-2}\right] \\
& =\phi_{1} \mathrm{E}\left[y_{t-1} y_{t-2}\right]=\phi_{1} \gamma(1)=\phi_{1}{ }^{2} \gamma(0) \\
& \gamma(3)=\mathrm{E}\left[\begin{array}{ll}
y_{t} & y_{t-3}
\end{array}\right]=\mathrm{E}\left[\left(\phi_{1} y_{t-1}+\varepsilon_{t}\right) * y_{t-3}\right] \\
& =\phi_{1} \mathrm{E}\left[\begin{array}{ll}
y_{t-1} & y_{t-3}
\end{array}\right]=\phi_{1} \gamma(2)=\phi_{1}{ }^{3} \gamma(0) \\
& \text { : } \\
& \gamma(k)=\phi_{1} \gamma(k-1)=\phi_{1}{ }^{\mathrm{k}} \gamma(0)
\end{aligned}
\]

Now, we derive the autocorrelation: \(\rho\left(t_{1}, t_{2}\right)=\frac{\gamma\left(t_{1}-t_{2}\right)}{\sigma_{t_{1}} \sigma_{t_{2}}}\)
If the process is stationary \(\left(\sigma_{t}=\sigma_{t-1}=\sqrt{\gamma(0)}\right)\)
\[
\begin{aligned}
& \rho(1)=\rho(t, t-1)=\frac{\gamma(1)}{\sigma_{t} \sigma_{t-1}}=\frac{\gamma(1)}{\gamma(0)}=\phi_{1} \\
& \rho(2)=\frac{\gamma(2)}{\gamma(0)}=\phi_{1}^{2} \\
& \vdots \\
& \rho(k)=\frac{\gamma(k)}{\gamma(0)}=\phi_{1}^{k}
\end{aligned}
\]

Remark: The ACF decays with \(k\).
When we plot \(\rho(k)\) against \(k\), we plot also \(\rho(0)\) which is 1 .

Note that when \(\phi_{1}=1\), the \(\operatorname{AR}(1)\) is non-stationary, \(\rho(k)=1\), for all \(k\). The present and the past are always correlated!
- Again, when \(\left|\phi_{1}\right|<1\), the autocorrelations do not explode as \(k\) increases. There is an exponential decay towards zero.

\section*{Note:}
- when \(0<\phi_{1}<1 \Rightarrow\) All autocorrelations are positive.
- when \(-1<\phi_{1}<0 \Rightarrow\) The sign of \(\rho(k)\) shows an alternating pattern beginning a negative value.

\section*{AR(1) Process - Stationarity \& ACF: Simulations}

We simulate and plot three MA(1) processes, with standard normal \(\varepsilon_{t}\)-i.e., \(\sigma=1\) :
\[
\begin{aligned}
& y_{t}=0.5 y_{t-1}+\varepsilon_{t} \\
& y_{t}=-0.9 y_{t-1}+\varepsilon_{t} \\
& y_{t}=2 y_{t-1}+\varepsilon_{t}
\end{aligned}
\]

Below using the arima.sim R function we 3 AR process. We start with the plot of
\[
y_{t}=0.5 y_{t-1}+\varepsilon_{t} \quad \text { with } 200 \text { simulations }
\]
\(>\operatorname{plot}(\operatorname{arima} \cdot \operatorname{sim}(\operatorname{list}(\) order \(=c(1,0,0), \mathrm{ar}=0.5), \mathrm{n}=200)\), ylab="Simulated Series", main=(expression(AR(1)~~~phi==+.5)))




Note: The process \(\theta_{1}>0\) is smoother than the ones with \(\theta_{1}<0\). The process with \(\left|\theta_{1}\right|>1\), explodes!

Below, we compute and plot the ACF for the the two stable simulated process.
1) \(y_{t}=0.5 y_{t-1}+\varepsilon_{t}\)
sim_ar1_5 <- arima.sim(list(order \(=c(1,0,0)\), ar \(=\mathbf{0 . 5}), \mathrm{n}=200)\)
acf_ar1_5 <- acf(sim_ar1_5, main=(expression(AR(1)~~~phi==+.5)))
> acf_ar1_5
Autocorrelations of series 'sim_ma1_5', by lag
\begin{tabular}{cccccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\
1.000 & \(-\mathbf{0 . 8 6 0}\) & 0.720 & -0.551 & 0.427 & -0.330 & 0.258 & -0.205 & 0.183 & -0.202 & 0.209 & -0.218 & 0.213 & -0.216
\end{tabular}
\(\begin{array}{llllllllll}14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23\end{array}\)
\(-0.026-0.106-0.1230 .009-0.009-0.004-0.012-0.0150 .000-0.008\)

2) \(\quad y_{t}=-0.9 y_{t-1}+\varepsilon_{t}\)
sim_ar1_9 <- arima.sim(list(order=c(1,0,0), ar = -0.9), \(n=200)\)
acf_ar1_9 <- acf(sim_ar1_9, main=(expression(AR(1)~~~phi==-.9)))
> acf_ar1_9
Autocorrelations of series 'sim_ma1_9', by lag
\begin{tabular}{lccccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\
1.000 & -0.584 & 0.093 & 0.061 & -0.132 & 0.147 & -0.181 & 0.122 & -0.013 & -0.023 & 0.014 & -0.012 & 0.092 & -0.199 \\
14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & & & & \\
0.193 & -0.155 & 0.143 & -0.107 & 0.014 & 0.174 & -0.244 & 0.196 & -0.154 & 0.105 & & &
\end{tabular}

\section*{AR(1) Process - Stationarity \& ACF: Real Data}

Example: A process with \(\left|\phi_{1}\right|<1\) (actually, 0.065 ) is the monthly changes in the USD/GBP exchange rate. Below we plot its corresponding ACF:


Below we plot the monthly changes in the USD/GBP exchange rate. Stationary series do not look smooth:


Example: A process with \(\phi_{1} \approx 1\) (actually, 0.99 ) is the nominal USD/GBP exchange rate. Below, we plot the ACF, it is not 1 all the time, but its decay is very slow (after 30 months, it is still .40 correlated!):


Below we plot the nominal USD/GBP exchange rate. Stationary series look smooth, smooth enough that you can clearly spot trends:


\section*{AR(1) Process - Stationarity \& ACF}

An AR(2) model:
\[
y_{t}=\mu+\phi_{1} y_{t-1}+\phi_{2} y_{t-2}+\varepsilon_{t}, \quad \varepsilon_{t} \sim W N .
\]
- Moments:
\[
\begin{array}{ll}
\mathrm{E}\left[y_{t}\right]=\mu /\left(1-\phi_{1}-\phi_{2}\right)=0 & \text { (assuming } \left.\phi_{1}+\phi_{2} \neq 1\right) \\
\operatorname{Var}\left[y_{t}\right]=\sigma^{2} /\left(1-\phi_{1}^{2}-\phi_{2}^{2}\right) & \text { (assuming } \left.\phi_{1}^{2}+\phi_{2}^{2}<1\right)
\end{array}
\]
- Autocovariance function
\[
\begin{aligned}
\gamma(k)= & \operatorname{Cov}\left[y_{t}, y_{t-k}\right]=\mathrm{E}\left[\left(\phi_{1} y_{t-1}+\phi_{2} y_{t-2}+\varepsilon_{t}\right) y_{t-k}\right] \\
& =\phi_{1} \mathrm{E}\left[y_{t-1} y_{t-k}\right]+\phi_{2} \mathrm{E}\left[y_{t-2} y_{t-k}\right]+\mathrm{E}\left[\varepsilon_{t} y_{t-k}\right] \\
& =\phi_{1} \gamma(k-1)+\phi_{2} \gamma(k-2)+\mathrm{E}\left[\varepsilon_{t} y_{t-k}\right]
\end{aligned}
\]
- We have a recursive formula:
\[
\begin{gathered}
(k=0) \quad \begin{aligned}
\gamma(0) & =\phi_{1} \gamma(-1)+\phi_{2} \gamma(-2)+\mathrm{E}\left[\varepsilon_{t} y_{t}\right] \\
& =\phi_{1} \gamma(1)+\phi_{2} \gamma(2)+\sigma^{2} \\
(k=1) & \gamma(1)
\end{aligned}=\phi_{1} \gamma(0)+\phi_{2} \gamma(1)+\mathrm{E}\left[\varepsilon_{t} y_{t-1}\right] \\
\\
=\phi_{1} \gamma(0)+\phi_{2} \gamma(1) \\
\Rightarrow \gamma(1)=\left[\phi_{1} /\left(1-\phi_{2}\right)\right] \gamma(0) \\
(k=2) \quad \begin{aligned}
& \gamma(2)=\phi_{1} \gamma(1)+\phi_{2} \gamma(0)+\mathrm{E}\left[\varepsilon_{t} y_{t-2}\right] \\
&=\phi_{1} \gamma(1)+\phi_{2} \gamma(0) \\
& \Rightarrow \gamma(2)=\left[\phi_{1}^{2} \gamma(0) /\left(1-\phi_{2}\right)\right]+\phi_{2} \gamma(0) \\
&=\left[\phi_{1}^{2} /\left(1-\phi_{2}\right)+\phi_{2}\right] \gamma(0)
\end{aligned}
\end{gathered}
\]

Replacing \(\gamma(1)\) and \(\gamma(2)\) back to \(\gamma(0)\) :
\[
\begin{aligned}
\gamma(0) & =\left[\phi_{1}^{2} /\left(1-\phi_{2}\right)\right] \gamma(0)+\left[\phi_{2} \phi_{1}^{2} /\left(1-\phi_{2}\right)+\phi_{2}^{2}\right] \gamma(0)+\sigma^{2} \\
& =\frac{\sigma^{2}\left(1-\phi_{2}\right)}{\left(1-\phi_{2}\right)-\phi_{1}^{2}\left(1+\phi_{2}\right)+\phi_{2}^{2}\left(1-\phi_{2}\right)} \quad \Rightarrow\left|\phi_{2}\right|<1
\end{aligned}
\]
- Dividing the previous formulas by \(\gamma(0)\), we get the ACF:
\[
\rho(k)=\gamma(k) / \gamma(0)=\phi_{1} \rho(k-1)+\phi_{2} \rho(k-2)+\mathrm{E}\left[\varepsilon_{t} y_{t-k}\right] / \gamma(0)
\]
\[
(k=0) \quad \rho(0)=1
\]
\[
\left.\begin{array}{rl}
(k=1) & \rho(1) \\
(k=2) & \rho(2)=\phi_{1} /\left(1-\phi_{2}\right) \\
(k=3) & \rho(3)
\end{array}=\phi_{1} \rho(1)+\phi_{2} \rho(0)=\phi_{1}^{2} /\left(1-\phi_{2}\right)+\phi_{2}\right)+\phi_{2} \rho(1)=0 .
\]

Remark: Again, we see exponential decay in the ACF.
From the work above, we need: \(\quad \phi_{1}+\phi_{2} \neq 1\).
\[
\phi_{1}^{2}+\phi_{2}^{2}<1 .
\]
\[
\left|\phi_{2}\right|<1 .
\]

\section*{AR(p) Process - VAR(1) Representation}

With AR process with more lags than the AR(1) process, it is complicated to determine stationarity by looking at the \(\phi_{i}\) 's coefficients.

Stationarity conditions can be derived in a simplified way by rewriting an \(\operatorname{AR}(\mathrm{p})\) as \(\operatorname{AR}(1)\) process. For example, the \(\operatorname{AR}(2)\) process:
\[
y_{t}=\mu+\phi_{1} y_{t-1}+\phi_{2} y_{t-2}+\varepsilon_{t} \quad \Rightarrow\left(1-\phi_{1} L-\phi_{2} L^{2}\right) y_{t}=\mu+\varepsilon_{t}
\]
can be written in matrix form as an \(\operatorname{AR}(1)\) :
\[
\left[\begin{array}{c}
y_{t} \\
y_{t-1}
\end{array}\right]=\left[\begin{array}{c}
\mu \\
0
\end{array}\right]+\left[\begin{array}{cc}
\phi_{1} & \phi_{2} \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
y_{t-1} \\
y_{t-2}
\end{array}\right]+\left[\begin{array}{c}
\varepsilon_{t} \\
0
\end{array}\right] \Rightarrow \tilde{y}_{t}=\tilde{\mu}+A \tilde{y}_{t-1}+\tilde{\varepsilon}_{t}
\]
- The \(\operatorname{AR}(2)\) in matrix \(\operatorname{AR}(1)\) form is called Vector \(A R(1)\) or \(\operatorname{VAR}(1)\).
- We can derived a matrix lag polynomial \(\mathrm{A}(\mathrm{L})\) :
\[
\tilde{y}_{t}=\tilde{\mu}+A \tilde{y}_{t-1}+\tilde{\varepsilon}_{t} \quad \Rightarrow A(L) \tilde{y}_{t}=[I-A L] \tilde{y}_{t}=\tilde{\varepsilon}_{t} .
\]

\section*{AR(2) Process - VAR(1) \& Stationarity}

If \(\mathrm{A}(\mathrm{L})\) is invertible we can write an \(\mathrm{MA}(\infty)\) representation:
\[
\tilde{y}_{t}=\tilde{\mu}+A \tilde{y}_{t-1}+\tilde{\varepsilon}_{t} \quad \Rightarrow \tilde{y}_{t}=[I-A L]^{-1} \tilde{\varepsilon}_{t}
\]

Note: Recall the expansion:
Checking that \([\mathbf{I}-\mathbf{A L}]\) is not singular, same as checking that \(\mathbf{A}^{j}\) does not explode. The stability of the system (solution) can be determined by the eigenvalues of \(\mathbf{A}\). That is, get the \(\lambda_{i}\) 's and check if \(\left|\lambda_{i}\right|<1\) for all \(i\).
\[
\begin{aligned}
\boldsymbol{A}=\left[\begin{array}{cc}
\phi_{1} & \phi_{2} \\
1 & 0
\end{array}\right] \Rightarrow|\boldsymbol{A}-\lambda I|=\operatorname{det}\left[\begin{array}{cc}
\phi 1-\lambda & \phi_{2} \\
1 & -\lambda
\end{array}\right] & =-\left(\phi_{1}-\lambda\right) \lambda-\phi_{2} \\
& =\phi_{2}-\phi_{1} \lambda+\lambda^{2}
\end{aligned}
\]
- Solution to quadratic equation: \(\lambda_{\mathrm{i}}=\frac{\phi_{1} \pm \sqrt{\phi_{1}{ }^{2}-4 \phi_{2}}}{2}\)

Stability and stationary: \(\left|\lambda_{\mathrm{i}}\right|<1 . \quad \Rightarrow\) roots of \(\phi(z)\) outside unit circle.

For the \(\mathrm{AR}(2)\) process, we have already derived some relations between \(\lambda_{\mathrm{i}}\) 's and \(\phi_{\mathrm{i}}\) 's:
\[
\begin{array}{ll}
\lambda_{1} \lambda_{2}=\phi_{2} & \Rightarrow\left|\lambda_{1} \lambda_{2}\right|=|\phi 2|<1 \\
\lambda_{1}+\lambda_{2}=\phi_{1} & \Rightarrow\left|\lambda_{1}+\lambda_{2}\right|=|\phi 1|<2
\end{array}
\]
- We derived autocovariance function, \(\gamma(k)\), before, getting a recursive formula. Let's write the first autocovariances:
\((k=0) \quad \gamma(0)=\phi_{1} \gamma(1)+\phi_{2} \gamma(2)+\sigma^{2}\)
\((k=1) \quad \gamma(1)=\left[\phi_{1} /\left(1-\phi_{2}\right)\right] \gamma(0)\)
\((k=2) \quad \gamma(2)=\left[\phi_{1}^{2} /\left(1-\phi_{2}\right)+\phi_{2}\right] \gamma(0)\)
With \(\left|\phi_{2}\right|<1\), we get well defined \(\gamma(1), \gamma(2) \& \gamma(0)\).
The \(\operatorname{VAR}(1)\) has a nice property: The \(\operatorname{VAR}(1)\) is Markov -i.e., forecasts depend only on today's data.

It looks complicated, but it is straightforward to apply the VAR formulation to any \(\operatorname{AR}(p)\) processes. We can also use the same eigenvalue conditions to check the stationarity of \(\operatorname{AR}(p)\) processes.

\section*{AR Process -Stationarity \& Ergodicity}

Theorem: The linear AR(p) process is strictly stationary and ergodic if and only if the roots of \(\phi(\mathrm{L})\) are \(\left|\mathrm{r}_{\mathrm{j}}\right|>1\) for all j , where \(\left|\mathrm{r}_{\mathrm{j}}\right|\) is the modulus of the complex number \(\mathrm{r}_{\mathrm{j}}\).

Note: If one of the ry's equals \(1, \phi(\mathrm{~L})\left(\& y_{t}\right)\) has a unit root - i.e., \(\phi(1)=0\). This is a special case of non-stationarity.

Recall \(\phi(L)^{-1}\) produces an infinite sum on the \(\varepsilon_{t-j}\) 's. If this sum does not explode, we say the process is stable.

\section*{AR Process - Dynamic Multiplier \& IRF}

If the process is stable, we can calculate \(\delta y_{t} / \delta \varepsilon_{t-j}\).
\(\delta y_{t} / \delta \varepsilon_{t-j}=\) How much \(y_{t}\) is affected today by an innovation \((\varepsilon) t-j\) periods ago. When expressed as a function of \(j\), we call this dynamic multiplier. Accumulated over time it is the impulse response function (IRF).

The dynamic multiplier measurers the effect of an innovation, \(\varepsilon_{t}\), (economist like to call the \(\varepsilon_{t}\) 's, "shocks") on subsequent values of \(y_{t}\) : That is, the first derivative on the "Wold representation" i.e., a stationary process represented as an MA process:
\[
\delta y_{t+j} / \delta \varepsilon_{t}=\delta y_{j} / \delta \varepsilon_{0}=\psi_{j} .
\]
where \(\psi_{j}\) 's are the coefficient of MA representation.
For an AR(1) process:
\[
\delta y_{t+j} / \delta \varepsilon_{t}=\delta y_{j} / \delta \varepsilon_{0}=\phi^{j} .
\]

That is, the dynamic multiplier for any linear stochastic difference equation (SDE) depends only on the length of time \(j\), not on time \(t\).
- The impulse-response function (IRF) is an accumulation of the sequence of dynamic multipliers, as a function of time from the one time change in the innovation, \(\varepsilon_{t}\).

Usually, IRFs are represented with a graph, that measures the effect of the innovation, \(\varepsilon_{t}\), on \(y_{t}\) over time:
\[
\delta y_{t+j} / \delta \varepsilon_{t}+\delta y_{t+j+1} / \delta \varepsilon_{t}+\delta y_{t+j+2} / \delta \varepsilon_{t}+\ldots=\psi_{j}+\psi_{j+1}+\psi_{j+2}+\ldots
\]

Once we estimate the AR, MA or ARMA coefficients, we draw an IRF.


Example: \(\operatorname{AR}(1)\) process:
\[
y_{t}=\mu+\phi_{1} y_{t-1}+\varepsilon_{t}, \quad \varepsilon_{t} \sim W N .
\]

The \(\operatorname{AR}(1)\) is stable if \(\left|\phi_{1}\right|<1 \quad \Rightarrow\) stationarity condition.
We invert the \(\operatorname{AR}(1)\) to get an \(\operatorname{MA}(\infty): 1 /\left(1-\phi_{1}\right)=\sum_{j=0}^{\infty} \phi_{1}{ }^{j}\)
Then,
\[
y_{t}=\mu^{*}+\phi_{1} \varepsilon_{t-1}+\phi_{1}{ }^{2} \varepsilon_{t-2}+\phi_{1}{ }^{3} \varepsilon_{t-3}+\phi_{1}{ }^{4} \varepsilon_{t-4}+\cdots+\varepsilon_{t} .
\]

Under the stationarity condition, we calculate the dynamic multiplier:
\[
\delta y_{t+1} / \delta \varepsilon_{t-j}=\phi_{1}{ }^{j}
\]

Accumulated over time, after \(J\) periods, the effect of shock \(\varepsilon_{t}\) at \(t+J\) is:
\[
\operatorname{IRF}(\mathrm{at} \mathrm{t}+\mathrm{J})=\sum_{j=0}^{J-1} \phi_{1}{ }^{j}
\]

Suppose \(\phi_{1}=0.40\). Then,
\[
\begin{gathered}
\delta y_{t} / \delta \varepsilon_{t-1}=\phi_{1}=0.40 \\
\delta y_{t} / \delta \varepsilon_{t-2}=\phi_{1}=0.40^{2} \\
\vdots \\
\delta y_{t} / \delta \varepsilon_{t-J}=\phi_{1}=0.40^{\mathrm{J}}
\end{gathered}
\]

After 5 periods, the accumulated effect of a shock today is:
\(\operatorname{IRF}(\) at \(\mathrm{t}+5)=0.40+0.40^{2}+0.40^{3}+0.40^{4}+0.40^{5}=0.65984 . \quad\) I

\section*{AR Process - Causality}

The AR(p) model:
\[
\phi(L) y_{t}=\mu+\varepsilon_{t}, \quad \varepsilon_{t} \sim W N .
\]
where \(\phi(L)=1-\phi_{1} L^{1}-L^{2} \phi_{2}-\ldots-\phi_{p} L^{p}\)
Then, \(y_{t}=\phi(L)^{-1}\left(\mu+\varepsilon_{t}\right), \quad \Rightarrow\) an \(\mathrm{MA}(\infty)\) process!
But, we need to make sure that we can invert the polynomial \(\phi(\mathrm{L})\).
When \(\phi(\mathrm{L}) \neq 0\), we say the process \(\mathrm{yt}_{\mathrm{t}}\) is causal (strictly speaking, a causal function of \(\left\{\varepsilon_{t}\right\}\) ).
Definition: A linear process \(\left\{\mathrm{y}_{\mathrm{t}}\right\}\) is causal if there is a
Definition: A linear process \(\left\{\mathrm{y}_{\mathrm{t}}\right\}\) is causal if there is a
\[
\begin{gathered}
\psi(L)=1+\psi_{1} L+\psi_{2} L^{2}+\cdots \\
\text { with } \sum_{j=0}^{\infty}\left|\psi_{j}(L)\right|<\infty \\
\text { with } \quad y_{t}=\psi(L) \varepsilon_{t}
\end{gathered}
\]

Example: AR(1) process:
\[
\phi(L) y_{t}=\mu+\varepsilon_{t}, \quad \text { where } \phi(L)=1-\phi_{l} L
\]

Then, \(\mathrm{y}_{\mathrm{t}}\) is causal if and only if:
\[
\left|\phi_{l}\right|<1 \quad \text { (same condition as stationarity) }
\]
or
\[
\text { the root } \mathbf{r}_{1} \text { of the polynomial } \phi(\mathrm{z})=1-\phi_{l} \mathrm{z} \text { satisfies }\left|\mathrm{r}_{1}\right|>1
\]

Question: How do we calculate the \(\Psi\) 's coefficients for an \(\operatorname{AR}(p)\) ?
A: Matching coefficients \((\mu=0)\) :
\[
\begin{aligned}
& Y_{t}=\frac{1}{(1-\phi 1 L)} \varepsilon_{t} \stackrel{\left|\phi_{1}\right|<1}{\cong} \sum_{i=0}^{\infty} \phi 1^{i} L^{i} \varepsilon_{t} \\
&=\left(1+\phi 1 L+\phi 1^{2} L^{2}+\cdots\right) \varepsilon_{t} \quad \Rightarrow \Psi_{i}=\phi_{l}{ }^{i}, \quad i \geq 0
\end{aligned}
\]

\section*{AR Process - Estimation and Properties}

We go back to the general \(\operatorname{AR}(p)\). Define
\[
\left.\begin{array}{l}
\boldsymbol{x}_{t}=\left(\begin{array}{llll}
1 & y_{t-1} & y_{t-2} & \ldots
\end{array} y_{t-p}\right.
\end{array}\right)
\]

Then the model can be written as
\[
y_{t}=\boldsymbol{x}_{t}^{\prime} \boldsymbol{\beta}+\varepsilon_{t}
\]

The OLS estimator is
\[
\mathbf{b}=\left(X^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime} \boldsymbol{y}
\]

\section*{- Properties:}
- Using the Ergodic Theorem, OLS estimator is consistent.
- Using the MDS CLT, OLS estimator is asymptotically normal.
\(\Rightarrow\) asymptotic inference is the same.
The asymptotic covariance matrix is estimated just as in the cross-section case: The sandwich estimator.

\section*{ARMA Process}

A combination of \(\operatorname{AR}(p)\) and \(\operatorname{MA}(q)\) processes produces an \(\operatorname{ARMA}(p, q)\) process:
\[
\begin{aligned}
& y_{t}=\mu+\phi_{1} y_{t-1}+\phi_{2} y_{t-2}+\cdots \cdot+\phi_{p} y_{t-p}+\varepsilon_{t}-\theta_{1} \varepsilon_{t-1}-\theta_{2} \varepsilon_{t-2}-\cdots-\theta_{q} \varepsilon_{t-q} \\
&=\mu+\sum_{i=1}^{p} \phi_{i} y_{t-i}-\sum_{i=1}^{q} \theta_{i} L^{i} \varepsilon_{t}+\varepsilon_{t} \\
& \Rightarrow \phi(L) y_{t}=\mu+\theta(L) \varepsilon_{t}
\end{aligned}
\]

Usually, we insist that \(\phi(\mathrm{L}) \neq 0, \theta(L) \neq 0 \&\) that the polynomials \(\phi(\mathrm{L}), \theta(L)\) have no common factors. This implies it is not a lower order ARMA model.

\section*{ARMA Process - Common Factors}

It is possible to reduce the order of an ARMA structure if the \(\phi(\mathrm{L})\) and \(\theta(L)\) lag polynomials have common factors.

Example: Suppose we have the following \(\operatorname{ARMA}(2,3)\) model
\(\phi(L) y_{t}=\theta(L) \varepsilon_{t}\)
with
\[
\begin{aligned}
& \phi(L)=1-.6 L+.3 L^{2} \\
& \theta(L)=1-1.4 L+.9 L^{2}-.3 L^{3}=\left(1-.6 L+.3 L^{2}\right)(1-L)
\end{aligned}
\]

This model simplifies to: \(y_{t}=(1-L) \varepsilon_{t} \quad \Rightarrow\) an MA(1) process.

\section*{ARMA Process - Representation}

An ARMA process can be rewritten as:
- Pure AR Representation: \(\quad \Pi(L)\left(y_{t}-\mu\right)=\varepsilon_{t} \Rightarrow \Pi(L)=\frac{\phi_{p}(L)}{\theta_{q}(L)}\)
- Pure MA Representation: \(\quad\left(y_{t}-\mu\right)=\Psi(L) \varepsilon_{t} \Rightarrow \Psi(L)=\frac{\theta_{q}(L)}{\phi_{p}(L)}\)
- \(\operatorname{Special} \operatorname{ARMA}(p, q)\) cases: \(-p=0: \operatorname{MA}(q)\)

\section*{ARMA: Stationarity, Causality and Invertibility}

Theorem: If \(\phi(\mathrm{L})\) and \(\theta(L)\) have no common factors, a (unique) stationary solution to \(\phi(L) y_{t}=\) \(\theta(L) \varepsilon_{t}\) exists if and only if
\(|z| \leq 1 \Rightarrow \phi(z)=1-\phi_{1} z-\phi_{2} z^{2}-\ldots-\phi_{p} z^{p} \neq 0\).
This \(\operatorname{ARMA}(p, q)\) model is causal if and only if
\[
|z| \leq 1 \Rightarrow \phi(z)=1-\phi_{1} z-\phi_{2} z^{2}-\ldots-\phi_{p} z^{p} \neq 0 .
\]

This \(\operatorname{ARMA}(p, q)\) model is invertible if and only if
\(|z| \leq 1 \Rightarrow \theta(z)=1+\theta_{1} z-\theta_{2} z^{2}+\ldots+\theta_{p} z^{p} \neq 0\).
Note: Real data cannot be exactly modeled using a finite number of parameters. We choose \(p, q\) to create a good approximated model.

\section*{Lecture 9 - ARIMA Models - Identification \& Estimation}

\section*{ARMA Process}

We defined the \(\operatorname{ARMA}(p, q)\) model:
\[
\phi(L)\left(y_{t}-\mu\right)=\theta(L) \varepsilon_{t}
\]

The mean does not affect the order of the ARMA. Then, if \(\mu \neq 0\), we demean the data: \(x_{t}=y_{t}-\) \(\mu\).

Then, \(\phi(L) x_{t}=\theta(L) \varepsilon_{t} \quad \Rightarrow x_{t}\) is a demeaned ARMA process.
- In this lecture, we will study:
- Identification of \(p, q\).
- Estimation of \(\operatorname{ARMA}(p, q)\)
- Non-stationarity of \(x_{t}\).
- Differentiation issues - \(\operatorname{ARIMA}(p, d, q)\)
- Seasonal behavior \(-\operatorname{SARIMA}(p, d, q) \mathrm{s}\)

\section*{Autocovariance Function (Again)}

We define the autocovariance function: \(\gamma(t-j)=E\left[y_{t} y_{t-j}\right]\)
For an \(\operatorname{AR}(p)\) process, WLOG with \(\mu=0\) (or demeaned \(\mathrm{y}_{\mathrm{t}}\) ), we get:
\[
\begin{aligned}
\gamma(t-j) & =E\left[\left(\phi_{1} y_{t-1} y_{t-j}+\phi_{2} y_{t-2} y_{t-j}+\cdots+\phi_{p} y_{t-p} y_{t-j}+\varepsilon_{t} y_{t-j}\right)\right] \\
& =\phi_{1} \gamma(j-1)+\phi_{2} \gamma(j-2)+\ldots+\phi_{p} \gamma(j-p)
\end{aligned}
\]

Notation: \(\gamma(k)\) or \(\gamma_{k}\) are commonly used. Sometimes, \(\gamma(k)\) is referred as "covariance at lag \(k\)."
The \(\gamma(t-j)\) determine a system of equations:
\[
\begin{aligned}
& \gamma(0)=E\left[y_{t} y_{t}\right]=\phi_{1} \gamma(1)+\phi_{2} \gamma(2)+\phi_{3} \gamma(3)+\cdots .+\phi_{p} \gamma(p)+\sigma^{2} \\
& \gamma(1)=E\left[y_{t} y_{t-1}\right]=\phi_{1} \gamma(0)+\phi_{2} \gamma(1)+\phi_{3} \gamma(2)+\cdots .+\phi_{p} \gamma(p-1) \\
& \gamma(2)=E\left[y_{t} y_{t-2}\right]=\phi_{1} \gamma(1)+\phi_{2} \gamma(0)+\phi_{3} \gamma(1)+\ldots+\phi_{p} \gamma(p-2) \vdots
\end{aligned}
\]

This a \(p \times p\) system of equations. Using linear algebra, we can write the system as:
\[
\Gamma \phi=\gamma
\]
where \(\boldsymbol{\Gamma}\) is a \(p \times p\) matrix of autocovariances, with \(\gamma(0)\) on the diagonal; \(\boldsymbol{\phi}\) is the \(p \times 1\) vector of \(\operatorname{AR}(\mathrm{p})\) coefficients; and \(\gamma\) is the \(p \times 1\) vector of \(\gamma(k)\) autocovariances

Example: \(\operatorname{AR}(1)\) model:
\[
y_{t}=\phi_{1} y_{t-1}+\varepsilon_{t}, \quad \varepsilon_{t} \sim W N .
\]

Then, the autocovariance function is:
\[
\begin{aligned}
& \gamma(0)=E\left[y_{t} y_{t}\right]=\operatorname{Var}\left[y_{t}\right]=\sigma^{2} /\left(1-\phi_{1}^{2}\right) \\
& \gamma(1)=E\left[y_{t} y_{t-1}\right]=\mathrm{E}\left[\left(\phi_{1} y_{t-1}+\varepsilon_{t}\right) * y_{t-1}\right]=\phi_{1} \gamma(0) \\
& \left.\gamma(2)=E\left[\begin{array}{ll}
y_{t} & \left.y_{t-2}\right]=\mathrm{E}\left[\left(\phi_{1}\right.\right.
\end{array} y_{t-1}+\varepsilon_{t}\right) * y_{t-2}\right]=\phi_{1} \gamma(1)=\phi_{1}^{2} \gamma(0) \\
& \left.\gamma(3)=E\left[y_{t} y_{t-3}\right]=\mathrm{E}\left[\left(\phi_{1} y_{t-1}+\varepsilon_{t}\right) * y_{t-3}\right]=\phi_{1} \mathrm{E}\left[y_{t-1} y_{t-3}\right]\right]=\phi_{1}^{3} \gamma(0) \\
& \gamma(k)=\phi_{1} \gamma(k-1)=\phi_{1}^{\mathrm{k}} \gamma(0) \Rightarrow \operatorname{If}\left|\phi_{1}\right|<1, \text { exponential decay. }
\end{aligned}
\]

Under stationarity, moments are constant. That is,
\[
\operatorname{Var}\left[y_{t}\right]=\operatorname{Var}\left[y_{t-1}\right]=\sqrt{\gamma(0)} .
\]

Example: MA(1) process:
\[
y_{t}=\theta_{1} \varepsilon_{t-1}+\varepsilon_{t}, \quad \quad \varepsilon_{t} \sim W N .
\]

Then, the autocovariance function is:
\[
\begin{aligned}
& \gamma(0)=\sigma^{2}+\theta_{1}^{2} \sigma^{2}=\sigma^{2}\left(1+\theta_{1}^{2}\right) \\
& \gamma(1)=\mathrm{E}\left[y_{t} y_{t-1}\right]=\mathrm{E}\left[\left(\theta_{1} \varepsilon_{t-1}+\varepsilon_{t}\right)\left(\theta_{1} \varepsilon_{t-2}+\varepsilon_{t-1}\right)\right]=\theta_{1} \sigma^{2} \\
& \gamma(k)=\mathrm{E}\left[y_{t} y_{t-k}\right]=\mathrm{E}\left[\left(\theta_{1} \varepsilon_{t-1}+\varepsilon_{t}\right)\left(\theta_{1} \varepsilon_{t-k-1}+\varepsilon_{t-k}\right)\right]=0(\text { for } k>1)
\end{aligned}
\]

That is, for \(|k|>1, \quad \gamma(k)=0\). ब \(\mid\)
Example: ARMA \((1,1)\) process:
\[
\begin{aligned}
& y_{t}=\phi_{1} y_{t-1}+\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}, \quad \varepsilon_{t} \sim W N . \\
& \gamma(k)=E\left[y_{t} y_{t-k}\right]=E\left[\left\{\phi_{1} y_{t-1}+\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}\right\} y_{t-k}\right] \\
&=\phi_{1} E\left[y_{t-1} y_{t-k}\right]+E\left[\varepsilon_{t} y_{t-k}\right]+\theta_{1} E\left[\varepsilon_{t-1} y_{t-k}\right] \\
&=\phi_{1} \gamma(k-1)+E\left[\varepsilon_{t} y_{t-k}\right]+\theta_{1} E\left[\varepsilon_{t-1} y_{t-k}\right] \\
& \gamma(0)=\phi_{1} \gamma(-1)+\underbrace{E\left[\varepsilon_{t} y_{t}\right]}_{\sigma^{2}}+\theta_{1} E\left[\begin{array}{c}
\varepsilon_{t-1} \underbrace{}_{\phi_{1} y_{t-1}+\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}}] \\
=
\end{array} \phi_{1 \gamma} \gamma(1)+\sigma^{2}+\theta_{1} E\left[\begin{array}{c}
\varepsilon_{t-1}[\phi_{1} \underbrace{y_{t-1}}_{\phi_{1} y_{t-2}+\varepsilon_{t-1}+\theta_{1} \varepsilon_{t-2}}+\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}]] \\
\end{array}\right) \phi_{1 \gamma} \gamma(1)+\sigma^{2}+\theta_{1}\left(\phi_{1} \sigma^{2}+\theta_{1} \sigma^{2}\right)\right.
\end{aligned}
\]
- Similarly:
\[
\begin{aligned}
\gamma(1)= & \phi_{1} \gamma(0)+\underbrace{E\left[\varepsilon_{t} y_{t-1}\right]}_{0}+\theta_{1} E[\varepsilon_{t-1} \underbrace{y_{t-1}}_{\phi 1 y_{t-2}+\varepsilon_{t-1}-\theta_{1} \varepsilon_{t-2}}] \\
& =\phi_{1} \gamma(0)+\theta_{1} \sigma^{2}
\end{aligned}
\]
- Two equations for \(\gamma(0)\) and \(\gamma(1)\). Solving for \(\gamma(0)\) :
\[
\gamma(0)=\phi_{1}\left(\phi_{1} \gamma(0)+\theta_{1} \sigma^{2}\right)+\sigma^{2}\left(1+\phi 1 \theta_{1}+\theta_{1}^{2}\right)
\]
\[
\begin{aligned}
& \gamma(0)
\end{aligned} \begin{aligned}
\gamma(1) & =\sigma^{2} \frac{1+\theta_{1}^{2}+2 \phi 1 \theta_{1}}{1-\phi 1^{2}} \\
& =\phi_{1} \sigma^{2} \frac{1+\theta_{1}{ }^{2}+2 \phi 1 \theta_{1}}{1-\phi 1^{2}}+\theta_{1} \sigma^{2} \\
& =\sigma^{2} \frac{\left(1+\phi 1 \theta_{1}\right) *\left(\phi 1+\theta_{1}\right)}{1-\phi 1^{2}}
\end{aligned}
\]

Continuing the process:
\[
\begin{aligned}
\gamma(2) & =E\left[y_{t} y_{t-2}\right] \\
& =E\left[\left\{\phi_{1} y_{t-1}-\theta_{1} \varepsilon_{t-1}+\varepsilon_{t}\right\} y_{t-2}\right] \\
& =\phi_{1} E\left[y_{t-1} y_{t-2}\right]+\theta_{1} E\left[\varepsilon_{t-1} y_{t-2}\right]+E\left[\varepsilon_{t} y_{t-2}\right] \\
& =\phi_{1} \gamma(1)
\end{aligned}
\]

In general:
\[
\begin{aligned}
\gamma(k)= & \phi_{1} \gamma(k-1)=\phi_{1}{ }^{k-1} \gamma(1), \quad k>1 \\
& \Rightarrow \text { If }\left|\phi_{1}\right|<1, \text { exponential decay. }
\end{aligned}
\]

Note: If stationary, \(\operatorname{ARMA}(1,1)\) and \(\operatorname{AR}(1)\) show exponential decay. Difficult to distinguish one from the other by looking at the autocovariance functions.

\section*{Autocorrelation Function (ACF)}

Now, we define the autocorrelation function (ACF):
\[
\rho(k)=\frac{\gamma(k)}{\gamma(0)}=\frac{\text { covariance at lag } k}{\text { variance }}
\]

The ACF lies between -1 and +1 , with \(\rho(0)=1\).
Dividing the autocovariance system by \(\gamma(0)\), we get:
\[
\left[\begin{array}{cccc}
\rho(0) & \rho(1) & \cdots & \rho(p-1) \\
\rho(1) & \rho(0) & \cdots & \rho(p-2) \\
\vdots & \vdots & \cdots & \vdots \\
\rho(p-1) & \rho(p-2) & \cdots & \rho(0)
\end{array}\right]\left[\begin{array}{c}
\phi_{1} \\
\phi_{2} \\
\vdots \\
\phi_{p}
\end{array}\right]=\left[\begin{array}{c}
\rho(1) \\
\rho(2) \\
\vdots \\
\rho(p)
\end{array}\right]
\]

Or using linear algebra:
\[
\mathbf{P} \phi=\boldsymbol{\rho}
\]

These are "Yule-Walker" equations, which can be solved numerically.

Easy: Use sample moments to estimate \(\gamma(k)\) and plug in formula:
\[
r_{k}=\hat{\rho}_{k}=\frac{\sum\left(Y_{t}-\bar{Y}\right)\left(Y_{t+k}-\bar{Y}\right)}{\sum\left(Y_{t}-\bar{Y}\right)^{2}}
\]

Then, we plug the \(\hat{\rho}_{k}\) in the Yule-Walker equations and solve for \(\boldsymbol{\phi}\) :
\[
\widehat{\mathbf{P}} \boldsymbol{\phi}=\widehat{\boldsymbol{\rho}}
\]

The sample correlogram is the plot of the ACF against \(k\). As the ACF lies between -1 and +1 , the correlogram also lies between these values.

\section*{- Distribution:}

For a linear, stationary process, with large \(T\), the distribution of the sample ACF, \(r_{k}=\hat{\rho}_{k}\) is approximately normal with:
\[
\mathbf{r} \xrightarrow{d} \mathrm{~N}(\boldsymbol{\rho}, \mathbf{V} / T), \quad \mathbf{V} \text { is the covariance matrix. }
\]

Under \(\mathrm{H}_{0}: \rho_{k}=0\) for all \(k>1\).
\[
\mathbf{r} \xrightarrow{d} \mathrm{~N}(\mathbf{0}, \mathbf{I} / T) \quad \Rightarrow \operatorname{Var}[\mathrm{r}(k)]=1 / T .
\]

Under \(\mathrm{H}_{0}: \rho_{k}=0\) for all \(k\), the \(\mathrm{SE}=1 / \sqrt{T} \Rightarrow 95 \%\) C.I.: \(0 \pm 1.96 * 1 / \sqrt{T}\)
Then, for a white noise sequence, approximately \(95 \%\) of the sample ACFs should be within the above C.I. limits.

Note: The \(\mathrm{SE}=1 / \sqrt{T}\) are sometimes referred as Bartlett's \(S E\).
Example: Sample ACF for an AR(1) process:
Under stationarity (constant moments, in particular, \(\operatorname{Var}\left[y_{t}\right]=\operatorname{Var}\left[y_{t-1}\right]=\gamma(0)\) ):
\[
\rho(k)=\frac{\gamma(k)}{\gamma(0)}=\phi_{1}^{k} \quad k=0,1,2, \ldots
\]

If \(\left|\phi_{1}\right|<1\), the ACF will show exponential decay.
Suppose \(\phi_{1}=0.4\). Then,
\[
\begin{aligned}
& \rho(0)=\mathbf{1} \\
& \rho(1)=\mathbf{0 . 4} \\
& \rho(2)=0.4^{2}=\mathbf{0 . 1 6} \\
& \rho(3)=0.4^{3}=\mathbf{0 . 0 6 4} \\
& \rho(4)=0.4^{4}=\mathbf{0 . 0 2 5 6} \\
& \vdots \\
& \rho(k)=\mathbf{0 . 4}^{\mathbf{k}}
\end{aligned}
\]
- We simulate an \(\operatorname{AR}(1)\) series with with \(\phi_{1}=0.4\), using the R function arima.sim.
sim_ar1_04 <- arima.sim(list(order=c(1,0,0), ar=0.4), \(\mathrm{n}=200) \quad\) \#simulate \(\operatorname{AR}(1)\) series plot(sim_ar1_04, ylab="Simulated Series", main=(expression(AR(1):~~~phi==0.4)))



Example: Sample ACF for an MA(1) process:
\[
\begin{array}{ll}
\rho(0)=1 & \\
\rho(k)=\theta_{1} /\left(1+\theta_{1}^{2}\right), & \text { for } k=1,-1 \\
\rho(k)=0 & \text { for }|k|>1 .
\end{array}
\]

After \(k=1\)-i.e., one lag - the ACF dies out.
Suppose \(\theta_{1}=0.5\). Then,
\[
\begin{aligned}
& \rho(0)=1 \\
& \rho(1)=0.4 \\
& \rho(k)=0 \quad \text { for }|k|>1 .
\end{aligned}
\]
- We simulate an MA(1) series with \(\phi_{1}=0.4\)
sim_ma1_05 <- arima.sim(list(order=c(0,0,1), ma=0.5), \(n=200) \quad\) \#simulate MA(1) series plot(sim_ma1_05, ylab="Simulated Series", main=(expression(MA(1):~~~theta==0.5))) acf(sim_ma1_05)


Example: Sample ACF for an MA \((q)\) process:
\[
\begin{aligned}
& \left.\gamma(0)=\mathrm{E}\left[\begin{array}{ll}
y_{t} & y_{t}
\end{array}\right]\right]=\sigma^{2}\left(1+\theta_{1}^{2}+\theta_{2}^{2}+\ldots+\theta_{\mathrm{q}}{ }^{2}\right) \\
& \gamma(1)=\mathrm{E}\left[y_{t} y_{t-1}\right]=\sigma^{2}\left(\theta_{1}+\theta_{2} \theta_{1}+\theta_{3} \theta_{2}+\ldots+\theta_{\mathrm{q}} \theta_{\mathrm{q}-1}\right) \\
& \left.\gamma(2)=\mathrm{E}\left[\begin{array}{ll}
y_{t} & y_{t-2}
\end{array}\right]\right]=\sigma^{2}\left(\theta_{2}+\theta_{3} \theta_{1}+\ldots+\theta_{\mathrm{q}} \theta_{\mathrm{q}-2}\right) \\
& \gamma(q)=\theta_{\mathrm{q}}
\end{aligned}
\]

In general, \(\quad \gamma(k)=\sigma^{2} \sum_{j=k}^{q} \theta_{j} \theta_{j-k} \quad k \leq q \quad\left(\right.\) with \(\left.\theta_{0}=1\right)\). \(=0 \quad\) otherwise.

Then,
\[
\begin{array}{rlc}
\rho(k) & =\frac{\sum_{j=k}^{q} \theta_{j} \theta_{j-k}}{\left(1+\theta_{1}{ }^{2}+\theta_{2}{ }^{2}+\cdots+\theta_{q}{ }^{2}\right)} & k \leq q \\
& =0 & \text { otherwise. }
\end{array}
\]

For an MA(3):
\[
y_{t}=\mu+\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}+\theta_{2} \varepsilon_{t-2}+\theta_{3} \varepsilon_{t-3}
\]

Then,
\[
\begin{aligned}
& \rho(0)=1 \\
& \rho(1)=\frac{\theta_{1}+\theta_{2} \theta_{1}+\theta_{3} \theta_{2}}{\left(1+\theta_{1}{ }^{2}+\theta_{2}{ }^{2}+\theta_{3}{ }^{2}\right)}
\end{aligned}
\]
\[
\begin{array}{ll}
\rho(2)=\frac{\theta_{2}+\theta_{3} \theta_{1}}{\left(1+\theta_{1}{ }^{2}+\theta_{2}{ }^{2}+\theta_{3}{ }^{2}\right)} \\
\rho(3)=\frac{\theta_{3}}{\left(1+\theta_{1}{ }^{2}+\theta_{2}{ }^{2}+\theta_{3}{ }^{2}\right)} & \\
\rho(k)=0 \quad \text { for }|k|>3 .
\end{array}
\]

Suppose \(\theta_{1}=0.5 ; \theta_{2}=0.4 ; \theta_{3}=0.2\).
Then,
\[
\begin{aligned}
& \rho(0)=\mathbf{1} \\
& \rho(1)=\left(0.5+0.4^{*} 0.5+0.1^{*} 0.4\right) /\left(1+0.5^{2}+0.4^{2}+0.1^{2}\right)=\mathbf{0 . 5 2 1 1} \\
& \rho(2)=\left(0.4+0.1^{*} 0.5\right) /\left(1+0.5^{2}+0.4^{2}+0.1^{2}\right)=\mathbf{0 . 3 1 6 9} \\
& \rho(3)=(0.1) /\left(1+0.5^{2}+0.4^{2}+0.1^{2}\right)=\mathbf{0 . 0 7 0 4} \\
& \rho(k)=\mathbf{0} \quad \text { for }|k|>3 .
\end{aligned}
\]

Plot of simulated series and ACF
\(>\) sim_ma3_05 <- arima.sim(list(order=c(0,0,3), ma=c(0.5, 0.4, 0.1)), \(\mathrm{n}=200) \quad\) \# sim MA(3)


Example: Sample ACF for an \(\operatorname{ARMA}(1,1)\) process:
\[
y_{t}=\phi_{1} y_{t-1}+\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}
\]

From the autocovariances, we get
\[
\begin{aligned}
& \gamma(0)=\sigma^{2} \frac{1+\theta_{1}^{2}+2 \phi 1 \theta_{1}}{1-\phi 1^{2}} \\
& \gamma(1)=\sigma^{2} \frac{\left(1+\phi 1 \theta_{1}\right) *\left(\phi 1+\theta_{1}\right)}{1-\phi 1^{2}} \\
& \gamma(k)=\phi_{1} \gamma(k-1)=\phi_{1}^{k-1} \sigma^{2} \frac{\left(1+\phi 1 \theta_{1}\right) *\left(\phi 1+\theta_{1}\right)}{1-\phi 1^{2}}
\end{aligned}
\]

Then,
\[
\begin{aligned}
& \rho(k)=\phi_{1}^{k-1} \frac{(1+\phi 1 \theta 1) *(\phi 1+\theta 1)}{1+\theta 1^{2}+2 \phi 1 \theta 1} \\
& \Rightarrow \text { If }\left|\phi_{1}\right|<1, \text { exponential decay. Similar pattern to } \operatorname{AR}(1) .
\end{aligned}
\]
- The ACF for an \(\operatorname{ARMA}(1,1)\) :
\[
\rho(k)=\phi_{1}^{k-1} \frac{(1+\phi 1 \theta 1) *(\phi 1+\theta 1)}{1+\theta 1^{2}+2 \phi 1 \theta 1}
\]
- Suppose \(\phi_{1}=0.4, \theta_{1}=0.5\). Then,
\[
\begin{aligned}
& \rho(0)=\mathbf{1} \\
& \rho(1)=\frac{(1+0.4 * 0.5) *(0.4+0.5)}{1+0.5^{2}+2 * .4 * 0.5}=\mathbf{0 . 6 5 4 5} \\
& \rho(2)=0.4 * \frac{(1+0.4 * 0.5) *(0.4+0.5)}{1+0.5^{2}+2 * 0.4 * 0.5}=\mathbf{0 . 2 6 1 8} \\
& \rho(3)=0.4^{2} * \frac{(1+0.4 * 0.5) *(0.4+0.5)}{1+0.5^{2}+2 * 0.4 * 0.5}=\mathbf{0 . 0 2 3 3} \\
& \rho(k)=0.4^{k-1 *} \frac{(1+0.4 * 0.5) *(0.4+0.5)}{1+0.5^{2}+2 * 0.4 * 0.5}
\end{aligned}
\]
:

Plot of simulated series ARMA \((1,1)\) and ACF
\(>\) sim_arma11 <- arima.sim(list(order=c(1,0,1), ar=0.4, ma=0.5), \(\mathrm{n}=200\) ) \# sim ARMA(1,1)


Example: US Monthly Returns (1871-2020, \(T=1,795\) )
Sh_da <- read.csv("C://Financial Econometrics/Shiller_2020data.csv", head=TRUE, sep=",")
\(\mathrm{x}_{-} \overline{\mathrm{P}}<-\) Sh_da\$P
\(x_{-}{ }^{-}<-S_{-}^{-} d a \$ D\)
T <- length(x_P)
\(\operatorname{lr} \_\mathrm{p}<-\log \left(\mathrm{x} \_\mathrm{P}[-1] / \mathrm{x} \_\mathrm{P}[-\mathrm{T}]\right)\)
\(\operatorname{lr} \_\mathrm{d}<-\log \left(\mathrm{x}_{-} \mathrm{D}[-1] / \mathrm{x} \_\mathrm{D}[-\mathrm{T}]\right)\)
acf \(\_\)p \(<-\operatorname{acf}\left(\operatorname{lr} \_p\right) \quad \#\) acf: \(R\) function that estimates the ACF
\(>\) acf_p
Autocorrelations of series 'lr \(\_\)', by lag
\begin{tabular}{llllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11
\end{tabular}
\(\begin{array}{llllllllllll}1.000 & 0.279 & 0.004 & -0.043 & 0.017 & 0.074 & 0.039 & 0.039 & 0.044 & 0.035 & 0.034 & 0.022\end{array}\)
\(\begin{array}{llllllllllll}12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23\end{array}\)
\(-0.010-0.059-0.058-0.0560 .0090 .0330 .047-0.040-0.087-0.090-0.0290 .005\)
\(\begin{array}{lllllllll}24 & 25 & 26 & 27 & 28 & 29 & 30 & 31 & 32\end{array}\)
0.003-0.013-0.058-0.018-0.005 0.026 0.011 \(0.000 \quad 0.020\)
\(\mathrm{SE}\left(\mathrm{r}_{k}\right)=1 / \operatorname{sqrt}(T)=1 / \operatorname{sqrt}(1,795)=.0236 . \quad \Rightarrow 95 \%\) C.I.: \(\pm 2^{*} 0.0236\)


Note: With the exception of first correlation, correlations are small. However, many are significant, not strange result when \(T\) is large. \(\mathbb{\|}\)

Example: US Monthly Changes in Stock Dividends (1871-2020, \(T=1,795\) )
> acf_d
Autocorrelations of series 'lr_d', by lag
\begin{tabular}{llllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11
\end{tabular}
\(\begin{array}{llllllllllll}1.000 & 0.462 & 0.516 & 0.432 & 0.444 & 0.326 & 0.442 & 0.288 & 0.283 & 0.265 & 0.202 & 0.168\end{array}\)
\(\begin{array}{llllllllllll}12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23\end{array}\)
\(\begin{array}{llllllllllllllllllllllllllll}0.142 & 0.100 & 0.122 & 0.123 & 0.085 & 0.045 & 0.026 & -0.013 & 0.001 & -0.029 & -0.049 & -0.077\end{array}\)
\(\begin{array}{lllllllll}24 & 25 & 26 & 27 & 28 & 29 & 30 & 31 & 32\end{array}\)
\(-0.038-0.100-0.095-0.055-0.081-0.092-0.034-0.063-0.089\)
High correlations and significant even after 32 months!


Note: Correlations are positive for almost 1.5 years, then correlations become negative. \(\mathbb{\|}\)

\section*{ACF - Joint Significance Tests}

Recall the Ljung-Box (LB) statistic as:
\[
L B=T(T+2) \sum_{k=1}^{m}\left(\frac{\hat{\rho}_{k}^{2}}{(T-k)}\right)
\]

The LB test can be used to determine if the first \(m\) sample ACFs are jointly equal to zero. Under \(H_{0}: \rho_{1}=\rho_{2}=\ldots=\rho_{\mathrm{m}}=0\), the LB has an asymptotic \(\chi^{2}(m)\) distribution.

Example: LB test with 20 lags for US Monthly Returns and Changes in Dividends (1871 2020)
> Box.test(lr_p, lag=20, type= "Ljung-Box")
Box-Ljung test
data: \(1 r \_p\)
\(X\)-squared \(=\mathbf{2 0 8 . 0 2}, \mathrm{df}=\mathbf{2 0}, \mathrm{p}\)-value \(<2.2 \mathrm{e}-16 \quad \Rightarrow\) Reject \(\mathrm{H}_{0}\) at \(5 \%\) level. Joint significant first 20 correlations.
> Box.test(lr_d, lag=20, type= "Ljung-Box")
Box-Ljung test
data: \(1 \mathrm{r} \_\mathrm{d}\)
X -squared \(=\mathbf{2 7 6 2 . 7}, \mathrm{df}=\mathbf{2 0}, \mathrm{p}\)-value \(<\mathbf{2 . 2 e - 1 6} \quad \Rightarrow\) Reject \(\mathrm{H}_{0}\) at \(5 \%\) level. Joint significant first 20 correlations. ब

\section*{Partial ACF (PACF)}

The ACF gives us a lot of information about the order of the dependence when the series we analyze follows a MA process: The ACF is zero after \(q\) lags for an MA \((q)\) process.

If the series we analyze, however, follows an ARMA or AR, the ACF alone tells us little about the orders of dependence: We only observe an exponential decay.

We introduce a new function that behaves like the ACF of MA models, but for AR models, namely, the partial autocorrelation function (PACF).

The PACF is similar to the ACF. It measures correlation between observations that are \(k\) time periods apart, after controlling for correlations at intermediate lags.

Intuition: Suppose we have an \(\operatorname{AR}(1)\) :
\[
y_{t}=\phi_{1} y_{t-1}+\varepsilon_{t} .
\]

Then,
\[
\gamma(2)=\phi_{1}{ }^{2} \gamma(0)
\]

The correlation between \(\mathrm{y}_{\mathrm{t}}\) and \(\mathrm{y}_{\mathrm{t}-2}\) is not zero, as it would be for an \(\mathrm{MA}(1)\), because \(\mathrm{y}_{\mathrm{t}}\) is dependent on \(y_{t-2}\) through \(y_{t-1}\).

Suppose we break this chain of dependence by removing ("partialing out") the effect \(y_{t-1}\). Then, we consider the correlation between \(\left[y_{t}-\phi_{1} y_{t-1}\right]\) and \(\left[y_{t-2}-\phi_{1} y_{t-1}\right]-\) i.e, the correlation between \(\mathrm{yt}_{\mathrm{t}}\) and \(\mathrm{yt}_{\mathrm{t}-2}\) with the linear dependence of each on \(\mathrm{y}_{\mathrm{t}-1}\) removed:
\[
\gamma(2)=\operatorname{Cov}\left(y_{t}-\phi_{1} y_{t-1}, y_{t-2}-\phi_{1} y_{t-1}\right)=\operatorname{Cov}\left(\varepsilon_{t}, y_{t-2}-\phi_{1} y_{t-1}\right)=0 .
\]

Similarly,
\[
\gamma(k)=\operatorname{Cov}\left(\varepsilon_{t}, y_{t-k}-\phi_{1} y_{t-1}\right)=0 \quad \text { for all } k>1
\]

Definition: The PACF of a stationary time series \(\left\{y_{t}\right\}\) is
\(\phi_{11}=\operatorname{Corr}\left(y_{t}, y_{t-1}\right)=\rho(1)\)
\(\phi_{h h}=\operatorname{Corr}\left(y_{t}-\mathrm{E}\left[\mathrm{y}_{\mathrm{t}} \mid I_{t-1}\right], y_{t-h}-\mathrm{E}\left[y_{t-h} \mid I_{t-1}\right]\right) \quad\) for \(h=2,3, \ldots\).
This removes the linear effects of \(y_{t-1}, y_{t-2}, \ldots . y_{t-h}\).
The PACF \(\Phi_{h h}\) is also the last coefficient in the best linear prediction of \(y_{t}\) given \(y_{t-1}, y_{t-2}, \ldots\) \(y_{t-h}\).

Estimation by Yule-Walker equation, using sample estimates:
\[
\widehat{\boldsymbol{\phi}}_{h}=[\widehat{\boldsymbol{R}}]^{-1} \hat{\gamma}(k) \quad \Rightarrow \text { a recursive system },
\]
where \(\phi_{h}=\left(\phi_{h 1}, \phi_{h 2}, \ldots, \phi_{h h}\right)\) and \(\boldsymbol{R}\) is the \((h \mathrm{x} h)\) correlation matrix.
A recursive algorithm, Durbin-Levinson, can be used. Also OLS can be used.

\section*{Partial ACF - AR(p)}

Example: \(\operatorname{AR}(p)\) process:
\(y_{t}=\mu+\phi_{1} y_{t-1}+\phi_{2} y_{t-2}+\ldots+\phi_{p} y_{t-p}+\varepsilon_{t}\)
\(E\left[y_{t} \mid I_{t-1}\right]=\mu+\phi_{1} y_{t-1}+\phi_{2} y_{t-2}+\ldots+\phi_{p} y_{t-h-1}\)
\(E\left[y_{t-h} \mid I_{t-1}\right]=\mu+\phi_{1} y_{t-h-1}+\phi_{2} y_{t-h-2}+\ldots+\phi_{p} y_{t-1}\)
Then,
\[
\begin{aligned}
\phi_{h h} & =\phi_{h} & & \text { if } 1 \leq h \leq p \\
& =0 & & \text { otherwise }
\end{aligned}
\]
\(\Rightarrow\) After the \(p^{\text {th }} P A C F\), all remaining PACF are 0 for \(\operatorname{AR}(p)\) processes. ब
The plot of the PACF is called the partial correlogram.
R Note: The R function pacf computes the PACF.
Example: We simulate an \(\operatorname{AR}(2)\) process:
\[
y_{t}=\mu+\phi_{1} y_{t-1}+\phi_{2} y_{t-2}+\varepsilon_{t}
\]
sim_ar2 \(<-\) arima.sim \((\operatorname{list}(\operatorname{order}=c(1,0,0), \operatorname{ar}=c(0.5,0.3)), \mathrm{n}=200) \quad\) \#simulate \(\operatorname{AR}(2)\) series plot(sim_ar2, ylab="Simulated Series", main=(expression(AR(2)))) pacf_ar2 <- pacf(sim_ar2)
- Print PACF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|l|}{> pacf_ar2} \\
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & \\
\hline 0.558 & 0.286 & 0.038 & 0.103 & -0.010 & 0.009 & 0.111 & 0.060 & -0.021 & -0.076 & 0.016 & \\
\hline 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & & 23 \\
\hline -0.086 & -0.139 & 0.100 & 0.061 & -0.156 & 0.078 & -0.103 & 0.043 & -0.075 & 0.104 & 0.024 & 0.061 \\
\hline 24 & 25 & 26 & 27 & 28 & 29 & 30 & 31 & 32 & & & \\
\hline \multicolumn{12}{|l|}{-0.038-0.100-0.095-0.055-0.081-0.092-0.034-0.063-0.089} \\
\hline \(\mathrm{SE}\left(\mathrm{r}_{k}\right)\) & \(\approx 1 / \mathrm{sqr}\) & rt(200) & \(=.0707\) & & \(\Rightarrow\) & 95\% C. & I.: \(0 \pm\) & 1.96 * & 0.0707 & & \\
\hline
\end{tabular}

Plot of simulated series and PACF
\(>\) plot(sim_ar2, ylab="Simulated Series", main=(expression(AR(2))))
\(>\) pacf_ar2 <- pacf(sim_ar2)



Note: The PACF can be calculated by \(h\) regressions, each one with \(h\) lags. The \(h h\) coefficient is the \(\mathrm{h}^{\text {th }}\) order PACF.
\(>\) ar(sim_ar2, order.max \(=1\), method \(=\) "ols")
Coefficients:
1
0.5586

Intercept: -0.008403 (0.0761)
Order selected 1 sigma \(\wedge 2\) estimated as 1.152
\(>\) ar(sim_ar2, order.max \(=2\), method \(=\) "ols")
Coefficients:
12
\(0.3974 \mathbf{0 . 2 8 6 9}\)
Intercept: -0.009847 (0.07326)
Order selected 2 sigma \(\wedge 2\) estimated as 1.063 . \(\mathbb{}\)

\section*{Partial ACF - MA(q)}

Following the analogy that PACF for AR processes behaves like an ACF for MA processes, we will see exponential decay ("tails off") in the partial correlogram for MA process. Similar pattern will also occur for ARMA(p, q) process.

Example: We simulate an MA(1) process with \(\theta_{1}=0.5\).
sim_ma1 <- arima.sim(list(order=c(0,0,1), ma=0.5), \(\mathrm{n}=200\) )
\(>\operatorname{pacf}(\) sim_ma1)


\section*{Partial ACF - ARMA(p,q)}

For an ARMA processes, we will see exponential decay ("tails off") in the partial correlogram.
Example: We simulate an ARMA(1) process with \(\phi_{1}=0.4 \& \theta_{1}=0.5\).
sim_arma11 <- arima.sim(list(order \(=c(1,0,1), \operatorname{ar}=0.4, \mathrm{ma}=0.5), \mathrm{n}=200\) )
\(>\operatorname{pacf}(\) sim_arma11)


\section*{Partial ACF - Examples}

Example: US Monthly Returns (1871-2019, \(T=1,795\) )
pacf \(\_\)p \(<-\operatorname{acf}\left(\operatorname{lr} \_\right.\)p \() \quad\) \# pacf: \(R\) function that estimates the PACF \(>\) pacf_p

Partial autocorrelations of series 'lr_p', by lag
\begin{tabular}{lcccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\(\mathbf{0 . 2 7 8}\) & -0.081 & -0.026 & 0.041 & 0.058 & 0.002 & 0.038 & 0.032 & 0.016 & 0.022 & 0.009 \\
12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 \\
-0.023 & -0.057 & -0.032 & -0.045 & 0.027 & 0.017 & 0.037 & -0.059 & -0.051 & -0.050 & 0.005 \\
24 & 25 & 26 & 27 & 28 & 29 & 30 & 31 & 32 & & \\
0.006 & 0.004 & -0.005 & -0.051 & 0.014 & -0.007 & 0.037 & 0.008 & 0.018 & &
\end{tabular}
\(\mathrm{SE}\left(\mathrm{r}_{k}\right)=1 / \mathrm{sqrt}(1,795)=.0236 \quad \Rightarrow 95 \%\) C.I.: \(0 \pm \mathbf{1 . 9 6}\) * \(\mathbf{0 . 0 2 3 6}\)
```

> pacf(lr_p)

```


Note: With the exception of the first partial correlation, partial correlations are small, though, again, some are significant. ब|

Example: US Monthly Stock Dividends (1871-2020, \(T=1,795\) )
pacf_d <- pacf(lr_d)
\(>\) pacf_d
Partial autocorrelations of series 'lr_d', by lag
\begin{tabular}{cccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & \\
0.462 & 0.385 & 0.160 & 0.150 & -0.033 & 0.189 & -0.054 & -0.056 & 0.027 & -0.082 & -0.019
\end{tabular}
\begin{tabular}{lllllllllll}
12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22
\end{tabular}
\(-0.023-0.057-0.032-0.0450 .027 \quad 0.017\) 0.037-0.059-0.051-0.050 0.005
\(\begin{array}{llllllllll}23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 & 31 & 32\end{array}\)
-0.041 0.050-0.036-0.030 0.091 0.006-0.017 0.044-0.002-0.042
Higher partial correlations than for stock returns.
```

> pacf(lr_d)

```


Note: Partial correlations are positive for almost 6 lags, then become small. ब

\section*{Non-Stationary Time Series Models}

The ACF is as a rough indicator of whether a trend is present in a series. A slow decay in ACF is indicative of highly correlated data, which suggests a true unit root process, or a trend stationary process.

Formal tests can help to determine whether a system contains a trend and whether the trend is deterministic or stochastic (unit root).

We will analyze two situations faced in ARMA models:
(1) Deterministic trend - Simple model: \(\mathrm{y}_{t}=\alpha+\beta t+\varepsilon_{t}\).
- Solution: Detrending -i.e., regress \(\mathrm{y}_{\mathrm{t}}\) on \(t\). Then, keep residuals for further modeling.
(2) Stochastic trend - Simple model: \(\mathrm{y}_{t}=c+y_{t-1}+\varepsilon t\).
- Solution: Differencing -i.e., apply \(\Delta=(1-L)\) operator to \(\mathrm{yt}_{\mathrm{t}}\). Then, use \(\Delta \mathrm{y}_{\mathrm{t}}\) for further modeling.

Example: Plot of US Monthly Prices and Dividends (1871-2020)


\section*{Non-Stationary Time Series Models - Deterministic Trend}

Suppose we have the following model:
\[
\begin{aligned}
y_{t}=\alpha+\beta t+\varepsilon_{t} . \quad \Rightarrow \Delta y_{t} & =y_{t}-y_{t-1} \\
& =\beta t-\beta(t-1)+\varepsilon_{t}-\varepsilon_{t-1} \\
& =\beta+\varepsilon_{t}-\varepsilon_{t-1}
\end{aligned}
\]
\[
\Rightarrow \mathrm{E}\left[\Delta y_{t}\right]=\beta
\]
\(\left\{y_{t}\right\}\) will show only temporary departures from the trend line \(\alpha+\beta t\). This type of model is called a trend stationary (TS) model.

If a series has a deterministic time trend, then we simply regress \(y_{t}\) on an intercept and a time trend \((t=1,2, \ldots, T)\) and save the residuals. The residuals are the detrended \(\mathrm{y}_{t}\) series \(\left(=y_{t}\right.\) without the influence of \(t\) ).

If \(y_{t}\) is stochastic, we do not necessarily get stationary series, by detrending.
Many economic series exhibit "exponential trend/growth". They grow over time like an exponential function over time instead of a linear function. In this cases, it is common to work with logs
\(\ln \left(y_{t}\right)=\alpha+\beta t+\varepsilon_{t}\).
\(\Rightarrow\) The average growth rate is: \(\mathrm{E}\left[\Delta \ln \left(y_{t}\right)\right]=\beta\)
We can have a more general model:
Estimation:
- OLS.
- Frish-Waugh method (a 2-step method):
(1) Detrend \(y_{t}\), get the residuals ( \(=y_{t}\) without the influence of \(t\) )
(2) Use residuals to estimate the \(\operatorname{AR}(p)\) model.

\section*{Example: We detrend U.S. Stock Prices}
\begin{tabular}{ll}
\(\mathrm{T}<-\) length \((\mathrm{x}\) _P \()\) & \# length of series \\
trend \(<-\mathrm{c}(1: \mathrm{T})\) & \# create trend \\
det_P \(<-\operatorname{lm}\left(\mathrm{x} \_\mathrm{P} \sim\right.\) trend \()\) & \# regression to get detrended e \\
\begin{tabular}{l} 
detrend_P \(<-\) det_PSresiduals \\
plot(detrend_P, type="1", col="blue", ylab ="Detrended U.S. Prices", xlab ="Time") \\
title("Detrended U.S. Stock Prices")
\end{tabular} &
\end{tabular}

- Not very appealing series. We still see trends. Now, we detrend U.S. Stock Prices adding a squared trend.
trend \(2<-\operatorname{trend}^{\wedge} 2\)
det_P2 \(<-\operatorname{lm}\left(x \_P \sim\right.\) trend \(\left.+\operatorname{trend} 2\right) \quad\) \# regression to get detrended e detrend_P2 <- det_P2\$residuals
plot(detrend_P2, type="1", col="blue", ylab ="Detrended U.S. Prices", xlab ="Time") title("Detrended U.S. Stock Prices with linear and quadratic trends")

- Still, trends are still observed. We detrend Log U.S. Stock Prices adding a square trend 1_P <- \(\log \left(x \_P\right)\)
det_1P \(<-\operatorname{lm}\left(1 \_P \sim\right.\) trend \() \quad \#\) regression to get detrended e detrend_lP <- det_lP\$residuals plot(detrend_1P, type="1", col="blue", ylab ="Detrended Log U.S. Prices", xlab ="Time") title("Detrended Log U.S. Stock Prices")
det_1P2 \(<-\operatorname{lm}\left(1 \_\mathrm{P} \sim\right.\) trend + trend2 \() \quad\) \# regression to get detrended e det_1P2 <- det_1P2\$residuals plot(det_1P2, type="l", col="blue", ylab ="Det Log U.S. Prices", xlab ="Time") title("Detrended Log U.S. Stock Prices with linear and quadratic trends")


Detrended Log U.S. Stock Prices

Detrended Log U.S. Stock Prices with linear and quadratic trends

Remark: The second detrended series, with linear and quadratic trends looks better, but we still see trends in the graph. \(\mathbb{I}\)

\section*{Non-Stationary Time Series Models - Stochastic Trend}

The more modern approach is to consider trends in time series as a variable.
A variable trend exists when a trend changes in an unpredictable way. Therefore, it is considered as stochastic.

Recall the \(\operatorname{AR}(1)\) model: \(y_{t}=c+\phi_{1} y_{t-1}+\varepsilon_{t}\).

As long as \(|\phi|<1\), everything is fine, we have a stationary \(\operatorname{AR}(1)\) process: OLS is consistent, t stats are asymptotically normal, etc.

Now consider the extreme case where \(\phi_{1}=1, \Rightarrow y_{t}=c+y_{t-1}+\varepsilon_{t}\).
Where is the (stochastic) trend? No \(t\) term.
Let us replace recursively the lag of \(\mathrm{y}_{t}\) on the right-hand side:
\[
\begin{aligned}
y_{t} & =\mu+y_{t-1}+\varepsilon_{t} \\
& =\mu+\left(\mu+y_{t-2}+\varepsilon_{t-1}\right)+\varepsilon_{t} \\
& \ldots \\
& =y_{0}+t \mu+\sum_{j=0}^{t} \varepsilon_{t-j}
\end{aligned}
\]

A constant \(\left(\mathrm{y}_{0}\right)\), a determinist trend \((t \mu)\) and an accumulation of errors over time \(\left(\sum_{j=0}^{t} \varepsilon_{t-j}\right)\) appear in the recursive formulation. This is what we call a "random walk with drift". The series grows with \(t\).

Each \(\varepsilon_{t}\) shock represents a shift in the intercept. All values of \(\left\{\varepsilon_{t}\right\}\) have a 1 as coefficient \(\Rightarrow\) each shock never vanishes (permanent).

We remove the trend by differencing \(y_{t} \Rightarrow \Delta y_{t}=(1-L) y_{t}=\mu+\varepsilon_{t}\)
Note: Applying the \((1-L)\) operator to a time series is called differencing
Example: We difference U.S. Stock Prices, using the diff R function: diff_P <- diff(x_P)
> plot(diff_P,type="l", col="blue", ylab ="Differenced U.S. Stock Prices", xlab ="Time")
> title("Differenced U.S. Stock Prices")


Remark: The trend is gone from the graph. \(\mathbb{\|}\)
- yt is said to have a stochastic trend (ST), since each \(\varepsilon_{t}\) shock gives a permanent and random change in the conditional mean of the series.

For these situations, we use Autoregressive Integrated Moving Average (ARIMA) models.
Question: Deterministic or Stochastic Trend?
They appear similar: Both lead to growth over time. The difference is how we think of \(\varepsilon t\). Should a shock today affect \(y_{t+1}\) ?
\[
\begin{aligned}
\text { - TS: } & y_{t+1}=c+\beta(t+1)+\varepsilon_{t+1} \\
\text { - ST: } & y_{t+1}=c+\mathrm{y}_{t}+\varepsilon_{t+1}=c+\left[c+y_{t-1}+\varepsilon_{t}\right]+\varepsilon_{t+1} \\
& \Rightarrow \varepsilon_{t} \text { does not affect } y_{t+1} . \\
& \Rightarrow \varepsilon_{t} \text { affects } y_{t+1} . \\
& \text { (In fact, } \\
&
\end{aligned}
\]

\section*{ARIMA(p,d,q) Models}

For \(p, d, q \geq 0\), we say that a time series \(\left\{\mathrm{y}_{\mathrm{t}}\right\}\) is an \(\operatorname{ARIMA}(p, d, q)\) process if \(\mathrm{w}_{\mathrm{t}}=\Delta^{d} \mathrm{y}_{\mathrm{t}}=(1-L)^{d}\) \(\mathrm{yt}_{\mathrm{t}}\) is \(\operatorname{ARMA}(p, q)\). That is,

Applying the \((1-L)\) operator to a time series is called differencing.
Notation: If \(\mathrm{y}_{\mathrm{t}}\) is non-stationary, but \(\Delta^{d} \mathrm{y}_{\mathrm{t}}\) is stationary, then \(\mathrm{y}_{\mathrm{t}}\) is integrated of order \(d\), or \(\mathrm{I}(d)\). A time series with unit root is \(\mathrm{I}(1)\). A stationary time series is \(\mathrm{I}(0)\).

\section*{Examples:}

Example 1: RW: \(y_{t}=y_{t-1}+\varepsilon_{t}\).
\(\mathrm{y}_{\mathrm{t}}\) is non-stationary, but
\((1-\mathrm{L}) y_{t}=\varepsilon_{t} \Rightarrow\) white noise!
Now, \(y_{t} \sim \operatorname{ARIMA}(0,1,0)\).
Example 2: \(\operatorname{AR}(1)\) with time trend: \(y_{t}=\mu+\delta t+\phi_{1} y_{t-1}+\varepsilon_{t}\).
\(y_{t}\) is non-stationary, but
\(w_{t}=(1-\mathrm{L}) y_{t}=\mu+\delta t+\phi_{1} y_{t-1}+\varepsilon_{t}-\left(\mu+\delta(t-1)+\phi_{1} y_{t-2}+\varepsilon_{t-1}\right.\)
\[
=\delta+\phi_{1} w_{t-1}+\varepsilon_{t}-\varepsilon_{t-1}
\]

Now, \(y_{t} \sim \operatorname{ARIMA}(1,1,1)\).
We call both process first difference stationary. \(\mathbb{I}\)

Note:
- Example 1: Differencing a series with a unit root in the AR part of the model reduces the AR order.
- Example 2: Differencing can introduce an extra MA structure. We introduced non-invertibility. This happens when we difference a TS series. Detrending should be used in these cases.
- In practice:

A root near 1 of the AR polynomial \(\quad \Rightarrow\) differencing
A root near 1 of the MA polynomial \(\quad \Rightarrow\) over-differencing
- In general, we have the following results:
- Too little differencing: not stationary.
- Too much differencing: extra dependence introduced.
- Finding the right \(d\) is crucial. For identifying preliminary values of \(d\) :
- Use a time plot.
- Check for slowly decaying (persistent) ACF/PACF.
```

ARIMA Models: Unit Roots 1?
Example 1: Monthly Stock Price levels (1871-2020)
acf_P <- acf(x_P)
> acf_P
Autocorrelations of series 'x_p', by lag

0	1	2	3	4	5	6	7	8	9	10	11

1.000}00.9920.984 0.977 0.971 0.966 0.961 0.954 0.946 0.938 0.931 0.924

12	13	14	15	16	17	18	19	20	21	22	23

0.917}00.911 0.904 0.897 0.891 0.884 0.877 0.871 0.865 0.860 0.854 0.848
24
0.841}00.8340.827 0.821 0.815 0.809 0.803 0.797 0.790

```


Very high autocorrelations. Looks like \(\phi_{1} \approx 1\). \(\|\)
Example 2: Monthly Interest Rates (1871-2020)
acf_i<- acf(x_i)
\(>\) acf_i
Autocorrelations of series 'x_i', by lag
\begin{tabular}{llllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11
\end{tabular}
\(\begin{array}{lllllllllllll}1.000 & 0.996 & 0.990 & 0.985 & 0.980 & 0.975 & 0.970 & 0.965 & 0.960 & 0.956 & 0.951 & 0.946\end{array}\)
\(\begin{array}{llllllllllll}12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23\end{array}\)
\(\begin{array}{llllllllllll}0.940 & 0.934 & 0.929 & 0.924 & 0.919 & 0.915 & 0.912 & 0.908 & 0.904 & 0.901 & 0.899 & 0.896\end{array}\)
\(\begin{array}{lllllllll}24 & 25 & 26 & 27 & 28 & 29 & 30 & 31 & 32\end{array}\)
\(\begin{array}{lllllllll}0.894 & 0.891 & 0.889 & 0.887 & 0.884 & 0.882 & 0.879 & 0.877 & 0.874\end{array}\)



Very high autocorrelations. Looks like \(\phi_{1} \approx 1\). \(\|\)

\section*{ARIMA Models - Random Walk}

A random walk (RW) is defined as a process where the current value of a variable is composed of the past value plus an error term defined as a white noise (a normal variable with zero mean and variance one).

A Random Walk is an \(\operatorname{ARIMA}(0,1,0)\) process
Popular model. Used to explain the behavior of financial assets, unpredictable movements (Brownian motions, drunk persons).

It is a special case (limiting) of an \(\mathrm{AR}(1)\) process: a unit-root process.
Implication: \(\mathrm{E}\left[\mathrm{y}_{\mathrm{t}+1} \mid I_{\mathrm{t}}\right]=\mathrm{y}_{\mathrm{t}} \quad \Rightarrow \Delta \mathrm{y}_{\mathrm{t}}\) is absolutely random.
Thus, a RW is nonstationary, and its variance increases with \(t\).
Examples: Two simulated RW
```

T_sim <- 200
u <- rnorm(200)
y_sim <- matrix(0,T_sim,1)
phi <- 1
a<-2 \# Time index for observations
mu<-0 \# RW Drift (mu = 0, no drift)
while (a<= T_sim) {
y_sim[a] = mu + rho * y_sim[a-1] + u[a] \# y_sim simulated autocorrelated values
a<-a+1
}
plot(y_sim, type="l", col="blue", ylab ="Simulated Series", xlab ="Time")
title("Simulated RW Series with no drift")

```


Remark: The (stochastic trends) are clear in both graphs. ब|

\section*{ARIMA Models - Random Walk with Drift}

Change in \(y_{t}\) is partially deterministic \((\mu)\) and partially stochastic.
\[
y_{t}-y_{t-1}=\Delta y_{t}=\mu+\varepsilon_{t}
\]

It can also be written as
\[
y_{t}=y_{0}+t \mu+\sum_{j=0}^{t} \varepsilon_{t-j}
\]
\(\Rightarrow \varepsilon_{t}\) has a permanent effect on the mean of \(\mathrm{y}_{t}\).
Recall the difference between conditional and unconditional forecasts:
\[
\begin{array}{ll}
\mathrm{E}\left[y_{t}\right]=y_{0}+t \mu & \text { (Unconditional forecast) } \\
\mathrm{E}\left[\mathrm{y}_{t+s} \mid y_{t}\right]=y_{t}+s \mu & \text { (Conditional forecast) }
\end{array}
\]

\section*{ARIMA Models: Box-Jenkins}

An effective procedure for building empirical time series models is the Box-Jenkins approach, which consists of three stages:
(1) Model specification or identification (of ARIMA order)
(2) Estimation
(3) Diagnostics testing.

Two main approaches to (1) Identification.
- Correlation approach, mainly based on ACF \& PACF.
- Information criteria, based on the maximized likelihood (x2) plus a penalty function. For example, model selection based on the AIC.

Question: We have a family of ARIMA models, indexed by \(p, q\), and \(d\). How do we select one? Box-Jenkins Approach provides a method to answer the question.
1) Make sure data is stationary -check a time plot. If not, differentiate.
2) Using ACF \& PACF, guess small values for \(p \& q\).
3) Estimate order \(p, q\).
4) Run diagnostic tests on residuals.
\(\Rightarrow\) Are they white noise? If not, add lags ( \(p\) or \(q\), or both).

If order choice not clear, use AIC, AIC Corrected (AICc), BIC, or HQC (Hannan and Quinn (1979)).

Value parsimony. When in doubt, keep it simple (KISS).

\section*{ARIMA Models: Identification - Correlations}

\section*{Correlation approach.}

Basic tools: sample ACF and sample PACF.
- ACF identifies order of MA: Non-zero at lag \(q\); zero for lags \(>q\).
- PACF identifies order of AR: Non-zero at lag \(p\); zero for lags \(>p\).
- All other cases, try \(\operatorname{ARMA}(p, q)\) with \(p>0\) and \(q>0\).

Summary: For \(p>0\) and \(q>0\).
\begin{tabular}{|l|l|l|l|}
\hline & \multicolumn{1}{|c|}{\(\operatorname{AR}(\mathrm{p})\)} & MA(q) & \(\operatorname{ARMA}(p, q)\) \\
\hline ACF & Tails off & 0 after lag q & Tails off \\
\hline PACF & 0 after lag p & Tails off & Tails off \\
\hline
\end{tabular}

Note: Ideally, "Tails off" is exponential decay. In practice, in these cases, we may see a lot of non-zero values for the ACF and PACF.

\section*{ARIMA Models: Identification - AR(1)}


\section*{ARIMA Models: Identification - MA(1)}





\section*{ARIMA Models: Identification - ARMA(1,1)}

\(\operatorname{AR}(1)-\mathrm{Phi}=-0.7 ;\) Theta \(=-0.5\)










ARIMA Models: Identification - Examples
Example 1: Monthly US Returns (1871-2020).


Note: \(\operatorname{ARMA}(1,1), \operatorname{MA}(1), \operatorname{AR}(2) ?\)
Example 2: Monthly US Dividend Changes (1871-2020).



Note: Not clear: Maybe long a ARMA(p,q) or needs differencing? ©

Example 3: Monthly Log Changes in Oil Prices (1973-2020).



Note: MA(1), AR(4)? \(\mathbb{I}\)
Example 4: Monthly Log Changes in Gold (1973-2020).



Note: No clear ARMA structure. \(\boldsymbol{\|}\)

\section*{ARIMA Model: Identification - IC}

It is difficult to identify an ARMA model using the ACF and PACF. It is common to rely on information criteria (IC).

IC's are equal to the estimated variance or the log-likelihood function plus a penalty factor, that depends on \(k\). Many IC's:
- Akaike Information Criterion (AIC)
\[
\mathrm{AIC}=-2 *(\ln L-k)=-2 \ln L+2 * k
\]
\[
\begin{equation*}
\Rightarrow \text { if normality AIC }=T^{*} \ln \left(\mathbf{e}^{\prime} \mathbf{e} / T\right)+2 * k \tag{+constants}
\end{equation*}
\]
- Bayes-Schwarz Information Criterion (BIC or SBIC)
\[
\mathrm{BIC}=-2 * \ln L-\ln (T) * k
\]
\[
\Rightarrow \text { if normality AIC }=T^{*} \ln \left(\mathbf{e}^{\mathbf{e}} \mathbf{e} / T\right)+\ln (T) * k \quad(+ \text { constants })
\]
- Hannan-Quinn (HQIC)
\(\mathrm{HQIC}=-2^{*}(\ln L-k[\ln (\ln (T))]\)
\(\Rightarrow\) if normality AIC \(=T^{*} \ln \left(\mathbf{e}^{\mathbf{e}} \mathbf{e} / T\right)+2 k[\ln (\ln (T))]\) (+constants)
It is very common to compute the IC's under normality (it is the default setting in R and almost all other packages). Recall that under normality, we write the Likelihood function as:
\[
\begin{gathered}
\ln L=-\frac{T}{2} \ln \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}} \underbrace{S\left(\phi p, \theta_{q}, \mu\right)}_{\text {Errors } S S}=-\frac{T}{2} \ln \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}} T \sigma^{2} \widehat{\ln L}= \\
=-\frac{T}{2} \widehat{\ln \sigma^{2}}-\underbrace{\frac{T}{2}(1+\ln 2 \pi)}_{\text {constant }}
\end{gathered}
\]

Since we compare different ARIMA models, using the same data, the constants play no role in our decision. They can be ignored. Then,
\(-\mathrm{AIC}=T^{*} \ln \left(\widehat{\sigma}^{2}\right)+2 * k\)
- \(\mathrm{BIC}=T^{*} \ln \left(\widehat{\sigma}^{2}\right)+\ln (T) * k\)
\(-\mathrm{HQIC}=T * \ln \left(\widehat{\sigma}^{2}\right)+2 * k *[\ln (\ln (T))]\)
The goal of these criteria is to provide us with an easy way of comparing alternative model specifications, by ranking them.

General Rule: The lower the IC, the better the model. For the previous IC's, then choose model to AICı, BIC , or HQIC.

\section*{ARIMA Model: Identification - Remarks}

Some remarks about IC's:
- IC's are not test statistics. They do not test a model.
- They are used for ranking. The raw value tends to be ignored.
- They have two components: a goodness of fit component -based on \(\ln L\) - and a model complexity component -the penalty based on \(k\).
- Different penalties, different IC's.
- Some authors scale the IC's by \(T\). Since raw values tend to be irrelevant, this is not an issue.

We would like these statistics -i.e., the IC's- to have good properties. For example, if the true model is being considered among many, we want the IC to select it. This can be done on average (unbiased) or as \(T\) increases (consistent).

Some results regarding AIC and BIC.
- AIC and Adjusted \(R^{2}\) are not consistent.
- AIC is conservative-i.e., it tends to over-fit: \(k_{A I C}\) too large models.
- In time series, AIC selects the model that minimizes the out-of-sample one-step ahead forecast MSE.
- BIC is more parsimonious than AIC. It penalizes the inclusion of parameters more ( \(k_{B I C} \leq k_{A I C}\) ).
- BIC is consistent in autoregressive models.
- No agreement which criteria is better.

\section*{ARIMA Model: Identification - Small Sample Modifications}
- There are modifications of IC to get better finite sample behavior, a popular one is AIC corrected, AICc, statistic:
\[
A I C c=T \widehat{\ln } \sigma^{2}+\frac{2 k(k+1)}{T-k-1}
\]

AICc converges to AIC as \(T\) gets large. Using AICc is not a bad idea.
For \(\mathrm{AR}(p)\) models, other AR-specific criteria are possible: Akaike's final prediction error (FPE), Akaike's BIC, Parzen's CAT.

Hannan and Rissannen's (1982) minic (=Minimum IC): Calculate the BIC for different \(p\) 's (estimated first) and different \(q\) 's. Select the best model-i.e., lowest BIC.

Note: Box, Jenkins, and Reinsel (1994) proposed using the AIC above.

\section*{ARIMA Model: Identification - In practice}

Example: We compute, for monthly US Returns (1871-2020), annan and Rissannen (1982)'s minic, based on AIC.

Minimum Information Criterion
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Lags & MA 0 & MA 1 & MA 2 & MA 3 & MA 4 & MA 5 \\
\hline AR 0 & -6403.59 & -6552.94 & -6552.69 & -6554.27 & -6552.88 & -6557.37 \\
\hline AR 1 & -6545.22 & -6552.23 & -6551.86 & -6552.42 & -6552.64 & -6561.48 \\
\hline AR 2 & -6554.76 & -6553.28 & -6554.85 & -6554.35 & -6564.32 & -6559.48 \\
\hline AR 3 & -6553.94 & -6552.53 & -6554.44 & -6552.33 & -6550.36 & -6558.52 \\
\hline AR 4 & -6554.98 & -6559.83 & -6559.92 & -6558.94 & -6554.1 & -6558.16 \\
\hline AR 5 & -6558.81 & -6558.65 & -6557.45 & -6555.78 & -6558.66 & -6556.06 \\
\hline
\end{tabular}

Note: Best Model is ARMA(2,4); other potential candidates: ARMA(1,5), ARMA(4,2), ARMA \((5,0)\).

R Note: R has a couple of functions that select automatically the "best" ARIMA model: armaselect (using package caschrono) minimizes BIC and auto.arima (using package forecast) minimizes AIC, AICc (default) or BIC.
\(>\) armaselect(lr_p)
\# shows the best 10 models according to BIC
pq sbc
[1,] 20 - 11644.79
[2,] \(10-11641.53\)
[3,] 3 0-11637.71
[4,] 4 0-11632.43
[5,] \(50-11629.95\)
[6,] \(21-11627.42\)
[7,] 6 0-11621.70
[8,] 13 -11620.18
[9,] 31 1-11619.93
[10,] 22 -11619.44
\(>\) auto.arima \(\left(\operatorname{lr} \_\right.\)p, ic="bic", trace=TRUE \() \quad\) \# ic="BIC". function approximates models.

Fitting models using approximations to speed things up...
ARIMA(2,0,2) with non-zero mean : -6519.957
ARIMA( \(0,0,0\) ) with non-zero mean : -6392.599
ARIMA(1,0,0) with non-zero mean : -6527.879

ARIMA(0,0,1) with non-zero mean : -6536.548
ARIMA( \(0,0,0\) ) with zero mean \(:-6385.246\)
ARIMA(1,0,1) with non-zero mean : -6529.358
ARIMA \((0,0,2)\) with non-zero mean : -6530.806
ARIMA(1,0,2) with non-zero mean : -6523.415
ARIMA( \(0,0,1\) ) with zero mean \(:-6534.284\)
Now re-fitting the best model(s) without approximations...

ARIMA(0,0,1) with non-zero mean : -6536.463
\(>\) auto.arima(lr \(\_\)p, \(\mathrm{ic}=\) "bic", max. \(\mathrm{p}=5\), max. \(\mathrm{q}=5\), trace=TRUE) \# approximates models.
Series: 1 lr p
ARIMA( \(0,0,1\) ) with non-zero mean
Coefficients:
mal mean
0.28800 .0037
s.e. 0.02180 .0012
sigma^2 estimated as 0.001523: log likelihood=3279.47
\(\mathrm{AIC}=-6552.94 \quad \mathrm{AICc}=-6552.93 \quad \mathrm{BIC}=-6536.46\)
Note: The function auto.arima does not try a lot of models, it tries to keep the \(p+q \leq 5\). \(\mathbb{}\)
Remark: Do not take the results from auto.arima or armaselect or minic as the final model. We still need to check the residuals are WN.
- Script in R to select model using arima function.
```

$\mathrm{p}<-6$
\# set max order for AR part: p-1
$\mathrm{q}<-6 \quad$ \# set max order for Ma part: $\mathrm{q}-1$
$n p q<-p^{*} q$
aic_m $<-\operatorname{matrix}(0$, nrow $=n p q$, ncol $=3) \quad$ \# matrix collects p, q, AIC: AIC in last
column
$\mathrm{j}<-0$
$\mathrm{k}<-1$
while $(\mathrm{j}<\mathrm{p})$ \{
i <- 0
while $(\mathrm{i}<\mathrm{q})$ \{
$\bmod \mathrm{j}<-\operatorname{arima}\left(\operatorname{lr} _\mathrm{p}, \operatorname{order}=\mathrm{c}(\mathrm{i}, 0, \mathrm{j})\right) \quad$ \# fit $\operatorname{arima}(\mathrm{p}, 0, \mathrm{q})$ process
aic_m[k,] <- cbind(i, j, mod_j\$aic) \# extract aic from arima fit model
$\mathrm{i}<-\mathrm{i}+1$
$\mathrm{k}<-\mathrm{k}+1$
\}
$\mathrm{j}<-\mathrm{j}+1$
\}
aic_m \# Print all the results AR(i), MA(j), AIC
min_aic <- min(aic_m[,3]) \# Minimum AIC

```
min_aic
\# Print Minimum
which(aic_m == min_aic, arr.ind=TRUE) \# Prints the row

\section*{ARIMA Model: Identification - Final Remarks}

There is no agreement on which criteria is best. The AIC is the most popular, but others are also used.

Asymptotically, the BIC is consistent -i.e., it selects the true model if, among other assumptions, the true model is among the candidate models considered.

The AIC is not consistent, generally producing too large a model, but is more efficient -i.e., when the true model is not in the candidate model set the AIC asymptotically chooses whichever model minimizes the MSE/MSPE.

\section*{ARIMA Process - Estimation}

We assume:
- The model order \((d, p\) and \(q)\) is known. Make sure \(\mathrm{y}_{\mathrm{t}}\) is \(\mathrm{I}(0)\).
- The data has zero mean \((\mu=0)\). If this is not reasonable, demean y .

Fit a zero-mean ARMA model to the demeaned yt:
\[
\phi(L)\left(y_{t}-\bar{y}\right)=\theta(L) \varepsilon_{t}
\]

Several ways to estimate an \(\operatorname{ARMA}(p, q)\) model:
1) Maximun Likelihood Esimation (MLE). Assume a distribution, usually a normal distribution, and, then, do ML.
2) Yule-Walker for \(\operatorname{ARMA}(p, q)\). Method of moments. Not efficient.
3) Innovations algorithm for MA(q).
4) Hannan-Rissanen algorithm for \(\operatorname{ARMA}(p, q)\).

\section*{ARIMA Process - Estimation: MLE}

Steps:
1) Assume a distribution for the errors. Typically, i.i.d. normal, say:
\[
\begin{gathered}
\quad \varepsilon_{t} \sim i . i . d . \mathrm{N}\left(0, \sigma^{2}\right) \\
\Rightarrow \text { pdf: } f\left(\varepsilon_{t}\right)=\frac{1}{\sqrt{2 \pi}} \exp \left[-\frac{\varepsilon_{t}^{2}}{2 \sigma^{2}}\right]
\end{gathered}
\]
2) Write down the joint pdf for \(\boldsymbol{\varepsilon}: \quad f\left(\varepsilon_{1}, \ldots, \varepsilon_{T}\right)=f\left(\varepsilon_{1}\right) \ldots f\left(\varepsilon_{T}\right)\)

Note: We are not writing the joint pdf in terms of the \(y_{t}\) 's, as a multiplication of the marginal pdfs because of the dependency in \(y_{t}\).
3) Get \(\varepsilon\) t. For the general stationary \(\operatorname{ARMA}(p, q)\) model:
\[
\varepsilon_{t}=y_{t}-\phi_{1} y_{t-1}-\cdots-\phi p y_{t-p}-\theta_{1} \varepsilon_{t-1}-\cdots-\theta_{q} \varepsilon_{t-q}
\]
(if \(\mu \neq 0\), demean \(y_{t}\).)
4) The joint pdf for \(\left\{\varepsilon_{1}, \ldots, \varepsilon_{T}\right.\) ) is:
\[
\mathcal{L}=f\left(\varepsilon_{1}, \cdots, \varepsilon_{T} \mid \mu, \phi, \theta, \sigma^{2}\right)=\left(2 \pi \sigma^{2}\right)^{-T / 2} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{t=1}^{n} \varepsilon_{t}^{2}\right\}
\]
5) Let \(Y=\left(y_{1}, y_{2}, \ldots, y_{T}\right)\). With an \(\operatorname{AR}(p, q)\) model, we need \(p\) and \(q\) initial lags for \(y_{t}\) and \(\varepsilon_{t}\). We assume that initial conditions \(Y^{*}=\left(y_{0}, y_{-1}, \ldots, y_{-p+1}\right)^{\prime}\) and \(\varepsilon_{*}=\left(\varepsilon_{0}, \varepsilon_{-1}, \ldots, \varepsilon_{-q+1}\right)\) ' are known.
6) The conditional log-likelihood function is given by
\[
\mathcal{L}=\ln \mathrm{L}\left(\mu, \phi, \theta, \sigma^{2}\right)=-\frac{T}{2} \ln \left(2 \pi \sigma^{2}\right)-\frac{S_{*}(\mu, \phi, \theta)}{2 \sigma^{2}}
\]
where \(S_{*}(\mu, \phi, \theta)=\sum_{t=1}^{n} \varepsilon_{t}^{2}\left(\mu, \phi, \theta \mid Y, Y_{*}, \varepsilon_{*}\right)\) is the conditional sum of squares (SS).

- Numerical optimization problem, where initial values ( \(\mathbf{y}^{*}\) ) matter.

Example: \(\operatorname{AR}(1)\) process:
\[
y_{t}=\phi_{1} y_{t-1}+\varepsilon_{t}, \quad \varepsilon_{t} \stackrel{i . i . d .}{\sim} N\left(0, \sigma^{2}\right)
\]
- Write down the joint likelihood for \(\boldsymbol{\varepsilon}_{\mathrm{t}}\)
\[
\mathcal{L}=f\left(\varepsilon_{1}, \cdots, \varepsilon_{n}\right)=(2 \pi \sigma)^{-n / 2} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{t=1}^{n} \varepsilon_{t}^{2}\right\}
\]

First, we need to solve for \(\varepsilon \mathrm{t}\) :
\[
\begin{array}{ll}
Y_{1}=\phi_{1} Y_{0}+\varepsilon_{1} & \rightarrow \text { Let's take } Y_{0}=0 \\
Y_{2}=\phi_{1} Y_{1}+\varepsilon_{2} & \Rightarrow \varepsilon_{2}=Y_{2}-\phi_{1} Y_{1} \\
Y_{3}=\phi_{1} Y_{2}+\varepsilon_{3} & \Rightarrow \varepsilon_{3}=Y_{3}-\phi_{1} Y_{2} \\
\vdots \\
Y_{n}=\phi_{1} Y_{n-1}+\varepsilon_{n} \Rightarrow \varepsilon_{n}=Y_{n}-\phi_{1} Y_{n-1}
\end{array}
\]

Technical note: The joint likelihood is in terms of \(\varepsilon_{t}\). We want to change the joint from \(\boldsymbol{\varepsilon}_{\mathrm{t}}\) to \(\mathbf{y}_{\mathrm{t}}\), for this, we need the Jacobian \(|\mathrm{J}|\).
\[
|J|=\left|\begin{array}{cccc}
\frac{\partial \varepsilon_{2}}{\partial Y_{2}} & \frac{\partial \varepsilon_{2}}{\partial Y_{3}} & \cdots & \frac{\partial \varepsilon_{2}}{\partial Y_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial \varepsilon_{n}}{\partial Y_{2}} & \frac{\partial \varepsilon_{n}}{\partial Y_{3}} & \cdots & \frac{\partial \varepsilon_{n}}{\partial Y_{n}}
\end{array}\right|=\left|\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
-\phi_{1} & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right|=1
\]

Then,
\[
f\left(Y_{2}, \cdots, Y_{n} \mid Y_{1}\right)=f\left(\varepsilon_{2}, \cdots, \varepsilon_{n}\right)|J|=f\left(\varepsilon_{2}, \cdots, \varepsilon_{n}\right)
\]
- Then, the likelihood function can be written as
\[
\begin{aligned}
\mathcal{L}\left(\phi_{1}, \sigma_{a}^{2}\right) & =f\left(Y_{1}, \cdots, Y_{n}\right)=f\left(Y_{1}\right) f\left(Y_{2}, \cdots, Y_{n} \mid Y_{1}\right)=f\left(Y_{1}\right) f\left(\varepsilon_{2}, \cdots, \varepsilon_{n}\right) \\
& =\left(\frac{1}{2 \pi \gamma_{0}}\right)^{1 / 2} e^{-\frac{\left(Y_{1}-0\right)^{2}}{2 \gamma_{0}}}\left(\frac{1}{2 \pi \sigma^{2}}\right)^{(T-1) / 2} e^{-\frac{1}{2 \sigma^{2}} \sum_{t=2}^{T}\left(Y_{t}-\phi_{1} Y_{t-1}\right)^{2}}
\end{aligned}
\]
where \(Y_{1} \sim N\left(0, \gamma_{0}=\frac{\sigma^{2}}{1-\phi_{1}{ }^{2}}\right)\).

Then,
\[
\mathcal{L}\left(\phi_{1}, \sigma^{2}\right)=\frac{\sqrt{1-\phi_{1}^{2}}}{\left(2 \pi \sigma^{2}\right)^{n / 2}} \exp \left\{-\frac{1}{2 \sigma^{2}}\left[\sum_{t=2}^{n}\left(Y_{t}-\phi_{1} Y_{t-1}\right)^{2}+\left(1-\phi_{1}^{2}\right) Y_{1}^{2}\right]\right\}
\]
- Then, the \(\log\) likelihood function:
\[
\begin{aligned}
L=\ln \mathcal{L}\left(\phi_{l}, \sigma^{2}\right)= & -\frac{n}{2} \ln 2 \pi-\frac{n}{2} \ln \sigma^{2}-\frac{1}{2} \ln \left(1-\phi^{2}\right)- \\
& -\frac{1}{2 \sigma^{2}} \underbrace{[\underbrace{\sum_{t=2}^{n}\left(Y_{t}-\phi_{I} Y_{t-1}\right)^{2}}_{t=2}+\left(1-\phi_{I}^{2}\right) Y_{1}^{2}]}_{S_{*}\left(\phi_{I}\right)}
\end{aligned}
\]
where \(S^{*}\left(\phi_{1}\right)\) is the conditional SS and \(S\left(\phi_{1}\right)\) is the unconditional SS.
- F.o.c.'s:
\[
\begin{aligned}
& \frac{\partial L\left(\phi_{1}, \sigma^{2}\right)}{\partial \phi_{1}}=0 \\
& \frac{\partial L\left(\phi_{1}, \sigma^{2}\right)}{\partial \sigma}=0
\end{aligned}
\]

Note:
- If we neglect \(\ln \left(1-\phi_{1}{ }^{2}\right)\), then MLE \(=\) Conditional LSE.
\[
\max _{\phi} L\left(\phi_{1}, \sigma^{2}\right)=\min S\left(\phi_{1}\right)
\]
- If we neglect both \(\ln \left(1-\phi_{1}{ }^{2}\right)\) and \(\left(1-\phi_{1}{ }^{2}\right) Y_{1}^{2}\), then
\[
\max _{\phi} L\left(\phi_{1}, \sigma^{2}\right)=\min S\left(\phi_{1_{*}}\right) \cdot \boldsymbol{q}
\]

\section*{ARIMA Process - Estimation: Yule-Walker}

Yule-Walker for \(A R(p)\) : Regress \(\mathrm{y}_{\mathrm{t}}\) against \(\mathrm{y}_{\mathrm{t}-1}, \mathrm{y}_{\mathrm{t}-2}, \ldots, \mathrm{y}_{\mathrm{t}-\mathrm{p}}\)
Yule-Walker for \(\operatorname{ARMA}(p, q)\) : Method of moments. Not efficient.
Example: For an \(\operatorname{AR}(p)\), we the Yule-Walker equations are
\[
\left[\begin{array}{cccc}
\rho(0) & \rho(1) & \cdots & \rho(p-1) \\
\rho(1) & \rho(0) & \cdots & \rho(p-2) \\
\vdots & \vdots & \cdots & \vdots \\
\rho(p-1) & \rho(p-2) & \cdots & \rho(0)
\end{array}\right]\left[\begin{array}{c}
\phi_{1} \\
\phi_{2} \\
\vdots \\
\phi_{p}
\end{array}\right]=\left[\begin{array}{c}
\rho(1) \\
\rho(2) \\
\vdots \\
\rho(p)
\end{array}\right]
\]

Method of Moments (MM) Estimation: Equate sample moments to population moments, and solve the equation. In this case, we use:
\[
\begin{aligned}
& E\left(Y_{t}\right)=\frac{1}{T} \sum_{t=1}^{T} Y_{t} \Rightarrow \mu=\bar{Y} \\
& \left.E\left[\left(Y_{t}-\mu\right)\left(Y_{t-k}-\mu\right)\right)=\frac{1}{T} \sum_{t=1}^{T}\left(Y_{t}-\mu\right)\left(Y_{t-k}-\mu\right)\right) \quad \Rightarrow \gamma_{k}=\hat{\gamma}_{k} \quad\left(\& \rho_{k}=\hat{\rho}_{k}\right)
\end{aligned}
\]
- Then, the Yule-Walker estimator for \(\phi\) is given by solving
\[
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & \hat{\rho}(1) & \cdots & \hat{\rho}(p-1) \\
\hat{\rho}(1) & 1 & \cdots & \hat{\rho}(p-2) \\
\vdots & \vdots & \cdots & \vdots \\
\hat{\rho}(p-1) & \hat{\rho}(p-2) & \cdots & 1
\end{array}\right]\left[\begin{array}{c}
\hat{\phi}_{1} \\
\hat{\phi}_{2} \\
\vdots \\
\hat{\phi}_{p}
\end{array}\right]=\left[\begin{array}{c}
\hat{\rho}(1) \\
\hat{\rho}(2) \\
\vdots \\
\hat{\rho}(p)
\end{array}\right]} \\
& \Rightarrow \hat{\phi}=\hat{R}_{\mathrm{p}}{ }^{-1} \hat{\rho}_{p} \boldsymbol{q}
\end{aligned}
\]

Note: If \(\hat{\gamma}_{0}>0, \quad\) then, \(\hat{\Gamma}_{m}\) is nonsingular.
- If \(\left\{Y_{t}\right\}\) is an \(\operatorname{AR}(p)\) process,
\[
\begin{aligned}
& \hat{\phi} \xrightarrow{d} N\left(\phi, \frac{\sigma^{2}}{T} \Gamma_{p}^{-1}\right) \\
& \hat{\phi}_{k k} \xrightarrow{d} N\left(0, \frac{1}{T}\right) \text { for } \mathrm{k}>\mathrm{p} .
\end{aligned}
\]
- Thus, we can use the sample PACF to test for AR order, and we can calculate approximated C.I. for \(\phi\).
- Distribution:

If \(y_{t}\) is an \(\operatorname{AR}(p)\) process, and \(T\) is large,
\[
\sqrt{T}(\hat{\phi}-\phi) \stackrel{\text { approx. }}{\sim} N\left(0, \hat{\sigma}^{2} \hat{\Gamma}_{p}^{-1}\right)
\]
\(100(1-\alpha) \%\) approximate C.I. for \(\phi_{j}\) is
\[
\hat{\phi}_{j} \pm z_{\alpha / 2} \frac{\hat{\sigma}}{\sqrt{T}}\left(\hat{\Gamma}_{p}^{-1}\right)_{j j}^{1 / 2}
\]

Note: The Yule-Walker algorithm requires \(\Gamma^{-1}\).
- For \(\operatorname{AR}(p)\). The Levinson-Durbin (LD) algorithm avoids \(\boldsymbol{\Gamma}^{-1}\). It is a recursive linear algebra prediction algorithm. It takes advantage that \(\Gamma\) is a symmetric matrix, with a constant diagonal (Toeplitz matrix). Use LD replacing \(\gamma\) with \(\hat{\gamma}\).

Side effect of LD: automatic calculation of PACF and MSPE.
Example 1: \(\operatorname{AR}\) (1) (MM) estimation:
\[
y_{t}=\phi_{1} y_{t-1}+\varepsilon_{t}
\]

It is known that \(\rho_{l}=\phi_{1}\). Then, the MME of \(\phi_{1}\) is
\[
\Rightarrow \rho_{1}=\hat{\rho}_{1}
\]
\[
\widehat{\phi_{1}}=\hat{\rho}_{1}=\frac{\sum_{t=1}^{T}\left(Y_{t}-\widehat{Y}\right)\left(Y_{t-1}-\bar{Y}\right)}{\sum_{t=1}^{T}\left(Y_{t}-\bar{Y}\right)^{2}}
\]
- Also, \(\sigma^{2}\) is unknown: \(\quad \gamma_{0}=\frac{\sigma^{2}}{\left(1-\phi_{1}^{2}\right)} \Rightarrow \hat{\sigma}^{2}=\hat{\gamma}_{0}\left(1-{\widehat{\phi_{1}}}^{2}\right) \cdot\) ब

Example 2: Suppose we suspect an \(\operatorname{AR}(3)\). We have estimated \(\hat{\rho}_{1}, \hat{\rho}_{2}\), and \(\hat{\rho}_{3}\). Then,
\[
\left[\begin{array}{ccc}
1 & \hat{\rho}_{1} & \hat{\rho}_{2} \\
\hat{\rho}_{1} & 1 & \hat{\rho}_{1} \\
\hat{\rho}_{2} & \hat{\rho}_{1} & 1
\end{array}\right]\left[\begin{array}{l}
\phi_{1} \\
\phi_{2} \\
\phi_{3}
\end{array}\right]=\left[\begin{array}{l}
\hat{\rho}_{1} \\
\hat{\rho}_{2} \\
\hat{\rho}_{3}
\end{array}\right]
\]

Suppose we get: \(\hat{\rho}_{1}=0.5, \hat{\rho}_{2}=0.4\), and \(\hat{\rho}_{3}=-0.3\). Then, solving for \(\boldsymbol{\phi}\) :
\[
\left[\begin{array}{l}
\hat{\phi}_{1} \\
\hat{\phi}_{2} \\
\hat{\phi}_{3}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0.5 & 0.4 \\
0.5 & 1 & 0.5 \\
0.4 & 0.5 & 1
\end{array}\right]^{-1}\left[\begin{array}{c}
0.5 \\
0.4 \\
-0.3
\end{array}\right]=\left[\begin{array}{c}
0.555 \\
0.511 \\
-0.777
\end{array}\right]
\]
- Solving system with R:

Rho <- matrix (c( \(1,0.5,0.4,0.5,1,0.5,0.4,0.5,1)\), nrow=3)
\(\mathrm{r}<-\mathrm{c}(.5,0.4,-0.3)\)
solve(Rho)\%*\%r. व
Example: MA(1) process with MM estimation:
\[
y_{t}=\varepsilon_{t}-\theta_{1} \varepsilon_{t-1}
\]

Again using the autocorrelation of the series at lag 1,
\[
\begin{aligned}
& \rho_{1}=-\frac{\theta_{1}}{\left(1+\theta_{1}^{2}\right)}=\hat{\rho}_{1} \\
& \theta_{1}^{2} \hat{\rho}_{1}+\theta_{1}+\hat{\rho}_{1}=0 \\
& \hat{\theta}_{1,2}=\frac{-1 \pm \sqrt{1-4 \widehat{\rho}_{1}^{2}}}{2 \widehat{\rho}_{1}}
\end{aligned}
\]
- Choose the root satisfying the invertibility condition. For real roots:
\[
1-4 \hat{\rho}_{1}^{2} \geq 0 \Rightarrow 0.25 \geq \hat{\rho}_{1}^{2} \quad \Rightarrow-0.5 \leq \hat{\rho}_{1} \leq 0.5
\]

If \(\hat{\rho}_{1}= \pm 0.5\), unique real roots but non-invertible.
If \(\left|\hat{\rho}_{1}\right|<0.5\), unique real roots and invertible. \(\Rightarrow\) We keep this one. \(\mathbb{T}\)
- Remarks
- The MMEs for MA and ARMA models are complicated.
- In general, regardless of AR, MA or ARMA models, the MMEs are sensitive to rounding errors. They are usually used to provide initial estimates needed for a more efficient nonlinear estimation method.
- The moment estimators are not recommended for final estimation results and should not be used if the process is close to being nonstationary or noninvertible.

\section*{ARIMA Process - Estimation: Yule-Walker - Remarks}

The MM estimations for MA and ARMA models are complicated.
In general, regardless of AR, MA or ARMA models, the MMEs are sensitive to rounding errors.
They are usually used to provide initial estimates needed for a more efficient nonlinear estimation method.

The moment estimators are not recommended for final estimation results and should not be used if the process is close to being nonstationary or noninvertible.

\section*{ARIMA Process - Estimation: Hannan-Rissanen}

Hannan-Rissanen algorithm for \(\operatorname{ARMA}(p, q)\)
Steps:
1. Estimate high-order AR.
2. Use Step (1) to estimate (unobserved) noise \(\varepsilon \mathrm{t}\)
3. Regress yt against \(y_{t-1}, y_{t-2}, \ldots, y_{t-p}, \hat{\varepsilon}_{t-1}, \ldots, \hat{\varepsilon}_{t-q}\)
4. Get new estimates of \(\varepsilon_{\mathrm{t}}\). Repeat Step (3).

Example: We estimate a \(\operatorname{ARIMA}(0,0,1)\) model for \(\mathbf{S \& P} 500\) historical returns, using the arima function, part of the R forecast package.
\(>\operatorname{arima}\left(\operatorname{lr} \_p\right.\), order \(=c(0,0,1)\), method="ML") \#ML estimation method
Call:
\(\operatorname{arima}\left(\mathrm{x}=\operatorname{lr} \_\mathrm{p}\right.\), order \(=\mathrm{c}(0,0,1)\), method \(=\) "ML" \()\)
Coefficients:
ma1 intercept
\(0.2880 \quad 0.0037\)
s.e. \(0.0218 \mathbf{0 . 0 0 1 2}\)
sigma^2 estimated as 0.001522: \(\log\) likelihood \(=3279.47\), aic \(=-6552.94\). \(\boldsymbol{\square}\)
Note: Model was selected by ACF/PACF and confirmed with auto.arima function. Not a lot of structure in stock returns.

Example: We use auto.arima function to estimate a model for DIS, GE, and IBM returns.
```

> auto.arima(lr_dis)

```

Coefficients:
ar1 mean
0.05380 .0072
s.e. 0.04190 .0038
sigma^2 estimated as 0.007462: log likelihood=588.13
\(\mathrm{AIC}=-1170.25 \quad \mathrm{AICc}=-1170.21 \quad \mathrm{BIC}=-1157.22\)
\(>\) auto.arima(lr_ge)
Coefficients:
ar1 mal
\(0.0592-0.9848\)
s.e. \(0.0428 \mathbf{0 . 0 0 9 6}\)
sigma^2 estimated as 0.005591 : \(\log\) likelihood \(=667.5\)
Note: For both DIS \& GE returns, we observe low AR(1) coefficient, and not significant.
```

> auto.arima(lr_ibm)

```

Series: 1 lr ibm
ARIMA( \(0,0,0\) ) with zero mean
sigma^2 estimated as 0.005126: log likelihood=694.13
\(\mathrm{AIC}=-1386.26 \quad \mathrm{AICc}=-1386.25 \quad \mathrm{BIC}=-1381.91\)
sigma^2 estimated as 0.001522: log likelihood \(=3279.47\), aic \(=-6552.94\).
Note: Unpredictable! In general, we do not find a lot of structure in stock returns; autocorrelations die out very quickly. This result is expected, given the Efficient Markets Hypothesis. 9

Example: We use auto.arima function to estimate a model for changes in oil prices.
> auto.arima(lr_oil)
Series: lr_oil
ARIMA( \(\overline{4}, 0,0)\) with zero mean
Coefficients:
ar1 ar2 ar3 ar4
\(0.2950-0.1024-0.0570-0.0984\)
s.e. \(0.0521 \quad 0.0543 \quad 0.0551 \quad 0.0539\)
sigma^2 estimated as 0.008913: log likelihood=344.52
AIC=-679.04 \(\quad\) AICc \(=-678.87 \quad \mathrm{BIC}=-659.55\)
Note: \(\operatorname{AR}(4) \quad \Rightarrow\) significant autocorrelation in changes in oil prices, but mainly decaying at .30 .
Example: We use auto.arima function to estimate a model for monthly U.S. interest long rates (1871-2020).
\(>\) auto.arima(x_i)
Series: x_i
ARIMA(0,1,2)
Coefficients:
ma1 ma2
0.4012 - 0.0957
s.e. 0.02360 .0238
sigma^2 estimated as 0.02719: log likelihood=690.02
\(\mathrm{AIC}=-1374.04 \quad\) AICc=-1374.03 \(\quad\) BIC=-1357.56
Note: We need to differentiate interest rates to get a stationary MA(2) model. \(\mathbb{I}\)

\section*{ARIMA Process - Diagnostic Tests}

Once the model is estimated, we run diagnostic tests. Usually, we check for extra-AR structure in the mean. We check visual plots of residuals, ACFs, and the distribution of residuals. More formally, we compute the LB test on the residuals. If we find extra-AR structure, we increase \(p\) and/or \(q\).

R Note: If we use \(\operatorname{arima()}\) ) or auto.arima() functions, we can use the function checkresiduals() to do the plots and testing for us.

Example: We check the MA(1) model for U.S. historical stock returns
```

$>$ fit_arima_lr_p <- arima(lr_p, order=c(0,0,1), method="ML")

```
\(>\) checkresiduals(fit_arima_lr_p)

\section*{Ljung-Box test}
data: Residuals from ARIMA( \(0,0,1\) ) with non-zero mean
\(Q^{*}=\mathbf{1 8 . 5 7 9}, \mathrm{df}=8, \mathrm{p}\)-value \(=\mathbf{0 . 0 1 7 2 8} \quad \Rightarrow\) There seems to be more AR structure
Model df: 2. Total lags used: 10


R Note: We check stationarity/invertibility too -i.e., if the roots are inside the unit circle. In this case, an MA model, stationarity is not an issue (MA are stationary), but invertibility is. We use the R function autoplot, part of the forecast package. Be aware that autoplot plots the inverse roots, not the roots; in this case, a stationary AR (or invertible MA) process will have the inverse roots inside the unit circle.
> autoplot(fit_arima_lr_p)


Note: The inverse root is inside the unit circle and are real: invertible MA(1). ब
Example: We change the model for U.S. stock returns. We estimate an \(\operatorname{ARIMA}(1,0,5)\).
\(>\) fit_arima_lr_p15<- arima(lr_p, order=c(1,0,5))
\(>\) fit_arima_lr_p15
Coefficients:
ar1 ma1 ma2 ma3 ma4 ma5 intercept
\(0.7077-0.4071-0.1965-0.06710 .0338 \quad 0.0807-0.0035\)
\(\begin{array}{llllllll}\text { s.e. } 0.1039 & 0.1058 & 0.0392 & 0.0263 & 0.0256 & 0.0250 & 0.0014\end{array}\)
\(\operatorname{sigma}^{\wedge} 2\) estimated as \(0.001502: \log\) likelihood \(=3278.2\), aic \(=-6540.4\)
> checkresiduals(fit_arima_lr_p15)
Ljung-Box test
data: Residuals from \(\operatorname{ARIMA}(1,0,5)\) with non-zero mean
\(\mathrm{Q}^{*}=1.7047, \mathrm{df}=3, \mathrm{p}\)-value \(=0.6359 \quad \Rightarrow\) The joint 10 lag autocorrelation not significant.
Model df: 7. Total lags used: 10

Residuals from ARIMA \((1,0,5)\) with non-zero mean


Note: We still see some small autocorrelations different from 0 .
We check the stationarity and invertibility of \(\operatorname{ARIMA}(1,0,5)\) model
> autoplot(fit_arima_lr_p15)


Note: All inverse roots inside the unit circle: stationary and invertible. Notice that we have some roots on the MA part that are imaginary. \(\|\)

Example: We check the fit of the ARIMA model for U.S. long interest rates
\(>\) fit_arima_i <- auto.arima(x_i)
ARIMA( \(0,1,2\) )
Coefficients:
```

 ma1 ma2
 0.4012-0.0957
 s.e. 0.0236 0.0238

```
sigma^2 estimated as 0.02719: log likelihood \(=690.02\)
\(\mathrm{AIC}=-1374.04 \quad \mathrm{AICc}=-1374.03 \quad \mathrm{BIC}=-1357.56\)
> checkresiduals(fit_arima_i)
Ljung-Box test
data: Residuals from \(\operatorname{ARIMA}(0,1,2)\)
\(\mathrm{Q}^{*}=34.029, \mathrm{df}=8, \mathrm{p}\)-value \(=4.014 \mathrm{e}-05 \quad \Rightarrow\) Again, more AR or MA structure needed
Model df: 2. Total lags used: 10
Residuals from \(\operatorname{ARIMA}(0,1,2)\)



Note: We still see some large autocorrelations. \(\Rightarrow\) change model (usually, increase \(p\) and/or \(q\) ). But, we may in the presence of a series with regime change. We may need to focus on \(2^{\text {nd }}\) regime (post 1950s).

We check the invertibility of \(\operatorname{ARIMA}(0,1,2)\) model
> autoplot(fit_arima_i)


Note: All inverse roots are inside the unit circle. MA process is invertible. Notice that all roots are real. \(\|\)

Example: We check the fit of the ARIMA \((4,0,0)\) model selected by auto.arima for changes in Oil Prices.
fit_arima_oil<- auto.arima(lr_oil)
\(>\) fit_arima_oil
Series: lr_oil
ARIMA(4,0,0) with zero mean
Coefficients:
ar1 ar2 ar3 ar4
\(0.295-0.102-0.057-0.098\)
s.e. \(0.052 \quad 0.054 \quad 0.055 \quad 0.054\)
sigma^2 estimated as 0.00891 : log likelihood \(=344.52\)
AIC=-679.04 AICc=-678.87 BIC=-659.55
> checkresiduals(fit_arima_oil)
Ljung-Box test
data: Residuals from \(\operatorname{ARIMA}(4,0,0)\) with zero mean
\(Q^{*}=\mathbf{2 . 7 2}, \mathrm{df}=9, \mathrm{p}\)-value \(=0.84 \quad \Rightarrow\) No significant joint AR structure
Model df: 4. Total lags used: 10


Note: Nothing significant. Happy with fit. Ready to forecast.
We check the stationarity of AR(4) model
> autoplot(fit_arima_oil)


Note: All (inverse) roots inside the unit circle -we have imaginary roots. ब

\section*{Non-Stationarity in Variance}

Stationarity in mean does not imply stationarity in variance. However, non-stationarity in mean implies non-stationarity in variance.

If the mean function is time dependent:
1. The variance, \(\operatorname{Var}\left(\mathrm{y}_{t}\right)\) is time dependent.
2. \(\operatorname{Var}\left[\mathrm{y}_{t}\right]\) is unbounded as \(t \rightarrow \infty\).
3. Autocovariance functions and ACFs are also time dependent.
4. If \(t\) is large with respect to the initial value y 0 , then \(\rho_{\mathrm{k}} \approx 1\).
- It is common to use variance stabilizing transformations: Find a function \(G(\).\() so that the\) transformed series \(G\left(y_{t}\right)\) has a constant variance. Very popular transformation:

\section*{1) Log transformation:}
\[
G\left(Y_{t}\right)=\log \left(Y_{t}\right)
\]

Example: We log transform the monthly variable Total U.S. Vehicle Sales data (1976: Jan 2020: Sep):
ts_car <- ts(x_car,start=c(1976,1),frequency=12)
plot.ts(ts_car,xlab="Time",ylab="div", main="Total U.S. Vehicle Sales")


1_car <- log(ts_car)
> plot.ts(l_car,xlab="Time",ylab="div", main="Log Total U.S. Vehicle Sales")library(tseries)


Note: The volatility is significantly reduced by the \(\log\) transformation. \(\mathbb{I}\)
2) Box-Cox transformation:
\[
G\left(Y_{t}\right)=\frac{Y_{t}^{\lambda}-1}{\lambda}
\]
where \(\lambda>0\), usually between 0 and 2 (it can be estimated too). When \(\lambda=1\), we have a linear \(y_{t}\); when \(\lambda \rightarrow 0\), we have a log transformation for \(y_{t}\).

Example: We do a Box-Cox transformation of the monthly variable Total U.S. Vehicle Sales data (1976: Jan - 2020: Sep), setting \(\lambda=0.75\) :
lambda <- 0.75
b_cox_car \(<-\) (ts_car^lambda -1 )/lambda
> plot.ts(b_cox_car, xlab="Time",ylab="cars", main=" Box-Cox Total U.S. Vehicle Sales")


Note: Again, we see a reduced volatility. But, different \(\lambda \mathrm{s}\) will have a different impact on volatility. \(\|\)

Remarks:
- Variance stabilizing transformation is only done for positive series, usually for nominal series (say, in USD total retail sales or units, like Total U.S. vehicle sales).
- If a series has negative values, then, we need to add each value with a positive number so that all the values in the series are positive.
- Then, we can search for any need for transformation.
- It should be performed before any other analysis, such as differencing.
- Not only stabilize the variance, but we tend to find that it also improves the approximation of the distribution by the Normal distribution.

\section*{Seasonal Time Series}

In time series, seasonal patterns ("seasonalities") can show up in two forms: additive and multiplicative.
- Additive: The seasonal variation is independent of the level.
- Multiplicative: The seasonal variation is a function of the level.


Note: In the multiplicative case, the amplitude of the seasonal pattern is changing over time, while in the additive the amplitude is constant.

Examples: We simulate the two seasonal patterns, additive and multiplicative, with trend and no trend.
A. With trend

- In the presence of seasonal patterns, we proceed to do seasonal adjustments to remove these predictable influences, which can blur both the true underlying movement in the series, as well as certain non-seasonal characteristics which may be of interest to analysts.

The type of adjustment depends on how we view the seasonal pattern: Deterministic or Stochastic.

Similar to the situation where the series had a trend, once we determine the nature of the seasonal pattern, we filter the series -i.e., we remove the seasonal patter- to conduct further ARIMA modeling.

When we work with a nominal series (not changes, say, USD total retail sales or total units sold), it is common to first apply a variance stabilizing transformation to the data, usually using logs.

\section*{Seasonal Time Series - Types}

Two types of seasonal behavior:
- Deterministic - Usual treatment: Build a deterministic function,
\[
f(t)=f(t+k \times s), \quad k=0, \pm 1, \pm 2, \cdots
\]

We can include seasonal (means) dummies, for example, monthly or quarterly dummies. (This is the approach in Brooks' Chapter 10).

Instead of dummies, trigonometric functions (sum of cosine curves) can be used. A linear time trend is often included in both cases.
-Stochastic - Usual treatment: SARIMA model. For example:
\[
y_{t}=\theta_{0}+\Phi_{1} y_{t-s}+\varepsilon_{t}+\Theta_{1} \varepsilon_{t-s}
\]

Or
\[
\left(1-\Phi_{1} L^{S}\right) y_{t}=\left(1-\Theta_{1} L^{S}\right) \varepsilon_{t}
\]
where \(s\) the seasonal periodicity -associated with the frequency- of \(y_{t}\). For quarterly data, \(s=4\); monthly, \(s=12\); daily, \(s=7\), etc.

\section*{Seasonal Time Series - Finding Seasonality with Visual Patterns}

The raw series along with the ACF and PACF can be used to discover seasonal patterns.




Signs: Periodic repetitive wave pattern in ACF, repetition of significant ACFs, PACFs after \(s\) periods.
- We simulate an ARMA(1,1) with a December seasonal pattern, typical of retail sales with a significant Christmas spike.



Suppose \(y_{t}\) has monthly frequency and we suspect that in every December \(y_{t}\) increases. - For the additive model, we can regress \(y_{t}\) against a constant and a December dummy, \(\mathbf{D}_{\mathrm{t}}\) :
\[
y_{t}=\mu+\boldsymbol{D}_{t} \boldsymbol{\mu}_{s}+\varepsilon_{t}
\]

For the multiplicative model, we can regress \(y_{t}\) against a constant and a December dummy, \(\mathbf{D}_{\mathrm{t}}\) :, interacting with a trend:
\[
y_{t}=\mu+\boldsymbol{D}_{t} \boldsymbol{\mu}_{s} * t+\varepsilon_{t}
\]

The residuals of this regressions, \(e_{t}\), -i.e., \(e_{t}=\) filtered \(y_{t}\), free of "monthly seasonal effects" are used for further ARMA modeling.

Example: We simulate an \(\operatorname{AR}(1)\) series, with a multiplicative December seasonal behavior.
\[
y_{t}=\mu+\phi_{1} y_{t-1}+\boldsymbol{D}_{t} \boldsymbol{\mu}_{s} * t+\varepsilon_{t}
\]

Seas_12 <- \(\operatorname{rep}\left(c(0,0,0,0,0,0,0,0,0,0,0,1),\left(\right.\right.\) length \(\left.\left.\left(y \_s i m\right) / 12+1\right)\right) \quad\) \# Create Oct dummy T_sim <- 500
\(\mathrm{u}<-\mathrm{rnorm}\left(\mathrm{T}_{-}\right.\)sim, \(\mathrm{sd}=0.75\) )
\(y_{-} \operatorname{sim}<-\operatorname{matrix}\left(0, T_{-} \operatorname{sim}, 1\right)\)
phil <- 0.2
patterns
\(\mathrm{k}<-12\)
\(\mathrm{a}<-\mathrm{k}+1\)
\(\mathrm{mu}<-0.2\)
mu_s <- . 02
while ( \(\mathrm{a}<=\mathrm{T}\) _sim ) \{
\(y_{-} \operatorname{sim}[a]=m u+p h i 1 * y_{-} \operatorname{sim}[a-1]+\) Seas_12[a] * mu_s \(* a+u[a] \quad\) \# y_sim
simulated autocorrelated values
\(a<-a+1\)
\}
\(y_{-}\)seas \(<-y_{-} \operatorname{sim}\left[(k+1): T_{-} \operatorname{sim}\right]\)
plot(y_seas, type="1", main="Simulated Deterministic Seasonality")
We plot simulated series, ACF, \& PACF.

- We detrend ("filter" the simulated series).
trend \(<-\mathrm{c}\left(1: \mathrm{T}_{-}\right.\)sim \()\)
trend_sim \(<-\operatorname{trend}\left[(\mathrm{k}+1): \mathrm{T}_{-}\right.\)sim \(]\)
sea_-trend \(<-\) seas_d*trend_sim
fit_seas \(<-\operatorname{lm}\left(y \_\right.\)_seas \(\sim\) seas_d + trend_sim + sea_trend \()\)
\(>\) summary(fit_seas)
Coefficients:
\begin{tabular}{|c|c|c|c|c|}
\hline & Estimate & \multicolumn{3}{|l|}{Std. Error t value \(\operatorname{Pr}(>\mid t)\)} \\
\hline (Intercept) & 0.1356538 & 0.0804474 & 1.686 & 0.09239 \\
\hline seas_d & 0.6929134 & 0.2859528 & 2.423 & 0.01575 * \\
\hline trend_sim & 0.0008504 & 0.0002749 & 3.093 & 0.00209 ** \\
\hline sea_trend & 0.0174034 & 0.0009766 & 17.82 & \(<2 \mathrm{e}-16\) *** \\
\hline & & & & \\
\hline Signif. co & \(0^{\text {'***’ }} 0.0\) & *' 0.01 & 0.0 & 0.1 \\
\hline
\end{tabular}

Residual standard error: 0.8209 on 484 degrees of freedom
Multiple R-squared: 0.7929 , Adjusted R-squared: 0.7917
F-statistic: 617.8 on 3 and \(484 \mathrm{DF}, \mathrm{p}\)-value: \(<2.2 \mathrm{e}-16\)
- We plot the detrended simulated series, along with the ACF and PACF.


The strong December seasonal pattern is gone from the detrended series. We run an ARIMA(1,0,0):
\(>\) fit_y_seas_arl <- arima \(\left(y \_\right.\)seas_filt, order=c( \(\left.1,0,0\right)\) )
Call:
\(\operatorname{arima}\left(x=y \_s e a s \_f i l t, \operatorname{order}=c(1,0,0)\right)\)
Coefficients: ar1 intercept
\(0.1785-0.0001 \quad \Rightarrow\) Very close to phi1 \(=0.20\)
s.e. \(0.0446 \quad 0.0443\)
sigma \(^{\wedge} 2\) estimated as \(0.6471: \log\) likelihood \(=-586.26\), aic \(=1178.51\)
y_seas_filt_2 <- fit_seas_det_ar1\$residuals \# Extract Residuals
plot(y_seas_filt_2,type="1", main="AR(1) Residuals")
acf(y_seas_filt_2, main="ACF: AR(1) Residuals")
pacf(y_seas_filt_2, main="ACF: AR(1) Residuals")


ACF: AR(1) Residuals


\section*{ACF: AR(1) Residuals \\ }

There is no seasonality pattern in the residuals. \(\mathbb{\|}\)
Example: We model log changes in real estate prices in the LA market, \(y_{t}\). First, we run a regression to remove (filter) the monthly effects from \(y_{t}\). Then, we model \(y_{t}\) as an \(\operatorname{ARMA}(p, q)\) process.

RE_da <- read.csv(" https://www.bauer.uh.edu/rsusmel/4397/Real_Estate_2019.csv", head=TRUE, sep=",")
x_la <-RE_da\$LA_c
\(\mathrm{zz}<-\mathrm{x}\) _la
T<- length(zz)
plot(x_la, type="l", main="Changes in Log Real Estate Prices in LA")

Changes in Log Real Estate Prices in LA


We look at the ACF \& PACF for LA
\(>\) acf(x_la)
\(>\operatorname{pacf}\left(x \_l a\right)\)


Note: ACF shows highly autocorrelated data, with some seasonal pattern (there is a periodic decreasing wave).
- We define monthly dummies. Then, we regress x_la against the monthly dummies.

Febl \(<-\operatorname{rep}(c(1,0,0,0,0,0,0,0,0,0,0,0),(\) length \((z z) / 12+1)) \quad\) \# Create January dummy
Marl \(<-\operatorname{rep}(c(0,1,0,0,0,0,0,0,0,0,0,0)\), (length(zz)/12+1)) \# Create March dummy
Aprl \(<-\operatorname{rep}(c(0,0,1,0,0,0,0,0,0,0,0,0),(\) length(zz)/12+1)) \# Create April dummy
May1 \(<-\operatorname{rep}(c(0,0,0,1,0,0,0,0,0,0,0,0),(l e n g t h(z z) / 12+1)) \quad\) \# Create May dummy Jun \(1<-\operatorname{rep}(c(0,0,0,0,1,0,0,0,0,0,0,0),(\) length \((z z) / 12+1)) \quad\) \# Create June dummy Jull \(<-\operatorname{rep}(c(0,0,0,0,0,1,0,0,0,0,0,0),(\) length \((z z) / 12+1)) \quad\) \# Create Jul dummy Aug \(1<-\operatorname{rep}(c(0,0,0,0,0,0,1,0,0,0,0,0),(l e n g t h(z z) / 12+1)) \quad\) \# Create Aug dummy
Sep \(1<-\operatorname{rep}(c(0,0,0,0,0,0,0,1,0,0,0,0),(\) length(zz)/12+1)) \# Create Sep dummy
Oct1 <-rep(c( \(0,0,0,0,0,0,0,0,1,0,0,0),(\) length(zz)/12+1)) \# Create Oct dummy
\(\operatorname{Nov} 1<-\operatorname{rep}(c(0,0,0,0,0,0,0,0,0,1,0,0),(\) length(zz)/12+1)) \# Create Oct dummy
Dec \(1<-\operatorname{rep}(c(0,0,0,0,0,0,0,0,0,0,1,0)\), (length(zz)/12+1)) \# Create Oct dummy seas1 <- cbind(Feb1, Mar1, Apr1, May1, Jun1, Jul1, Aug1, Sep1, Oct1, Nov1, Dec1) seas \(<-\) seas \(1[1: T\), ]

\(>\) summary(x_la_fit_sea)
Coefficients:
\begin{tabular}{lllll} 
& \multicolumn{2}{c}{ Estimate } & Std. Error t value \(\operatorname{Pr}(>|t|)\) \\
(Intercept) & -0.0014063 & 0.0020125 & -0.699 & 0.485157 \\
seasFeb1 & 0.0006752 & 0.0028223 & 0.239 & 0.811079 \\
seasMar1 & 0.0049095 & 0.0028223 & 1.740 & 0.082838 \\
seasApr1 & 0.0090903 & 0.0028223 & \(\mathbf{3 . 2 2 1}\) & 0.001400 ** \\
seasMay1 & 0.0104159 & 0.0028223 & \(\mathbf{3 . 6 9 1}\) & 0.000260 ***
\end{tabular}
\begin{tabular}{lllll} 
seasJun1 & 0.0103464 & 0.0028223 & \(\mathbf{3 . 6 6 6}\) & 0.000285 *** \\
seasJul1 & 0.0080593 & 0.0028223 & \(\mathbf{2 . 8 5 6} 0.004557\) ** \\
seasAug1 & 0.0062247 & 0.0028223 & \(\mathbf{2 . 2 0 6} 0.028080\) * \\
seasSep1 & 0.0032244 & 0.0028223 & 1.1420 .254055 \\
seasOct1 & 0.0011967 & 0.0028461 & 0.4200 .674421 \\
seasNov1 & -0.0006218 & 0.0028461 & -0.2180 .827181 \\
seasDec1 & -0.0009031 & 0.0028461 & -0.3170 .751195
\end{tabular}

Signif. codes: \(0{ }^{\prime * * * ’} 0.001^{\prime * * \prime} 0.01^{\prime *} 0.05^{\prime} .{ }^{\prime} 0.1^{\prime}{ }^{\prime} 1\)
Note: Returns -i.e., home prices- are higher from April to August.
Now, we model \(e_{t}\), the filtered LA series
x_la_filt <- x_la_fit_sea\$residuals \# residuals, \(e_{t}=\) filtered \(x\) _la series
fit_ar_la_filt <- auto.arima(x_la_filt) \# use auto.arima to look for a good model
\(>\) fit_ar_la_filt
Series: x_la_filt
\(\operatorname{ARIMA}(2,0,1)\) with zero mean
Coefficients:
ar1 ar2 ma1
0.09870 .77370 .7245
s.e. 0.09630 .08660 .1136
sigma^2 estimated as 1.668e-05: log likelihood=1453.66
AIC=-2899.33 \(\mathrm{AICc}=-2899.21 \quad \mathrm{BIC}=-2883.83\)
> checkresiduals(fit_ar_la_filt)

\section*{Ljung-Box test}
data: Residuals from \(\operatorname{ARIMA}(2,0,1)\) with zero mean
\(\mathrm{Q}^{*}=\mathbf{1 3 . 5}, \mathrm{df}=7, \mathrm{p}\)-value \(=0.06083 \Rightarrow\) Reject \(\mathrm{H}_{0}\) at \(5 \%\) lever. But, judgement call is OK .
Model df: 3. Total lags used: 10
We check residual plots.

Residuals from \(\operatorname{ARIMA}(2,0,1)\) with zero mean


Note: ACF shows some small, but significant autocorrelations, but the seasonal (wave) pattern is no longer there.

Finally, we check the stationarity \& the invertibility of the \(\operatorname{ARIMA}(2,0,1)\) process.


Note: All inverse roots inside the unit circle (\& real): stationarity and invertibility. \(\boldsymbol{\square}\)

\section*{Seasonal Time Series - SARIMA}

For stochastic seasonality, we use the Seasonal ARIMA model. In general, we have the SARIMA \((P, D, Q) s\) :
\[
\Phi_{P}\left(L^{S}\right)\left(1-L^{S}\right)^{D} y_{t}=\theta_{0}+\Theta_{Q}\left(L^{S}\right) \varepsilon_{t}
\]
where \(\theta_{0}\) is constant and
\[
\begin{aligned}
\Phi_{P}\left(L^{s}\right) & =1-\Phi_{1} L^{s}-\Phi_{2} L^{2 s}-\cdots-\Phi_{P} L^{s P} \\
\Theta_{Q}\left(L^{s}\right) & =1+\Theta_{1} L^{s}+\Theta_{2} L^{2 s}+\cdots+\Theta_{Q} L^{s Q}
\end{aligned}
\]

Example 1: \(\operatorname{SARIMA}(0,0,1)_{12}=\operatorname{SMA}(1)_{12}\)
\[
y_{t}=\theta_{0}+\varepsilon_{t}+\Theta_{1} \varepsilon_{t-12}
\]
- Invertibility Condition: \(\left|\Theta_{1}\right|<1\).
\(-\mathrm{E}\left[y_{t}\right]=\theta_{0}\).
\(-\operatorname{Var}\left(y_{t}\right)=\left(1+\Theta_{1}{ }^{2}\right) \sigma^{2}\)
\(-A C F: \rho_{k}=\left\{\begin{array}{ll}\frac{\theta_{1}}{1+\theta_{1}{ }^{2}}, & |k|=12 \\ 0, & \text { otherwise }\end{array} \Rightarrow\right.\) ACF non-zero at seasonal lags \(12,24, \ldots\)
Example 2: \(\operatorname{SARIMA}(1,0,0)_{12}=\operatorname{SAR}(1)_{12}\)
\[
\left(1-\Phi_{1} L^{12}\right) y_{t}=\theta_{0}+\varepsilon_{t}
\]

The process is
\[
y_{t}=\theta_{0}+\Phi_{1} y_{t-12}+\varepsilon_{t}
\]
- This is a simple seasonal AR model.
- Stationarity Condition: \(\left|\Phi_{1}\right|<1\).
\[
\begin{aligned}
& -E\left[Y_{t}\right]=\frac{\theta_{0}}{1-\Phi_{1}} \\
& -\operatorname{Var}\left(Y_{t}\right)=\frac{\sigma^{2}}{1-\Phi_{1}{ }^{2}} \\
& -A C F: \rho_{12 k}=\Phi_{1}{ }^{k}, \quad k=0, \pm 1, \quad \pm 2, \cdots
\end{aligned}
\]

When \(\Phi_{1}=1\), the series is non-stationary. \(\mathbb{I}\)
- Now, we put together the seasonal behavior and the ARMA behavior. That is, we have the multiplicative SARIMA model \((p, d, q) \times(P, D, Q)_{s}\)

Example 1: \(\operatorname{ARIMA}(0,0,1) \times(0,0,1)_{12}\) (usually, with monthly data):
\[
y_{t}=\left(1+\theta_{1} L\right)\left(1+\Theta L^{12}\right) \varepsilon_{t}
\]

Then, the process is
\[
y_{t}=\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}+\varepsilon_{t-12}+\theta_{1} \Theta \varepsilon_{t-12} .
\]

Example 2: Suppose \(p=Q=1\) and \(P=q=0\), with \(s=4\), then, we have an \(\operatorname{ARIMA}(1,0,0) \times\) \((0,0,1) 4\) (usually, with quarterly data):
\[
\left(1-\phi_{1} L\right) y_{t}=\left(1+\Theta L^{4}\right) \varepsilon_{t}
\]

Then, the process is
\[
y_{t}=\phi_{1} y_{t-1}+\varepsilon_{t}+\Theta \varepsilon_{t-4 \cdot}
\]

In general, we the multiplicative SARIMA model \((p, d, q) \times(P, D, Q)_{s}\) is written as:
\[
\Phi(L) \phi(L) y_{t}=\theta(L) \Theta(L) \varepsilon_{t}
\]
where \(\phi(L)\) is the AR lag polynomial, \(\theta(L)\) is the MA lag polynomial, \(\Phi(L)\) is the seasonal AR lag polynomial, and \(\Theta(L)\) is the seasonal MA lag polynomial.

Example: We model with a SARIMA model for U.S. vehicle sales. First, we look at the raw data:
Car_da <- read.csv("https://www.bauer.uh.edu/rsusmel/4397/TOTALNSA.csv", head=TRUE, sep=",")
x_car<- Car_da\$TOTALNSA
\(>\) acf(x_car)


Note: ACF shows a highly autocorrelated data, with some clear seasonal wave pattern.
- Then, we plot the data and, then, log transform the data:
ts_car \(<-\) ts \(\left(x \_c a r, \operatorname{start}=c(1976,1)\right.\),frequency=12)
plot.ts(ts_car, xlab="Time", ylab="div", main="Total U.S. Vehicle Sales")


1_car \(<-\log\) (ts_car)
> plot.ts(l_car,xlab="Time",ylab="div", main="Log Total U.S. Vehicle Sales")library(tseries)


R Note: R has a function, decompose, that decomposes the data in trend, seasonal and random (unexplained):
comp_lcar <- decompose(1_car)
\(>\) plot(comp_lcar)
Decomposition of additive time series

- Question: Should we try deterministic seasonalities?

No clear trend in data. We regress l_car against monthly dummies:
zz <-1_car
seasd <- cbind(Jan1, Feb1, Mar1, Apr1, May1, Jun1, Jul1, Aug1, Sep1, Oct1, Nov1)
seas_d <- seasd[1:length(zz),]
fit_car_det \(<-\operatorname{lm}(\) l_car \(\sim\) seas_d)
> summary(fit_car_det)
Coefficients:
EstimateStd. Error t value \(\operatorname{Pr}(>|\mathrm{t}|)\)
(Intercept) \(7.030200 .02564274 .171<2 \mathrm{e}-16^{* * *}\)
seas_dJan1 \(0.082350 .03626 \quad 2.2710 .023551^{*}\)
seas_dFeb1 -0.09854 0.03606-2.733 0.006494 **
\(\begin{array}{llll}\text { seas_dMar1 } & 0.014620 .03606 & 0.406 & 0.685259\end{array}\)
seas_dApr1 \(0.198840 .03606 \quad 5.5145 .51 \mathrm{e}-08\) ***
seas_dMay1 0.113960 .036063 .1600 .001668 **
seas_dJun1 0.201920 .03606 5.599 3.47e-08 ***
seas_dJul1 \(0.178240 .03606 \quad 4.9431 .04 \mathrm{e}-06\) ***
\(\begin{array}{lllll}\text { seas_dAug1 } & 0.12804 & 0.03606 & 3.551 & 0.000419 \text { *** } \\ \text { seas dSep1 } & 0.14824 & 0.03606 & 4.111 & 4.57 \mathrm{e}-05\end{array}{ }^{* * *}\)
seas_dOct1 \(0.065990 .03606 \quad 1.8300 .067813\).
seas_dNov1 0.070140 .036261 .9340 .053638 .
- Check ACF and PACF
res_car_det <- fit_car_det\$residuals
acf(res_car_det)
pacf(res_car_det)
Total U.S. Vehicle Sales: Deterministic Detrended


Total U.S. Vehicle Sales: Deterministic Detrended

- Now, we use auto.arima to check for best SARIMA model:
\(>\) fit_lcar <- auto.arima(l_car, trace=TRUE, ic="bic")
Fitting models using approximations to speed things up...


Now re-fitting the best model(s) without approximations...
\[
\text { ARIMA }(1,0,1)(0,1,2)[12] \quad:-1132.208
\]

Best model: ARIMA(1,0,1)(0,1,2)[12]
- Check estimated best SARIMA model and check its residuals:
\(>\) fit_lcar
Series: 1_car
ARIMA(1,0,1)(0,1,2)[12]
Coefficients:
ar1 ma1 sma1 sma2
```

 0.9539 -0.5113 -0.5921 -0.2099
 s.e. 0.0163 0.0509 0.0464 0.0442

```
sigma^2 estimated as 0.006296: \(\log\) likelihood \(=581.76\)
\(\mathrm{AIC}=-1153.52 \quad \mathrm{AICc}=-1153.41 \quad \mathrm{BIC}=-1132.21\)
> checkresiduals(fit_lcar)
Ljung-Box test
data: Residuals from ARIMA(1,0,1)(0,1,2)[12]
\(\mathrm{Q}^{*}=44.006, \mathrm{df}=20, \mathrm{p}\)-value \(=0.001502\)
Model df: 4. Total lags used: 24
- Finally, we check residuals, ACF and distribution.

Residuals from \(\operatorname{ARIMA}(1,0,1)(0,1,2)[12]\)


Note: ACF shows small and significant autocorrelation, but the seasonal pattern is gone. More lags maybe needed. \(\|\)

\section*{Forecasting}

One of the most important objectives in time series analysis is to forecast its future values. It is the primary objective of ARIMA modeling.

Two types of forecasts.
- In sample (prediction): The expected value of the RV (in-sample), given the estimates of the parameters.
- Out of sample (forecasting): The value of a future RV that is not observed by the sample.

To evaluate forecasts, we can use in-sample estimation to learn about the order of the \(\operatorname{ARMA}(p, q)\) model and then use the model to forecast. We do the in-sample estimation keeping a hold-out sample. We use the hold-out sample to validate the selected ARMA model.

Any forecasts needs an information set, \(I\). This includes data, models and/or assumptions available at time \(T\). The forecasts will be conditional on \(I_{\mathrm{T}}\).

The variable to forecast \(Y_{T+\ell}\) is a RV. It can be fully characterized by a pdf.
In general, it is difficult to get the pdf for the forecast. In practice, we get a point estimate (the forecast) and a C.I.

\section*{Notation:}
- Forecast for \(T+\ell\) made at \(T: \hat{Y}_{T+\ell}, \hat{Y}_{T+\ell \mid T}, \hat{Y}_{T}(\ell)\).
\(-T+\ell\) forecast error: \(e_{T+\ell}=e_{T}(\ell)=Y_{T+\ell}-\hat{Y}_{T+\ell}\)
- Mean squared error (MSE): \(\operatorname{MSE}\left(e_{T+\ell}\right)=E\left[Y_{T+\ell}-\hat{Y}_{T+\ell}\right]^{2}\)

To get a point estimate, \(a \operatorname{a} Y \quad T+\ell\), we need a cost function to judge various alternatives. This cost function is call loss function. Since we are working with forecast, we work with a expected loss function.

A popular loss functions is the MSE, which is quadratic and symmetric. We can use asymmetric functions, for example, functions that penalize positive errors more than negative errors.

If we use the MSE as the loss function, we look for \(\hat{Y}_{T+l}\), which minimizes it. That is,
\[
\min E\left[e_{T+\ell}^{2}\right]=E\left[\left(Y_{T+\ell}-\hat{Y}_{T+\ell}\right)^{2}\right]=E\left[Y_{T+\ell}^{2}-2 Y_{T+\ell} \hat{Y}_{T+\ell}+\hat{Y}_{T+\ell}^{2}\right]
\]

Then, f.o.c. implies:
\[
E\left[-2 Y_{T+\ell}+2 \hat{Y}_{T+\ell}\right]=0 \quad \Rightarrow E\left[Y_{T+\ell}\right]=\hat{Y}_{T+\ell}
\]

The optimal point forecast under MSE is the (conditional) mean:
\[
\hat{Y}_{T+\ell}=\mathrm{E}\left[Y_{T+\ell} \mid I_{T}\right]
\]

Different loss functions lead to different optimal forecast. For example, for the MAE, the optimal point forecast is the median.

The computation of \(\mathrm{E}\left[Y_{T+\ell} \mid I_{\mathrm{T}}\right]\) depends on the distribution of \(\left\{\varepsilon_{t}\right\}\). If \(\left\{\varepsilon_{t}\right\} \sim \mathrm{WN}\), then \(\mathrm{E}\left[\varepsilon_{T+\ell} \mid I_{\mathrm{T}}\right]=0\), which greatly simplifies computations, especially in the linear model.

Then, for an \(\operatorname{ARMA}(p, q)\) stationary process (with a Wold representation), the minimum MSE linear forecast (best linear predictor) of \(Y_{T+\ell}\), conditioning on IT is:
\[
Y_{T+\ell}=\theta_{0}+\Psi_{l} \varepsilon_{T+\ell}+\Psi_{l+1} \varepsilon_{T+\ell-1}+\cdots
\]

\section*{Forecasting Steps for ARMA Models}

The usual process has the following steps:
- ARIMA model: \(\quad Y_{t}=\phi Y_{t-1}+\varepsilon_{t}\)
- Estimation \(\quad \widehat{\phi}(\) Estimate of \(\phi) \quad \Rightarrow \hat{Y}_{t}=\widehat{\phi} Y_{t-1}\) (Prediction)
(Evaluation in-sample)
- Forecast \(\quad \widehat{\mathrm{Y}}_{\mathrm{t}+1}=\widehat{\phi} \widehat{Y}_{t}\) (Forecast)
(Evaluation out-of-sample)
We observe the time series: \(I_{\mathrm{T}}=\left\{Y_{1}, Y_{2}, \ldots, Y_{T}\right\}\).
- At time \(T\), we want to forecast: \(Y_{T+1}, Y_{T+2}, \ldots, Y_{T+\ell}\).
- \(T\) : The forecast origin.
- \(\ell\) : Forecast horizon
- \(\widehat{Y}_{T}(\ell): \ell\)-step ahead forecast \(=\) Forecasted value \(Y_{T+\ell}\)

Use the conditional expectation of \(Y_{T+\ell}\), given the observed sample.
\[
\hat{Y}_{T+\ell}=E\left[Y_{T+\ell} \mid Y_{T}, Y_{T-1}, \ldots, Y_{1}\right]
\]

Example: One-step ahead forecast: \(\hat{Y}_{T+1}=E\left[Y_{T+1} \mid Y_{T}, Y_{T-1}, \ldots, Y_{1}\right] . \boldsymbol{\top}\)
Forecast accuracy to be measured by MSE
\(\Rightarrow\) conditional expectation, best forecast.

\section*{Forecasting From MA(q) Models}

The stationary MA \((q)\) model for \(Y_{t}\) is
\[
Y_{t}=\mu+\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}+\cdots+\theta_{q} \varepsilon_{t-q}
\]

Then, assuming we have the data up to time \(T\left(Y_{1}, Y_{2}, \ldots, Y_{T}, \varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{T}\right)\) and parameter constancy, we produce at time \(T l\)-step ahead forecasts using:
\[
\vdots
\]
\[
\begin{align*}
& Y_{T+1}=\mu+\varepsilon_{T+1}+\theta_{1} \varepsilon_{T}+\cdots+\theta_{q} \varepsilon_{T-q+1} \\
& Y_{T+2}=\mu+\varepsilon_{T+2}+\theta_{1} \varepsilon_{T+1}+\cdots+\theta_{q} \varepsilon_{T-q+2} \\
& Y_{T+l}=\mu+\varepsilon_{T+l}+\theta_{1} \varepsilon_{T+l-1}+\cdots+\theta_{q} \varepsilon_{T+l-q} \tag{l>2}
\end{align*}
\]

Now, we take conditional expectations:
\[
\hat{Y}_{T+l}=E\left[Y_{T+l} \mid I_{T}\right]=\mu+\mathrm{E}\left[\varepsilon_{T+l} \mid I_{\mathrm{T}}\right]+\theta_{1} \mathrm{E}\left[\varepsilon_{T+l-1} \mid I_{T}\right]+\cdots+\theta_{q} \mathrm{E}\left[\varepsilon_{T+l-q} \mid I_{T}\right]
\]

Note: The forecasts are a linear combination of forecast and past errors.
Some of the errors are know at time \(T: \varepsilon_{1}=\hat{\varepsilon}_{1}, \varepsilon_{2}=\hat{\varepsilon}_{2}, \ldots, \varepsilon_{T}=\hat{\varepsilon}_{T}\), the rest are unknown. Thus,
\[
\mathrm{E}\left[\varepsilon_{T+l} \mid I_{T}\right]=0 \quad \text { for } l>1
\]

Example: For an MA(2) we have:
\[
\hat{Y}_{T+1}=\mu+\mathrm{E}\left[\varepsilon_{T+1} \mid I_{T}\right]+\theta_{1} \mathrm{E}\left[\varepsilon_{T} \mid I_{T}\right]+\theta_{2} \mathrm{E}\left[\varepsilon_{T-1} \mid I_{T}\right]
\]
\[
\begin{aligned}
& \hat{Y}_{T+2}=\mu+\mathrm{E}\left[\varepsilon_{T+2} \mid I_{T}\right]+\theta_{1} \mathrm{E}\left[\varepsilon_{T+1} \mid I_{T}\right]+\theta_{2} \mathrm{E}\left[\varepsilon_{T} \mid I_{T}\right] \\
& \hat{Y}_{T+3}=\mu+\mathrm{E}\left[\varepsilon_{T+3} \mid I_{T}\right]+\theta_{1} \mathrm{E}\left[\varepsilon_{T+2} \mid I_{T}\right]+\theta_{2} \mathrm{E}\left[\varepsilon_{T+1} \mid I_{T}\right]
\end{aligned}
\]

At time \(T=t\), we know \(\varepsilon_{t}\) and \(\varepsilon_{t-1}\). Set \(\mathrm{E}\left[\varepsilon_{t+j} \mid I_{t}\right]=0\) for \(j>1\). Then,
\[
\begin{aligned}
& \hat{Y}_{t+1}=\mu+\theta_{1} \mathrm{E}\left[\varepsilon_{t} \mid I_{t}\right]+\theta_{2} \mathrm{E}\left[\varepsilon_{t-1} \mid I t\right]=\mu+\theta_{1} \hat{\varepsilon}_{t}+\theta_{2} \hat{\varepsilon}_{t-1} \\
& \hat{Y}_{t+2}=\mu+\theta_{2} \mathrm{E}\left[\varepsilon_{t} \mid I t\right]=\mu+\theta_{2} \hat{\varepsilon}_{t} \\
& \hat{Y}_{t+3}=\mu \\
& \hat{Y}_{t+l}=\mu \quad \text { for } l>2
\end{aligned}
\]
\(\Rightarrow \mathrm{MA}(2)\) memory of 2 periods. For \(l>2\), all forecast are constant \((=\mu) . \boldsymbol{\|}\)
The example generalizes: An MA \((q)\) process has a memory of only \(q\) periods. All forecasts beyond \(q\) revert to the unconditional mean, \(\mu\).

Example: An industrial firm uses an MA(2) to forecast sales. The estimated MA(2) model is:
\[
\hat{Y}_{T}=2.2+0.4 \varepsilon_{T-1}+0.2 \varepsilon_{T-2}
\]

At time \(T=t\), the firms know \(\varepsilon_{t}=1.42\) and \(\varepsilon_{t-1}=-0.91\).
Then, the first three forecast are:
\[
\begin{aligned}
& \hat{Y}_{t+1}=2.2+0.4 * \mathbf{1} .42+0.2 *(-\mathbf{0} .91)=2.586 \\
& \hat{Y}_{t+2}=2.2+0.2 *(\mathbf{1} .42)=2.484 \\
& \hat{Y}_{t+3}=2.2 \quad\left(\Rightarrow \hat{Y}_{t+l}=2.2 \text { for } l>3 .\right)
\end{aligned}
\]

Later, the firm observes: \(Y_{t+1}=4.77, Y_{t+2}=3.15 \& Y_{t+3}=1.85\). Then, the MSE:
\(\operatorname{MSE}=\frac{1}{3} *\left[(4.77-2.586)^{2}+(3.15-2.484)^{2}+(1.85-2.2)^{2}\right]=1.779 . ~ \llbracket\)
Example: We fit an MA(1) to the U.S. stock returns (T=1,975):
library(tseries)
library(forecast)
fit p _ts \(<-\operatorname{arima}\left(\operatorname{lr} \_\mathrm{p}\right.\), order \(\left.=\mathrm{c}(0,0,1)\right) \quad\) \#fit an MA(1) model
fcast_p \(<-\) forecast \(\left(f i t \_p \_\right.\)ts, \(\mathrm{h}=4\) ) \#produce 4-step ahead forecasts
\(>\) fit p _ts
\(>\) fcast p
Coefficients:
ma1 intercept
0.28880 .0037
s.e. 0.02180 .0012
sigma^2 estimated as \(0.001522: \log\) likelihood \(=3275.83\), aic \(=-6545.67\)
\(>\) fcast p
Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
\(1796 \quad 0.012570813-0.037422380 .06256401-0.063887180 .08902881\)
\[
\begin{array}{lllll}
1797 & \mathbf{0 . 0 0 3 6 8 9 5 2 4} & -0.04834634 & 0.05572539-0.07589247 & 0.08327152 \\
1798 & \mathbf{0 . 0 0 3 6 8 9 5 2 4}-0.04834634 & 0.05572539-0.07589247 & 0.08327152 \\
1799 & \mathbf{0 . 0 0 3 6 8 9 5 2 4}-0.04834634 & 0.05572539-0.07589247 & 0.08327152
\end{array}
\]

Remark: After the first forecast, the MA(1) process generates constant forecasts. ๆ

\section*{Forecasting From AR(p) Models}

The stationary \(\operatorname{AR}(p)\) model for \(Y_{t}\) is
\[
Y_{t}=\mu+\phi_{1} Y_{t-1}+\phi_{2} Y_{t-2}+\cdots+\phi_{p} Y_{t-p}+\varepsilon_{t}
\]

Then, assuming we have the data up to time \(T\left(Y_{1}, Y_{2}, \ldots, Y_{T}\right)\) and parameter constancy, we produce at time \(T l\)-step ahead forecasts using:
\[
\vdots
\]
\[
\begin{aligned}
& Y_{T+1}=\mu+\phi_{1} Y_{T}+\phi_{2} Y_{T-1}+\cdots+\phi_{p} Y_{T-p+1}+\varepsilon_{T+1} \\
& Y_{T+2}=\mu+\phi_{1} Y_{T+1}+\phi_{2} Y_{T}+\cdots+\phi_{p} Y_{T-p+2}+\varepsilon_{T+2} \\
& Y_{T+l}=\mu+\phi_{1} Y_{T+l-1}+\phi_{2} Y_{T+l-2}+\cdots+\phi_{p} Y_{T+l-p}+\varepsilon_{t+l}
\end{aligned}
\]

Now, we take conditional expectations:
\[
\hat{Y}_{T+l}=E\left[Y_{T+l} \mid I_{\mathrm{T}}\right]=\mu+\phi_{1} \mathrm{E}\left[Y_{T+l-1} \mid I_{\mathrm{T}}\right]+\phi_{2} \mathrm{E}\left[Y_{T+l-2} \mid I_{\mathrm{T}}\right]+\cdots+\phi_{p} \mathrm{E}\left[Y_{T+l-p} \mid I_{\mathrm{T}}\right]
\]

Note that \(\mathrm{E}\left[Y_{T+l-j} \mid I_{\mathrm{T}}\right]\) are also forecasts. The forecasts \(\hat{Y}_{T+l}\) is a linear combination of past forecast.

Example: AR(2) model for \(Y_{t+l}\) is
\[
Y_{t+l}=\mu+\phi_{1} Y_{t+l-1}+\phi_{2} Y_{t+l-2}+\varepsilon_{t+l}
\]

Then, taking conditional expectations at time \(T=t\), we get the forecasts:
\[
\begin{aligned}
& \hat{Y}_{t+1}=\mu+\phi_{1} Y_{t}+\phi_{2} Y_{t-1} \\
& \hat{Y}_{t+2}=\mu+\phi_{1} \hat{Y}_{t+1}+\phi_{2} Y_{t} \\
& \hat{Y}_{t+3}=\mu+\phi_{1} \hat{Y}_{t+2}+\phi_{2} \hat{Y}_{t+1} \\
& \vdots \\
& \hat{Y}_{t+l}=\mu+\phi_{1} \hat{Y}_{t+l-1}+\phi_{2} \hat{Y}_{T+l-1}
\end{aligned}
\]

AR-based forecasts are autocorrelated, they have long memory! ब

Example: An industrial firm uses an \(\operatorname{AR}(2)\) to forecast sales. The estimated \(\operatorname{AR}(2)\) model is:
\[
\hat{Y}_{T}=0.7+0.51 y_{T-1}+0.1 y_{T-2}
\]

At time \(T=t\), the firms know \(Y_{t}=3\) and \(Y_{t-1}=3.52\).
Then, the first three forecast are:
\[
\begin{aligned}
& \hat{Y}_{t+1}=0.7+0.51 * 3+0.1 * 3.52=2.582 \\
& \hat{Y}_{t+2}=0.7+0.51 * 2.582+0.1 * 3=2.317
\end{aligned}
\]
\[
\hat{Y}_{t+3}=0.7+0.51 * 2.317+0.1 * 2.582=\mathbf{2 . 1 4 0}
\]

Later, the firm observes: \(Y_{t+1}=4.77, Y_{t+2}=3.15 \& Y_{t+3}=1.85\). Then, the MSE:
\(\operatorname{MSE}=\frac{1}{3} *\left[(4.77-2.582)^{2}+(3.15-2.317)^{2}+(1.85-2.140)^{2}\right]=1.855\). \(\mathbb{I}\)
Example: We fit an \(\operatorname{AR}(4)\) to the changes in Oil Prices (T=346):
fit_oil_ts <- arima(lr_oil, order=c(4,0,0))
fcast_oil <- forecast(fit_oil_ts, h=12)
\(>\) fit_oil_ts
Coefficients:
ar1 ar2 ar3 ar4 intercept
\(\begin{array}{llllll}0.2946 & -0.1027 & -0.0571 & -0.0983 & 0.0017\end{array}\)
\(\begin{array}{llllll}\text { s.e. } & \mathbf{0 . 0 5 2 1} & \mathbf{0 . 0 5 4 3} & 0.0551 & \mathbf{0 . 0 5 3 9} & 0.0051\end{array}\)
sigma^2 estimated as 0.008812: \(\log\) likelihood \(=344.57\), aic \(=-677.14\)
> fcast_oil
Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
365 -5.425015e-02 -0.1745546 0.0660543-0.2382399 0.1297396
366 -1.578754e-02 -0.1412048 \(0.1096297-0.20759660 .1760216\)
367 2.455760e-03-0.1229760 0.1278875-0.1893755 0.1942871
368 1.356917e-02-0.1123501 \(0.1394884-0.17900770 .2061460\)
369 1.160479e-02-0.1154462 \(0.1386558-0.18270290 .2059125\)
370 5.060891e-03-0.1221954 0.1323172-0.1895608 0.1996826
371 9.059104e-04-0.1263511 0.1281629-0.1937169 0.1955287
Note: You can extract the point forecasts from the forecast function using \$mean. That is, fcast_oil\$mean extracts the whole vector of forecasts.
- We plot the 12 forecasts:
> plot(fcast_oil)


Remark: Different from the \(\mathrm{MA}(1)\) forecasts, the \(\mathrm{AR}(1)\) process generates non-constant forecasts. \(\|\)

\section*{Forecasting From ARMA(p,q) Models}

The stationary ARMA model for \(Y_{t}\) is
\[
Y_{t}=\theta_{0}+\phi_{1} Y_{t-1}+\cdots+\phi_{p} Y_{t-p}+\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}+\cdots+\theta_{q} \varepsilon_{t-q}
\]

Assume that we have data \(Y_{1}, Y_{2}, \ldots, Y_{T} ; \varepsilon_{1}=\hat{\varepsilon}_{1}, \varepsilon_{2}=\hat{\varepsilon}_{2}, \ldots, \varepsilon_{T}=\hat{\varepsilon}_{T}\). We want to forecast \(Y_{T+\ell}\). Then,
\[
Y_{T+\ell}=\theta_{0}+\phi_{1} Y_{T+\ell-1}+\cdots+\phi_{p} Y_{T+\ell-p}+\varepsilon_{T+\ell}+\theta_{1} \varepsilon_{T+\ell-1}+\cdots+\theta_{q} \varepsilon_{T+\ell-q}
\]

Taking expectations:
\(\hat{Y}_{T+l}=\theta_{0}+\phi_{1} \widehat{Y}_{T+l-1}+\cdots+\phi_{p} \hat{Y}_{T+l-p}+E\left[\varepsilon_{T+\ell} \mid I_{T}\right]+\theta_{1} \mathrm{E}\left[\varepsilon_{T+\ell-1} \mid I_{T}\right]+\cdots+\theta_{q} \mathrm{E}\left[\varepsilon_{T+\ell-q} \mid I_{T}\right]\)
Remark: An ARMA forecasting is a combination of past \(\hat{Y}_{T+l-i}\) forecasts and observed past \(\hat{\varepsilon}_{t+l-i}\).

Example: An industrial firm uses an ARMA \((1,2)\) to forecast sales. The estimated ARMA(1,2) model is:
\[
\widehat{Y}_{T}=1.9+0.32 y_{T-1}+0.25 \varepsilon_{T-1}-0.1 \varepsilon_{T-2}
\]

At time \(T=t\), the firm knows: \(Y_{t}=3, \varepsilon_{t}=0.81\), \& \(\varepsilon_{t-1}=0.47\).
Then, the first three forecast are:
\[
\begin{aligned}
& \hat{Y}_{t+1}=1.9+0.32 * 3+0.25 *(\mathbf{0 . 8 1})-0.1 * 0.47=2.981 \\
& \hat{Y}_{t+2}=1.9+0.32 * 2.981-0.1 * \mathbf{0 . 8 1}=\mathbf{2 . 7 7 0} \\
& \hat{Y}_{t+3}=1.9+0.32 * 2.770=\mathbf{2 . 7 8 6}
\end{aligned}
\]

Later, the firm observes: \(Y_{t+1}=4.77, Y_{t+2}=\mathbf{3 . 1 5}, \& Y_{t+3}=1.85\). Then, the MSE:
\(\operatorname{MSE}=\frac{1}{3} *\left[(4.77-2.981)^{2}+(3.15-2.770)^{2}+(1.85-2.786)^{2}\right]=1.407 . ~ ब\)
Alternatively, we can forecast considering the Wold representation:
\[
Y_{T+\ell}=\mu+\Psi(B) \varepsilon_{t}=\theta_{0}+\frac{\theta_{q}(B)}{\phi_{p}(B)} \varepsilon_{t}=\mu+\varepsilon_{T+\ell}+\Psi_{1} \varepsilon_{T+\ell-1}+\Psi_{2} \varepsilon_{T+\ell-2}+\cdots+\Psi_{\ell} \varepsilon_{T}+\cdots
\]

Taking the expectation of \(Y_{T+\ell}\), we have
\[
\hat{Y}_{T+\ell}=E\left(Y_{T+\ell} \mid Y_{T}, Y_{T-1}, \cdots, Y_{1}\right)=\mu+\Psi_{\ell} \varepsilon_{T}+\Psi_{\ell+1} \varepsilon_{T-1}+\cdots
\]
where
\[
E\left(\varepsilon_{T+j} \mid Y_{T}, \cdots, Y_{1}\right)= \begin{cases}0, & j>0 \\ \varepsilon_{T+j}, & j \leq 0\end{cases}
\]

Then, we define the forecast error:
\[
\begin{aligned}
e_{T}(\ell)=Y_{T+\ell}-\hat{Y}_{T+\ell}=\varepsilon_{T+\ell}+ & \Psi_{1} \varepsilon_{T+\ell-1}+\cdots+\Psi_{\ell-1} \varepsilon_{T+1} \\
& =\sum_{i=0}^{\ell-1} \Psi_{i} \varepsilon_{T+\ell-i}
\end{aligned}
\]

The forecast error is: \(e_{T}(\ell)=\sum_{i=0}^{\ell-1} \Psi_{i} \varepsilon_{T+\ell-i}\)
Note: The expectation of the forecast error: \(\mathrm{E}\left[e_{T}(\ell)\right]=0\)
\(\Rightarrow\) we say the forecast is unbiased.
- The variance of the forecast error:
\[
\operatorname{Var}\left(e_{T}(\ell)\right)=\operatorname{Var}\left(\sum_{i=0}^{\ell-1} \Psi_{i} \varepsilon_{T+\ell-i}\right)=\sigma^{2} \sum_{i=0}^{\ell-1} \Psi_{i}^{2}
\]

Example 1: One-step ahead forecast \((l=1)\).
\[
\begin{aligned}
& Y_{T+1}=\mu+\varepsilon_{T+1}+\Psi_{1} \varepsilon_{T}+\Psi_{2} \varepsilon_{T-1}+\cdots \\
& \hat{Y}_{T+1}=\mu+\Psi_{1} \varepsilon_{T}+\Psi_{2} \varepsilon_{T-1}+\cdots \\
& e_{T}(1)=Y_{T+1}-\widehat{Y}_{T+1}=\varepsilon_{T+1} \\
& \operatorname{Var}\left(e_{T}(1)\right)=\sigma^{2} . \mathbb{T}
\end{aligned}
\]

Example 2: One-step ahead forecast \((\ell=2)\).
\[
\begin{aligned}
Y_{T+2} & =\mu+\varepsilon_{T+2}+\Psi_{1} \varepsilon_{T+1}+\Psi_{2} \varepsilon_{T}+\cdots \hat{Y}_{T+2} \\
& =\mu+\Psi_{2} \varepsilon_{T}+\cdots e_{T}(2) \\
& =Y_{T+2}-\hat{Y}_{T+2}=\varepsilon_{T+2}+\Psi_{1} \varepsilon_{T+1} \operatorname{Var}\left(e_{T}(2)\right)=\sigma^{2} *\left(1+\Psi_{1}^{2}\right)
\end{aligned}
\]

Note:
\[
\begin{aligned}
& \widehat{\lim }_{\ell \rightarrow \infty}(\ell)=\mu \\
& \lim _{\ell \rightarrow \infty} \operatorname{Var}\left[e_{T}(\ell)\right]=\gamma_{0}<\infty
\end{aligned}
\]

Recall that the Wold representation depends on an infinite number of parameters, but, in practice, they decay rapidly. Then, as we forecast into the future, the forecasts are not very interesting (unconditional forecasts!).

That is why ARMA (or ARIMA) forecasting is useful only for short-term forecasting. 9

\section*{Forecasting From ARMA(p,q) Models: C.I.}

A \(100(1-\alpha) \%\) prediction interval for \(Y_{T+} \ell\) ( \(\ell\)-steps ahead) is
\[
\begin{aligned}
& \hat{Y}_{T}(\ell) \pm z_{\frac{\alpha}{2}} \sqrt{\operatorname{Var}\left(e_{T}(\ell)\right)} \\
& \hat{Y}_{T}(\ell) \pm z_{\alpha / 2} \sigma \sqrt{\sum_{i=0}^{\ell-1} \Psi_{i}^{2}}
\end{aligned}
\]

Example: 95\% C.I. for the 2-step-ahead forecast:
\[
\hat{Y}_{T}(2) \pm 1.96 \sigma \sqrt{1+\Psi_{1}^{2}}
\]

When computing prediction intervals from data, we substitute estimates for parameters, giving approximate prediction intervals. ब|

Note: Since \(\Psi_{i}^{\prime}\) s are RV, \(\operatorname{MSE}\left[\varepsilon_{T+} \ell\right]=\operatorname{MSE}\left[e_{T+} \ell\right]=\sigma^{2} \sum_{i=0}^{\ell-1} \Psi_{i}^{2}\)
Example: We fit an ARMA \((4,5)\), as selected by the function auto.arima, to changes in monthly U.S. earnings (1871-2020):
x_E <-Sh_da\$E
T <- length(x_E)
\(\operatorname{lr} \_\mathrm{e}<-\log \left(\mathrm{x} \_\mathrm{E}[-1] / \mathrm{x} \_\mathrm{E}[-\mathrm{T}]\right)\)
fit_e \(<-\) auto.arima(lr_e)
\(>\) auto.arima(lr_e)
Series: 1 lr e ARIMA(4,0,5) with non-zero mean

\section*{Coefficients:}

sigma^2 estimated as 0.0005759: log likelihood \(=4140.46\)
AIC=-8258.91 \(\operatorname{AICc}=-8258.76 \quad\) \(\mathrm{BIC}=-8198.52\)
- We forecast 20 periods ahead
\(>\) fcast_e \(<\) - forecast(fit_e, \(\mathrm{h}=20\) ) \# h=number of step-ahead forecasts
\(>\) fcast_e
Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
\(1791-0.054521445-0.08527728-0.023765608-0.10155844-0.007484451\)
\(1792-0.048064225-0.08471860-0.011409845-0.104122260 .007993811\)
\(1793-0.032702992-0.072802710 .007396723-0.094030210 .028624230\)
\(1794-0.030680456-0.073657230 .012296320-0.096407760 .035046851\)
\(1795-0.017583413-0.062285640 .027118816-0.085949570 .050782746\)
\(1796-0.013681751-0.058821050 .031457550-0.082716350 .055352853\)
\(1797-0.008775187-0.054581540 .037031165-0.078829960 .061279583\)
\(1798-0.001197077-0.047053190 .044659034-0.071327950 .068933794\)
\(1799-0.001083388-0.046988210 .044821436-0.071288760 .069121982\)
\(1800 \quad 0.005124015-0.040787960 .051035988-0.065092290 .075340318\)
\(18010.006219195-0.039739610 .052178005-0.064068740 .076507130\)
\(18020.007874051-0.038091200 .053839304-0.062423740 .078171840\)
\(18030.011029600-0.035064690 .057123889-0.059465530 .081524732\)
\(18040.010082045-0.036110760 .056274848-0.060563750 .080727841\)

Note: You can extract the point forecasts from the forecast function using \$mean. That is, fcast_e\$mean extracts the whole vector of forecasts.
- We plot the forecast and the C.I.
> plot(fcast_e, type="l", include = 24, main = "Changes in Earings: Forecast 2020:Oct 2021:Jun") \#We include the last 24 observations along the forecast.


\section*{Forecasting From ARMA(p,q) Models - Updating}

Suppose we have \(T\) observations at time \(t=T\). We have a good ARMA model for \(Y_{t}\). We obtain the forecast for \(Y_{T+1}, Y_{T+2}\), etc.
- At \(t=T+1\), we observe \(Y_{T+1}\). Now, we update our forecasts using the original value of \(Y_{T+1}\) and the forecasted value of it.

The forecast error is: \(\quad e_{T}(\ell)=Y_{T+\ell}-\widehat{Y}_{T}(\ell)=\sum_{i=0}^{\ell-1} \Psi_{i} \varepsilon_{T+\ell-i}\)
The forecast error associated with \(\hat{Y}_{T-1}(\ell+1)\) is:
\[
\begin{aligned}
e_{T-1}(\ell+1) & =Y_{T-1+\ell+1}-\hat{Y}_{T-1}(\ell+1) \\
& =\sum_{i=0}^{\ell} \Psi_{i} \varepsilon_{T-1+\ell+1-i}=\sum_{i=0}^{\ell} \Psi_{i} \varepsilon_{T+\ell-i} \\
& =\sum_{i=0}^{\ell-1} \Psi_{i} \varepsilon_{T+\ell-i}+\Psi_{\ell} \varepsilon_{T}=e_{T}(\ell)+\Psi_{\ell} \varepsilon_{T}
\end{aligned}
\]
- Then,
\[
\begin{aligned}
& e_{T-1}(\ell+1)=Y_{T+\ell}-\hat{Y}_{T-1}(\ell+1)=Y_{T+\ell}-\hat{Y}_{T}(\ell)+\Psi_{\ell} \varepsilon_{T} \\
& \hat{Y}_{T}(\ell)=\hat{Y}_{T-1}(\ell+1)+\Psi_{\ell} \varepsilon_{T} \\
& \hat{Y}_{T}(\ell)=\hat{Y}_{T-1}(\ell+1)+\Psi_{\ell}\left\{Y_{T}-\hat{Y}_{T-1}(1)\right\} \\
& \hat{Y}_{T+1}(\ell)=\hat{Y}_{T}(\ell+1)+\Psi_{\ell}\left\{Y_{T+1}-\hat{Y}_{T}(1)\right\}
\end{aligned}
\]

Example: \(\ell=1, T=100\).
\[
\hat{Y}_{101}(1)=\hat{Y}_{100}(2)+\Psi_{1}\left\{Y_{101}-\hat{Y}_{100}(1)\right\} . \boldsymbol{\|}
\]

\section*{Forecasting From ARMA(p,q) Models - Remarks}

In general, we need a large \(T\). Better estimates and it is possible to check for model stability and check forecasting ability of model by withholding data.

Seasonal patterns also need large \(T\). Usually, you need 4 to 5 seasons to get reasonable estimates.
Parsimonious models are very important. Easier to compute and interpret models and forecasts. Forecasts are less sensitive to deviations between parameters and estimates.

\section*{Forecasting From Simple Models: ES}

Industrial companies, with a lot of inputs and outputs, want quick and inexpensive forecasts. Easy to fully automate. In general, they only use past observations of the series to forecat. That is, we use past \(Y_{t}\) to forecast future \(Y_{t}^{\prime} s\), which in the literature is usually referred as the "level's forecasts."

Exponential Smoothing Models (ES) fulfill these requirements.
In general, these models are limited and not optimal, especially compared with Box-Jenkins methods.

Goal of these models: Suppress the short-run fluctuation by smoothing the series. For this purpose, a weighted average of all previous values works well.

There are many ES models. We will go over the Simple Exponential Smoothing (SES) and HoltWinter's Exponential Smoothing (HW ES).

\section*{Simple Exponential Smoothing: SES}

We "smooth" the series \(Y_{t}\) to produce a quick forecast, \(S_{t+1}\) called the "level's forecast." Smooth? The graph of \(S_{t}\) is less jagged than the graph of original series \(Y_{t}\).

Observed time series at time \(T: Y_{1}, Y_{2}, \ldots, Y_{T}\).
The SES Model has only one equation, we only forecast the level:
\[
S_{t}=\alpha Y_{t-1}+(1-\alpha) S_{t-1}
\]
where
\(-\alpha\) : The smoothing parameter, \(0 \leq \alpha \leq 1\).
- \(Y_{t}\) : Value of the observation at time t .
- \(S_{t}\) : Value of the smoothed observation at time t -i.e., the forecast.

The equation can also be written as an updating equation:
\[
S_{t}=S_{t-1}+\alpha\left(Y_{t-1}-S_{t-1}\right)=S_{t-1}+\alpha *(\text { past forecast error })
\]

Note: The updating form of the SES model looks like an MA(1) model.

\section*{SES: Forecast and Updating}

From the updating equation for \(S_{t}\) :
\[
S_{t}=S_{t-1}+\alpha\left(Y_{t-1}-S_{t-1}\right)
\]
we compute the forecast:
\[
S_{t+1}=\alpha Y_{t}+(1-\alpha) S_{t}=S_{t}+\alpha\left(Y_{t}-S_{t}\right)
\]

That is, a simple updating forecast: last period forecast + adjustment.
For the next period, we have:
\[
S_{t+2}=\alpha Y_{t+1}+(1-\alpha) S_{t+1}=\alpha S_{t+1}+(1-\alpha) S_{t+1}=S_{t+1}
\]

Then the \(\ell\)-step ahead forecast is:
\[
S_{t+\ell}=S_{t+1} \quad \Rightarrow \text { A naive forecast! }
\]

Note: Similar to an MA(1) process, SES forecasts are not very interesting after \(\ell>1\).
Example: An industrial firm uses SES to forecast sales:
\[
S_{t+1}=S_{t}+\alpha *\left(Y_{t}-S_{t}\right)
\]

The firm estimates \(\alpha=0.25\). The firm observes \(Y_{t}=5\) and, last period's forecast, \(S_{t}=3\). Then, the forecast for time \(t+1\) is:
\[
S_{t+1}=3+0.25 *(5-3)=3.50
\]

The forecast for time \(t+1\) and any period after time \(t+1\), we have \(\quad S_{t+\ell}=S_{t+1}=3.50\) for \(\ell>1\).
Later, the firm observes: \(Y_{t+1}=4.77, Y_{t+2}=3.15, \& Y_{t+3}=1.85\). Then, the MSE:
MSE \(=\frac{1}{3} *\left[(4.77-3.50)^{2}+(3.15-3.50)^{2}+(1.85-3.50)^{2}\right]=\mathbf{1 . 4 8 6}\).

Note: If \(\alpha=0.75\), then
\[
S_{t+1}=3+0.75 *(5-3)=4.50
\]

A bigger \(\alpha\) gives more weight to the more recent observation -i.e., \(Y_{t} \cdot \boldsymbol{\|}\)

\section*{SES: Exponential?}

Question: Why Exponential?
For the observed time series \(\left\{Y_{1}, Y_{2}, \ldots, Y_{T}, Y_{T+1}\right\}\), using backward substitution, \(S_{t+1}=\hat{Y}_{t}(1)\) can be expressed as a weighted sum of previous observations:
\[
\begin{aligned}
& S_{t+1}=\alpha Y_{t}+(1-\alpha) S_{t}=\alpha Y_{t}+(1-\alpha)\left[\alpha Y_{t-1}+(1-\alpha) S_{t-1}\right] \\
&=\alpha Y_{t}+\alpha(1-\alpha) Y_{t-1}+(1-\alpha)^{2} S_{t-1} \\
& \Rightarrow \hat{Y}_{t}(1)=c_{0} Y_{t}+c_{1} Y_{t-1}+c_{2} Y_{t-2}+\cdots
\end{aligned}
\]
where \(c_{i}\) 's are the weights, with
\[
c_{i}=\alpha(1-\alpha)^{i} ; i=0,1, \ldots ; 0 \leq \alpha \leq 1
\]

We have decreasing weights, by a constant ratio for every unit increase in lag.
Then,
\[
\begin{aligned}
& \hat{Y}_{t}(1)=\alpha(1-\alpha)^{0} Y_{t}+\alpha(1-\alpha)^{1} Y_{t-1}+\alpha(1-\alpha)^{2} Y_{t-2}+\cdots \\
& \widehat{Y}_{t}(1)=\alpha Y_{t}+(1-\alpha) \hat{Y}_{t-1}(1) \quad \Rightarrow S_{t+1}=\alpha Y_{t}+S_{t}
\end{aligned}
\]
- Let's look at the weights:
\[
c_{i}=\alpha(1-\alpha)^{i} ; \quad i=0,1, \ldots ; 0 \leq \alpha \leq 1
\]
\begin{tabular}{|l|l|l|}
\hline \(\boldsymbol{c}_{\boldsymbol{i}}=\boldsymbol{\alpha}(\mathbf{1}-\boldsymbol{\alpha})^{\boldsymbol{i}}\) & \(\alpha=\mathbf{0 . 2 5}\) & \(\alpha=0.75\) \\
\hline\(c_{0}\) & 0.25 & 0.75 \\
\hline\(c_{1}\) & \(0.25 * 0.75=0.1875\) & \(0.75 * 0.25=0.1875\) \\
\hline\(c_{2}\) & \(.25 * 0.75^{2}=0.140625\) & \(0.75 * 0.25^{2}=0.046875\) \\
\hline\(c_{3}\) & \(.25 * 0.75^{3}=0.1054688\) & \(0.75 * 0.25^{3}=0.01171875\) \\
\hline\(c_{4}\) & \(.25 * 0.75^{4}=0.07910156\) & \(0.75 * 0.25^{4}=0.002929688\) \\
\hline & \(\quad\) & \\
\hline\(c_{12}\) & \(.25 * 0.75^{12}=0.007919088\) & \(0.75 * 0.25^{12}=4.470348 \mathrm{e}-08\) \\
\hline
\end{tabular}

Decaying weights. Faster decay with greater \(\alpha\), associated with faster learning: we give more weight to more recent observations.

We do not know \(\alpha\); we need to estimate it.

\section*{SES: Selecting \(\alpha\)}

Choose \(\alpha\) between 0 and 1 .
- If \(\alpha=1\), it becomes a naive model; if \(\alpha \approx 1\), more weights are put on recent values. The model fully utilizes forecast errors.
- If \(\alpha\) is close to 0 , distant values are given weights comparable to recent values. Set \(\alpha \approx 0\) when there are big random variations in \(\mathrm{Y}_{\mathrm{t}}\).
\(-\alpha\) is often selected as to minimize the MSE.
In empirical work, \(0.05 \leq \alpha \leq 0.3\) are used ( \(\alpha \approx 1\) is used rarely).
Numerical Minimization Process:
- Take different \(\alpha\) values ranging between 0 and 1 .
- Calculate 1-step-ahead forecast errors for each \(\alpha\), where the forecast error is \(e_{t}=Y_{t}-S_{t}\).
- Calculate MSE for each case.
- Then, choose the \(\alpha\) which produces the minimum MSE: \(\min _{\alpha} \sum_{t=1}^{n} e_{t}^{2}\)

\section*{Example:}
\begin{tabular}{llll}
\hline Time & \(\boldsymbol{Y}_{\boldsymbol{t}}\) & \multicolumn{1}{c}{\(\boldsymbol{S}_{\boldsymbol{t}+1}(\alpha=0.10)\)} & \(\left(\boldsymbol{Y}_{\boldsymbol{t}}-\boldsymbol{S}_{\boldsymbol{t}}\right)^{\mathbf{2}}\) \\
\hline 1 & \(\mathbf{5}\) & - & - \\
2 & 7 & \((0.1) 5+(0.9) 5=\mathbf{5}\) & 4 \\
3 & 6 & \((0.1) 7+(0.9) 5=\mathbf{5 . 2}\) & 0.64 \\
4 & 3 & \((0.1) 6+(0.9) 5.2=\mathbf{5 . 2 8}\) & 5.1984 \\
5 & 4 & \((0.1) 3+(0.9) 5.28=5.052\) & 1.107 \\
TOTAL & \\
\hline \multicolumn{5}{c}{\(M S E=\frac{S S E}{n-1}=2.74\)} & \(\mathbf{1 0 . 9 4 5}\) \\
\hline
\end{tabular}

Calculate this for \(\alpha=0.2,0.3, \ldots, 0.9,1\) and compare the MSEs. Choose \(\alpha\) with minimum MSE.
Note: \(\mathrm{Y}_{\mathrm{t}=1}=\mathbf{5}\) is set as the initial value for the recursive equation. \(\mathbb{\|}\)

\section*{SES: Initial Values}

We start forecasting at time 2. Since we have a recursive equation, we need an initial value for \(S_{1}\) (or \(Y_{0}\) ).

Approaches:
- Set \(S_{1}\) to \(Y_{1}\) is one method of initialization. Then, \(S_{2}=Y_{1}\).
- Take the average of the first p observations, say first 4 or 5 observations: \(Y_{0}=\frac{\sum_{t=1}^{p} Y_{t}}{p}\)

Use this average as an initial value \(S_{1}=Y_{0}\). Obviously, in ths case our first prediction will be for time ( \(\mathrm{p}+1\) ), which becomes: \(S_{2}\).
- Estimate \(S_{1}\) (similar to the estimation of \(a\) ).

\section*{SES: Forecasting Examples}

Example 1: We want to forecast log changes in U.S. monthly dividends ( \(\mathrm{T}=1796\) ) using SES. First, we estimate the model using the R function HoltWinters(), which has as a special case SES: set beta=FALSE, gamma=FALSE. We use estimation period \(T=1750\).
mod \(1<\) - HoltWinters(lr_d[1:1750], beta=FALSE, gamma=FALSE)
\(>\bmod 1\)
Holt-Winters exponential smoothing without trend and without seasonal component.
Call:
HoltWinters \(\left(x=1 r \_d[1: 1750]\right.\), beta \(=\) FALSE, gamma \(=\) FALSE \()\)

Smoothing parameters:
alpha: 0.289268
beta : FALSE
gamma: FALSE
Coefficients:
[,1]
a 0.004666795

\author{
\(\Rightarrow\) Estimated \(\alpha\)
}
\[
\Rightarrow \text { Forecast }
\]


- Now, we forecast one-step ahead forecasts

T_last \(<-\) nrow(mod1\$fitted)
\(\mathrm{h}<-25\)
ses_f \(<-\operatorname{matrix}(0, h, 1)\)
\# number of in-sample forecasts
\# forecast horizon
\# Vector to collect forecasts
alpha \(<-0.29\)
\(\mathrm{y}<-\mathrm{lr}_{-} \mathrm{d}\)
\(\mathrm{T}<-\) length \((\) lr_d)
\(\mathrm{sm}<-\operatorname{matrix}(0, \mathrm{~T}, 1)\)
\(\mathrm{T} 1<-\mathrm{T}-\mathrm{h}+1 \quad\) \# Start of forecasts
\(\mathrm{a}<-\mathrm{T} 1 \quad\) \# index for while loop
\(\operatorname{sm}[\mathrm{a}-1]<-\bmod 1 \$\) fitted[T_last] \# last in-sample forecast
while \((\mathrm{a}<=\mathrm{T})\{\)
\[
\operatorname{sm}[\mathrm{a}]=\text { alpha } * \mathrm{y}[\mathrm{a}-1]+(1-\mathrm{alpha}) * \operatorname{sm}[\mathrm{a}-1]
\]
\(\mathrm{a}<-\mathrm{a}+1\)
```

}
ses_f<- sm[T1:T]
ses f
f_error_ses <- sm[T1:T] - y[T1:T] \# forecast errors
MSE_ses <- sum(f_error_ses^2)/h \# MSE
plot(ses_f, type="l", main ="SES Forecasts: Changes in Dividends")

```

SES Forecasts: Changes in Dividends


- h-step-ahead forecasts
\(>\) forecast(mod1, h=25, level=.95)
Point Forecast Lo 95 Hi 95
\(17510.004666795-0.017392040 .02672563\)
\(17520.004666795-0.018296400 .02762999\)
\(17530.004666795-0.019166470 .02850006\)
\(17540.004666795-0.020005870 .02933947\)
1755 0.004666795-0.02081765 0.03015124
\(17560.004666795-0.021604350 .03093794\)
\(17570.004666795-0.022368160 .03170175\)
1758 0.004666795-0.02311098 0.03244457
\(17590.004666795-0.023834450 .03316804\)
\(1760 \quad 0.004666795-0.024540010 .03387360\)
\(17610.004666795-0.025228910 .03456250\)
\(17620.004666795-0.025902300 .03523589\)
\(17630.004666795-0.026561170 .03589476\)
\(17640.004666795-0.027206420 .03654001\)

Note: Constant forecasts, but C.I. gets wider (as expected) with h. \(\mathbb{I}\)
Example 2: We want to forecast log monthly U.S. vehicles (1976-2020, T=537) using SES. mod_car <- HoltWinters(1_car[1:512], beta=FALSE, gamma=FALSE)
```

> mod_car

```

Holt-Winters exponential smoothing without trend and without seasonal component. Call:
HoltWinters \((\mathrm{x}=1\) _car[1:512], beta \(=\) FALSE, gamma \(=\) FALSE \()\)
Smoothing parameters:
alpha: \(0.4888382 \quad \Rightarrow\) Estimated \(\alpha\)
beta : FALSE
gamma: FALSE
Coefficients:
[,1]
a 7.315328
- Now, we do one-step ahead forecasting
ses_f_c \(<-\) sm_c[T1:T]
f_error_c_ses <- sm_c[T1:T] - y[T1:T]
> plot(ses_f_c, type="l", main ="SES Forecasts: Log Vehicle Sales")
SES Forecasts: Log Vehicle Sales

> plot(f_error_c_ses, type="l", main ="SES Forecasts Errors: Log Vehicle Sales")


MSE_ses <- sum(f_error_c_ses^2)/h
\(>\) MSE_ses
[1] 0.027889 . \(\|\)

\section*{SES: Remarks}

Some computer programs automatically select the optimal \(\alpha\) using a line search method or nonlinear optimization techniques.

We have a recursive equation, we need initial values for \(S_{1}\).
This model ignores trends or seasonalities. Not very realistic, especially for manufacturing facilities, retail sector, and warehouses. But, deterministic components, \(\mathrm{D}_{\mathrm{t}}\), can be easily incorporated.

The model that incorporates both features is called Holt-Winter's ES.

\section*{Holt-Winters (HW) Exponential Smoothing}

Now, we introduce trend \(\left(T_{t}\right) \&\) seasonality \(\left(I_{t}\right)\) factors. Since we also produce smooth forecasts for \(T_{t} \& I_{t}\), this method is also called triple exponential smoothing.

The \(h\)-step ahead forecast is a combination of the smooth forecasts of \(S_{t}\) (Level), \(T_{t}\) (Trend) \& \(I_{t+h-s}\) (Seasonal).

Both, \(T_{t} \& I_{t}\), can be included as additively or multiplicatively factors. In this class, we consider an additive trend and the seasonal factor as additive or multiplicative, see Figure 9.1. We produce \(h\)-step ahead forecasts:

For the additive model:
\[
\hat{Y}_{t}(h)=S_{t}+h T_{t}+I_{t+h-s}
\]

For the multiplicative model:
\[
\hat{Y}_{t}(h)=\left(S_{t}+h T_{t}\right) * I_{t+h-s}
\]

Note: Seasonal factor is multiplied in the \(h\)-step ahead forecast.
Figure 9.1 - Different Seasonality Models with Additive Trend


Additive Model: Additive seasonal variability with an additive trend.


Multiplicativ Model: Multiplicative seasonal variability with an additive trend.

\section*{Holt-Winters (HW) ES: Additive Model}

Additive model (additive trend and additive seasonality) \(h\)-step ahead forecast:
\[
\hat{Y}_{t}(h)=S_{t}+h T_{t}+I_{t+h-s}
\]
where \(s\) is the number of periods in seasonal cycles ( \(s=4\) for quarters).
- Components:
- The level, \(S_{t}\), is a weighted average of seasonal adjusted \(Y_{t}\) and the non-seasonal forecast \(\left(S_{t-1}+T_{t-1}\right)\) :
\[
S_{t}=\alpha\left(Y_{t}-I_{t-s}\right)+(1-\alpha)\left(S_{t-1}+T_{t-1}\right)
\]
- The trend, \(T_{t}\), is a weighted average of \(T_{t-1}\) and the change in \(S_{t}\).
\[
T_{t}=\beta\left(S_{t}-S_{t-1}\right)+(1-\beta) T_{t-1}
\]
- The seasonality is also a weighted average of seasonal index of \(s\) last year, \(I_{t-s}\), and the current seasonal index \(\left(Y_{t-1}-S_{t-1}-T_{t-1}\right)\) :
\[
I_{t}=\gamma\left(Y_{t}-S_{t-1}-T_{t-1}\right)+(1-\gamma) I_{t-s}
\]
- Summary:

The additive model produces the following \(h\)-step ahead forecast:
\[
\hat{Y}_{t}(h)=S_{t}+h T_{t}+I_{t+h-s}
\]

We use three equations:
\[
\begin{aligned}
& S_{t}=\alpha\left(Y_{t}-I_{t-s}\right)+(1-\alpha)\left(S_{t-1}+T_{t-1}\right) \\
& T_{t}=\beta\left(S_{t}-S_{t-1}\right)+(1-\beta) T_{t-1} \\
& I_{t}=\gamma\left(Y_{t}-S_{t-1}-T_{t-1}\right)+(1-\gamma) I_{t-s}
\end{aligned}
\]

We have only three smoothing parameters:
\[
\alpha=\text { level coefficient }
\]
\(\beta=\) trend coefficient
\(\gamma=\) seasonality coefficient

\section*{Holt-Winters (HW) ES: Multiplicative Model}

In the multiplicative seasonal case (with an additive trend), we have the \(h\)-step ahead forecast:
\[
\hat{Y}_{t}(h)=\left(S_{t}+h T_{t}\right) * I_{t+h-s}
\]

Details for multiplicative seasonality -i.e., \(\mathrm{Y}_{\mathrm{f}} / \mathrm{I}_{\leftarrow}-\) and additive trend
- The forecast, \(S_{t}\), now shows the average \(Y_{t} \operatorname{adjusted}\left(\frac{Y_{t}}{I_{t-s}}\right)\).
- The trend, \(\mathrm{T}_{\mathrm{t}}\), is a weighted average of \(\mathrm{T}_{\mathrm{t}-1}\) and the change in \(\mathrm{S}_{\mathrm{t}}\).
- The seasonality is also a weighted average of \(\mathrm{I}_{\mathrm{t}-\mathrm{s}}\) and the \(\mathrm{Yt} / \mathrm{S}_{\mathrm{t}}\)

Then, the model has three equations:
\[
\begin{aligned}
& S_{t}=\alpha \frac{Y_{t-1}}{I_{t-s}}+(1-\alpha)\left(S_{t-1}-T_{t-1}\right) \\
& T_{t}=\beta\left(S_{t}-S_{t-1}\right)+(1-\beta) T_{t-1} \\
& I_{t}=\gamma \frac{Y_{t}}{S_{t}}+(1-\gamma) I_{t-s}
\end{aligned}
\]

We think of \(\left(Y_{t} / S_{t}\right)\) as capturing seasonal effects, where \(s\) represents the number of periods in the seasonal cycles. For example, \(s=4\), for quarterly data; \(s=12\), for monthly data;

Again We have only three parameters:
\(\alpha=\) smoothing parameter
\(\beta=\) trend coefficient
\(\gamma=\) seasonality coefficient
Question: How do we determine these 3 parameters?
- Ad-hoc method: \(\alpha, \beta\) and \(\gamma\) can be chosen as value between \(0.02<\alpha, \gamma, \beta<0.2\)
- Optimal method: Minimization of the MSE, as in SES.

Example: An industrial firm uses HW ES to forecast sales next three quarters ( \(h=1,2 \& 3\); with \(s=4\) ):
\[
\hat{Y}_{t}(h)=\hat{Y}_{t+h}=\left(S_{t}+h T_{t}\right) * I_{t+h-s}
\]
with \(S_{t}, T_{t}, \& I_{t}\) factors given by:
\[
\begin{aligned}
& S_{t}=\alpha \frac{Y_{t}}{I_{t-s}}+(1-\alpha)\left(S_{t-1}+T_{t-1}\right) \\
& T_{t}=\beta\left(S_{t}-S_{t-1}\right)+(1-\beta) T_{t-1} \\
& I_{t}=\gamma \frac{Y_{t}}{S_{t}}+(1-\gamma) I_{t-s}
\end{aligned}
\]

The firm estimates: \(\alpha=0.25 ; \beta=0.1\); and \(\gamma=0.4\). The firm observes \(Y_{t}=5\); last quarter's smoothed forecasts: \(S_{t-1}=3, \& T_{t-1}=1.2\); and last year's seasonal factors: \(I_{t-4}=1.1, I_{t-3}=0.7\) \(\& I_{t-2}=1.2, \& I_{t-2}=0.8\).
- Components forecasts:
\[
\begin{aligned}
& S_{t}=0.25 * \frac{5}{1.1}+(1-0.25) *(3+1.2)=4.2864 \\
& T_{t}=0.1 *(4.2864-3)+(1-0.1) * 1.2=1.2086 \\
& I_{t}=0.4 * \frac{5}{4.2864}+(1-0.4) * 1.1=1.1266
\end{aligned}
\]

The forecast for \(h=1\) (next quarter) is:
\[
\hat{Y}_{t+1}=(4.2864+1.2086) * 0.7=4.8125
\]

The forecast for \(h=2 \& 3\) are:
\[
\begin{aligned}
& \hat{Y}_{t+2}=(4.2864+2 * 1.2086) * 1.2=7.8475 \\
& \hat{Y}_{t+3}=(4.2864+3 * 1.2086) * 0.8=6.1329 .
\end{aligned}
\]

\section*{Holt-Winters (HW) ES: Initial Values}

We have three recursive equations. That is, we need initial values for \(\mathrm{S}_{0}, \mathrm{~T}_{0}\) and \(I_{t-s}\). To calculate initial values for the algorithm, we need at least one complete season of data to determine the initial estimates.

Like in the SES model, there are different approaches. Below, we present one approach for the multiplicative model:
- Initial values for \(\mathrm{S}_{0}\) and \(\mathrm{T}_{0}\) :
\[
\begin{aligned}
& S_{0}=\frac{\sum_{t=1}^{s} Y_{t}}{s T_{0}} \\
& \mathrm{~T}_{0}=\frac{1}{s}\left(\frac{Y_{S+1}-Y_{1}}{s}+\frac{Y_{s+2}-Y_{2}}{s}+\cdots+\frac{Y_{s+s}-Y_{s}}{s}\right) \\
& \text { or } \mathrm{T}_{0}=\left[\left\{\sum_{t=1}^{s} Y_{t} / s\right\}-\left\{\sum_{t=s+1}^{2 s} Y_{t} / s\right\}\right] / s
\end{aligned}
\]
- Initial values for \(I_{t-s .}\) :

Assume we have \(T\) observation and quarterly seasonality ( \(s=4\) ):
(1) Compute the averages of each of \(T\) years.
\[
A_{t}=\sum_{i=1}^{4} Y_{t, i} / 4, \quad t=1,2, \cdots, 6 \quad \text { (yearly averages) }
\]
(2) Divide the observations by the appropriate yearly mean: \(\mathrm{Y}_{\mathrm{t}, \mathrm{i}} / \mathrm{A}_{\mathrm{t}}\).
(3) \(\mathrm{I}_{\mathrm{s}}\) is formed by computing the average \(\mathrm{Y}_{\mathrm{t}, \mathrm{i}} / \mathrm{A}_{\mathrm{t}}\) per year:
\[
I_{s}=\sum_{i=1}^{T} Y_{t, s} / A_{t} \quad s=1,2,3,4
\]

\section*{Holt-Winters (HW) ES: Damped Model}

We can damp the trend as the forecast horizon increases, using a parameter \(\phi\). For the multiplicative model, see Figure 9.2, we have:
\[
S_{t}=\alpha \frac{Y_{t-1}}{I_{t-s}}+(1-\alpha)\left(S_{t-1}-\phi T_{t-1}\right) T_{t}=\beta\left(S_{t}-S_{t-1}\right)+(1-\beta) T_{t-1} I_{t}=\gamma \frac{Y_{t}}{S_{t}}+(1-\gamma) I_{t-s}
\]

Then, the \(h\)-step ahead forecast:
\[
\hat{Y}_{t}(h)=\left\{S_{t}+\left(1+\phi+\phi^{2}+\cdots+\phi^{2 h-1}\right) T_{t}\right\} * I_{t+h-s}
\]

\section*{Figure 9.2 - Damped Additive Trend with Multiplicative Seasonality}


This model is based on practice: It seems to work well for industrial outputs. Not a lot of theory or clear justification behind the damped trend.

\section*{HW ES Models - Different Types}

We have many variations:
1. No trend and additive seasonal variability.
2. Additive seasonal variability with an additive trend.
3. Multiplicative seasonal variability with an additive trend.
4. Multiplicative seasonal variability with a multiplicative trend.
5. Dampened trend with additive seasonal variability.
6. Multiplicative seasonal variability and dampened trend.

Q: Which model should be used?
A: Select the type of model to fit based on the presence of
- Trend - additive or multiplicative, dampened or not
- Seasonal variability - additive or multiplicative

\section*{HW ES: Example - Log U.S. Vehicles Sales}

Example: We want to forecast log U.S. monthly vehicle sales with HW. We use the R function HoltWinters().
1_car_18 <- 1_car[1:512]
1_car_ts <- ts(l_car_18, start \(=c(1976,1)\), frequency \(=12)\) \# convert \(1 r\) d in a ts object hw_d_car <- HoltWinters(1_car_18, seasonal="additive")
> hw_d_car
Holt-Winters exponential smoothing with trend and additive seasonal component.
Call:
HoltWinters \(\left(x=1 r_{-} d \_\right.\)ts, seasonal \(=\)"additive" \()\)
Smoothing parameters:
\begin{tabular}{ll} 
alpha: 0.4355244 & \(\Rightarrow\) Estimated smoothing parameter \\
beta \(: 0.009373815\) & \(\Rightarrow\) Estimated trend parameter \(\approx 0\) (no trend) \\
gamma:0.3446495 & \(\Rightarrow\) Estimated seasonal parameter
\end{tabular}
> hw_d_car
Coefficients:
[,1]
a \(7.177857555 \quad \Rightarrow\) forecast for level
b \(0.0001100345 \quad \Rightarrow\) forecast for trend
s1 -0.075314457 \(\quad \Rightarrow\) forecast for seasonal month 1
\(\mathrm{s} 2-0.084468361 \quad \Rightarrow\) forecast for seasonal month 2
s3 0.049447067
s4 -0.273299309
s5 -0.138251757
s6 -0.026603921
s7 -0.144953062
s8 0.079214066
s9 0.037899454
s10 0.020477134
s11 0.089309775
s12-0.012530316
>plot(hw_d_car)

- Now, we forecast one-step ahead forecasts

T_last <- nrow(hw_d_car\$fitted)
\(\mathrm{h}<-25\)
ses_f_hw <- matrix \((0, h, 1)\)
alpha \(<-0.4355244\)
beta \(<-0.009373815\)
gamma <- 0.3446495
y <-1_car
\(\mathrm{T}<-\) length(1_car)
sm <- matrix \((0, \mathrm{~T}, 1)\)
\(\mathrm{Tr}<-\operatorname{matrix}(0, \mathrm{~T}, 1)\)
I <- matrix \((0, T, 1)\)
T1 <- T-h+1
\(\mathrm{a}<-\mathrm{T} 1\)
\(\operatorname{sm}[a-1]<-7.177857555\)
\(\operatorname{Tr}[\mathrm{a}-1]<-0.000309358\)
\(\mathrm{I}[501: 512]<-\mathrm{c}(-0.075314457,-0.084468361,0.049447067,-0.273299309,-0.138251757,-\)
\(0.026603921,-0.144953062,0.079214066,0.037899454,0.020477134,0.089309775,-\)
0.012530316 )
while \((\mathrm{a}<=\mathrm{T})\) \{
sm[a] \(=\) alpha \(* y[a-1]+(1-\) alpha \() * \operatorname{sm}[a-1]\)
\(\operatorname{Tr}[a]=\operatorname{beta}^{*}(\operatorname{sm}[a]-\operatorname{sm}[a-1])+(1-b e t a) * \operatorname{Tr}[a-1]\)
\(\mathrm{I}[\mathrm{a}]=\) gamma \(*(\mathrm{y}[\mathrm{a}]-\mathrm{sm}[\mathrm{a}])+(1-\) gamma \() * \mathrm{I}[\mathrm{a}-12]\)
\(\mathrm{a}<-\mathrm{a}+1\)
\}
hh \(<-\mathrm{c}(1: \mathrm{h})\)
car_f_hw \(<-\) sm[T1:T] + hh*Tr[T1:T] \(+\mathrm{I}[\mathrm{T} 1: \mathrm{T}]\)
car_f_hw
f_error_c_hw<- car_f_hw - y[T1:T]
plot(car_f_hw, type="l", main ="SES Forecasts: Log Vehicle Sales")

HW Forecasts: Log Vehicle Sales


MSE_hw <- sum(f_error_c_hw^2)/h
> MSE_hw
[1] 0.01655964 . ब

\section*{HW ES: Remarks}

If a computer program selects \(\gamma=0=\beta\), it has a lack of trend or seasonality. It implies a constant (deterministic) component. In this case, an ARIMA model with deterministic trend may be a more appropriate model.
- For HW ES, a seasonal weight near one implies that a non-seasonal model may be more appropriate.

We can model seasonalities as multiplicative or additive:
\(\Rightarrow\) Multiplicative seasonality:
Forecast \(=\mathrm{S}_{\mathrm{t}} * \mathrm{I}_{\mathrm{t} \text {-s. }}\)
\(\Rightarrow\) Additive seasonality: \(\quad\) Forecast \(=\mathrm{S}_{\mathrm{t}}+\mathrm{I}_{\mathrm{t}-\mathrm{s}}\).

\section*{Evaluation of forecasts - Accuracy measures}

The mean squared error ( \(M S E\) ) and mean absolute error ( \(M A E\) ) are the most popular accuracy measures:
\[
\begin{aligned}
& \mathrm{MSE}=\frac{1}{m} \sum_{i=T+1}^{T+m}\left(\hat{y}_{i}-y_{i}\right)^{2}=\frac{1}{m} \sum_{i=T+1}^{T+m} e_{i}{ }^{2} \\
& \mathrm{MAE}=\frac{1}{m} \sum_{i=T+1}^{T+m}\left|\hat{y}_{i}-y_{i}\right|=\frac{1}{m} \sum_{i=T+1}^{T+m}\left|e_{i}\right|
\end{aligned}
\]
where \(m\) is the number of out-of-sample forecasts.
But other measures are routinely used:
- Mean absolute percentage error \((M A P E)=\frac{100}{T-(m-1)} \sum_{i=T+1}^{T+m}\left|\frac{\hat{y}_{i}-y_{i}}{y_{i}}\right|\)
- Absolute MAPE \((A M A P E)=\frac{100}{T-(m-1)} \sum_{i=T+1}^{T+m}\left|\frac{\hat{y}_{i}-y_{i}}{\hat{y}_{i}+y_{i}}\right|\)

Remark: There is an asymmetry in MAPE, the level \(y_{i}\) matters.
\(-\%\) correct sign predictions \((\mathrm{PCSP})=\frac{1}{T-(m-1)} \sum_{i=T+1}^{T+m} z_{i}\)
where \(z_{i}=1\)
if \(\left(\hat{y}_{i+l} * y_{i+l}\right)>0\)
\(=0, \quad\) otherwise.
\(-\%\) correct direction change predictions \((\mathrm{PCDP})=\frac{1}{T-(m-1)} \sum_{i=T+1}^{T+m} z_{i}\)
where \(z_{i}=1 \quad\) if \(\left(\hat{y}_{i+l}-y_{i}\right) *\left(y_{i+l}-y_{i}\right)>0\)
\(=0, \quad\) otherwise.
Remark: We value forecasts with the right direction (sign) or forecast that can predict turning points. For stock investors, the sign matters!

MSE penalizes large errors more heavily than small errors, the sign prediction criterion, like MAE, does not penalize large errors more.

Example: We compute MSE and the \% of correct direction change (PCDC) predictions for the one-step forecasts for U.S. monthly vehicles sales based on the SES and HW ES models.
\(>\) MSE_ses
[1] 0.027889
> MSE_hw
[1] 0.01655964
We calculate PCDC with following script for HW and SES:
bb_hw <- (car_f hw - y[(T1-1):(T-1)]) * (y[T1:T] - y[(T1-1):(T-1)])
indicator_hw <- ifelse(bb_hw \(>0,1,0\) ) \# ifelse ("if else") produces a 1 if condition is true pcdc_hw <- sum(indicator_hw)/h
\(>\) indicator_hw
[1] 1110111111011110111111000
\(>\) pcdc_hw
[1] 0.76
bb_s <- (ses_f_c - y[(T1-1):(T-1)]) * \((y[T 1: T]-y[(T 1-1):(T-1)])\)
indicator_s \(<-\) ifelse(bb_s \(>0,1,0\) )
pcdc_s \(<-\) sum(indicator_s)/h
\(>\) indicator_s
[1] 1011111111111110111011000
\(>\) pcdc_s
[1] 0.76 .
Note: Same percentage of correct direction change (PCDC) predictions, but the sequence of correct predictions is not the same. \(\mathbb{I}\)

\section*{Evaluation of forecasts - DM Test}

To determine if one model predicts better than another, we define the loss differential between two forecasts:
\[
d_{t}=g\left(e_{t}{ }^{M 1}\right)-g\left(e_{t}{ }^{M 2}\right)
\]
where \(\mathrm{g}(\).\() is the forecasting loss function. M1 and M2 are two competing sets of forecasts -\) could be from models or something else.

We only need \(\left\{\mathrm{e}_{\mathrm{t}}{ }^{\mathrm{M} 1}\right\} \&\left\{\mathrm{e}_{\mathrm{t}}{ }^{\mathrm{M} 2}\right\}\), not the structure of M1 or M2. In this sense, this approach is "model-free."

Typical (symmetric) loss functions: \(g\left(e_{t}\right)=e_{t}^{2} \& g\left(e_{t}\right)=\left|e_{t}\right|\).
But other \(g(\).\() 's can be used: g\left(e_{t}\right)=\exp \left(\lambda e^{2}\right)-\lambda e^{2}(\lambda>0)\).
Then, we test the null hypotheses of equal predictive accuracy:
\(\mathrm{H}_{0}: \mathrm{E}\left[\mathrm{d}_{\mathrm{t}}\right]=0\)
\(\mathrm{H}_{1}: \mathrm{E}\left[\mathrm{d}_{\mathrm{t}}\right]=\mu \neq 0\).
- Diebold and Mariano (1995) assume \(\left\{\mathrm{e}_{\mathrm{t}}^{\mathrm{M1}}\right\} \&\left\{\mathrm{e}^{\mathrm{M} 2}\right\}\) is covariance stationarity and other regularity conditions (finite \(\operatorname{Var}\left[\mathrm{d}_{\mathrm{t}}\right]\), independence of forecasts after \(\ell\) periods) needed to apply CLT. Then,
\[
\frac{\bar{d}-\mu}{\sqrt{\operatorname{Var}[\bar{d}] / T}} \xrightarrow{d} N(0,1), \quad \bar{d}=\frac{1}{m} \sum_{i=T+1}^{T+m} d_{i}
\]
- Then, under \(\mathrm{H}_{0}\), the DM test is a simple \(z\)-test:
\[
D M=\frac{\bar{d}}{\sqrt{\hat{V} \operatorname{ar}[\bar{d}] / T}} \xrightarrow{d} N(0,1)
\]
where \(\hat{\operatorname{Var}}[\bar{d}]\) is a consistent estimator of the variance, usually based on sample autocovariances of \(d_{t}\) :
\[
\widehat{\operatorname{Var}}[\bar{d}]=\gamma(0)+2 \sum_{j=k}^{\ell} \gamma(j)
\]

There are some suggestion to calculate small sample modification of the DM test. For example, :
\[
\mathrm{DM}^{*}=\mathrm{DM} /\{[T+1-2 \ell+\ell(\ell-1) / T] / T\}^{1 / 2} \sim t T-1
\]
where \(\ell\)-step ahead forecast. If ARCH is suspected, replace \(\ell\) with \([0.5 \sqrt{ }(T)]+\ell\).
Note: If \(\left\{\mathrm{e}_{\mathrm{t}}{ }^{\mathrm{M} 1}\right\} \&\left\{\mathrm{e}_{\mathrm{t}}^{\mathrm{M} 2}\right\}\) are perfectly correlated, the numerator and denominator of the DM test are both converging to 0 as \(T \rightarrow \infty\).
\(\Rightarrow\) Avoid DM test when this situation is suspected (say, two nested models.) Though, in small samples, it is OK.
```

- Code in R
dm.test <- function (e1, e2, h=1, power = 2) {
d<- c(abs(e1))^power - c(abs(e2))^
d.cov <- acf(d, na.action = na.omit, lag.max = h - 1, type = "covariance", plot = FALSE)\$acf[, ,
1]
d.var <- sum(c(d.cov[1], 2 * d.cov[-1]))/length(d)
dv<-d.var \#max(1e-8,d.var)
if(dv>0)
STATISTIC <- mean(d, na.rm = TRUE) / sqrt(dv)
else if(h==1)

```
```

 stop("Variance of DM statistic is zero")
 else
 {
 warning("Variance is negative, using horizon h=1")
 return(dm.test(e1,e2,alternative,h=1,power))
 }
n<- length(d)
k<-((n+1-2*h + (h/n)*(h-1))/n)^(1/2)
STATISTIC <- STATISTIC * k
names(STATISTIC) <- "DM"
}

```

Example: We compare the SES and HW forecasts for the \(\log\) of U.S. monthly vehicle sales. We use the dm.test function, part of the forecast package.
library(forecast)
```

> dm.test(f_error_c_ses,f_error_c_hw, power=2)
Diebold-Mariano Test

```
data: f_error_c_sesf_error_c_hw
\(D M=1.6756\), Forecast horizon \(=1\), Loss function power \(=2, p\)-value \(=0.1068\)
alternative hypothesis: two.sided
> dm.test(f_error_c_ses,f_error_c_hw, power=1)
Diebold-Mariano Test
data: f_error_c_sesf_error_c_hw
\(\mathrm{DM}=1.94\), Forecast horizon \(=1\), Loss function power \(=1, \mathrm{p}\)-value \(=0.064\)
alternative hypothesis: two.sided
Note: Cannot reject \(\mathrm{H}_{0}:\) MSEsES \(=\) MSEHw at \(5 \%\) level. \(\mathbb{q}\)

\section*{Evaluation of forecasts - DM Test: Remarks}

The DM tests is routinely used. Its "model-free" approach has appeal. There are modeldependent tests, with more complicated asymptotic distributions.

The loss function does not need to be symmetric (like MSE).
The DM test is based on the notion of unconditional -i.e., on average over the whole sampleexpected loss.

Following Morgan, Granger and Newbold (1977), the DM statistic can be calculated by regression of dt , on an intercept, using NW SE. But, we can also condition on variables that may explain \(\mathrm{d}_{\mathrm{t}}\). We move from an unconditional to a conditional expected loss perspective.

\section*{Combination of Forecasts}

Idea - from Bates \& Granger (Operations Research Quarterly, 1969):
- We have different forecasts from R models:
\[
\hat{Y}_{T}^{M 1}(\ell), \hat{Y}_{T}^{M 2}(\ell), \ldots . \hat{Y}_{T}^{M R}(\ell)
\]

Question: Why not combine them?
\[
\hat{Y}_{T}^{\text {Comb }}(\ell)=\omega_{M 1} \hat{Y}_{T}^{M 1}(\ell)+\omega_{M 2} \hat{Y}_{T}^{M 2}(\ell)+\ldots .+\omega_{M R} \hat{Y}_{T}^{M R}(\ell)
\]

Very common practice in economics, finance and politics, reported by the press as "consensus forecast." Usually, as a simple average.

Question: Advantage? Lower forecast variance. Diversification argument.
Intuition: Individual forecasts are each based on partial information sets (say, private information) or models.

The variance of the forecasts is:
\(\operatorname{Var}\left[\hat{Y}_{T}^{C o m b}(\ell)\right]=\sum_{j=1}^{R}\left(\omega_{M j}\right)^{2} \operatorname{Var}\left[\hat{Y}_{T}^{M j}(\ell)\right]+2 \sum_{j=1}^{R} \sum_{i=j+1}^{R} \omega_{M j} \omega_{M i} \operatorname{Covar}\left[\hat{Y}_{T}^{M j}(\ell) \hat{Y}_{T}^{M i}(\ell)\right]\)
Note: Ideally, we would like to have negatively correlated forecasts.
Assuming unbiased forecasts and uncorrelated errors,
\[
\operatorname{Var}\left[\hat{Y}_{T}^{C o m b}(\ell)\right]=\sum_{j=1}^{R}\left(\omega_{M j}\right)^{2} \sigma_{j}^{2}
\]

Example: Simple average: \(\omega_{\mathrm{j}}=1 / \mathrm{R}\). Then,
\[
\operatorname{Var}\left[\hat{Y}_{T}^{\operatorname{Comb}}(\ell)\right]=1 / R^{2} \sum_{j=1}^{R} \sigma_{j}^{2} \cdot \boldsymbol{\|}
\]

Example: We combine the SES and HW forecast of log US vehicles sales:
f_comb <- (ses_f_c + car_f_hw)/2
f_error_comb <- f_comb-y[T1:T]
\(>\operatorname{var}(\) f_comb)
[1] 0.0178981
> var(car_f_hw)
[1] 0.02042458
\(>\operatorname{var}\left(\operatorname{ses} \_f\right.\) _c)
[1] \(0.018 \overline{2} 3237\). ब

\section*{Combination of Forecasts - Optimal \& Regression Weights}

We can derived optimal weights \(-\mathrm{i}, \mathrm{e} ., \omega_{j}\) 's that minimize the variance of the forecast. Under the uncorrelated assumption:
\[
\omega_{M j} *=\sigma_{j}^{-2} / \sum_{j=1}^{R} \sigma_{j}^{-2}
\]

The \(\omega_{j}{ }^{*}\) 's are inversely proportional to their variances.

In general, forecasts are biased and correlated. The correlations will appear in the above formula for the optimal weights. For the two forecasts case:
\[
\omega_{M j} *=\left(\sigma_{1}^{2}-\sigma_{12}\right) /\left(\sigma_{1}^{2}+\sigma_{2}^{2}-2 \sigma_{12}\right)=\left(\sigma_{1}^{2}-\rho \sigma_{1} \sigma_{2}\right) /\left(\sigma_{1}^{2}+\sigma_{2}^{2}-2 \rho \sigma_{1} \sigma_{2}\right)
\]

Ideally, we would like to have negatively correlated forecasts.
- Granger and Ramanathan (1984) used a regression method to combine forecasts.
- Regress the actual value on the forecasts. The estimated coefficients are the weights.
\[
y_{T+\ell}=\beta_{1} \hat{Y}_{T}^{M 1}(\ell)+\beta_{2} \hat{Y}_{T}^{M 2}(\ell)+\ldots .+\beta_{R} \hat{Y}_{T}^{M R}(\ell)+\varepsilon_{T+\ell}
\]

Should use a constrained regression
- Omit the constant
- Enforce non-negative coefficients.
- Constrain coefficients to sum to one

Example: We regress the SES and HW forecasts against the observed car sales to obtain optimal weights. We omit the constant
\(>\operatorname{lm}(y[T 1: T] \sim\) ses_f_c + car_f_hw -1\()\)
Call:
\(\operatorname{lm}(\) formula \(=y[T 1: T] \sim\) ses_f_c + car_f_hw -1\()\)
Coefficients:
ses_f_c car_f_hw
-0.5426 1.5472

Note: Coefficients (weights) add up to 1 . But, we see negative weights. In general, we use a constrained regression, forcing parameters to be between 0 and 1 (\& non-negative). But, \(\mathrm{h}=25\) delivers not a lot of observations to do non-linear estimation. \(\mathbb{\|}\)
- Remarks:
- To get weights, we do not include a constant. Here, we are assuming unbiased forecasts. If the forecasts are biased, we include a constant.
- To account for potential correlation of errors, we can allow for ARMA residuals or include \(y_{T+1-}\) 1 in the regression.
- Time varying weights are also possible.

Question: Should weights matter? Two views:
- Simple averages outperform more complicated combination techniques.
- Sampling variability may affect weight estimates to the extent that the combination has a larger MSE.

\section*{Combination of Forecasts: Final Remarks}
- Since Bates and Granger (1969) and Granger and Ramanathan (1984), combination weights have generally been chosen to minimize a symmetric, squared-error loss function.
- But, asymmetric loss functions can also be used. Elliot and Timmermann (2004) allow for general loss functions (and distributions). They find that the optimal weights depend on higher order moments, such a skewness.
- It is also possible to forecast quantiles and combine them. We will not explore these issues in more detail in this class.

\section*{Lecture 10 - Efficient Markets Hypothesis \& Predictability}

\section*{Efficient Markets Hypothesis (EMH)}

Questions: Can we predict stock returns? Can past information be used to build profitable trading rules in financial markets? In particular, can past return realizations tell us anything about expected future returns? Very old questions.
- The efficient markets hypothesis (EMH) is a first attempt to address the predictability issue.
- Earliest known version:
"When shares become publicly known in an open market, the value which they acquire there may be regarded as the judgement of the best intelligence concerning them."
- George Gibson, The Stock Exchanges of London, Paris and New York, G. P. Putnman \& Sons, New York, 1889.
- In 1900, Louis Bachelier, a French PhD student at the time, was the first to propose the "Random Walk Model" for security prices.
- Samuelson (1965)
"In an informationally efficient market, price changes must be unforecastable."
- Fama (1970)
"A market in which prices always fully reflect available information is 'efficient'."
If we have new information (a new earnings announcement) prices will adjust immediately (or very fast). Prices (significantly) jump with relevant information. But, they have to jump a proper amount, not too much (over-reaction) or not too little (under-reaction)!
- Grossman and Stiglitz (1980)
"There must be sufficient profit opportunities, i.e. inefficiencies, to compensate investors for the cost of trading and information-gathering. "

The, under a frictionless world, it is impossible to have efficient prices (\& EM). Only when all information gathering \& trading costs are zero we can expect prices to fully reflect all available information.

But, if prices reflect fully and instantly all available information, who is going to gather information?
- Malkiel (1992)
"The market is said to be efficient with respect to some information set... implies that it is impossible to make economic profits by trading on the basis of [the information in that set]."

The first sentence of Malkiel's definition expands Fama's definition and suggests a test for efficiency useful in a laboratory.

The second sentence suggests a way to judge efficiency that can be used in empirical work. This is what is usually done in the finance literature.

Example: If Fund managers outperform the market consistently, then prices are not efficient with respect to their information set.

Many examples of "inefficiencies" with respect to some information sets.
The behavioral finance field has found that investors often show predictable and financially ruinous behavior (irrational?). Different causes: overreaction, overconfidence, loss aversion, herding, psychological accounting, miscalibration of probabilities, regret, etc.

Examples: Momentum strategies (buying past winners and selling past losers, under-reaction?) and Contrarian strategies (buying past losers and selling past winners, over-reaction?) achieve abnormal returns.
- Lo (2004)
"... much of what behavioralists cite as counterexamples to economic rationality [...] are, in fact, consistent with an evolutionary model of individuals adapting to a changing environment." There is a time dimension. It takes time to adapt to new circumstances.

\section*{EMH: Versions}

Efficiency can only be defined with reference to a specific type of information. Fama (1970) defined three classes of information sets:
(a) Historical sequence of prices. This set gives Weak form EMH.
(b) Public records of companies and public forecasts regarding the future performance
and possible actions. Sets (a) \& (b) create the Semi-strong form EMH.
(c) Private or inside information. Sets (a), (b) \& (c) deliver the Strong form EMH.
- Violations:
- Technical traders devising profitable strategies (weak EMH)
- Reading a newspaper and devising a profitable trading strategy (semi-strong EMH)
- Corporate insiders making profitable trades (strong EMH).

Question: Can markets really be strong-form efficient? Very unlikely, plenty of examples of successful trading with private information: Jeffrey Skilling (Enron), Ivan Boesky \& Michael Milken (junk bonds), Eugene Plotkin and David Pajcin (from Goldman Sachs, trading on M\&A inside information), James McDermott Jr (Keefe, Bruytee \& Woods, passed M\&A tips to his mistress), Raj Rajaratnam (Galleon Group), Scott London (KPMG, passed tips from clients to a friend).
- Perfectly rational factors may account for violations of EMH:
- Microstructure issues and trading costs.
- Rewarding investors for bearing certain dynamic risks.
- Time-varying expected returns due to changing conditions can generate predictability.

\section*{EMH: Joint Tests}

We are talking about economic profits, adjusting for risk and costs. Thus, a model for risk adjustment is needed. Results will be conditional on the underlying asset pricing model.

Fama (1991) remarks that tests of efficiency are joint tests of efficiency and some asset pricing model, or benchmark.

Example: Many benchmarks assume constant "normal" returns. This is easier to implement, but may not be correct. Thus, rejections of efficiency could be due to rejections of the benchmark.

Most tests suggest that if the security return (beyond the mean) cannot be forecasted, then market efficiency is not rejected.

Example: A wrong asset pricing model may reject efficiency. It would be easy to find (demeaned) returns to be forecastable if we use the wrong mean.

\section*{EMH: Expectations and Information Set}

The conditional expectation of the stochastic process \(\mathrm{X}_{\mathrm{t}+1}\), conditioned on information set \(\mathrm{I}_{\mathrm{t}}\), can be written as:
\[
\mathrm{E}\left[\mathrm{X}_{\mathrm{t}+1} \mid \mathrm{I}_{\mathrm{t}}\right]=\mathrm{E}_{\mathrm{t}}\left[\mathrm{X}_{\mathrm{t}+1}\right]
\]

Information set, It: It describes what we know at time \(t\). The usual assumption is that we do not forget anything. Over time, the information set increases: \(\mathrm{I}_{\mathrm{t}}\) is contained in \(\mathrm{I}_{t+1} ; \mathrm{I}_{\mathrm{t}+1}\) is contained in \(\mathrm{I}_{\mathrm{t}+2}\), etc. That is, we have a sequence \(\mathrm{I}_{0} \subseteq \mathrm{I}_{1} \subseteq \mathrm{I}_{2} \ldots \subseteq \mathrm{I}_{\mathrm{t}}\). In stochastic processes this sequence is called a "filtration," with notation \(\{\mathscr{F}\}\}\).

Technical note: We say a stochastic process \(\left\{\mathrm{X}_{\mathrm{t}}\right\}\) is adapted to a filtration \(\left\{\mathscr{\mathscr { T }}_{\}}\right\}\)if \(\mathrm{X}_{\mathrm{t}}\) is measurable \(\mathscr{F}_{\mathrm{t}}\) for all t .

Measurable? The event of interest is in \(\mathscr{\mathcal { F } _ { \text { t } }}\).

\section*{EMH: Random Prices}

Efficient market: A market where prices are random with respect to an information set ("filtration"), It.

Let the price of a security at time \(t\) be given by the expectation of some "fundamental value," \(\mathrm{V}^{*}\), conditional on \(\mathrm{I}_{\mathrm{t}}\) :
\[
\mathrm{P}_{\mathrm{t}}=\mathrm{E}\left[\mathrm{~V}^{*} \mid \mathrm{I}_{\mathrm{t}}\right]=\mathrm{E}_{\mathrm{t}}\left[\mathrm{~V}^{*}\right]
\]

The same equation holds one period ahead so that:
\[
\mathrm{P}_{\mathrm{t}+1}=\mathrm{E}\left[\mathrm{~V}^{*} \mid \mathrm{I}_{\mathrm{t}+1}\right]=\mathrm{E}_{\mathrm{t}+1}\left[\mathrm{~V}^{*}\right]
\]

The expectation of the price change over the next period is:
\[
\mathrm{E}_{\mathrm{t}}\left[\mathrm{P}_{\mathrm{t}+1}-\mathrm{P}_{\mathrm{t}}\right]=\mathrm{E}_{\mathrm{t}}\left[\mathrm{E}_{\mathrm{t}+1}\left[\mathrm{~V}^{*}\right]-\mathrm{E}_{\mathrm{t}}\left[\mathrm{~V}^{*}\right]\right]=0
\]
since \(\mathrm{I}_{\mathrm{t}}\) is contained in \(\mathrm{I}_{\mathrm{t}+1} \Rightarrow \mathrm{E}_{\mathrm{t}}\left[\mathrm{E}_{\mathrm{t}+1}\left[\mathrm{~V}^{*}\right]\right]=\mathrm{E}_{\mathrm{t}}\left[\mathrm{V}^{*}\right]\) (by the law of IE).
Remark: Under efficiency, financial asset prices are unpredictable.

\section*{EMH: Martingale \& Fair Games}

Martingale: A stochastic process \(\mathrm{P}_{\mathrm{t}}\) is a martingale if:
\[
\mathrm{E}\left[\mathrm{P}_{\mathrm{t}+1} \mid \Omega_{\mathrm{t}}\right]=\mathrm{P}_{\mathrm{t}} \quad\left(\text { or } \mathrm{E}_{\mathrm{t}}\left[\mathrm{P}_{\mathrm{t}+1}\right]=\mathrm{P}_{\mathrm{t}}\right)
\]
where the information set is \(\Omega_{\mathrm{t}}\) (what we know at time t , includes \(\mathrm{P}_{\mathrm{t}}\) ).
Submartingale: \(\quad\) If \(E\left[\mathrm{P}_{\mathrm{t}+1} \mid \Omega_{\mathrm{t}}\right] \geq \mathrm{P}_{\mathrm{t}} . \quad-\mathrm{P}_{\mathrm{t}}\) is a lower bound for \(\mathrm{E}_{\mathrm{t}}\left[\mathrm{P}_{\mathrm{t}+1}\right]\)
Supermartingale: \(\quad\) If \(E\left[\mathrm{P}_{\mathrm{t}+1} \mid \Omega_{\mathrm{t}}\right] \leq \mathrm{P}_{\mathrm{t}} \quad-\mathrm{P}_{\mathrm{t}}\) is an upper bound for \(\mathrm{E}_{\mathrm{t}}\left[\mathrm{P}_{\mathrm{t}+1}\right]\)
Fair game model: A stochastic process \(r_{t}\) is a fair game if:
\[
\mathrm{E}\left[r_{t+1} \mid \Omega_{\mathrm{t}}\right]=0
\]
\(\Rightarrow\) if \(\mathrm{P}_{\mathrm{t}}\) is a martingale or pure random walk, \(\left(\mathrm{P}_{\mathrm{t}+1}-\mathrm{P}_{\mathrm{t}}\right)\) is a fair game.
Note: Only referring to expected values!

The Martingale process can be setup as a special case of an \(\operatorname{AR}(1)\) process:
\[
p_{t}=\mu+\phi p_{t-1}+\varepsilon_{t}
\]
with \(\phi=1, \mu=0, \& \mathrm{E}_{\mathrm{t}}\left[\varepsilon_{t+1}\right]=0\). A non-stationary process.
Technical detail: Martingale condition is neither a necessary nor a sufficient condition for rational expectations models of asset prices (LeRoy (1973), Lucas (1978)).

According to Lucas (1978), in markets where all investors have rational expectations, prices do fully reflect all available information and marginal-utility weighted prices follow martingales.

But, we consider the martingale as an important starting point.

\section*{EMH: The Random Walk Hypothesis (RWH)}

\section*{Definition: Random Walk (RW)}

A stochastic process \(p_{t}\) is a RW if:
\[
\begin{gathered}
p_{t}=\mu+p_{t-1}+\varepsilon_{t} \quad \text {-where } p_{t}=\ln \left(\mathrm{P}_{\mathrm{t}}\right) \\
\quad \Rightarrow r_{t}=\mu+\varepsilon_{t}=\Delta p_{t}
\end{gathered}
\]

Assumptions about \(\varepsilon_{t}\) : Uncorrelated with past information, with constant mean \((=0) \&\) variance \(\left(\sigma^{2}\right)\). That is,
\[
\varepsilon_{\mathrm{t}} \sim \mathrm{D}\left(0, \sigma^{2}\right),
\]
with \(\mathrm{E}_{\mathrm{t}}\left[\varepsilon_{t+1}\right]=0, \mathrm{E}_{\mathrm{t}}\left[\varepsilon^{2}{ }_{\mathrm{t}+1}\right]=\sigma^{2}\)
If \(\mu \neq 0\), the process is called a RW with a drift.

A RW with no drift is a martingale with structure for the error term, \(\varepsilon_{t}\), uncorrelated, zero mean and constant variance.
- We start testing the EMH by assuming log returns, \(r_{t}\), follow a RW with a drift. We called this "Random Walk Model":
\[
\Rightarrow r_{t}=\Delta p_{t}=\mu+\varepsilon_{t}=\Delta p_{t}
\]
where \(\varepsilon_{t} \sim \mathrm{D}\left(0, \sigma^{2}\right)\).
- Different specifications for \(\varepsilon_{\mathrm{t}}\) produce different testable hypothesis for the EMH-RW Model:
- RW1: \(\varepsilon_{t}\) is independent and identically distributed (i.i.d.) \(\sim \mathrm{D}\left(0, \sigma^{2}\right)\). Not realistic. (Old tests: Cowles and Jones (1937)).
- RW2: \(\varepsilon_{t}\) is independent (allows for heteroskedasticity). Test using filter rules, technical analysis. (Alexander (1961, 1964), Fama (1965)).
- RW3: \(\varepsilon_{t}\) is uncorrelated (allows for dependence in higher moments). Test using autocorrelations, variance ratios, long horizon regressions.

\section*{The RWH: Autocorrelations \& ACF}

Assume \(r_{t}\) is covariance stationary and ergodic. Then
\[
\gamma_{k}=\operatorname{cov}\left(r_{t}, r_{t-k}\right) \quad-\text { Auto-covariance between times } t \& t-k \quad \rho_{k}=\gamma_{k} / \gamma_{0}
\]
\(-\operatorname{Var}\left[r_{t}\right]=\gamma_{0}\)
are not time dependent. We estimate both statistics with \(\hat{\gamma}_{k}\) and \(\hat{\rho}_{k}\).
- Under RW1 Hypothesis (and some assumptions)
\[
\begin{array}{ll} 
& \sqrt{T} \hat{\rho}_{k} \xrightarrow{a} \mathrm{~N}(0,1) \\
\Rightarrow \quad & \mathrm{SE}\left[\hat{\rho}_{k}\right]=1 / \sqrt{T}
\end{array}
\]

Technical Note: The sample correlation coefficients, \(\hat{\rho}_{k}\), are negatively biased in finite samples. See Fuller (1976).
- To check autocorrelations up to order \(k\), we use the ACF for \(r_{t}\). Confidence Intervals can be easily approximated by \(\pm 2 / \sqrt{T}\).

Example: ACF with \(k=\mathbf{2 4}\) lags for the monthly Equal- and Value-weighted (EW \& VW, respectively) CRSP index returns from 1926:Jan - 2022:March ( \(T=1,155\) ):
EMH_da <- read.csv("http://www.bauer.uh.edu/rsusmel/4397/crsp_ew_vw_m.csv", head=TRUE,sep=",")
\(1 r_{-} v w<-\) EMH_da\$vwretd \# Value weighted CRSP returns (including distributions) lr_ew <- EMH_da\$ewretd \# Equal weighted CRSP returns (including distributions)
\(\mathrm{T}<\) - length( \(\mathrm{lr}_{-} \mathrm{vw}\) )
SE_rho <- 1/sqrt(T) \# Asymptotic SE for rho's: \(\mid\) rho \(\mid>2 * \mathrm{SE}=>\) significant
\(>\) SE_rho
```


Monthly Value-Weighted

acf_y <- acf(lr_vw)
> acf_y
Autocorrelations of series 'lr_vw', by lag
0
1.000-0.011 0.044-0.183 0.140-0.001 0.002 -0.010 0.121 -0.024-0.003-0.045-0.002
13}141
0.045 0.009-0.004 0.007 0.010 0.015-0.010-0.004-0.005 0.051-0.009-0.015

```


Conclusion for Monthly VW returns: There are a few significant autocorrelations ( \(3^{\text {rd }}, 4^{\text {th }}\), and \(\left.8^{\text {th }}\right)\), all smaller than 0.2 in absolute value.
\#\# Monthly Equal-Weighted
acf_y <- acf(lr_ew)
\(>\) acf_y
Autocorrelations of series 'lr_vw', by lag
    \(\begin{array}{lllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}\)
\(1.000 \quad 0.101-0.023-0.094 \quad 0.0140 .056-0.038\) 0.018 0.0410 .056
    \(\begin{array}{llllllllllll}13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24\end{array}\)
1.000 0.101-0.023-0.094 \(0.0140 .056-0.038\) 0.018 0.0410 .056 0.014-0.020-0.001


Conclusion for Monthly EW returns: Again, a few significant autocorrelations, but, small in size. -

Example: ACF with \(k=\mathbf{2 4}\) lags for the daily Equal- and Value-weighted (EW \& VW, respectively) CRSP index returns from 1926:Jan 1 - 2022:March 30 ( \(T=23,359\) ):

EMH_d_da <- read.csv("http://www.bauer.uh.edu/rsusmel/4397/crsp_ew_vw_d.csv", head=TRUE,sep=",")
lr_vw_d <- EMH_d_da\$vwretd \# VW CRSP returns (including distributions) lr_ew_d<-EMH_d_da\$ewretd \# EW CRSP returns (including distributions) T <- length(lr_ew_d)
SE_rho <- 1/sqrt(T) \# Asymptotic SE for rho's: \(\mid\) rho \(\mid>2\) * SE => significant > SE_rho
[1] \(0.006279628 \quad \#|r h o|>2 * S E=>\) significant



Conclusion for daily VW returns: There are many significant autocorrelations, with the exception of the first one, all very small.
\#\# Daily Equal-Weighted
acf_y <- acf(lr_ew_d)
\(>\) acf_y
Autocorrelations of series ' 1 r_ew_d', by lag
\(\begin{array}{lllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}\)
```

1.000}00.198 0.016 0.046 0.061 0.049 0.000 0.018 0.023 0.042 0.034 0.033 0.040
13
0.015}00.0140.004 0.021 0.007 0.008 0.033 0.025 0.003 0.009 0.023 0.007

```

Conclusion for daily EW rturns: Lots of significant autocorrelations, but, in general, small. ब

\section*{The RWH: Autocorrelations Joint Tests}

We already know two tests to check for zero autocorrelation in a time series: Box-Pierce Q and Ljung-Box tests. We usually rely on the Ljung-Box (1978), LB, test, since it has better small sample properties.
-The Q \& LB statistics test a joint hypothesis that the first \(p\) autocorrelations are zero: \(\mathrm{H}_{0}: r_{1}=\ldots\) \(=r_{p}=0\)

Under RW1 and using the asymptotic distribution of \(\hat{\rho}_{k}\) :
\[
\begin{aligned}
& \mathrm{Q}=T \sum_{k=1}^{p} \hat{r}_{k}^{2} \xrightarrow{d} \chi_{p}^{2} . \\
& \mathrm{LB}=T *(T-2) * \sum_{k=1}^{p} \frac{\hat{r}_{k}^{2}}{T-k} \xrightarrow{d} \chi_{p}^{2} .
\end{aligned}
\]
- \(\mathrm{Q} \& \mathrm{LB}\) tests are widely use, but they have two main limitations:
(1) The test was developed under the independence (RW1) assumption.

If \(y_{t}\) shows dependence, such as heteroscedasticity, the asymptotic variance of \(\sqrt{T} \hat{\boldsymbol{\rho}}\) is no longer \(\mathbf{I}\), but a non-diagonal matrix.

There are several proposals to "robustify" both Q \& LB tests, see Diebold (1986), Robinson (1991), Lobato et al. (2001). The "robustified" Portmanteau statistic uses \(\tilde{\rho}_{k}\) instead of \(\rho_{k}\) :
\[
\tilde{\rho}_{k}=\frac{\widehat{\gamma}_{k}}{\tau_{k}}=\frac{\sum_{t=k+1}^{T}\left(y_{t}-\bar{y}\right)\left(y_{t-k}-\bar{y}\right)}{\sum_{t=k+1}^{T}\left(y_{t}-\bar{y}\right)^{2}\left(y_{t-k}-\bar{y}\right)^{2}}
\]

Thus, for Q we have:
\[
\mathrm{Q}^{*}=T \sum_{k=1}^{p} \tilde{\rho}_{k}^{2} \xrightarrow{d} \chi_{p}^{2} .
\]
(2) The selection of the number of autocorrelations \(p\) is arbitrary.

The traditional approach is to try different \(p\) values, say \(3,6 \& 12\). Another popular approach is to let the data "select" \(p\), for example, using AIC or BIC, an approach sometimes referred as "automatic selection."

Escanciano and Lobato (2009) propose combining BIC's and AIC's penalties to select \(p\) in \(\mathrm{Q}^{*}\) (BIC for small \(r\) and AIC for bigger \(r\) ).

Note: It is common to reach different conclusion from Q and \(\mathrm{Q}^{*}\).

Example: Q and LB tests with \(\boldsymbol{p}=\mathbf{3} \& \mathbf{1 2}\) lags for the monthly EW \& VW CRSP index returns from 1926:Jan - 2022:March ( \(T=1155\) ):
- Q test for monthly VW
> Box.test(lr_vw, lag = 4, type="Box-Pierce")
Box-Pierce test
data: \(l_{r}\) vw
X -squared \(=\) 22.812, \(\mathrm{df}=4, \mathrm{p}\)-value \(=0.000138\)
> Box.test(lr_vw, lag = 12, type="Box-Pierce")
Box-Pierce test
data: \(1 r\) _vw
\(X\)-squared \(=\mathbf{3 4 . 6 9 6}, \mathrm{df}=12, \mathrm{p}\)-value \(=0.0005234\)
- LB tests for monthly VW
> Box.test(lr_vw, lag = 4, type="Ljung-Box")
Box-Ljung test
data: \(1 r_{-}\)vw
X -squared \(=\mathbf{2 2 . 8 9 1}, \mathrm{df}=4, \mathrm{p}\)-value \(=0.0001332\)
> Box.test(lr_vw, lag = 12, type="Ljung-Box")
Box-Ljung test
data: \(1 r_{-} v w\)
X -squared \(=34.87, \mathrm{df}=12, \mathrm{p}\)-value \(=0.0004912\)
Q* tests with automatic lag selection. In R, the package vrtest has the Auto. Q function that computes this test. As always, you need to install vrtest first.
- Q* test for monthly VW
> Auto.Q(lr_vw, 12)
\$Stat
[1] 3.059582
\$Pvalue
[1] 0.08026232
Conclusion for monthly VW returns: Once we take into consideration potential heteroscedasticity in \(y_{t}\), there is weak evidence for autocorrelation in monthly Value-weighted CRSP index returns.
- Q test for monthly EW
> Box.test(lr_ew, lag = 4, type="Box-Pierce")
Box-Pierce test
data: \(l_{r}\) ew

X -squared \(=61.607, \mathrm{df}=4, \mathrm{p}\)-value \(=1.333 \mathrm{e}-12\)
> Box.test(lr_ew, lag = 12, type="Box-Pierce")
X -squared \(=\mathbf{8 3 . 3 2 8}, \mathrm{df}=12, \mathrm{p}\)-value \(=9.531 \mathrm{e}-13\)
- LB tests for monthly EW
> Box.test(lr_ew, lag = 4, type="Ljung-Box")
X -squared \(=61.793, \mathrm{df}=4, \mathrm{p}\)-value \(=.218 \mathrm{e}-12\)
> Box.test(lr_ew, lag = 12, type="Ljung-Box")
X -squared \(=83.719, \mathrm{df}=12, \mathrm{p}\)-value \(=8.02 \mathrm{e}-13\)

\section*{- Q* test for monthly EW}
library(vrtest)
> Auto.Q(lr_ew, 12)
\$Stat
[1] 6.487553
\$Pvalue
[1] 0.01086324

Conclusion for monthly EW returns: Strong evidence for autocorrelation in monthly EW CRSP returns (the evidence was weaker, once we take into consideration potential heteroscedasticity in \(y_{t}\), for monthly VW CRSP returns). That is, we reject the RW hypothesis for monthly EW CRSP returns. \(\|\)

Example: Q and LB tests with \(\boldsymbol{p}=\mathbf{5} \& \mathbf{2 0}\) lags for the daily Equal- and Value-weighted (EW \& VW, respectively) CRSP index returns from 1926: Jan 1 - 2022 :March 30 ( \(T=25,359\) ):

EMH_d_da <- read.csv("http://www.bauer.uh.edu/rsusmel/4397/crsp_ew_vw_d.csv", head=TRUE,sep=",")
lr_vw_d <- EMH_d_da\$vwretd \# Value weighted CRSP returns (with distributions) lr_ew_d <- EMH_d_da\$ewretd \# Equal weighted CRSP returns (with distributions) T <- length(lr_ew_d)
- Q tests for daily VW
> Box.test(lr_vw_d, lag = 5, type="Box-Pierce")
data: \(\mathrm{lr}_{-} v \mathrm{w}_{-} \mathrm{d}\)
X -squared \(=100.64, \mathrm{df}=5, \mathrm{p}\)-value \(=2.2 \mathrm{e}-16\)
> Box.test(lr_vw_d, lag = 20, type="Box-Pierce")
data: \(1 r_{-}\)vw_d

X -squared \(=184.68, \mathrm{df}=20, \mathrm{p}\)-value \(<2.2 \mathrm{e}-16\)
- Q* test for daily VW (continuation)
\(>\) Auto.Q(y, 20) \# Q* test automatic selection of p
\$Stat
[1] 11.73454
\$Pvalue
[1] 0.0006135076
- Q tests for daily EW
> Box.test(lr_ew_d, lag = 5, type="Box-Pierce")
data: \(1 r\) _ew_d
X-squared \(=1213.3, \mathrm{df}=5, \mathrm{p}\)-value \(=2.2 \mathrm{e}-16\)
> Box.test(lr_ew_d, lag = 20, type="Ljung-Box")
data: \(1 r\) _ew_d
X -squared \(=1445.4, \mathrm{df}=20, \mathrm{p}\)-value \(=2.2 \mathrm{e}-16\)
- Q* test for daily EW (continuation)
\(>\) Auto. \(\mathrm{Q}(\mathrm{y}, 40) \quad \# \mathrm{Q}^{*}\) test automatic selection of p
\$Stat
[1] 235.7106
\$Pvalue
[1] 0

Conclusion: Strong evidence for autocorrelation in daily VW \& EW CRSP returns. That is, we reject the uncorrelated returns hypothesis as implied by the RW hypothesis for daily VW \& EW CRSP returns. \(\boldsymbol{\top}\)

\section*{The RWH: Variance Ratio (VR) Test}

Intuition: For all 3 RW hypotheses, the variance of RW increments is linear in the time interval. If the interval is twice as long, the variance must be twice as big. That is, the variance of monthly data should be 4 times bigger than the variance of weekly data. (Recall the log approximation rules for i.i.d. returns.)

If \(r_{t}\) is a covariance stationary process (constant first two moment, and covariance independent of time), then for the variance ratio of 2-period versus 1-period returns, VR(2):
\[
\begin{aligned}
\operatorname{VR}(2) & =\frac{\operatorname{Var}\left[r_{t}(2)\right]}{2^{*} \operatorname{Var}\left[r_{t}\right]}=\frac{\operatorname{Var}\left[r_{t}+r_{t+1}\right]}{2^{*} \operatorname{Var}\left[r_{t}\right]}= \\
& =\frac{\operatorname{Var}\left[r_{t}\right]+\operatorname{Var}\left[r_{t+1}\right]+2 \operatorname{Cov}\left[r_{t}, r_{t+1}\right]}{2^{*} \operatorname{Var}\left[r_{t}\right]}=\frac{2 \sigma^{2}+2 \gamma_{1}}{2 \sigma^{2}}=1+\rho_{1}
\end{aligned}
\]
where \(r_{t}(2)=r_{t}+r_{t+1}\)
- Three cases:
\[
\begin{aligned}
& \rho_{1}=0 \Rightarrow \mathrm{VR}(2)=1 \text { (True under } \mathbf{R W 1}, \text { random walk) } \\
& \rho_{1}>0 \Rightarrow \mathrm{VR}(2)>1 \text { (mean aversion) } \\
& \rho_{1}<0 \Rightarrow \mathrm{VR}(2)<1 \text { (mean reversion) }
\end{aligned}
\]

The intuition generalizes to longer horizons:
\[
\operatorname{VR}(q)=\frac{\operatorname{Var}\left[r_{t}(q)\right]}{q^{*} \operatorname{Var}\left[r_{t}\right]}=1+2 * \sum_{k=1}^{q-1}\left(1-\frac{k}{q}\right) \rho_{k}
\]

The \(\operatorname{VR}(q)\) is a particular linear combination of the \(1^{\text {st }}(q-1)\) autocorrelation coefficients (with linearly declining weights).
- Under RW1, we have \(\quad \mathrm{H}_{0}: \operatorname{VR}(q)=1\).
\[
\mathrm{H}_{1}: \operatorname{VR}(q) \neq 1
\]

Technical Note: Under RW2 and RW3, VR \((q)=1\) provided
\[
1 / T \Sigma_{\mathrm{t}} \operatorname{Var}\left[r_{t}\right] \rightarrow \bar{\sigma}^{2}>0
\]
we need this assumption, since some "fat-tailed" distributions do not have a well-defined second moment.
- To do any testing we need the sampling distribution of the VRs (estimated variance ratios) under \(\mathrm{H}_{0}: \operatorname{VR}(q)=1\). We use the statistic:
\[
\frac{\sqrt{T q}}{\sqrt{2 *(q-1)}}(\widehat{\mathrm{VR}}(q)-1) \xrightarrow{a} \mathrm{~N}(\mathbf{0}, 1)
\]

This is Cochrane's (1988) VR test. The test rejects \(\mathrm{H}_{0}-\) i.e., the RWH - if the above statistic is greater in absolute value than \(\mathbf{1 . 9 6}\).

For the special case of \(q=2\), we use
\[
\sqrt{T}(\widehat{\mathrm{VR}}(2)-1) \xrightarrow{a} \mathrm{~N}(\mathbf{0}, 1)
\]
- \(\operatorname{Var}\left[r_{t}(q)\right]\) is computed using the MLE formulation, that is, dividing by \(T\), not by \((T-1)\) (or \(T\) minus degrees of freedom).

Example: We have monthly data from Jan 1973. Then, we compute
\[
\begin{aligned}
& \operatorname{Var}\left[r_{t}\right]=\frac{\sum_{t=1}^{T}\left(r_{t}-\overline{\boldsymbol{r}}\right)^{2}}{T} \\
& \operatorname{Var}\left[r_{t}(2)\right]=\frac{\sum_{t=1}^{T}\left(r_{t}(2)-2 * \overline{\boldsymbol{r}}\right)^{2}}{T}
\end{aligned}
\]

Note: Since the tests are asymptotic tests, in this case, relying on the Normal distribution, dividing by \(T\) or by ( \(T-k\) ) does not make any difference. ब
- \(\operatorname{Var}\left[r_{t}(q)\right]\) is computed using non-overlapping returns.

Example: We compute non-overlapping bi-monthly returns, using monthly data from Jan 1973.
(1) monthly returns: \(r_{t}\) is computed as usual. For the first return:
\[
r_{t=\operatorname{Jan} 73}=\ln \left(P_{t=\operatorname{Jan} 31,73}\right)-\ln \left(P_{t=\operatorname{Jan} 1,73}\right)
\]
(2) bi-monthly returns. The first three \(r_{t}(2)\) are computed as:
\[
\begin{aligned}
& r_{t=\text { Feb } 73}(2)=r_{t=\text { Feb } 73}+r_{t=\operatorname{Jan} 73} \\
& r_{t=\text { Apr } 73}(2)=\mathrm{r}_{t=\text { Apr } 73}+r_{t=\text { Mar } 73} \\
& r_{t=\text { June } 73}(2)=\mathrm{r}_{t=\text { June } 73}+r_{t=\text { May } 73}
\end{aligned}
\]

Note: We have "clean data," with no introduced serial correlation. But, we lose observations. If we have 1,000 monthly returns, using non-overlapping bi-monthly returns we end up with only 500 observations. \(\uparrow\)

Example: We check the RW Hypothesis, under RW3, for the monthly CRSP EW and VW Index returns. In R, the package vrtest has functions to compute the above mentioned VR tests.
- VR tests for monthly VW
library(vrtest)
\(\begin{array}{ll}\text { kvec<- c(2,3,12) } & \text { \#Vector with different q } \\ \text { y }<-\mathbf{l r}_{\mathbf{\prime}} \mathbf{v w} & \\ >\text { vr_1<- VR.minus.1(y, kvec) } & \text { \# Stat should be close to } 0 \text { if RW } \\ >\text { vr_1 } & \\ \text { \$VR.auto } & \text { \# VR with Automatic ("optimal) q selection } \\ {[1] 0.1954746} & \end{array}\)
\$Holding.Periods
[1] 2312
\$VR.kvec
[1] 0.10070110 .11873650 .1212423
\(>\operatorname{sqrt}(\mathrm{T} *\) kvec \() / \operatorname{sqrt}(2 *(\text { kvec-1 }))^{*} \mathrm{vr} \_1 \$ \mathrm{VR}\). kvec \(\quad\) \# VR test for each \(\mathrm{q}=\mathrm{kvec}[\mathrm{i}] \sim \mathrm{N}(0,1)\)
[1] 3.422358 3.4946663 .043158
```

- VR tests for monthly EW
> y <- lr_ew
>vr_1<-VR.minus.1(y, kvec) \# Stat should be close to 0 if RW
> vr_1
\$VR.auto \# VR with Automatic ("optimal) q selection
[1] 0.1954746

```
\$Holding.Periods
[1] 2312
\$VR.kvec
[1] 0.20432360 .27893270 .2180176
\[
(\mathrm{VR}-1) \text { stat for each } \mathrm{q}=\mathrm{kvec}[\mathrm{i}]
\]
\(>\operatorname{sqrt}(\mathrm{T} * \mathrm{kvec}) / \operatorname{sqrt}(2 *(\text { kvec-1 }))^{*} \mathrm{vr} \_1 \$ V R . k v e c \quad\) \# VR test for each \(\mathrm{q}=\mathrm{kvec}[\mathrm{i}] \sim \mathrm{N}(0,1)\) [1] 6.9439988 .2095835 .472199

Conclusion: Using the VR test (with \(q=2,3,12\) ), we reject the RW Hypothesis \(\Rightarrow\) tests are greater in absolute value than 1.96 . \(\mid\)

\section*{The RWH: Variance Ratio (VR) Test - Issues}

Several issues has been raised regarding the VR's tests. The main issues are:
(1) Choice of \(q\). In the previous examples, we have arbitrarily selected \(q\). Similar to the situation with the Q and LB tests, there are suggestions to automatically (or "optimally," according to some loss function) select \(q\). Choi (1999) is one example of this approach, (the vrtest R package uses this approach in the Auto.VR test).
(2) Poor asymptotic approximation. In simulations, it is found that the asymptotic Normal distribution is a poor approximation to the small-sample distribution of the VR statistic. The usual solution is to use a bootstrap (Kim's (2009) bootstrap gives the p-value of the automatic VR test in the Auto.VR function).

Example: We use VR tests with automatic selection and a bootstrap to check the RW Hypothesis for the monthly CRSP EW and VW Index returns. Again, we use AutoBoot.test function in R package vrtest.
- Automatic VR tests for monthly VW
y <- lr_vw
\(>\) AutoBoot.test(y, nboot=1000, wild="Normal",
prob \(=c(0.025,0.975)\) )
\# Choi (1999)
\$test.stat
[1] 2.509324
\$VRsum
(1+ weighted sum of autocorrelation up to the optimal order)
[1] 1.195475
\$pval
[1] 0.064
\$CI.stat
2.5\% 97.5\%
-2.836631 2.612363
\$CI.VRsum
2.5\% 97.5\%
0.83237311 .1927214
- Automatic VR tests for monthly EW
\(\mathrm{y}<-\) lr_ew
> AutoBoot.test(y, nboot=1000, wild="Normal",
prob \(=c(0.025,0.975))\)
\# Choi (1999)
\$test.stat
(Automatic variance ratio test statistic as in Choi (1999))
[1] 4.173898
\$VRsum (1+ weighted sum of autocorrelation up to the optimal order)
[1] 1.382554
\$pval
[1] 0.021
\$CI.stat
2.5\% 97.5\%
-3.262026 3.359002
\$CI.VRsum
2.5\% 97.5\%
0.76877691 .2610106

Conclusion: Using the Automatic VR test and a bootstrap, we have strong evidence against the RW Hypothesis for EW, but weak for VW. \(\mathbb{I}\)

\section*{The RWH: VR Tests - LM's Modifications}

Lo \& MacKinlay (LM, 1988, 1989) propose modifications to the test:
- Allow for overlapping returns, and, thus, using more observations. But, overlapping returns will be autocorrelated, even if underlying process is not. We need to adjust for this feature.
- Use unbiased estimators of variances -i.e., divide by \((T-d f)\).
\[
M_{1}(q)=\frac{\sqrt{3 * T * q}}{\sqrt{2 *(2 q-1) *(q-1)}}(\overline{V R}(q)-1) \xrightarrow{a} \mathrm{~N}(\mathbf{0}, 1),
\]
where \(\overline{V R}(q)\) is the VR statistic computed using overlapping returns.
- Allow for possible heteroscedasticity of returns (more realistic)
\[
M_{2}(q)=\frac{(\overline{\overline{V R}}(q)-1)}{\sqrt{\phi(q)}} \xrightarrow{a} \mathrm{~N}(\mathbf{0}, 1),
\]
where
\[
\phi(q)=\sum_{j=1}^{q}\left[\frac{2(q-j)}{q}\right]^{2} *\left\{\frac{\sum_{t=j+1}^{T}\left(r_{t}-\overline{\boldsymbol{r}}\right)^{2}\left(r_{t-j}-\overline{\boldsymbol{r}}\right)^{2}}{\left[\sum_{t=1}^{T}\left(r_{t}-\overline{\boldsymbol{r}}\right)^{2}\right]^{2}}\right\} .
\]

Example: We check the RW Hypothesis, under RW3, for the monthly CRSP EW and VW Index returns using the LM's tests: M1 and M2. Again, we use the R package vrtest.
- Automatic VR tests for monthly VW
library(vrtest)
kvec \(<-\mathrm{c}(2,3,12) \quad\) \#Vector with different q
y <- lr_vw
\(>\) Lo.Mac(y, kvec) \# LM's tests M1 \& M2 ~ asymptotic N(0,1)
\$Stats
M1 M2
\(\mathrm{k}=2 \quad 3.4223581 .7485059\)
\(\mathrm{k}=3 \quad 2.7069571 .4241521\)
\(\mathrm{k}=121.0990600 .6373211\)
Conclusion: We reject \(\mathrm{H}_{0}\) (RW Model) using M1 for \(q=2\), 3 ; but, once we allow for heteroscedasticity (M2 tests), we cannot reject H 0 .
- Automatic VR tests for monthly EW
\(\mathrm{y}<-\mathrm{lr}_{\text {_ }}\) ew
\(>\) Lo.Mac(y, kvec) \# LM's tests M1 \& M2 ~ asymptotic N(0,1)
\$Stats
M1 M2
\(\mathrm{k}=2 \quad 6.943998 \mathbf{2 . 5 4 8 0 3 0 2}\)
\(\mathrm{k}=36.3591162 .5009114\)
\(\mathrm{k}=121.9763260 .9975538\)
Conclusion: Strong rejection of RW using M1, especially for \(q=2\), 3; but, using M2 test with \(q=\) 12 , we cannot reject the RW Hypothesis. Consistent with previous result, stronger evidence for EW returns than for VW returns. 9

\section*{The RWH: VR \& LM Tests - Issues}

Several issues has been raised regarding the LM's tests:
(1) Poor asymptotic approximation. The asymptotic standard normal distribution provides a poor approximation to the small-sample distribution of the VR statistic. LM's tests tend to be biased and right-skewed, in finite samples.
- Proposed solutions:
- Alternative asymptotic distributions, as in Richardson and Stock (1989) or Chen and Deo (2006).
- Bootstrapping, as in Kim (2006) or Malliaropulos and Priestley (1999).
(2) Joint tests. The LM's tests are individual tests, where \(\mathrm{H}_{0}\) is tested for a specific value of \(q\). But, under \(\mathrm{H}_{0}, \operatorname{VR}(q)=1\), for all \(q\). LM's tests ignore the joint nature of testing for the RW Hypothesis.
- Proposed solutions:
- RS statistic, a Wald Test, as proposed by Richardson and Smith (1993):
\[
\operatorname{RS}(q)=T(\mathbf{V R}-\mathbf{t})^{\prime} \Phi^{-1} T(\mathbf{V R}-\mathbf{t}) \xrightarrow{d} \chi_{q}^{2} .
\]
where \(\mathbf{V R}\) is the \((q \times 1)\) vector of \(q\) sample variance ratios, \(\mathbf{t}\) is the \((q \times 1)\) unit vector, and \(\Phi\) is the covariance matrix of VR.
- QP statistic, a Wald Test based on a "power transformed" VR statistic, as proposed by Chen and Deo (2006). QP asymptotically follows a \(\chi_{q}^{2}\) distribution. This test is a one-sided test \(\left(\mathrm{H}_{1}\right.\) :
\(\operatorname{VR}(q)<1\) for all \(q\).)
- CD statistic, a join test, as proposed by Chow and Denning (1993):
\[
\mathrm{CD}=\sqrt{T} \max _{1 \leq i \leq m}\left|M_{2}\left(q_{i}\right)\right|
\]
which follows a complex distribution, the studentized maximum modulus [SMM] distribution with \(m\) and \(T\) degrees of freedom ( \(m\) is the number of k values). This SMM distribution is tabulated in Hahn and Hendrickson (1971) and Stoline and Ury (1979).

In general, we use the simulated critical values obtained by simulations as done by Chow and Denning themselves or a bootstrap as in Kim (2006).

Example: We check the monthly LM test results using a bootstrap instead of the asymptotic distribution. We use the Boot.test function in the R package vrtest, which provides two bootstrapped p-values: one for the LM statistic and the other one for the CD statistic.
- VR tests for monthly VW
\(>\) y <- \(\mathbf{l r}_{-}\)vw
\(>\) Lo.Mä (y, kvec) \# LM's tests M1 \& M2
\$Stats
M1 M2
\(\mathrm{k}=2 \quad 3.4223581 .7485059\)
\(\mathrm{k}=3 \quad 2.7069571 .4241521\)
\(\mathrm{k}=121.0990600 .6373211\)
> Boot.test(y, kvec, nboot=1000, wild="Normal", prob=c(0.025, 0.975)) \#Kim's Bootstrap \$Holding.Period
[1] 2312
\$LM.pval
(Bootstrap p-values for the Lo-MacKinlay M2 tests)
[1] 0.0670 .1570 .503
> Lo.Mac(y, kvec) \# LM's tests M1 \& M2
\$Stats
M1 M2
\(\mathrm{k}=2 \quad 3.4223581 .7485059\)
k=3 2.7069571 .4241521
\(\mathrm{k}=121.0990600 .6373211\)
> Boot.test(y, kvec, nboot=1000, wild="Normal" prob=c(0.025,0.975)) \#Kim's Bootstrap
\$Holding.Period
[1] 2312
\$LM.pval (Bootstrap p-values for the Lo-MacKinlay M2 tests)
[1] 0.0670 .1570 .503
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
\$CD.pval \\
[1] 0.153
\end{tabular} & (Bootstrap p-value for the Chow-Denning test) \\
\hline \$CI & (C.I. for Lo-Mackinlay M2 tests from Bootstrap distr) \\
\hline 2.5\% 97.5\% & \\
\hline k=2 -1.825961 1.827630 & \\
\hline \(\mathrm{k}=3-1.8474471 .855263\) & \\
\hline \(\mathrm{k}=12\)-1.712367 2.152280 & \\
\hline \(>\) Wald(y, kvec) & \# RS Wald test \\
\hline \$Holding.Period & \\
\hline [1] 2312 & \\
\hline \begin{tabular}{l}
\$Wald.stat \\
[1] 12.42735
\end{tabular} & \\
\hline
\end{tabular}
\$Critical.Values_10_5_1_percent
[1] 6.2513897 .81472811 .344867
\(>\) Chen.Deo(y, kvec) \# QP Wald test
\$Holding.Period
[1] 2312
\$VRsum
[1] 0.07335402
\$QPn
[1,] 3.154226
\$ChiSQ.Quantiles_1_2_5_10_20_percent
[1] \(11.344867 \quad 9.837409 \quad 7.814728 \quad 6.2513894 .641628\)
- VR tests for monthly EW
\(>y<-\mathbf{l r}_{-}\)ew
\(>\) Lo.Mac(y, kvec) \# LM's tests M1 \& M2
\$Stats
M1 M2
\(\mathrm{k}=2 \quad 6.943998 \mathbf{2 . 5 4 8 0 3 0 2}\)
k=3 6.3591162 .5009114
\(\mathrm{k}=121.9763260 .9975538\)
```

> Boot.test(y, kvec, nboot=1000, wild="Normal",
prob=c(0.025,0.975)) \#Kim's Bootstrap
\$Holding.Period
[1]52060
\$LM.pval (Bootstrap p-values for the Lo-MacKinlay M2 tests)
[1] 0.001 0.004 0.279
\$CD.pval (Bootstrap p-value for the Chow-Denning test)
[1] 0.017
\$LM.pval (Bootstrap p-values for the Lo-MacKinlay M2 tests)
[1] 0.001 0.004 0.279
\$CD.pval (Bootstrap p-value for the Chow-Denning test)
[1] 0.017
\$CI
(C.I. for Lo-Mackinlay M2 tests from Bootstrap distr)
2.5% 97.5%
k=2 -1.754012 1.708415
k=3 -1.710910 1.816157
k=12 1.563058 2.092434
> Wald(y, kvec) \# RS Wald test
\$Holding.Period
[1] 2 312
\$Wald.stat
[1] 52.68679
\$Critical.Values_10_5_1_percent
[1] 6.251389 7.814728 11.344867
> Chen.Deo(y, kvec) \# QP Wald test
\$Holding.Period
[1] 2312
\$VRsum
[1] 0.1442001
\$QPn
[1,] 6.524497

```
\$ChiSQ.Quantiles_1_2_5_10_20_percent
[1] \(11.344867 \quad 9.837409 \quad \overline{7.814728} \quad 6.2513894 .641628\)
Conclusion: Consistent with previous result, solid evidence for the RW for EW returns, but weak evidence (only the Wald test rejects \(\mathrm{H}_{0}\) ) for VW returns. \(\mathbb{I}\)

Example: We check the RW Hypothesis, under RW3, for the daily CRSP EW and VW Index returns.
```

- VR tests for daily VW
kvec <- c(5, 20,60) \#Vector with different q
y<-lr_vw
vr_1<- VR.minus.1(y, kvec) \# Stat should be close to 0 if RW
>vr_1
\$VR.auto (value of VR-1 with automatic selection of holding vectors)
[1] 0.08049192
$Holding.Periods
[1] 52060
\$VR.kvec (the values of VR-1 for the chosen holding periods) [1] 0.060158750 .111556930 .16958754
> sqrt(T*kvec)/sqrt(2*(kvec-1))*vr_1$VR.kvec \# VR test for each q=kvec[i] (~ N(0,1) dist)
[1] 1.616329 2.750494 4.109789
> AutoBoot.test(y, nboot=300, wild="Normal", prob=c(0.025,0.975)) \# Choi (1999)
\$test.stat
[1] 4.354851
\$VRsum
[1] 1.080492

```
\$pval
[1] 0.02333333
\$CI.stat
2.5\% 97.5\%
-3.423189 4.067023
\$CI.VRsum
2.5\% 97.5\%
0.94839731 .0656480
> Lo.Mac(y, kvec) \# LM's tests M1 \& M2
\$Stats
M1 M2
\(\mathrm{k}=5 \quad 4.3726451 .757401\)
\(\mathrm{k}=203.5744901 .573525\)
\(\mathrm{k}=603.0576081 .536068\)
\(>\) Boot.test(y, kvec, nboot=1000, wild="Normal", prob=c(0.025,0.975))\#Kim's Bootstrap \$Holding.Period
[1] 2312
\$LM.pval
(Bootstrap p-values for the Lo-MacKinlay M2 tests)
\$CD.pval
[1] 0.11333
\$CI
(Bootstrap p-value for the Chow-Denning test)
(C.I. for Lo-Mackinlay M2 tests from Bootstrap distrib)
2.5\% 97.5\%
\(\mathrm{k}=5\)-1.602225 2.333427
\(\mathrm{k}=20\)-1.594718 1.935643
\(\mathrm{k}=60\) - \(\mathbf{1 . 7 4 8 5 2 4 1 . 7 8 2 0 9 0}\)
\(>\) Wald(y, kvec) \# RS Wald test
\$Holding.Period
[1] 52060
\$Wald.stat
[1] 21.19834
\$Critical.Values_10_5_1_percent
[1] 6.2513897 .81472811 .344867
> Chen.Deo(y, kvec) \# QP Wald test
\$VRsum
[1] 0.05863072
\$QPn
[,1]
[1,] 3.639522
\$ChiSQ.Quantiles_1_2_5_10_20_percent
[1] \(11.3448679 .8374097 .814728 \quad 6.251389\) 4.641628. ब

\section*{The RWH: Overall Evidence \& Implications}

Tests results are based on CRSP value-weighted (VW) and equal weighted (EW) indices from 1925 \& individual securities from 1962.

Daily, weekly and monthly returns from VW and EW indices show significant (positive) autocorrelation.
\(\operatorname{VR}(q)>1\) statistics reject RW3 for EW index but not VW index. Market capitalization or size may be playing a role. Rejection of RW stronger for smaller firms. Their returns more serially correlated.

For individual securities, \(\operatorname{VR}(q)<1\), suggesting small and negative correlations (and not significant).

VR tests in other countries and financial markets. Tests also tend to reject the RWH, with stronger rejections for smaller markets and less liquid markets.

The rejection of the RWH does not necessarily imply a violation of the EMH.
Main implication: Theoretical pricing models should be able to explain the pattern of serial correlation.

Side Question: How can portfolios show \(\operatorname{VR}(q)>1\) when individual securities show \(\operatorname{VR}(q)<1\) ?

\section*{Predictability}

Traditional view pre 1980:
- CAPM is a good measure of risk
- Usual findings:
(a) Stock, bond and foreign exchange changes are not predictable
(b) Constant equity premium
- Market volatility does not change much through time
- Professional managers do not reliably outperform simple indices and passive portfolios once one corrects for risk
- Summary of State of the Art, late 1970s (Jensen, 1978):
"I believe there is no other proposition in economics which has more solid evidence supporting it than the Efficient Markets Hypothesis."

Modern view post-1980:
- Rejection of the RW Hypothesis.
- Stock returns are predictable.

Valuation ratios (D/P, E/P, B/M ratios)
Interest rates (term spread, short-long T-bill rates, etc.)
Decision of market participants (corporate financing, consumption).
Cross-sectional equity pricing.
Bond and foreign exchange returns are also predictable.
- Some funds seem to outperform simple indices, even after controlling for risk through market betas.
- New equilibrium (theory) models with time-varying equity premium.

\section*{Predictive Regressions}

Motivation:
1. Mounting evidence that stock and bond returns are predictable.
2. Q: Market inefficiency vs Rational variation in expected returns?

Economic questions:
1. Do the expected returns on bonds and stocks move together?
2. Do the same variables forecast bond and stock returns?
3. Is the variation in expected returns related to business cycles?

Setup:
Regress future returns, \(r_{t+\tau}\), on variables \(\boldsymbol{x}_{\boldsymbol{t}}\) known at time \(\boldsymbol{t}\).
\[
\begin{equation*}
r_{t+\tau}=\boldsymbol{\mu}_{\boldsymbol{t}}+\beta \boldsymbol{x}_{\boldsymbol{t}}+\boldsymbol{\varepsilon}_{\boldsymbol{t}+\tau} \tag{1}
\end{equation*}
\]
where \(\tau\) can be one month, one quarter, and one to four years.

\section*{Predictive Regressions - Fama-French (1989)}

One of the first papers to show a predictive pattern at different horizons. The setup of Fama and French (JFE, 1989):
- \(r_{t+\tau}\) : value- \& equal-weighted market portfolios of NYSE; value-weighted corporate bond portfolios.
- \(\boldsymbol{x}_{\boldsymbol{t}}\) variables:
- Dividend yields, \(D_{t} / P_{t}\) : Add monthly dividends for the year preceding time \(t\) divided by the value of the portfolio at time \(t\)
- Term Premium, \(T E R M_{t}\) : Long term government bond yield minus treasuries -see, Keim and Stambaugh (1986).
- Default premium, \(D E F_{t}\) : AAA bond yields minus BAA bond yields -see, Keim and Stambaugh (1986).

Sample: Non-overlapping data for quarterly \((T=244) \&\) annual \((T=61)\) data. For longer horizons (bi-annual+), overlapping observations.
- Findings:
- \(\boldsymbol{x}_{\boldsymbol{t}}\) variables work, especially \(D_{\boldsymbol{t}} / P_{\boldsymbol{t}}\) with high t-stats \(\&\) high \(\mathrm{R}^{2}\) for forecast horizons beyond 1 year.
- (Conditional) Expected returns move with the predictors, \(\boldsymbol{x}_{\boldsymbol{t}}\) :
\[
\left[r_{t+\tau}\right]=\widehat{\boldsymbol{\mu}}_{\boldsymbol{t}}+\widehat{\beta} \boldsymbol{x}_{\boldsymbol{t}}
\]

That is, even with \(\boldsymbol{\mu}_{\boldsymbol{t}}=\boldsymbol{\mu}\), expected future returns are time-varying!
- Regression coefficients and \(R^{2}\) increase with the forecast horizon. ब|
- Interpretation of the Fama-French's slope estimate for \(D_{\boldsymbol{t}} / P_{\boldsymbol{t}}\) (similar of other financial ratios with \(P_{t}\) in the denominator):
- There is a positive relation between \(D_{\boldsymbol{t}} / P_{\boldsymbol{t}}\) and \(r_{t+\tau}\). A high (low) \(D_{\boldsymbol{t}} / P_{\boldsymbol{t}}\) forecasts high (low) subsequent returns (higher \(P_{t+\tau}!\) ). Since we tend to observe high \(D_{\boldsymbol{t}} / P_{\boldsymbol{t}}\) when \(P_{\boldsymbol{t}}\) is low, we have evidence for mean reversion in stock prices.
- Let's look at the one-year \(D_{\boldsymbol{t}} / P_{\boldsymbol{t}}\) EW slope coefficient: 5.75. Then, a \(1 \%\) increase in dividend increase expected (total) returns by \(5.75 \%\) (an investor gets \(1 \%\) dividend plus \(4.75 \%\) extra return). Big number!
- Using the above 5.75 slope, we can derive an informal range for the expected 1-year return: In the past 40 years \(D_{\boldsymbol{t}} / P_{\boldsymbol{t}}\) ranged from \(1 \%\) to \(6 \%\), ignoring \(\widehat{\boldsymbol{\mu}}_{\boldsymbol{t}}\), the range for \(\mathrm{E}_{\mathrm{t}}\left[r_{t+1 y}\right]\) is \(\{5.75 \%-\) \(34 \%\) \}. Very big!
- Interpretation of Fama-French's \(\mathrm{R}^{2}\) for \(D_{\boldsymbol{t}} / P_{\boldsymbol{t}}\) (again, similar interpretation for other ratios with \(P_{t}\) in the denominator):
\(-\mathrm{R}^{2}\) are small, but they start to be worth paying attention to for horizons of 1-year ahead or longer. "Small" and "big" are relative term, remember that according to the RW the \(\mathrm{R}^{2}\) should be 0 ! Then, any \(\mathrm{R}^{2}>0\) is "interesting."
- For the EW returns, \(D_{t} / P_{t}\) predicts \(7 \%\) of the variability of one-year ahead returns and \(23 \%\) of the variability of 4 -year ahead returns. These are results that, on average, can produce profitable investment strategies.
- Rational explanations for time-variation of expected return:
- Time-varying risk aversion
- Time-varying amount of risk
- Parallel behavior explanation (investor sentiment).

Remark: We expect low prices -relative to \(D_{t}, E_{t}, B o o k_{t^{-}}\)to be followed by high returns (high prices). Going back to the EMH, can we profit from this predictability?

Note: Another well-cited paper is Lamont (JF, 1998), who finds that other financial ratios also work as predictors: dividends yield \& earnings yield. Lamont also find that the dividend payout ratio has cross-sectional predictive power.

Example: We use Shiller's data (1871:Jan-2021:Dec) to redo the monthly predictive regressions of Fama-French (see FEc_prog_Pred for code and links to data).
\begin{tabular}{|c|c|c|c|c|l|c|c|}
\hline & \multicolumn{7}{|c|}{ Independent Variable: Excess Returns at \(\boldsymbol{t}+1(1871-2021)\)} \\
\hline & \(r_{t}\) & \(D_{t} / P_{t}\) & \(D Y_{t}\) & \(E_{t} / P_{t}\) & \(D_{t} / E_{t}\) & \(D F Y_{t}\) & \(D F R_{t}\) \\
\hline\(\mu\) & \begin{tabular}{l}
0.00398 \\
\((0.0011)\)
\end{tabular} & \begin{tabular}{l}
0.00992 \\
\((0.0141)\)
\end{tabular} & \begin{tabular}{l}
0.01694 \\
\((0.0142)\)
\end{tabular} & \begin{tabular}{l}
0.02570 \\
\((0.0150)\)
\end{tabular} & \begin{tabular}{l}
-0.0183 \\
\((0.0195)\)
\end{tabular} & \begin{tabular}{l}
0.00979 \\
\((0.0025)\)
\end{tabular} & \begin{tabular}{l}
0.00435 \\
\((0.0030)\)
\end{tabular} \\
\hline\(\beta\) & \begin{tabular}{l}
0.11256 \\
\((0.0234)\)
\end{tabular} & \begin{tabular}{l}
0.00095 \\
\((0.0025)\)
\end{tabular} & \begin{tabular}{l}
0.00218 \\
\((0.0025)\)
\end{tabular} & \begin{tabular}{l}
0.00410 \\
\((.0029)\)
\end{tabular} & \begin{tabular}{l}
-0.0041 \\
\((0.0035)\)
\end{tabular} & \begin{tabular}{l}
-0.0939 \\
\((0.0435)\)
\end{tabular} & \begin{tabular}{l}
0.11446 \\
\((0.2169)\)
\end{tabular} \\
\hline & & & & & & & \\
\hline \(\mathrm{R}^{2}\) & 0.00731 & 0.0004 & 0.00001 & 0.0011 & 0.0008 & 0.0041 & 0.0002 \\
\hline
\end{tabular}

Findings: With the exception of lagged excess returns and the default yield spread (AAA yield - BBB yield) nothing is significant. ब

Example: We use Shiller's data (1925:Jan-2021:Dec) to redo the monthly predictive regressions of Fama-French (see FEc_prog_Pred for code and links to data).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{7}{|c|}{ Independent Variable: Excess Returns at \(\boldsymbol{t}+1(1871-2021)\)} \\
\hline & \(r_{t}\) & \(D_{t} / P_{t}\) & \(D Y_{t}\) & \(E_{t} / P_{t}\) & \(D_{t} / E_{t}\) & \(D F Y_{t}\) & \(D F R_{t}\) \\
\hline\(\mu\) & \begin{tabular}{l}
0.00354 \\
\((0.0016)\)
\end{tabular} & \begin{tabular}{l}
0.02127 \\
\((0.0199)\)
\end{tabular} & \begin{tabular}{l}
0.02709 \\
\((0.0201)\)
\end{tabular} & \begin{tabular}{l}
0.02605 \\
\((0.0199)\)
\end{tabular} & \begin{tabular}{l}
-0.00118 \\
\((0.0277)\)
\end{tabular} & \begin{tabular}{l}
0.00724 \\
\((0.0030)\)
\end{tabular} & \begin{tabular}{l}
0.01038 \\
\((0.0025)\)
\end{tabular} \\
\hline\(\beta\) & \begin{tabular}{l}
0.08548 \\
\((0.0294)\)
\end{tabular} & \begin{tabular}{l}
0.00296 \\
\((0.0034)\)
\end{tabular} & \begin{tabular}{l}
0.00396 \\
\((0.0034)\)
\end{tabular} & \begin{tabular}{l}
0.00424 \\
\((.0038)\)
\end{tabular} & \begin{tabular}{l}
-0.0009 \\
\((0.0049)\)
\end{tabular} & \begin{tabular}{l}
0.10056 \\
\((0.2165)\)
\end{tabular} & \begin{tabular}{l}
-0.0475 \\
\((0.0438)\)
\end{tabular} \\
\hline & & & & & & & \\
\hline \(\mathrm{R}^{2}\) & 0.01267 & 0.0007 & 0.00117 & 0.00216 & 0.00002 & 0.00017 & 0.00104 \\
\hline
\end{tabular}

Findings: Now, only lagged excess returns are significant. We just see "momentum" at work at the monthly level. \(\|\)

\section*{Predictive Regressions: Methodological Issues}
\(\cdot\) Data snooping. Are \(D_{\boldsymbol{t}} / P_{\boldsymbol{t}}, T E R M_{\boldsymbol{t}}\), Payout Ratios the only variables used in those regressions? The standard finance and economic databases used in academic and industry research (CRSP, Compustat, Refinivit) have thousands of potential predictors.

Recall Type I error: If we use 100 regressors, 5 will be significant at the \(5 \%\) level!
- Peso problem. In the sample, we do not observe a "crash," which are very low probability events, but agents do compute that probability in the expectation. Then, on average, the sample average is biased!
- Regime Change. Always a potential problem. Maybe coefficients change with the business cycle, Fed policy, bull/bear markets, etc.
- Endogeneity. Regressors are only predetermined, but not exogenous. OLS slopes have a small bias (Stambaugh, 1986). Traditional OLS S.E. are likely not appropriate (Hodrick, 1992).
- Persistence of Financial Ratios. Valuation ratios are persistent and their innovations are correlated with returns, causing
- biased predictive coefficients: Stambaugh (1999)
- over-rejection by standard \(t\)-test: Cavanagh-Elliott-Stock (1995)

Note: These issues are less relevant for interest rates \& recently proposed predictor variables (persistent, but less correlated with \(r_{t}\) ).

\section*{Predictive Regressions: Valuation Ratios - Persistence}
- \(D_{t} / P_{t}\) is persistent, \(D_{t} / P_{t}\) stays "high" or "low" for a long time. It moves around a constant mean (in red) \& has no trend (stationary?).


There is some evidence for mean reversion, but it can take many years (decades?) to get back to the mean.

Given the persistence in \(D_{t} / P_{t}\), the Fama-French results imply that we should also have persistence in the forecast of expected returns. That is, we have high (low) expected returns for a long time (decades?)!
Issue: How persistent is \(D_{t} / P_{t}\) ?
- \(D_{t} / P_{t}\) is likely to be persistent: it reflects long-run expectations.
- But, is \(D_{t} / P_{t}\) stationary? unit root? explosive?

To answer the above question, we compute the ACF for \(D_{t} / P_{t}\). (Recall that a persistent series will show a slow decay in the ACF.)


The first order autocorrelation is \(\mathbf{0 . 8 8 2}\). Very persistent series! That is, next period dividend yield is very likely to be similar to this period.

There seems to be a relation (non-linear?) between \(D_{t} / P_{t} \&\) the business cycle. We see big spikes in \(D_{t} / P_{t}\) when there is a recession (clear spike in the 1930s and in 2008-2009). Though these spikes are relatively short-lived (years, not decades).

Thus, expected returns vary with the business cycle (not a surprise): A big increase when there is a recession (risk is higher).
- Potential Problem with \(D_{t}\) : "too smooth" (measurement error?). The observed data may not be the "true" series of interest.

Subtle point: Since \(D_{t}\) is too smooth, all the predictability comes from \(P_{t}\). What news affect more future stock prices (\& returns): "Cash Flows news or Discount Rates news"? Discount rates news.

\section*{Predictive Regressions: Stambaugh Bias}

One econometric issue in Fama and French (1989): Regressors are only predetermined, but not exogenous.
- Start with predictive regression for returns, \(\boldsymbol{r}_{\boldsymbol{t + 1}}\) :
\[
r_{t+1}=\alpha+\beta x_{t}+\varepsilon_{t+1}
\]
\(x_{t}: D_{t} / P_{t} \quad-\) i.e., the dividend price ratio
Note: \(x_{t}\) depends on the price at the beginning of \(t\), the change of \(x\) at the end of \(t+1\) reflects changes in price from \(t\) to \(t+1\), as does \(r_{t+1} ; \mathrm{E}\left[\varepsilon_{t+1} \mid x_{t+1}, x_{t}\right] \neq 0\), more generally, \(\mathrm{E}\left[\varepsilon_{t} \mid x_{s}, x_{w}\right] \neq\) \(0, s<t<w\).

Assumption (A2) is violated!
In addition, \(\boldsymbol{x}_{\boldsymbol{t}}\) is persistent. It can be modeled with an ARMA.
Stambaugh (1999) assumes that \(\boldsymbol{x}_{\boldsymbol{t}}\) follows an AR(1)
\[
\begin{equation*}
\boldsymbol{x}_{\boldsymbol{t}}=\mu+\boldsymbol{\phi} \boldsymbol{x}_{\boldsymbol{t}-1}+v_{\boldsymbol{t}} \tag{2}
\end{equation*}
\]
where \(v_{\boldsymbol{t}} \& \boldsymbol{\varepsilon}_{\boldsymbol{t}}\) follow a multivariate \(\mathrm{N}(0, \boldsymbol{\Sigma})\), independent across \(\boldsymbol{t}\).
Results: b (OLS estimate) is biased upward, positively skewed, and has higher variance and kurtosis than the normal sampling distribution of the OLS estimator.
- Stambaugh bias:
\[
\mathrm{E}[\mathrm{~b}-\beta]=\left(\sigma \boldsymbol{\varepsilon} v / \sigma_{v}^{2}\right) \mathrm{E}[\widehat{\boldsymbol{\phi}}-\boldsymbol{\phi}]
\]

It turns out \(\widehat{\boldsymbol{\phi}}\) has a downward bias and \(\sigma \boldsymbol{\varepsilon} v\) is negative
\(\Rightarrow \mathrm{b}\) shows an upward bias. Conventional t -tests are misleading.
Finding: Correcting the bias weakens the predictability evidence.

Since conventional t-tests are misleading, there are many suggestions to check if the predictability of the very persistent valuation ratios remains after correcting for the bias.

One approach is Lewellen (2004): Adjust the OLS estimator under worst case scenario for persistence ( \(\phi=1\) ):
\[
\mathrm{b}_{\text {adj }}=\mathrm{b}-\left(\sigma \varepsilon v / \sigma_{v}^{2}\right) \mathrm{E}[\hat{\phi}-1]
\]

In practice, the estimated persistence is very close to one. The bias correction is small.
Predictability survives:
- \(D_{t} / P_{t}\) predicts market returns from 1946-2000 and sub-samples.
\(-\mathrm{B} / \mathrm{M}\) and \(E_{t} / P_{t}\) predict returns during the shorter sample 1963-2000.
Interesting Result: In a (1)-(2) framework NW SE are not reliable in small samples. Result from Hodrick (1992) \& Kim and Nelson (1993).

\section*{Predictive Regressions: Long Horizon Returns (Aside)}
\(\boldsymbol{D}_{\boldsymbol{t}} / \boldsymbol{P}_{\boldsymbol{t}}\) and other ratios forecast excess returns on stocks. Regression coefficients and \(\mathrm{R}^{2}\) rise with the forecast horizon.

This is a result of the fact that the forecasting variable is persistent.
Model (1)-(2), assuming \(\alpha=\mu=0\).
\[
\begin{align*}
& r_{t+1}=\alpha+\beta \boldsymbol{x}_{t}+\varepsilon_{t+1}  \tag{1}\\
& \boldsymbol{x}_{\boldsymbol{t}}=\mu+\boldsymbol{\phi} \boldsymbol{x}_{\boldsymbol{t}-1}+v_{\boldsymbol{t}} \tag{2}
\end{align*}
\]

Now, we compound 2-period returns (with log returns, we add them):
\[
\begin{aligned}
r_{t+2}(2) & =\beta \boldsymbol{x}_{t+1}+\varepsilon_{t+2}+\beta \boldsymbol{x}_{\boldsymbol{t}}+\varepsilon_{t+1} \\
& =\beta\left(\boldsymbol{x}_{t+1}+\boldsymbol{x}_{\boldsymbol{t}}\right)+\varepsilon_{t+2}+\varepsilon_{t+1} \\
& =\beta\left(\boldsymbol{\phi} \boldsymbol{x}_{\boldsymbol{t}}+v_{\boldsymbol{t}+1}+\boldsymbol{x}_{\boldsymbol{t}}\right)+\varepsilon_{t+2}+\varepsilon_{t+1} \\
& =\beta(1+\boldsymbol{\phi}) \boldsymbol{x}_{\boldsymbol{t}}+\beta v_{\boldsymbol{t}+1}+\varepsilon_{t+2}+\varepsilon_{t+1} \\
& =\beta_{2} \boldsymbol{x}_{\boldsymbol{t}}+\boldsymbol{\omega}_{2 t} \quad \Rightarrow \beta_{2}>\beta .
\end{aligned}
\]
- The previous result generalizes:
\[
\begin{aligned}
r_{t+k}(k) & =\beta \boldsymbol{x}_{t+k}+\varepsilon_{t+k}+\beta \boldsymbol{x}_{t+k-1}+\varepsilon_{t+k-1}+\cdots+\beta \boldsymbol{x}_{\boldsymbol{t}}+\varepsilon_{t+1} \\
& =\beta\left(\boldsymbol{x}_{t+k}+\boldsymbol{x}_{t+k-1}+\cdots+\boldsymbol{x}_{\boldsymbol{t}}\right)+\varepsilon_{t+k}+\cdots+\varepsilon_{t+1} \\
& =\beta\left(1+\phi+\phi^{2}+\cdots+\phi^{k}\right) \boldsymbol{x}_{\boldsymbol{t}}+\boldsymbol{\omega}_{k t} \\
& =\beta_{k} \boldsymbol{x}_{\boldsymbol{t}}+\boldsymbol{\omega}_{k t} \quad \Rightarrow \beta_{k}>\beta_{k-1} .
\end{aligned}
\]

The coefficient of the persistent ratio is increasing with the horizon of compounding returns.
Note: A more complicated derivation is needed for the increase in \(\mathrm{R}^{2}\).

\section*{Predictive Regressions: More Predictors}

Lots of variables have been proposed as predictors. A short list:
- Book-to-market ( \(\mathbf{b} / \mathbf{m}_{\mathbf{t}-1}\) ), equity share in new issues ( S , equis \(\mathrm{eq}_{\mathbf{t}-1}\) ), and lagged returns, as in Baker and Wurgler (2000) (B-W, next slide).
- Cross-sectional premium (csp): The relative valuations of high- and low-beta stocks, as in Polk, Thompson, and Vuolteenaho (2006).
- Net Equity Expansion (ntis): The ratio of 12-month moving sums of net issues by NYSE listed stocks divided by the total end-of-year market capitalization, as in Boudoukh, et al. (2007).
- Long Term Yield (lty): Long-term government bond yields.
- Investment to Capital Ratio (i/k): The ratio of aggregate (private nonresidential fixed) investment to aggregate capital for the whole economy, as in Cochrane (1991).
- Consumption, wealth, income ratio (cay): Estimated from an equation from a model proposed by Lettau and Ludvigson (2001).

Example: We use the expanded Goyal and Welch data (1927-2021) to redo the annual predictive regressions of Baker-Wurgler, using S\&P excess returns (see FEc_prog_Pred for code \& data). Script for ik:
Pred_da_a <- read.csv("http://www.bauer.uh.edu/rsusmel/4397/goyal-welch-a_27.csv", head=TRUE, sep=",")
```

$1 r_{\text {_sp }}<$ - Pred_da_a\$sp_ret \# Value weighted S\&P returns (with distributions)
ik <- Pred_da_a\$ik \# Investment-to-capital
TA $<$ - length $\left(\mathrm{lr}_{-} \mathrm{sp}\right)$
TI <- 21
y_a_ik <- lr_{-}sp[(TI+1):TA] - Rf_a[(TI+1):TA]/100
$i k _a<-i k[T I:(T A-1)]$
fit_lag_y_ik <- lm(y_a_ik $\left.\sim i k _a\right)$
> summary(fit_lag_y_ik)

```

Coefficients:
Estimate Std. Error t value \(\operatorname{Pr}(>|t|)\)
(Intercept) 0.238050 .062063 .8360 .000268 ***
\(\begin{array}{llll}i k \_a & -0.07640 & 0.01747 & -4.372 \\ \text { 4.13e-05 *** }\end{array}\)
\begin{tabular}{|c|c|l|l|l|l|l|l|}
\hline & \multicolumn{7}{|c|}{ Independent Variable: Excess Returns at \(\boldsymbol{t}+1(1871-2021)\)} \\
\hline & \(r_{t}\) & \(D_{t} / P_{t}\) & \(D Y_{t}\) & \(E_{t} / P_{t}\) & \(D_{t} / E_{t}\) & \(D F Y_{t}\) & \(D F R_{t}\) \\
\hline\(\mu\) & \begin{tabular}{l}
-0.0087 \\
\((0.0096)\)
\end{tabular} & \begin{tabular}{l}
0.02039 \\
\((0.0668)\)
\end{tabular} & \begin{tabular}{l}
0.00511 \\
\((0.0626)\)
\end{tabular} & \begin{tabular}{l}
-0.0152 \\
\((0.0169)\)
\end{tabular} & \begin{tabular}{l}
-0.0212 \\
\((0.0214)\)
\end{tabular} & \begin{tabular}{l}
\(\mathbf{0 . 0 4 0 9 4}\) \\
\((0.0174)\)
\end{tabular} & \begin{tabular}{l}
0.23805 \\
\((0.0621)\)
\end{tabular} \\
\hline\(\beta\) & \begin{tabular}{l}
0.00234 \\
\((0.1093)\)
\end{tabular} & \begin{tabular}{l}
0.00856 \\
\((0.0195)\)
\end{tabular} & \begin{tabular}{l}
0.00501 \\
\((0.0225)\)
\end{tabular} & \begin{tabular}{l}
0.00555 \\
\((0.0119)\)
\end{tabular} & \begin{tabular}{l}
0.00023 \\
\((0.0003)\)
\end{tabular} & \begin{tabular}{l}
-0.0027 \\
\((0.0008)\)
\end{tabular} & \begin{tabular}{l}
-0.07640 \\
\((0.0175)\)
\end{tabular} \\
\hline & & & & & & & \\
\hline \(\mathrm{R}^{2}\) & 0.00001 & 0.0021 & 0.0005 & 0.0331 & 0.0046 & 0.1066 & 0.2121 \\
\hline
\end{tabular}

Findings: Consistent with the previous table for VW returns, equity share in new equity is significant. We also run predictive regressions for the other variables mentioned above.
Investment-to-capital (ik, starting in 1947) was very significant, with very high \(\mathrm{R}^{2}\). (Note: cay (starting in 1944) \& \(\mathbf{~ c s p}\) (starting in 1937) were not significant). 9

\section*{Predictive Regressions: Way More Predictors}

With the advances in computer power, the success of finding predictors of future returns has continued almost exponentially. For example, using Machine Learning models (Neural Networks) we have:
- Gu, Kelly and Xiu (2020): 176 predictors, grouped in 94 stock-level predictive characteristics (Green et al. (2017)); 8 macroeconomic \& financial variables predictors (Welch and Goyal (2008)); and 74 industry dummies (\& even \(94 * 8\) interaction terms!).
- Bianchi, Buchner and Tamoni (2021): 128 monthly macroeconomic and financial variables (McCracken and Ng (2015)).
- Always keep in mind that the standard finance databases for research (CRSP \& Compustat) have over \(\mathbf{1 , 0 0 0}\) potential predictors (without counting interactions). It is always possible to find more predictors!
Question: Why not use them all?

\section*{Predictive Regressions: In-sample vs Out-of-sample}

In a very well know paper, Goyal and Welch (2008) argue that the in-sample (IS) predictability seen in predictive regression, once evaluated out-of-sample (OOS), becomes very weak or just disappears.
- Setup of OOS Evaluation
(1) Perform \(\mathrm{Q} \tau\)-step-ahead forecasts using:
- Rolling predictive regressions, adding one observation at a time. That is, we obtain Q forecasts, \(\hat{r}_{t+\tau}\).
- Use the mean of the rolling period at time \(\boldsymbol{t}\) as the forecast. That is, we obtain Q forecasts, \(\bar{r}_{t}\).
(2) Get Q rolling forecast errors, \(e_{A}, \& \mathrm{Q}\) mean forecasts, \(e_{N}\).
(3) Compute \(M S E_{A} \& M S E_{N}\).
(4) Evaluate MSEs using the Diebold-Mariano test.
- An OOS R \({ }^{2}\) can be computed as:
\[
R_{O O S}^{2}=1-\frac{M S E_{A}}{M S E_{N}}
\]
with \(\quad M S E_{A}=\sum_{t=1}^{Q}\left(\boldsymbol{r}_{\boldsymbol{t}+\tau}-\hat{r}_{t+\tau}\right)^{2}\)
\[
M S E_{N}=\sum_{t=1}^{Q}\left(\boldsymbol{r}_{\boldsymbol{t}+\tau}-\bar{r}_{t}\right)^{2}
\]

Note: Goyal and Welch (2008) evaluate the MSEs using other tests, proposed by Clark and McCracken (2001) and McCracken's (2004) variation of the Diebold-Mariano test.

Findings: Very difficult to identify any robust predictor of excess stock returns. There are short time intervals of significant OOS predictability, but these "pockets of predictability" are surrounded by long periods of little or no predictability, see Lansing, LeRoy \& Ma (2022).

Example: We use the expanded Goyal and Welch data (1927-2021) to compute their annual OOS \(\mathrm{R}^{2}\), using rolling regressions starting in 1967, and perform Diebold-Mariano (DM) tests for significant differences of the forecasts ( R script below for ik ).
Findings: Consistent with the results of Goyal and Welch (2008), we do not find a lot of consistent predictability out of sample. In general, DM tests fail to reject \(\mathrm{H}_{0}\) that the predictors do better than the unconditional mean in forecasting next year excess returns.
- R Code for ik (OOS rolling regressions)
\begin{tabular}{|c|c|}
\hline y \(<^{<-\mathrm{y}}\) a l ik & \# Dependent variable ( \(\mathrm{y}_{-} \mathrm{t}+1\) ) of rolling regression \\
\hline xx <- ik_a & \# Independent variable x_t \\
\hline Alles \(=\) NULL & \# Initialize empty (a space to put forecasts errors) \\
\hline k_for <- 40 & \# Start of Rolling Sample \\
\hline \(\mathrm{i}<-\mathrm{k}\) _for & \# Counter for while loop \\
\hline \begin{tabular}{l}
TF <- length(yy) \\
while ( \(\mathrm{i}<=\mathrm{TF}-1\) ) \{
\end{tabular} & \\
\hline y_tp1<- yy[1:i] & \\
\hline \(\mathrm{x}_{\text {_ }} \mathrm{t}<-\mathrm{xx}[1: \mathrm{i}]\) & \\
\hline pred_reg <- \(\operatorname{lm}\left(y_{-}\right.\)tp1 \(\left.\sim x \_t\right)\) & \# OLS predictive regression \\
\hline b_hat <- pred_reg\$coefficients & \# Extract coefficient \\
\hline y_hat <- b_hat[1]+b_hat[2]*xx[i+1] & \# t+1 forecast \\
\hline \(\mathrm{f}_{-} \mathrm{e}\) - \(<-\mathrm{y}_{-}\)hat - yy[i+1] & \# t+1 forecast error for model \\
\hline
\end{tabular}
```

 f_e_n<- mean(y_tp1) - yy[i+1] #t+1 forecast error for mean
 f_2e<- c(f_e_a, f_e_n) # Combine both forecast errors in a vector
 Alles = rbind(Alles,f_2e) # accumulate forecast errors in rows (two columns)
 i<- i+1
 }

Checking accuracy of forecasts with OOS R^2

mse <- colSums(Alles^2)/(TF-k_for)
r2_oos <- 1 - mse[1]/mse[2]
> r2_oos
[1] 0.02177127 }\quad=>\mathrm{ Relative to IS results, big reduction in R}\mp@subsup{R}{}{2}

Testing accuracy of forecasts with Diebold-Mariano

> dm.test(Alles[,1], Alles[,2], power=2)
Diebold-Mariano Test
data: Alles[, 1]Alles[, 2]
DM =-0.12985, Forecast horizon = 1, Loss function power =2, p-value =0.8975
alternative hypothesis: two.sided
>dm.test(Alles[,1], Alles[,2], power=1)
DM =-0.23874, Forecast horizon = 1, Loss function power = 1, p-value =0.8128
alternative hypothesis: two.sided. |

```

\section*{Predictive Regressions: Final Remarks}

There is a big and active literature on the predictability of stock returns, lately using ML/AI models. It has found lots of potential predictors of excess stock returns, for example, Gu, Kelly and Xiu (2020) use Neural Networks to discover 176 predictors (with interaction terms, they almost use almost 1,000 predictors!)

Given the usual data mining results in large datasets, many of the discovered predictors are not "true predictors," but "false positive (FP) predictors." A lot of FP predictors will increase C.I. for forecasts.

We have a typical model selection problem. If we use the General-to-specific approach, the question is: How to reduce the GUM? Several proposals: optimize \(R_{O O S}^{2}\), OOS SR, minimize FP predictors, etc.

Old question: Can we make money from these predictors? Not clear.

\section*{Lecture 11 - Volatility Models}

\section*{Linear and Non-linear Models}

So far, we have focused on linear models. We have relied on Assumption (A1), where the relation between \(y_{t} \& X_{t}\) is given by:
\[
y_{t}=X_{t} \beta+\varepsilon_{t}, \quad \varepsilon_{t} \sim \text { i.i.d. } \mathrm{D}\left(0, \sigma^{2}\right)
\]

There are, however, many relationships in finance that are intrinsically non-linear: The payoffs to options are non-linear in some of the input variables, for example, \(\mathrm{S}_{\mathrm{t}}\); investors' willingness to trade off returns and risks are also non-linear; CEO compensation that depends on thresholds and with a big option component are also non-linear.

The textbook of Campbell et al. (1997) defines a non-linear data generating process as one where the current value of \(y_{t}\) is related non-linearly to current and previous values of the error term, \(\varepsilon_{t}\) :
\[
y_{t}=f\left(\varepsilon_{t}, \varepsilon_{t-1}, \varepsilon_{t-2}, \ldots\right)
\]
where \(\varepsilon_{t}\) is \(i . i . d\). and \(f\) is a non-linear function.
A friendlier and slightly more specific definition of a non-linear model is given by the equation
\[
y_{t}=g\left(\varepsilon_{t}, \varepsilon_{t-1}, \varepsilon_{t-2}, \ldots\right)+\varepsilon_{t} \sigma^{2}\left(\varepsilon_{t}, \varepsilon_{t-1}, \varepsilon_{t-2}, \ldots\right)
\]
where \(g\) is a function of past error terms only, and \(\sigma^{2}\) can be interpreted as a variance term, since it is multiplied by the current value of the error.

Cases
- Non-linear in mean only: \(\quad g(\cdot)=\) non-linear \(\& \sigma^{2}(\cdot)=\sigma^{2}\)
- Non-linear in variance only: \(\quad g(\cdot)=\) linear \(\& \sigma^{2}(\cdot) \neq\) non-linear \(g(\cdot)\)
- Non-linear in mean and variance: both \(g(\cdot) \& \sigma^{2}(\cdot)\) are non-linear.

Most popular non-linear models in finance: The ARCH models, where we model a time-varying variance as a function of past \(\varepsilon_{t}\) 's.

\section*{ARCH Models}

Until the early 1980s econometrics had focused almost solely on modeling the conditional means of time series, conditioning on information set at time \(t, I_{t}\) :
\[
y_{t}=\mathrm{E}\left[y_{t} \mid I_{t}\right]+\varepsilon_{t}, \quad \varepsilon_{t} \sim D\left(0, \sigma^{2}\right)
\]

Suppose we have an AR(1) process:
\[
y_{t}=\alpha+\phi y_{t-1}+\varepsilon_{t}
\]

The conditional mean is:
\(\mathrm{E}\left[y_{t+1} \mid I_{t}\right]=\mathrm{E}_{\mathrm{t}}\left[y_{t+1}\right]=\alpha+\phi y_{t}\)
The unconditional mean and variance are:
\[
\begin{aligned}
& \mathrm{E}\left[y_{t}\right]=\alpha /(1-\phi)=\text { constant } \\
& \operatorname{Var}\left[y_{t}\right]=\sigma^{2} /\left(1-\phi^{2}\right)=\mathrm{constant}
\end{aligned}
\]

Note: Conditional mean is time varying; unconditional mean is not!

Similar idea for the variance. For the AR(1) process, we have:
- Conditional variance:
\[
\operatorname{Var}\left[y_{t+1} \mid I_{t}\right]=\operatorname{Et}\left[\left(y_{t+1}-\mathrm{Et}_{\mathrm{t}}\left[y_{t+1} \mid I_{t}\right]\right)^{2}\right]=\mathrm{E}_{\mathrm{t}}\left[\varepsilon_{t+1}^{2}\right]
\]
- Unconditional variance:
\[
\operatorname{Var}\left[y_{t+1}\right]=\mathrm{E}\left[\left(y_{t+1}-\mathrm{E}\left[y_{t+1}\right]\right)^{2}\right]=\sigma^{2} /\left(1-\phi^{2}\right)
\]

The unconditional variance measures overall uncertainty. In the AR(1) example, the information available at time \(t, I_{t}\), plays no role:
\[
\operatorname{Var}\left[y_{t}\right]=\sigma^{2} /\left(1-\phi^{2}\right) .
\]

The conditional variance, \(\operatorname{Var}\left[y_{t} \mid I_{t}\right]\), is a better measure of uncertainty at time \(t\). It is a function of information at time \(t, I_{t}\).

Notation: \(E_{t}\left[Z_{t+1}\right]=E\left[Z_{t+1} \mid I_{t}\right]\)
Summary:
- Unconditional variance measures the overall uncertainty.
- Conditional variance measures uncertainty at time \(t\).

Remark: Conditional moments are time varying; unconditional moments are not!

\section*{ARCH Models: Stylized Facts of Asset Returns}
(1) Thick tails: Leptokurtic (thicker tails than Normal).
(2) Volatility clustering: "Large changes tend to be followed by large changes of either sign."
(3) Leverage Effects: Tendency for changes in stock prices to be negatively correlated with changes in volatility.
(4) Non-trading Effects, Weekend Effects: When a market is closed, information accumulates at a different rate to when it is open -for example, the weekend effect, where stock price volatility on Monday is not three times the volatility on Friday.
(5) Expected events: Volatility is high at regular times such as news announcements or other expected events, or even at certain times of day -for example, less volatile in the early afternoon.
(6) Volatility and serial correlation: Inverse relationship between the two.
(7) Co-movements in volatility: Volatility is positively correlated across markets/assets.

We need a model that accommodates all these (non-linear) facts.
Stylized facts (1) and (2) form the basis of Volatility (ARCH) Models.
- Easy to check leptokurtosis (Stylized Fact \#1).

\section*{Descriptive Statistics and Distribution for Monthly S\&P500 Returns}


Note: Excess kurtosis greater than 0 ! Heavy tails are very common in financial time series.
- Easy to check Volatility Clustering (Stylized Fact \#2)


\section*{IBM Returns}


Note: Periods with low changes, usually long, and periods of high changes, usually short. That is, volatility shows autocorrelation.

\section*{ARCH Models: Engle (1982)}

We start with assumptions (A1) to (A5), but with a specific (A3'):
\[
y_{t}=\gamma X_{t}+\varepsilon_{t}, \quad \varepsilon_{t} \sim N\left(0, \sigma_{t}^{2}\right)
\]
(A3') \(\sigma_{t}^{2}=\operatorname{Var}_{t-1}\left[\varepsilon_{t}\right]=E_{t-1}\left[\varepsilon_{t}^{2}\right]=\omega+\alpha_{1} \varepsilon_{t-1}^{2}+\cdots+\alpha_{q} \varepsilon_{t-q}^{2}\) which we can write, using the L operator, as:
\[
\sigma_{t}^{2}=\sum_{i=1}^{q} \alpha_{i} \varepsilon_{t-i}^{2}=\omega+\alpha(L) \varepsilon^{2}
\]

We can write the model in terms of an \(\operatorname{AR}(\mathrm{q})\) for \(\varepsilon_{t}^{2}\). Define
\[
v_{t} \equiv \varepsilon_{t}^{2}-\sigma_{t}^{2}, \quad-\text { an error term for the variance }
\]

Then,
\[
\varepsilon_{t}^{2}=\omega+\alpha(L) \varepsilon_{t}^{2}+v_{t}
\]

Correlated \(\varepsilon_{t}^{2}\) 's: High (low) past \(\varepsilon_{t}^{2}\) 's produce a high (low) \(\varepsilon_{t}^{2}\) today.
The model
\[
\sigma_{t}^{2}=\sum_{i=1}^{q} \alpha_{i} \varepsilon_{t-i}^{2}=\omega+\alpha(L) \varepsilon^{2}
\]
is an \(\operatorname{AR}(\mathrm{q})\) model for squared innovations, \(\varepsilon_{t}^{2}\). We have the ARCH model: Auto-Regressive Conditional Heteroskedasticity.

The \(\operatorname{ARCH}(\mathrm{q})\) model estimates the unobservable (latent) variance.
Non-negative constraints: Since we are dealing with a variance, we usually impose
\[
\omega>0 \text { and } \alpha_{i}>0 \quad \text { for all } \mathrm{i} .
\]

Notation: \(E_{t-1}\left[\varepsilon_{t}^{2}\right]=E\left[\varepsilon_{t}^{2} \| \mid t_{-1}\right]\)
Useful result: Since \(\mathrm{E}\left[\varepsilon_{t}\right]=0\), then \(E_{t-1}\left[\varepsilon_{t}^{2}\right]=\sigma_{t}^{2}\)

\section*{ARCH Models: Unconditional Variance}

The unconditional variance is determined by:
\[
\sigma^{2}=E\left[\sigma_{t}^{2}\right]=\omega+\sum_{i=1}^{q} \alpha_{i} E\left[\varepsilon_{t-i}^{2}\right]=\omega+\sum_{i=1}^{q} \alpha_{i} \sigma^{2}
\]

That is,
\[
\sigma^{2}=\frac{\omega}{1-\sum_{i=1}^{q} \alpha_{i}}
\]

To obtain a positive \(\sigma^{2}\), we impose another restriction: \(\left(1-\sum_{i=1}^{q} \alpha_{i}\right)>0\)

\section*{Example: \(\mathrm{ARCH}(1)\)}
\[
\begin{array}{ll}
Y_{t}=\beta X_{t}+\varepsilon_{t}, & \varepsilon_{t} \sim N\left(0, \sigma_{t}^{2}\right) \\
\sigma_{t}^{2}=\omega+\alpha_{1} \varepsilon_{t-1}^{2} & \Rightarrow \sigma^{2}=\frac{\omega}{1-\alpha_{1}}
\end{array}
\]

We need to impose restrictions: \(\omega>0, \alpha_{1}>0, \&\left(1-\alpha_{1}\right)>0\). \(\|\)

\section*{ARCH Models: Leptokurtosis}

Errors may be serially uncorrelated, but they are not independent: There will be volatility clustering, which produces fat tails.

We want to calculate the kurtosis of the errors:
\[
\kappa\left(\varepsilon_{t}\right)=E\left[\varepsilon_{t}^{4}\right] / E\left[\varepsilon_{t}^{2}\right]^{2}
\]

We define standardized errors: \(\quad z_{t}=\frac{\varepsilon_{t}}{\sigma_{t}}\)
They have conditional mean zero and a time invariant conditional variance equal to 1 . That is, zt \(\sim \mathrm{N}(0,1)\).

From the definition of \(z_{t}\) we have: \(\varepsilon_{t}=z_{t} \sigma_{t}\)
Now, we compute the fourth (also central, since \(\mathrm{E}\left[\varepsilon_{t}\right]=0\) ) moment:
\[
E\left[\varepsilon_{t}^{4}\right]=E\left[z_{t}^{4}\right] E\left[\sigma_{t}^{4}\right]
\]

Then, using Jensen's inequality:
\[
\begin{aligned}
E\left[\varepsilon_{t}^{4}\right]= & E\left[z_{t}^{4}\right] E\left[\sigma_{t}^{4}\right]>E\left[z_{t}^{4}\right] E\left[\sigma_{t}^{2}\right]^{2}=E\left[z_{t}^{4}\right] E\left[\varepsilon_{t}^{2}\right]^{2} \\
= & 3 E\left[\varepsilon_{t}^{2}\right]^{2} \\
& \kappa\left(\varepsilon_{t}\right)=E\left[\varepsilon_{t}^{4}\right] / E\left[\varepsilon_{t}^{2}\right]^{2}>3 .
\end{aligned}
\]
where we have used the fact that since \(\mathrm{E}\left[\varepsilon_{t}\right]=0\), then \(\mathrm{E}\left[\varepsilon_{t}^{2}\right]=\mathrm{E}\left[\sigma_{t}^{2}\right]\).
Technical point: It can be shown that for an \(\operatorname{ARCH}(1)\), the \(4^{\text {th }}\) moment for an \(\operatorname{ARCH}(1)\) :
\[
\kappa\left(\varepsilon_{t}\right)=\frac{3\left(1-\alpha^{2}\right)}{1-3 \alpha^{2}} \quad \text { if } 3 \alpha^{2}<1
\]

More convenient, but less intuitive, presentation of the \(\operatorname{ARCH}(1)\) model:
\[
\begin{aligned}
& y_{t}=\gamma X_{t}+\varepsilon_{t} \\
& \varepsilon_{t}=\sigma_{t} v_{t},
\end{aligned} \quad v_{t} \sim D(0,1)
\]
that is, \(v_{t}\) is i.i.d. with mean 0 , and \(\operatorname{Var}\left[v_{t}\right]=1\). Since \(v_{t}\) is i.i.d., then:
\[
E_{t-1}\left[\varepsilon_{t}^{2}\right]=E_{t-1}\left[\sigma_{t}^{2} v_{t}^{2}\right]=E_{t-1}\left[\sigma_{t}^{2}\right] E_{t-1}\left[v_{t}^{2}\right]=\omega+\alpha_{1} \varepsilon_{t-1}^{2}
\]
which delivers the \(\operatorname{AR}(1)\) representation for \(\varepsilon_{t}^{2}\).
Also, if we assume \(v_{t}\) is normally distributed, then
\[
\varepsilon_{t} \sim N\left(0, \sigma_{t}^{2}\right)
\]

\section*{GARCH Model: Bollerslev (1986)}

An early technique to determine \(q\) was to look at the ACF/PACF for squared returns, \(\varepsilon_{t}^{2}\), which usually determined a very large \(q\).

Example: We calculate the ACF and PACF for the squared of the U.S. monthly stock returns (1871-2020).



Note: Highly autocorrelated squared returns. To accommodate the long autocorrelations, we use large \(q\).

This result is not surprising, \(\sigma_{t}^{2}\) is a very persistent process. Persistent processes can be captured with an \(\operatorname{AR}(p)\), where \(p\) is large. This is not efficient.

Following the idea of an ARMA process, we can use a more parsimonious representation of the ARCH model: The Generalized ARCH model or \(\operatorname{GARCH}(\mathrm{q}, \mathrm{p})\) :
\[
\begin{gathered}
\sigma_{t}^{2}=\omega+\sum_{i=1}^{q} \alpha_{i} \varepsilon_{t-j}^{2}+\sum_{j=1}^{p} \beta_{j} \sigma_{t-j}^{2} \\
=\omega+\alpha(L) \varepsilon^{2}+\beta(L) \sigma^{2}
\end{gathered}
\]
which can be shown it is an \(\operatorname{ARMA}(\max (\mathrm{p}, \mathrm{q}), \mathrm{p})\) model for the squared innovations.
Popular GARCH model: \(\operatorname{GARCH}(1,1)\) :
\[
\sigma_{t+1}^{2}=\omega+\alpha_{1} \varepsilon_{t}^{2}+\beta_{1} \sigma_{t}^{2}
\]
with an unconditional variance: \(\operatorname{Var}\left[\varepsilon_{t}^{2}\right]=\sigma^{2}=\omega /\left(1-\alpha_{1}-\beta_{1}\right)\).
\[
\Rightarrow \text { Restrictions: } \omega>0, \alpha_{1}>0, \beta_{1}>0 ;\left(1-\alpha_{1}-\beta_{1}\right)>0
\]

Technical details: This is covariance stationary if all the roots of
\[
\alpha(\mathrm{L})+\beta(\mathrm{L})=1
\]
lie outside the unit circle. For the \(\operatorname{GARCH}(1,1)\) this amounts to
\[
\alpha_{1}+\beta_{1}<1
\]

Question: What should be the order of the GARCH Model?
We should use enough lags to make sure the residuals do not have any more autocorrelation in the square residuals.

If the order of GARCH process is well determined, the ACF/PACF for \(\varepsilon_{t}^{2}\) should show no significant autocorrelations.

We can add lags until the tests for ARCH structure in the squared residuals, discussed later, are not longer significant.
- A \(\operatorname{GARCH}(1,1)\) is a very good starting point.

\section*{GARCH-X}

In the GARCH-X model, exogenous variables are added to the conditional variance equation.
Consider the GARCH(1,1)-X model:
\[
\sigma_{t}^{2}=\omega+\alpha_{1} \varepsilon_{t}^{2}+\beta_{1} \sigma_{t-1}^{2}+\delta f\left(X_{t-1}, \theta\right)
\]
where \(f\left(X_{t}, \theta\right)\) is strictly positive for all \(t\). Usually, \(X_{t}\), is an observed economic variable or indicator, for example, a liquidity index, and \(f(\).\() is a non-linear transformation, which should be\) non-negative.

Examples: We can use 3-mo T-bill rates for modeling stock return volatility, or interest rate differentials between countries to model FX return volatility.

The US congressional budget office uses inflation in an \(\mathrm{ARCH}(1)\) model for interest rate spreads. \(\|\)

\section*{ARCH Estimation: MLE}

All of these models can be estimated by maximum likelihood. First we need to construct the sample likelihood.

Since we are dealing with dependent variables, we use the conditioning trick to get the joint distribution:
\[
\begin{aligned}
f\left(y_{1}, y_{2}, \ldots, y_{T} ; \theta\right)= & f\left(y_{1} \mid x_{1} ; \theta\right) * f\left(y_{2} \mid y_{1}, x_{2}, x_{1} ; \theta\right) * f\left(y_{3} \mid y_{2}, y_{1}, x_{3}, x_{2}, x_{1} ; \theta\right) * \\
& * \ldots * f\left(y_{T} \mid y_{T-1}, \ldots, y_{1}, x_{T-1}, \ldots, x_{1} ; \theta\right) .
\end{aligned}
\]

Taking logs:
\[
\begin{gathered}
\left.L=\log \left(f\left(y_{1}, y_{2}, \ldots, y_{T} ; \theta\right)\right)\right)=\log \left(f\left(y_{1} \mid x_{1} ; \theta\right)\right)+\log \left(f\left(y_{2} \mid y_{1}, x_{2}, x_{1} ; \theta\right)\right. \\
+\ldots+\log \left(f\left(y_{T} \mid y_{T-1}, \ldots, y_{1}, x_{T-1}, \ldots, x_{1} ; \theta\right)\right) \\
=\sum_{t=1}^{T} \log \left(f\left(y_{t} \mid Y_{t-1}, X_{t} ; \theta\right)\right)
\end{gathered}
\]

We maximize this function with respect to the \(k\) mean parameters \((\gamma)\) and the \(m\) variance parameters ( \(\omega, \boldsymbol{\alpha}, \boldsymbol{\beta})\).

Example: ARCH(1) model.
Mean equation: \(\quad y_{t}=\boldsymbol{X}_{t} \boldsymbol{\gamma}+\varepsilon_{t}, \quad \varepsilon_{t} \sim \mathrm{~N}\left(0, \sigma_{t}^{2}\right)\)
Variance equation: \(\quad \sigma_{t}^{2}=\omega+\alpha_{1} \varepsilon_{t-1}^{2}\)
We write the pdf for the normal distribution,
\[
f\left(\varepsilon_{t} \mid \gamma, \omega, \alpha_{1}\right)=\frac{1}{\sqrt{2 \pi \sigma_{t}^{2}}} \exp \left[-\frac{\varepsilon_{t}^{2}}{2 \sigma_{t}^{2}}\right]=\frac{1}{\sqrt{2 \pi \sigma_{t}^{2}}} \exp \left[-\frac{\left(y_{t}-X_{t} \gamma\right)^{2}}{2 \sigma_{t}^{2}}\right]
\]

We form the likelihood \(\mathcal{L}\) (the joint pdf):
\[
\mathcal{L}=\prod_{t=1}^{T} \frac{1}{\sqrt{2 \pi \sigma_{t}^{2}}} \exp \left(-\frac{\varepsilon_{t}^{2}}{2 \sigma_{t}^{2}}\right)=(2 \pi)^{-T / 2} \prod_{t=1}^{T} \frac{1}{\sqrt{\sigma_{t}^{2}}} \exp \left(-\frac{\varepsilon_{t}^{2}}{2 \sigma_{t}^{2}}\right)
\]

We take \(\log\) s to form the \(\log\) likelihood, \(L=\log \mathcal{L}\) :
\[
L=\sum_{t=1}^{T} \log \left(f_{t}\right)=-\frac{T}{2} \log (2 \pi)-\frac{1}{2} \sum_{t=1}^{T} \log \left(\sigma_{t}^{2}\right)-\frac{1}{2} \sum_{t=1}^{T} \varepsilon^{2}{ }_{t} / \sigma_{t}^{2}
\]

Then, we maximize \(L\) with respect to \(\boldsymbol{\theta}=\left(\gamma, \omega, \alpha_{1}\right)\) the function \(L\).
\[
L=-\frac{T}{2} \log (2 \pi)-\frac{1}{2} \sum_{t=1}^{T} \log \left(\omega+\alpha_{1} \varepsilon_{t-1}^{2}\right)-\frac{1}{2} \sum_{t=1}^{T} \varepsilon^{2}{ }_{t} /\left(\omega+\alpha_{1} \varepsilon_{t-1}^{2}\right)
\]

Taking derivatives with respect to \(\boldsymbol{\theta}=\left(\omega, \alpha_{1}, \gamma\right)\), where \(\gamma\) is a vector of \(k\) mean parameters:
\[
\begin{aligned}
& \frac{\partial L}{\partial \omega}=(-1 / 2) \sum_{t=1}^{T} 1 /\left(\omega+\alpha_{1} \varepsilon_{t-1}^{2}\right)-(-1 / 2) \sum_{t=1}^{T} \varepsilon_{t}^{2} /\left(\omega+\alpha_{1} \varepsilon_{t-1}^{2}\right)^{2} \\
& \frac{\partial L}{\partial \alpha_{1}}=(-1 / 2) \sum_{t=1}^{T} \varepsilon_{t-1}^{2} /\left(\omega+\alpha_{1} \varepsilon_{t-1}^{2}\right)-(-1 / 2) \sum_{t=1}^{T} \varepsilon_{t}^{2} \varepsilon_{t-1}^{2} /\left(\omega+\alpha_{1} \varepsilon_{t-1}^{2}\right)^{2} \\
& \frac{\partial L}{\partial \gamma}=-\sum_{t=1}^{T} X_{t}^{\prime} \varepsilon_{t} / \sigma_{t}^{2} \quad \quad(k x 1 \text { vector of derivatives })
\end{aligned}
\]

We form the f.o.c.; that is, we write the first derivative vectors as \(\frac{\partial L}{\partial \theta}\) and, then, set it equal to 0 :
\[
\frac{\partial L}{\partial \boldsymbol{\theta}}=\mathrm{S}(\mathrm{y} t, \boldsymbol{\theta})=0 \quad-\mathrm{a}(k+2) \text { system of equations. }
\]

The vector of first derivatives is called the score vector, \(\mathrm{S}\left(\mathrm{y}_{\mathrm{t}}, \boldsymbol{\theta}\right)\).
Take the last f.o.c., the \(k \times 1\) vector, \(\frac{\partial L}{\partial \gamma}=0\) :
\[
\begin{aligned}
\frac{\partial L}{\partial \gamma} & =-\sum_{t=1}^{T} \boldsymbol{X}_{t}^{\prime} \varepsilon_{t} / \sigma_{t, M L E}^{2}=\sum_{t=1}^{T} \boldsymbol{X}_{t}^{\prime}\left(y_{t}-\boldsymbol{X}_{t} \boldsymbol{\gamma}_{M L E}\right) / \sigma_{t, M L E}^{2}=0 \\
& =\sum_{t=1}^{T} \frac{\boldsymbol{X}_{t}^{\prime}}{\sigma_{t, M L E}}\left(\frac{y_{t}}{\sigma_{t, M L E}}-\frac{\boldsymbol{X}_{t}}{\sigma_{t, M L E}} \boldsymbol{\gamma}_{M L E}\right)=0
\end{aligned}
\]

The last equation shows that MLE is GLS for the mean parameters, \(\gamma\) : each observation is weighted by the inverse of \(\sigma_{t, M L E}\).

We have a \((k+2)\) system. It is a non-linear system. The system is solved using numerical optimization (usually, with the Newton-Raphson method). \(\mathbb{\|}\)

Technical Note: If the conditional density for \(\varepsilon_{t}\) is well specified and \(\theta_{0}\) (the true parameter) belongs to the parameter space, \(\Omega\), then
\[
T^{\frac{1}{2}}\left(\widehat{\theta}-\theta_{0}\right) \rightarrow N\left(0, A_{0}^{-1}\right), \quad \text { where } A_{0}=T^{-1} \sum_{t=1}^{T} \frac{\partial S_{t}\left(y_{t}, \theta_{0}\right)}{\partial \theta}
\]
\(\mathrm{A}_{0}\) is the matrix of second derivatives of the log likelihood, \(L\). It is called the Hessian. In general, it is difficult to numerically compute and make sure it is positive definite (so it can be inverted), especially when the dimensions are big.
- There a lot of computational tricks to compute a Hessian that is invertible, the most popular algorithm is the Broyden-Fletcher-Goldfarb-Shanno, or "BFGS."

\section*{ARCH Estimation: MLE - Standard Errors}

Under the correct specification assumption, \(\mathrm{A}_{0}=\mathrm{B}_{0}\), where
\[
B_{0}=T^{-1} \sum_{t=1}^{T} E\left[S_{t}\left(y_{t}, \theta_{0}\right), S_{t}\left(y_{t}, \theta_{0}\right)^{\prime}\right]
\]

We estimate \(A_{0}\) and \(B_{0}\) by replacing \(\boldsymbol{\theta}_{0}\) by its estimated MLE value, \(\boldsymbol{\theta}_{\text {MLE }}\).
The estimator \(\mathrm{B}_{0}\) has a computational advantage over \(\mathrm{A}_{0}\) : Only first derivatives are needed. But \(\mathrm{A}_{0}=\mathrm{B}_{0}\) only if the distribution is correctly specified. This is very difficult to know in practice.

Common practice in empirical studies: Assume the necessary regularity conditions are satisfied.

\section*{ARCH Estimation: Numerical Optimization}

In general, we have a \((k+m \times k+m)\) system; \(k\) mean parameters and \(m\) variance parameters. But, it is a non-linear system. We use numerical optimization, which are methods that search over the parameter space looking for the values that maximize the log likelihood function.

In R, the function optim does numerical optimization. It minimizes any non-linear function. It needs as inputs:
- Initial values for the parameters, \(\theta_{0}\).
- Function to be minimized (includes the GARCH process).
- Data used.
- Other optional inputs: Choice of method, hessian calculated, etc.

Example: optim(theta0, log_lik_garch11, data=z, method="BFGS", hessian=TRUE) theta \(0=\) initial values
log_lik_garch11 = function to be minimized. ब
- Initial values:
- Numerical optimization needs initial values for \(\theta\), say \(\theta_{0}\). It is very common to find that the optimization is sensitive to the initial values. It is a good practice to try different sets of initial values.

We want to avoid selecting a local maximum:
- Initial values (continuation):
- Numerical optimization needs initial values for \(\theta\), say \(\theta_{0}\). It is very common to find that the optimization is sensitive to the initial values. It is a good practice to try different sets of initial values.

We want to avoid selecting a local maximum:


Figure 9.2 The problem of local optima in maximum likelihood estimation
- Given the autoregressive structure in \(\sigma_{t}^{2}\), and sometimes we have \(\operatorname{AR}(\mathrm{p})\) in the mean, we need to make assumptions about \(\sigma_{0}\) and the \(\varepsilon_{0}, \ldots, \varepsilon_{q}\) (and \(\varepsilon_{0}, \varepsilon_{1}, \ldots, \varepsilon_{\mathrm{p}}\) if we assume an \(\operatorname{AR}(\mathrm{p})\) process for the mean).

Usual assumptions: \(\sigma_{0}=\) unconditional SD; \(\varepsilon_{0}=\varepsilon_{1}=\ldots=\varepsilon_{\mathrm{p}}=0\).
- Alternatively, we can take \(\sigma_{0}\) (and \(\varepsilon_{0}, \varepsilon_{1}, \ldots, \varepsilon_{\mathrm{p}}\) ) as parameters to be estimated (it can be computationally more intensive and estimation can lose power.)
```

ARCH Estimation: MLE - Example (in R)
Log likelihood of AR(1)-GARCH(1,1) Model:
log_lik_garch11<- function(theta, data) {
mu <- theta[1]; rho1 <- theta[2]; omega <- abs(theta[3]); alpha1 <- abs(theta[4]); beta1 <-
abs(theta[5]);
chk0<- (1 - alpha1 - beta1)
r<- ts(data)
n}<-\mathrm{ length(r)
u}<-\mathrm{ vector(length=n); u <- ts(u)
u[1] = 0
for (t in 2:n)
{u[t]=r[t]-mu - rho1*r[t-1]} \# this setup allows for ARMA in
mean
h <- vector(length=n); h <- ts(h)
h[1] = omega/chk0 \# set initial value for h[t] series
if (chk0==0) {h[1]=.000001}
for (t in 2:n)
{h[t] = abs(omega + alpha1*(u[t-1]^2) + beta1*h[t-1])
if (h[t]==0) {h[t]=.00001}} \# check to avoid log(0)
return(-1*\operatorname{sum(- 0.5* log(abs(h[2:n])) - 0.5 * (u[2:n]^2)/abs(h[2:n])))}
}

I use optim to minimize a function, to maximize multiply by -1

```

Example 1: \(\operatorname{GARCH}(1,1)\) model for changes in CHF/USD. We will use R function optim (mln can also be used) to maximize the likelihood function.

PPP_da <-
read.csv("https://www.bauer.uh.edu/rsusmel/4397/ppp_2020_m.csv",head=TRUE,sep=",")
x_chf <- PPP_da\$CHF_USD \# CHF/USD 1971-2020 monthly data
\(\mathrm{T}<\) - length( x _chf)
\(\mathrm{z}<-\log (\mathrm{x}\) _chf[-1]/x_chf[-T])
theta \(0=\mathrm{c}(-0.002,0.026,0.001,0.19,0.71) \quad\) \# initial values
ml_2 \(<-\) optim(theta0, log_lik_garch11, data=z, method="BFGS", hessian=TRUE)
\(\operatorname{logL} \_g 11<-\log\) _lik_garch11(ml_2\$par, z) \# value of log likelihood
\(\operatorname{logL}\) _g11
ml_2\$par \# estimated parameters
I_V̄ar_m2 <- ml_2\$hessian
eigen(I_Var_m2) \# check if Hessian is pd.
sqrt(diag(solve(I_Var_m2)))
\# parameters SE
chf_usd <- ts(z, frequency=12, start=c(1971,1))
plot.ts(chf_usd) \# time series plot of data
\(>\operatorname{logL}\) g11 \# Log likelihood value
[1]-1745.197
\(>\) ml_2\$par \# Extract from ml_2 function parameters
[1]-0.0021051742 0.02600036100 .000123750 .19002765190 .7100718082
```

> I_Var_m2 <- ml_2\$hessian \# Extract Hessian (matrix of 2nd
derivatives)
> eigen(I_Var_m2) \# Check if Hessian is pd to invert.
eigen() decomposition
\$values \# Eigenvalues: if positives => Hessian is pd
[1] 1.687400e+08 6.954454e+05 7.200084e+03 5.120984e+02 2.537958e+02
$vectors
[,1] [,2] [,3]
[,5]
[1,] 4.265907e-05 9.999960e-01 -0.0011397586 0.0018331957-0.0018541203
[2,] -3.333961e-06 -2.188159e-03 -0.0010048203 0.9769058449-0.2136566699
[3,] 9.999998e-01 -4.223001e-05 -0.0003544245 0.0001291633 0.0005770707
[4,] -3.599974e-06 -1.702277e-03 -0.8603563865 -0.1097470278-0.4977344477
[5,]-6.893837e-04 6.416141e-04 -0.5096905472 0.1833226197 0.8405994743
> sqrt(diag(solve(I_Var_m2))) # Invert Hessian:
Parameters Var on diag
[1] 1.203690e-03 4.419049e-02 7.749756e-05 5.014454e-02 3.955411e-02
> t_stats <- ml_2$par/sqrt(diag(solve(I_Var_m2)))
> t_stats
[1]-1.7489333 0.5883701 1.5967743 3.7895984 17.9519078

```

Summary for CHF/USD changes
\[
\begin{array}{cc}
\mathrm{e}_{\mathrm{f}, \mathrm{t}}=\left[\log \left(\mathrm{S}_{\mathrm{t}}\right)-\log \left(\mathrm{S}_{\mathrm{t}-1}\right)\right]=\mathrm{a}_{0}+\mathrm{a}_{1} \mathrm{e}_{\mathrm{f}, \mathrm{t}-1}+\varepsilon_{t}, & \varepsilon_{t} \mid I_{t} \sim \mathrm{~N}\left(0, \sigma_{t}^{2}\right) \\
\sigma_{t}^{2}=\omega+\alpha_{1} \varepsilon_{t-1}^{2}+\beta_{1} \sigma_{t-1}^{2}
\end{array}
\]
- T: 562 (January 1971 - July 2020, monthly).

The estimated model for eff, is given by:
\(\mathrm{eff}_{\mathrm{t}, \mathrm{t}}=\underset{(.0012)}{-0.00211}+\underset{(0.044)}{0.02600}\) ef,t-1,
\(\sigma_{t}^{2}=0.00012+0.19003 \varepsilon_{t-1}^{2}+0.71007 \sigma_{t-1}^{2}\).
(0.00096)* (0.050)* (0.040)*

Unconditional \(\sigma^{2}=0.00012 /(1-0.19003-0.71007)=0.001201201\) Log likelihood: 1745.197
Note: \(\alpha_{1}+\beta_{1}=.90<1 . \quad\) (Persistent.) ๆ


Example 2: Using Robert Shiller's monthly data set for the S\&P 500 (1871:Jan - 2020:Aug, \(\mathrm{T}=1,795\) ), we estimate an \(\operatorname{AR}(1)-\operatorname{GARCH}(1,1)\) model:
\[
\begin{aligned}
& \mathrm{r}_{\mathrm{t}}=\left[\log \left(\mathrm{P}_{\mathrm{t}}\right)-\log \left(\mathrm{P}_{\mathrm{t}-1}\right)\right]=\mathrm{a}_{0}+\mathrm{a}_{1} \mathrm{r}_{\mathrm{t}-1}+\varepsilon_{t}, \quad \varepsilon_{t} \mid I_{\mathrm{t}-1} \sim \mathrm{~N}\left(0, \sigma_{t}^{2}\right) \\
& \sigma_{t}^{2}=\omega+\alpha_{1} \varepsilon_{t-1}^{2}+\boldsymbol{\beta}_{1} \sigma_{t-1}^{2}
\end{aligned}
\]

The estimated model for st is given by:
\begin{tabular}{rll}
\(\mathrm{r}_{\mathrm{t}}=\) & \begin{tabular}{l}
0.338 \\
\((.08)^{*}\)
\end{tabular} & \begin{tabular}{l}
\(+0.278 \mathrm{r}_{\mathrm{r}-1}\), \\
\((0.025)^{*}\)
\end{tabular} \\
\(\sigma_{t}^{2}=\) & \(0.756+\) \\
\((0.151)^{*}\)
\end{tabular}\(\quad\)\begin{tabular}{l}
\(0.126 \varepsilon_{t-1}^{2}+\) \\
\((0.017)^{*}\)
\end{tabular}

Unconditional \(\sigma^{2}=0.756 /(1-0.126-\quad 0.826)=15.4630\)
Log likelihood: 4795.08
Note: \(\alpha_{1}+\beta_{1}=\mathbf{. 9 5 2}<1 . \quad\) (Very persistent.)


Above, we plot the time-varying variance. Certain events are clearly different, for example, the 1930 great depression, with a peak variance of 282 (18 times unconditional variance!). The covid-19 volatility similar to the 2008-2009 financial crisis recession. ब

\section*{GARCH: Forecasting and Persistence}

Consider the forecast in a \(\operatorname{GARCH}(1,1)\) model:
\[
\sigma_{t+1}^{2}=\omega+\alpha_{1} \varepsilon_{t}^{2}+\beta_{1} \sigma_{t}^{2}=\omega+\sigma_{t}^{2}\left(\alpha_{1} z_{t}^{2}+\beta_{1}\right) \quad\left(\varepsilon_{t}^{2}=\sigma_{t}^{2} z_{t}^{2}\right)
\]

Taking expectation at time t
\[
E_{t}\left[\sigma_{t+1}^{2}\right]=\omega+\sigma_{t}^{2}\left(\alpha_{1} 1+\beta_{1}\right)
\]

Then, by repeated substitutions:
\[
E_{t}\left[\sigma_{t+j}^{2}\right]=\omega *\left[\sum_{i=0}^{j-1}\left(\alpha_{1}+\beta_{1}\right)^{i}\right]+\sigma_{t}^{2}\left(\alpha_{1}+\beta_{1}\right)^{j}
\]

Assuming \(\left(\alpha_{1}+\beta_{1}\right)<1\), as \(\mathrm{j} \rightarrow \infty\), the forecast reverts to the unconditional variance:
\[
\sigma^{2}=\omega /\left(1-\alpha_{1}-\beta_{1}\right) .
\]

When \(\alpha_{1}+\beta_{1}=1\), today's volatility affect future forecasts forever:
\[
E_{t}\left[\dot{\sigma}_{t+j}^{2}\right]=\sigma_{t}^{2}+j \omega
\]

Example 1: We want to forecast next month (September 2020) variance for CHF/USD changes.
Recall we estimated \(\sigma_{t}^{2}\) :
\[
\sigma_{t}^{2}=0.00012+0.19003 \varepsilon_{t-1}^{2}+0.71007 \sigma_{t-1}^{2} .
\]
getting \(\sigma_{2020: 9}^{2}=0.003672220 \quad\left(=\sigma_{2020: 9}=\operatorname{sqrt}(0.00367)=6.1 \%\right)\)
We based the \(\sigma_{2020: 10}^{2}\) forecast on:
\[
E_{t}\left[\sigma_{t+j}^{2}\right]=\omega *\left[\sum_{i=0}^{j-1}\left(\alpha_{1}+\beta_{1}\right)^{i}\right]+\sigma_{t}^{2}\left(\alpha_{1}+\beta_{1}\right)^{j}
\]

Then, \(\left(\alpha_{1}+\beta_{1}\right)=0.190+0.710=0.900\)
\[
E_{2020: 9}\left[\sigma_{2020: 10}^{2}\right]=0.00012+\mathbf{0 . 0 0 3 6 7} *(\mathbf{0 . 9})=\mathbf{0 . 0 0 3 4 2 3}
\]

We also forecast \(\sigma_{2020: 12}^{2}\)
\[
E_{2020: 9}\left[\sigma_{2020: 12}^{2}\right]=0.00012 *\left\{1+(0.9)+(0.9)^{2}\right\}+0.00367 *(0.9)^{3}=0.00300063
\]

We forecast volatility for March 2021:
\[
\begin{aligned}
E_{2020: 6}\left[\sigma_{2021: 03}^{2}\right] & =0.00012 *\left\{1+(0.9)+(0.9)^{2}+\ldots+(0.9)^{5}\right\}+0.00367 *(0.9)^{6} \\
& =0.002512659
\end{aligned}
\]

Remark: We observe that as the forecast horizon increases \((\mathrm{j} \rightarrow \infty)\), the forecast reverts to the unconditional variance:
\[
\begin{aligned}
& \omega /\left(1-\alpha_{1}-\beta_{1}\right)=0.00012 /(1-0.9)=0.0012 \\
& \Rightarrow \sigma=\operatorname{sqrt}(0.0012)=0.0346 \quad(3.46 \% \approx \text { close to sample } \mathrm{SD}=
\end{aligned}
\]
\(3.36 \%)\).
Example 2: On August 2020, we forecast the December's variance for the S\&P500 changes.
Recall we estimated \(\sigma_{t}^{2}\) :
\[
\sigma_{t}^{2}=0.756+0.125 \varepsilon_{t-1}^{2}+0.826 \sigma_{t-1}^{2}
\]
getting \(\sigma_{2020: 8}^{2}=43.037841\)
We based the \(\sigma_{2020: 12}^{2}\) forecast on:
\[
E_{t}\left[\sigma_{t+j}^{2}\right]=\omega *\left[\sum_{i=0}^{j-1}\left(\alpha_{1}+\beta_{1}\right)^{i}\right]+\sigma_{t}^{2}\left(\alpha_{1}+\beta_{1}\right)^{j}
\]

Then, since \(\left(\alpha_{1}+\beta_{1}\right)=0.952\)
\[
\begin{aligned}
E_{2020: 8}\left[\sigma_{2020: 12}^{2}\right] & =0.756 *\left\{1+(0.952)+(0.952)^{2}+(0.952)^{3}\right\}+ \\
& +\mathbf{4 3 . 0 3 7 8 4 1} *(0.952)^{4}=38.02797
\end{aligned}
\]

Lower variance forecasted for the end of the year, but still far from the unconditional variance of 15.4. \(\|\)

\section*{GARCH: Forecasting - Application to VaR}

Example: In September 2020, Swiss Cruises wants to construct a VaR-mean for the USD 1 M receivable in 30 days (October). Data
Receivable: USD 1 M
\(\mathrm{S}_{\mathrm{t}=2020: 9}=1.45 \mathrm{CHF} / \mathrm{USD}\)
\(\mathrm{e}_{\mathrm{f}, \mathrm{t}=2020: 9}=\mathbf{0 . 0 1 9 3 4 1 2 6}\)
\(\mathrm{TE}_{\mathrm{t}=2020: 9}=\mathrm{USD} 1 \mathrm{M} * 1.45 \mathrm{CHF} / \mathrm{USD}=\) CHF 1.45M.
\(E_{2020: 9}\left[\sigma_{2020: 10}^{2}\right]=\mathbf{0 . 0 0 3 4 2 3} \Rightarrow \operatorname{sqrt}(\mathbf{0 . 0 0 3 4 2 3})=0.05851(5.85 \%)\)
\(\operatorname{VaR}-\operatorname{mean}(.99)=\) CHF 1.45M \(*\left\{E_{2020: 9}\left[e_{f, t=2020: 10}\right]-2.33 * \operatorname{sqrt}\left(E_{2020: 9}\left[\sigma_{2020: 10}^{2}\right]\right)\right\}\)
\(\begin{aligned} E_{2020: 9}\left[e_{f, t=2020: 10}\right] & =-0.00211+0.026 * e_{f, t=2020: 9} \\ & =-0.00211+0.026 * 0.01934126=-\mathbf{0 . 0 0 1 6 0 7}\end{aligned}\)
\(\operatorname{VaR}-\operatorname{mean}(.99)=\) CHF 1.45M * (-0.001607-2.33 * \(\operatorname{sqrt}(\mathbf{0 . 0 0 3 4 2 3}))\)
\[
=\text { CHF -0.1999941 M }
\]

Interpretation of VaR-mean: Relative to today's valuation (or expected valuation, according to RWM), the maximum expected loss with a \(99 \%\) "chance" is CHF -0.20 M.

We also derive this value, using the sample mean and sample SD:
sample mean \(=\mathbf{- 0 . 0 0 2 5 9}\)
sample \(\mathrm{SD}=\mathbf{0 . 0 3 3 3 5 7}\)
\[
\begin{aligned}
\Rightarrow \operatorname{VaR}-m e a n(.99) & =\text { CHF 1.45M } * *(-0.00259-2.33 * 0.033357)= \\
& =\text { CHF }-\mathbf{0 . 1 1 6 4 4 9 1}
\end{aligned}
\]

Remark: The GARCH forecast reflects the higher than average uncertainty in 2020:9 (Covid-19, presidential elections). \(\mathbb{I}\)

\section*{GARCH: Rugarch Package}

GARCH estimation requires numerical optimization, which is dependent on initial values. The R package does a good job at estimating ARMA-GARCH models, allowing for different models and performing a lot of specification tests.

You need to specify the model ("specs") first, for example, you want to estimate an AR(1)\(\operatorname{GARCH}(1,1)\) with a constant in the mean. Then, you estimate the model with the ugarchfit command.

Example: We estimate an \(\operatorname{AR}(1)-\operatorname{GARCH}(1,1)\) for the historical U.S. monthly returns (18712020, \(T=1,797\) ).
```

x <- lr_p \# SP500 long run monthly returns
library(rugarch) \# You need to install package first!
mod_gar <- ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1, 1)),
mean.model = list(armaOrder =c(1,0), include.mean = TRUE))
ar1_garch11 <- ugarchfit(spec=mod_gar, data=lr_p)

```
\(>\) ar1 garch11
*---------------------------------*
* GARCH Model Fit *
*---------------------------------*

Conditional Variance Dynamics
```

GARCH Model : sGARCH(1,1)

```

Mean Model : ARFIMA(1,0,0)
Distribution : norm
Optimal Parameters
\begin{tabular}{lllll} 
& Estimate & \multicolumn{3}{c}{ Std. Error t value \(\operatorname{Pr}(>|\mathrm{t}|)\)} \\
mu & 0.004695 & 0.001052 & 4.4651 & \(8 \mathrm{e}-06\) \\
ar1 & 0.277567 & 0.025120 & \(\mathbf{1 1 . 0 4 9 6}\) & \(0 \mathrm{e}+00\) \\
omega & 0.000075 & 0.000015 & \(\mathbf{4 . 8 9 6 8}\) & \(1 \mathrm{e}-06\) \\
alpha1 & 0.126715 & 0.017529 & \(\mathbf{7 . 2 2 8 9}\) & \(0 \mathrm{e}+00\) \\
beta1 & 0.826194 & 0.020600 & \(\mathbf{4 0 . 1 0 6 1}\) & \(0 \mathrm{e}+00\)
\end{tabular}

Robust Standard Errors:
Estimate Std. Error \(t\) value \(\operatorname{Pr}(>|t|)\)
\(\mathrm{mu} \quad 0.004695 \quad 0.0011454 .10180 .000041\)
ar1 \(0.277567 \quad 0.022948 \mathbf{1 2 . 0 9 5 7} 0.000000\)
omega \(0.000075 \quad 0.000021\) 3.6307 0.000283
alpha1 \(0.126715 \quad 0.026943 \quad 4.70310 .000003\)
beta1 \(0.826194 \quad 0.02840929 .08210 .000000\)
LogLikelihood : \(\mathbf{3 4 7 2 . 3 6 1}\)
Information Criteria

Akaike -3.8591
Bayes -3.8438
Shibata -3.8591
Hannan-Quinn -3.8534
Weighted Ljung-Box Test on Standardized Residuals
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{} \\
\hline \multicolumn{3}{|l|}{\(\begin{array}{lc} & \text { statistic p-value } \\ \mathrm{Lag}[1] & 0.31780 .57294\end{array}\)} \\
\hline \(\operatorname{Lag}[2 *(p+q)+(p+q)-1][2]\) & 2.54410 .08393 & \\
\hline \[
\begin{aligned}
& \operatorname{Lag}[4 *(p+q)+(p+q)-1][5] \\
& \text { d.o. } f=1
\end{aligned}
\] & 6.92100 .02072 & \(\Rightarrow\) Need to add more lags in mean. \\
\hline \multicolumn{3}{|l|}{H0 : No serial correlation} \\
\hline \multicolumn{3}{|l|}{Weighted Ljung-Box Test on Standardized Squared Residuals} \\
\hline & p-value & \\
\hline \(\operatorname{Lag}[1] \quad 0.1\) & 0.6617 & \\
\hline \(\operatorname{Lag}[2 *(p+q)+(p+q)-1][5]\) & 1.13530 .8284 & \\
\hline \(\operatorname{Lag}[4 *(p+q)+(p+q)-1][9]\) & 1.61610 .9455 & \(\Rightarrow\) No evidence of extra ARCH lags. \\
\hline
\end{tabular}

\section*{IGARCH}

Recall the technical detail: The standard GARCH model:
\[
\sigma_{t}^{2}=\omega+\alpha(L) \varepsilon^{2}+\beta(L) \sigma^{2}
\]
is covariance stationary if \(\alpha(1)+\beta(1)<1\).
But strict stationarity does not require such a stringent restriction
In the \(\operatorname{GARCH}(1,1)\) model, if \(\alpha_{1}+\beta_{1}=1\), we have the Integrated GARCH (IGARCH) model.
In the IGARCH model, the autoregressive polynomial in the ARMA representation has a unit root: a shock to the conditional variance is "persistent."

Variance forecasts are generated with: \(E_{t}\left[\sigma_{t+j}^{2}\right]=\sigma_{t}^{2}+j \omega\)
\(\Rightarrow\) today's variance remains important for all future forecasts. This is persistence!
Variance forecasts are generated with: \(E_{t}\left[\sigma_{t+j}^{2}\right]=\sigma_{t}^{2}+j \omega\)
That is, today's variance remains important for future forecasts of all horizons.
In practice (see previous Example 2 for the \(S \& P 500\) data), it is often found that \(\alpha_{1}+\beta_{1}\) are close to 1 .

\section*{GARCH: Variations - GARCH-in-mean}

The time-varying variance affects mean returns:
Mean equation:
\[
\begin{aligned}
& y_{t}=X_{t} \gamma+\delta \sigma_{t}^{2}+\varepsilon_{t}, \quad \varepsilon_{t} \sim \mathrm{~N}\left(0, \sigma_{t}^{2}\right) \\
& \sigma_{t}^{2}=\omega+\alpha_{1} \varepsilon_{t-1}^{2}+\beta_{1} \sigma_{t-1}^{2}
\end{aligned}
\]

Variance equation:
We have a dynamic mean-variance relations. It describes a specific form of the risk-return tradeoff.

Finance intuition says that \(\delta\) has to be positive and significant. However, in empirical work, it does not work well: \(\delta\) is not significant or negative.

\section*{GARCH: Variations - Asymmetric GJR}

GJR-GARCH model - Glosten, Jagannathan \& Runkle (JF, 1993):
\[
\sigma_{t}^{2}=\omega+\sum_{i=1}^{q} \alpha_{i} \varepsilon_{t-i}^{2}+\sum_{i=1}^{q} \gamma_{i} \varepsilon_{t-i}^{2} * I_{t-i}+\sum_{j=1}^{p} \beta_{j} \sigma_{t-j}^{2}
\]
where \(I_{t-1}=1 \quad\) if \(\varepsilon_{t-1}<0\);
\[
=0 \quad \text { otherwise }
\]

Using the indicator variable \(I_{t-i}\), this model captures sign (asymmetric) effects in volatility: Negative news \(\left(\varepsilon_{t-1}<0\right)\) increase the conditional volatility (leverage effect).

The GARCH \((1,1)\) version:
\[
\sigma_{t}^{2}=\omega+\alpha_{1} \varepsilon_{t-1}^{2}+\gamma_{1} \varepsilon_{t-1}^{2} I_{t-1}+\beta_{1} \sigma_{t-1}^{2}
\]
where \(I_{t-1}=1 \quad\) if \(\varepsilon_{t-1}<0\);
\[
=0 \quad \text { otherwise }
\]

When
\[
\begin{array}{ll}
\varepsilon_{t-1}<0 & \Rightarrow \sigma_{t}^{2}=\omega+\left(\alpha_{1}+\gamma_{1}\right) \varepsilon_{t-1}^{2}+\beta_{1} \sigma_{t-1}^{2} \\
\varepsilon_{t-1}>0 & \Rightarrow \sigma_{t}^{2}=\omega+\alpha_{1} \varepsilon_{t-1}^{2}+\beta_{1} \sigma_{t-1}^{2}
\end{array}
\]

This is a very popular variation of the GARCH models. The leverage effect is significant.
There is another variation, the Exponential GARCH, or EGARCH, that also captures the asymmetric effect of negative news on the conditional variance.

\section*{GARCH: Variations - NARCH}

Non-linear ARCH model NARCH - Higgins and Bera (1992) and Hentschel (1995).
These models apply the Box-Cox-type transformation to the conditional variance:
\[
\sigma_{t}^{\gamma}=\omega+\sum_{i=1}^{q} \alpha_{i}\left|\varepsilon_{t-i}-\kappa\right|^{\gamma}+\sum_{j=1}^{p} \beta_{j} \sigma_{t-j}^{\gamma}
\]

Special case: \(\gamma=2\) (standard GARCH model).
Note: The variance depends on both the size and the sign of the variance which helps to capture leverage type (asymmetric) effects.

\section*{ARCH Estimation: MLE - Regularity Conditions}

Technical Note: The appeal of MLE is the optimal properties of the resulting estimators under ideal conditions. However, these ideal conditions, which are called "regularity conditions," are difficult to verify for ARCH models

\section*{- Block-diagonality}

In many applications of ARCH models, the parameters can be partitioned into mean parameters, \(\theta_{1}\), and variance parameters, \(\theta_{2}\). Thus, the Information matrix ( \(\approx\) Hessian) is block-diagonal.

Not a bad result:
- Regression can be consistently done with OLS.
- Asymptotically efficient estimates for the ARCH parameters can be obtained on the basis of the OLS residuals.

But:
- Conventional OLS standard errors could be terrible.
- When testing for autocorrelation, in the presence of ARCH, the conventional Bartlett s.e. \(-T\)
\({ }^{1 / 2}\) - could seriously underestimate the true standard errors.

\section*{ARCH Estimation: Non-Normality}

The basic GARCH model allows a certain amount of leptokurtosis. It is often insufficient to explain real world data.

Solution: Assume a distribution, other than the normal, that can produce fatter tails in the distribution.
- \(t\) Distribution - Bollerslev (1987)

The \(t\) distribution has a degrees of freedom parameter which allows greater kurtosis. The likelihood function for observation \(t\) is:
\[
l_{t}=\ln \left(\Gamma(0.5(v+1)) \Gamma(0.5 v)^{-1}(v-2)^{-1 / 2}\left(1+z_{t}(v-2)^{-1}\right)^{-(v+1) / 2}\right)-0.5 \ln \left(\sigma_{t}^{2}\right)
\]
where \(\Gamma\) is the gamma function and \(v\) is the degrees of freedom. As \(v \rightarrow \infty\), this tends to the normal distribution.

\section*{ARCH: Testing}

Standard BP test, where we test \(\mathrm{H}_{0}: \alpha_{1}=\alpha_{2}=\ldots=\alpha_{q}=0\).
Steps:
- Step 1. (Same as BP's Step 1). Run OLS on DGP:
\[
\mathrm{y}=\mathrm{X} \beta+\varepsilon . \quad \text { Keep residuals, } \mathrm{e}_{\mathrm{t}} .
\]
- Step 2. (Auxiliary Regression). Regress \(e_{t}{ }^{2}\) on \(e_{t-1}{ }^{2}\), ...., \(e_{t-q}{ }^{2}\)
\[
\mathrm{e}_{\mathrm{t}}^{2}=\alpha_{0}+\alpha_{1} \mathrm{e}_{\mathrm{t}-1}^{2}+\ldots .+\alpha_{m} \mathrm{e}_{\mathrm{t}-\mathrm{q}}{ }^{2}+\mathrm{v}_{\mathrm{t}} . \quad \text { Keep } \mathrm{R}^{2} \text {, say } R_{e 2}^{2} .
\]
- Step 3. Compute the statistic:
\[
\mathrm{LM}=(T-q) R_{e 2}^{2} \xrightarrow{d} \chi_{q}^{2} .
\]

Example: We do an ARCH Test with 4 lags, for the AR(1) residuals of log changes in the CHF/USD ( \(T=593\) ):
yyy <- z;
\(\mathrm{T}<-\) length(yyy)
\(x x \_1<-z[-T]\)
yy \(<-\mathrm{z}[-1]\)
fit2 \(<-\operatorname{lm}\left(y y \sim x x \_1-1\right)\)
res_d \(<\) - fit2\$residuals \# Step 1: extract residuals
p_lag <- 4
e2_lag <- matrix ( 0, T-p_lag, p_lag) \# matrix to put lag e^2
resid_r2 \(<-\) res_d \({ }^{\wedge} 2\)
\(\mathrm{a}<-1\)
while ( \(\mathrm{a}<=\mathrm{p}\) _lag ) \{
e2_lag[,a] <- resid_r2[a:(T-p_lag+a-1)]
\(a<-a+1\)
\}
fit_lm2 <-1m(resid_r2[(p_lag+1):T] ~ e2_lag) \# Step 2: Auxiliary Regression
r2_el <- summary(fit_lm2)\$r.squared \# extract R^2
lm_t <- (T-p_lag)*r2_e1 \# LM test: Sample size * R^2
\(>\operatorname{lm}_{\text {t }}\) t
[1] \(\mathbf{1 7 . 0 8 1 9 5} \quad \Rightarrow\) Reject \(\mathrm{H}_{0}(\mathrm{No} A R C H)\) with a p-value of 0.001. ब

ARCH: Testing - Ignoring ARCH
In ARCH Models, testing as usual: LR, Wald, and LM tests. Suppose ARCH is detected, but ARCH is ignored. What are the consequences of ignoring ARCH?
- Ignoring ARCH
- Suppose \(y_{t}\) has an AR structure:
\[
\mathrm{y}_{\mathrm{t}}=\gamma_{0}+\phi_{1} \mathrm{y}_{\mathrm{t}-1}+\varepsilon_{\mathrm{t}}, \quad \quad \varepsilon_{\mathrm{t}} \mid I_{\mathrm{t}-1} \sim \mathrm{~N}\left(0, \sigma_{\mathrm{t}}^{2}\right) .
\]
with ARCH structure in the error term, but ARCH is ignored. Then, we fit the AR(1) model using OLS.
- Simulations find that OLS t-test with no correction for ARCH spuriously reject \(\mathrm{H}_{0}: \phi_{1}=0\) with arbitrarily high probability for sufficiently large \(T\).
- If White's (1980) SE are used, the results are better. NW SE help less.

Figure. From Hamilton (2008). Fraction of samples in which OLS \(t\)-test leads to rejection of \(\mathrm{H}_{0}\) : \(\phi_{1}=0\) as a function of \(T\) for regression with Normal errors (solid blue line) and Student's \(t\) errors (dashed green line).

Note: \(\mathrm{H}_{0}\) is actually true \& the \(t\)-test is evaluated at the \(5 \%\) level.


\section*{ARCH: Which Model to Use}

Questions
1) Lots of ARCH models. Which one to use?
2) Choice of \(p\) and \(q\). How many lags to use?

Hansen and Lunde (2004) compared lots of ARCH models:
- It turns out that the \(\operatorname{GARCH}(1,1)\) is a great starting model.
- Add a leverage effect for financial series and it's even better.
- A \(t\)-distribution is also a good addition.

\section*{RV Models: Intuition}

The idea of realized volatility is to estimate the latent (unobserved) variance using the realized data, without any modeling. Recall the definition of sample variance:
\[
s^{2}=\frac{1}{(T-1)} \sum_{i=1}^{T}\left(x_{i}-\bar{x}\right)^{2}
\]

Suppose we want to calculate the daily variance for stock returns. We know how to compute it: we use daily information, for \(T\) days, and apply the above definition.

Alternatively, we use hourly data for the whole day (with \(k\) hours). Since hourly returns are very small, ignoring \(\overline{\boldsymbol{x}}\) seems OK. We use \(r_{t, \boldsymbol{i}}^{2}\) as the \(i^{\text {th }}\) hourly variance on day \(t\). Then, we add \(r_{t, i}^{2}\) over the day:
\[
\text { Variance }_{t}=\sum_{i=1}^{k} r_{t, i}^{2}
\]

In more general terms, we use higher frequency data to estimate a lower frequency variance:
\[
R V_{t}=\sum_{i=1}^{k} r_{t, i}^{2}
\]
where \(r_{t, i}\) is the realized returns in (higher frequency) interval \(i\) of the (lower frequency) period \(t\).
We estimate the \(t\)-frequency variance, using \(k i\)-intervals. If we have daily returns and we want to estimate the monthly variance, then, \(k\) is equal to the number of days in a month.

It can be shown that as the interval \(i\) becomes smaller \((i \rightarrow 0)\),
\[
R V_{t} \rightarrow \text { Return Variation }[t-1, t] .
\]

That is, with an increasing number of observations we get an accurate measure of the latent variance.

\section*{RV Models: High Frequency}

Note that RV is a model-free measure of variation-i.e., no need for ARCH-family specifications. The measure is called realized variance (RV). The square root of the realized variance is the realized volatility ( \(\mathrm{RVol}, \mathrm{RealVol}\) ):
\[
R V o l_{t}=\operatorname{sqrt}\left(R V_{t}\right)
\]

Given the previous theoretical result, RV is commonly used with intra-daily data, called high frequency (HF) data.

It lead to a revolution in the field of volatility, creating new models and new ways of thinking about volatility and how to model it.

We usually associate realized volatility with an observable proxy of the unobserved volatility.

\section*{RV Models: High Frequency - Tick Data}

As mentioned above, the theory behind realized variation measures dictates that the sampling frequency, or \(k\) in the \(R V_{t}\) formula above, goes to \(\infty\). Then, use the highest frequency available, say millisecond to millisecond returns.

Intra-daily data applications are the most common. But, when using intra-daily data, RV calculations are affected by microstructure effects: bid-ask bounce, infrequent trading, calendar effects, etc. \(r_{t, i}\) does not look uncorrelated.

Example: The bid-ask bounce induces serial correlation in intra-day returns, which biases \(\mathrm{RV}_{\mathrm{t}}\).
The usual solutions:
(1) Filter data using an ARMA model to get rid of the autocorrelations and/or dummy variables to get rid of calendar effects.

Then, used the filtered data to compute \(\mathrm{RV}_{\mathrm{t}}\).
(2) Sample at frequencies where the impact of microstructure effects is minimized and/or eliminated.

We will follow solution (2).

\section*{RV Models: High Frequency - Practice}

In intra-daily RV estimation, it is common to use 10 ' intervals. They have good properties. However, there are estimations with 1 ' intervals.

Some studies suggest using an optimal frequency, where optimal frequency is the one that minimizes the MSE.

Hansen and Lunde (2006) find that for very liquid assets, such as the S\&P 500 index, a 5, sampling frequency provides a reasonable choice. Thus, to calculate daily RV, we need to add 78 five-minute intervals.

Example: Based on TAQ (Trade and Quote) NYSE data, we use 5' realized returns to calculate \(30^{\prime}\) variances -i.e., we use six \(5^{\prime}\) intervals. Then, the \(30^{\prime}\) variance, or \(\mathrm{RV}_{\mathrm{t}=30-\mathrm{min}}\), is:
\[
R V_{t=30-\min }=\sum_{j=1}^{k=6} r_{t, j}^{2}, \quad t=1,2, \ldots, T=15
\]
\(\mathrm{r}_{\mathrm{t}, \mathrm{j}}\) is the \(5^{\prime}\) return during the \(\mathrm{j}^{\text {th }}\) interval on the half hour t . Then, we calculate \(30^{\prime}\) ' variances for the whole day -i.e., we calculate 13 variances, since the trading day goes from 9:30 AM to 4:00 PM.

The Realized Volatility, RVol, is:
\[
R \text { Vol }_{t=30-\min }=\sqrt{R V_{t=30-\min }}
\]

Example: Below, we show the first transaction of the SPY TAQ (Trade and Quote) data (tick-by-tick trade data) on January 2, 2014.
\begin{tabular}{|l|l|l|l|l|}
\hline SYMBOL & DATE & TIME & PRICE & SIZE \\
\hline SPY & 20140102 & \(9: 30: 00\) & 183.98 & 500 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline SPY & 20140102 & \(9: 30: 00\) & 183.98 & 500 \\
\hline SPY & 20140102 & \(9: 30: 00\) & 183.98 & 200 \\
\hline SPY & 20140102 & \(9: 30: 00\) & 183.98 & 500 \\
\hline SPY & 20140102 & \(9: 30: 00\) & 183.98 & 1000 \\
\hline SPY & 20140102 & \(9: 0: 00\) & 183.98 & 1000 \\
\hline SPY & 20140102 & \(9: 30: 00\) & 183.98 & 800 \\
\hline SPY & 20140102 & \(9: 30: 00\) & 183.98 & 100 \\
\hline SPY & 20140102 & \(9: 30: 00\) & 183.98 & 100 \\
\hline SPY & 20140102 & \(9: 30: 00\) & 183.97 & 200 \\
\hline SPY & 20140102 & \(9: 30: 00\) & 183.98 & 100 \\
\hline SPY & 20140102 & \(9: 30: 00\) & 183.97 & 200 \\
\hline SPY & 20140102 & \(9: 30: 00\) & 183.98 & 1000 \\
\hline SPY & 20140102 & \(9: 30: 00\) & 183.97 & 100 \\
\hline SPY & 20140102 & \(9: 30: 00\) & 183.98 & 1000 \\
\hline SPY & 20140102 & \(9: 30: 00\) & 183.98 & 2600 \\
\hline SPY & 20140102 & \(9: 30: 00\) & 183.98 & 1000 \\
\hline SPY & 20140102 & \(9: 30: 00\) & 183.97 & 400 \\
\hline
\end{tabular}

Example: Below, we show the first transaction of the AAPL TAQ (Trade and Quote) data (tick-by-tick quote data) on January 2, 2014: 4 AM
\begin{tabular}{lllllllll} 
SYMBOL DATE & TIME & BID & OFR & BIDSIZ & OFRSIZ & MODE & EX \\
AAPL & \(201401024: 00: 00\) & 455.39 & 0 & 1 & 0 & 12 & T \\
AAPL & \(201401024: 00: 00\) & 553.5 & 558 & 2 & 2 & 12 & P \\
AAPL & \(201401024: 00: 01\) & 455.39 & 561.02 & 1 & 2 & 12 & T \\
AAPL & \(201401024: 00: 45\) & 552.1 & 558 & 1 & 2 & 12 & P \\
AAPL & \(201401024: 00: 51\) & 552.1 & 558.4 & 1 & 2 & 12 & P \\
AAPL & \(201401024: 00: 51\) & 552.1 & 558.8 & 1 & 2 & 12 & P \\
AAPL & \(201401024: 00: 51\) & 552.1 & 559 & 1 & 1 & 12 & P \\
AAPL & \(201401024: 01: 14\) & 553 & 559 & 1 & 1 & 12 & P \\
AAPL & \(201401024: 01: 30\) & 553.01 & 561.02 & 1 & 2 & 12 & T \\
AAPL & \(201401024: 01: 43\) & 553.01 & 559 & 1 & 1 & 12 & T \\
AAPL & \(201401024: 01: 44\) & 553.05 & 559 & 1 & 1 & 12 & P
\end{tabular}
\begin{tabular}{llllllll} 
AAPL & \(201401024: 01: 49\) & 455.39 & 559 & 1 & 1 & 12 & T \\
AAPL & \(201401024: 01: 49\) & 553.61 & 559 & 1 & 1 & 12 & T \\
AAPL & \(201401024: 02: 02\) & 553.05 & 559 & 1 & 2 & 12 & P \\
AAPL & \(201401024: 02: 04\) & 455.39 & 559 & 1 & 1 & 12 & T \\
AAPL & \(201401024: 02: 04\) & 548.28 & 559 & 1 & 1 & 12 & T \\
AAPL & \(201401024: 02: 33\) & 553.05 & 558.83 & 1 & 2 & 12 & P \\
AAPL & \(201401024: 02: 33\) & 555.17 & 558.83 & 2 & 2 & 12 & P \\
AAPL & \(201401024: 03: 50\) & 555.2 & 558.83 & 5 & 2 & 12 & P
\end{tabular}

\section*{RV Models: High Frequency - Working with Tick Data}

Example: We read SPY trade data for 2014:Jan.
> HF_da <- read.csv("https://www.bauer.uh.edu/rsusmel/4397/SPY_2014.csv", head=TRUE, sep=",")
> summary(HF_da)
SYMBOL DATE TIME PRICE SIZE G127
SPY:6800865 Min. :20140102 9:30:00 : 21436 Min. :176.6 Min. : 1
Min. :0
1st Qu.:20140110 16:00:00: 11352 1st Qu.:178.9 1st Qu.: 100
1st Qu.:0
Median :20140121 9:30:01: 5922 Median :182.6
Median : 100 Median :0
Mean :20140119 15:59:59: 4090 Mean :181.4 Mean : 337
Mean :0
3rd Qu.:20140128 15:59:55: 3198 3rd Qu.:183.5 3rd Qu.: 300
3rd Qu.:0
Max. :20140131 15:50:00: 2916 Max. :189.2 Max.
:4715350 Max. :0

CORR COND EX
Min. : \(0.0 \mathrm{e}+00\) @ :3351783 T :1649158
1st Qu.:0.0e+00 F :2888182 P :1335135
Median :0.0e +00 :524409 Z :1182126
Mean :1.9e-04 O : 18057 D :1062382
3rd Qu.:0.0e+00 4 : 9098 K : 437900
Max. :1.2e+01 6 : 8142 J : 356539
(Other): 1194 (Other): 777625
- Now, we calculate using 5'-returns a daily realized volatilitiy for the first 4 days in 2014 (2014:01:02-2014:01:07). Originally, we have \(T=1,048,570\).
pt <- as.POSIXct(paste(HF_da\$DATE, HF_da\$TIME), format="\%Y\%m\%d \%H:\%M:\%S") library(xts)
hf_1<- xts(x=HF_da, order.by \(=p t) \quad\) \# Define a specific time series data set
spy_p <- as.numeric(hf_1\$PRICE)
\# pt pastes together DATE and Time.
\# Read price data as numeric
T <- length(spy_5_p)
spy_ret \(<-\log (\) spy_p \([-1] /\) spy_p \([-T])\)
plot(spy_ret, type="1", ylab="Return", main="Tick by Tick Return (2014:01:02-2014:01:07)") mean(spy_ret)
sd(spy_ret)
Tick by Tick Return (2014:01:02-2014:01:07)


Very noisy data, with lots of "jumps":
Mean tick by tick return: -3.7365e-09
Tick-by-tick SD: 6.3163e-05
- For the whole month of January 2020:

```

> mean(spy_ret)
[1] -4.796933e-09
> sd(spy_ret)
[1] 7.804991e-05

```
- We plot the autocorrelogram for the TAQ SPY data:

TAQ SPY Data: January 2014


Autocorrelations of series 'spy_ret', by lag
\begin{tabular}{ccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
1.000 & -0.469 & -0.013 & -0.010 & 0.014 & -0.008 & 0.000 & -0.002 & -0.001 & 0.000 & 0.000
\end{tabular}

Note: We have only a significant autocorrelation, the \(1^{\text {st }}\)-order autocorrelation: - 0.459 .
- We aggregate the tick-by-tick data in \(\mathbf{5}^{\prime}\) ' intervals using the function aggregateTrades in the R package highfrequency. It needs as an input an xts object (hf_1, for us).
library(highfrequency)
spy_5 <- aggregateTrades(
hf_1,
on = "minutes", \# you can use also seconds, days, weeks, etc.
\(\mathrm{k}=5\), \# number of units in for "on"
marketOpen = "09:30:00",
marketClose \(=\) "16:00:00",
tz = "GMT"
)
spy_5_p <- as.numeric(spy_5\$PRICE)
T <- length(spy_5_p)
spy_5_ret \(<-\log (\) spy_5_p \([-1] /\) spy_5_p \([-T])\)
plot(spy_5_ret, type="l", ylab="Return", main="5-minute Return (2014:01:02-2014:01:07)")


RVol \(_{\mathrm{t}}=2014: 01: 02=0.0053344\)
\(\mathrm{RVol}_{\mathrm{t}}=2014: 01: 03=0.0043888\)
\(\mathrm{RVol}_{\mathrm{t}}=2014: 01: 04=0.0059836\)
\(\mathrm{RVol}_{=2014: 01: 05}=0.0052772\)
We plot the autocorrelogram for the 5-minute TAQ SPY return data:
5-minute SPY Data: January 2014

\(>\) acf_spy_5 <- acf(spy_5_ret, main = "5-minute SPY Data: January 2014")
\(>\) acf_spy_5
Autocorrelations of series 'spy_ret', by lag
\(\begin{array}{lllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}\)
\(1.000-0.105-0.024-0.1040 .018 \quad 0.147 \quad 0.016-0.024-0.088 \quad 0.048 \quad 0.037\)
Note: We have a negative \(1^{\text {st }}\)-order autocorrelation: - 0.105 , thought not significant. However, the autocorrelation of order 5 is significant.
- We plot the 10-minute TAQ SPY return data. Smoothing increases.


RVol \(_{=2014: 01: 02}=0.005478294\)
\(\mathrm{RVol}_{\mathrm{t}}=2014: 01: 03=0.004256046\)
\(\mathrm{RVol}_{\mathrm{t}=2014: 01: 04}=0.006190508\)
\(\mathrm{RVol}_{\mathrm{t}=2014: 01: 05}=0.005145601\)
We plot the autocorrelogram for the \(10^{\prime}\) TAQ SPY return data:


Note: Now, none of the autocorrelations is significant. The 10-minute returns look independent. \(\square\)

\section*{RV Models: High Frequency - TAQ In Practice}

In practice, 10 ' returns are common. To form a daily measure for RV, we have 39 10-minute returns plus one overnite return (from 16:00 PM to next day 9:30 AM)

We have some technical issues working with tick data:
- Not all days the stock market is open from 9:30 AM to 16:00 PM, NYSE closes early on certain days (Christmas Eve, Thanksgiving).
- For many stocks, we do have lapses in trading. For these stocks, using \(5^{\prime}\) or \(10^{\prime}\) intervals may not work well.
- There are many suggested solutions to the problem of infrequent trading. Usual solution: interpolation from quote data.
- We have a lot of (discrete) jumps in the data.

Example: R script to compute monthly realized volatility for MSCI USA daily returns
MSCI_da <- read.csv("https://www.bauer.uh.edu/rsusmel/4397/MSCI_daily.csv", head=TRUE, sep=","')
x_us <- MSCI_da\$USAT <- length(x_us)
us_r \(<-\log \left(x_{-}\right.\)us[-1]/x_us[-T])
```

x <- us_r \# US log returns from MSCI USA Index
T <- length(x)
rvs=NULL
i<-1
k<-21 \# k: observations per period (78 for 5' data)
while (i< T - k) {
s2<- sum(x[i:(i+k)]^2)
i<-k+i
rvs <- rbind(rvs,s2)
}
rvol <- sqrt(rvs) \# realized volatility
mean(rvol) \# mean
sd(rvol)

```
```

 # create vector to fill with RV
    ```
    # create vector to fill with RV
        # realized variance
        # realized variance
    # variance
```

 # variance
    ```

Example: Using daily MSCI USA data we calculate 1-mo Realized Volatility ( \(k=21\) days) for log returns for the USA MSCI (1970: Jan - 2020: Oct).

\(>\) mean(rvol)
[1] 0.04326531
\(>\) sd(rvol)
[1] 0.02592653
\# average monthly Rvol in the sample
\(\Rightarrow\) very close to monthly S\&P Volatility: \(4.49 \%\)
\# standard deviation of monthly Rvol in the sample
\(\Rightarrow\) dividing by \(\operatorname{sqrt}(T)\) we get the \(\mathrm{SE}=0.001\) (very small). ब

Technical computing points:
We use \(k=21\) days, which is an average of the trading days per month. Of course, not all months have the same amount of trading days. In 2019, February had the fewest (19) and October the most (23), but, in 2018, February and September (18) had the fewest and August the most (23). For us, \(k=21\) days is an approximation.

To be precise, if we use daily data to calculate a monthly variance, we need to use an exact index of trading days, say, \(\mathrm{K}=\left[k_{1}, k_{2}, k_{3}, \ldots k_{J}\right]\) where \(k_{i}\) is the exact number of trading days in monthyear \(i\).

In addition, for daily data, we should not ignore the mean in the computation of RV.
Example: Below, the while loop in R is modified to incorporate the vector K (c1) of exact trading days for each month.
MSCI_cd <-
read.table("https://www.bauer.uh.edu/rsusmel/4397/MSCI_d_count_days.txt",header=FALSE)
cl <- MSCI_cd[,1] \# Vector with all exact days in a month
n_c1 <- length(c1) \# Total number of days in sample
rvs=NULL \# Initialize empty vector to place RVs
\(\mathrm{t}<-1 \quad\) \# index for the days for while loop
\(\mathrm{tj}<-1 \quad\) \# index for the months for while loop
\(\mathrm{x} \_\mathrm{m}=\operatorname{mean}(\mathrm{x})\)
while ( \(\left.\mathrm{tj}<=\mathrm{n}_{-} \mathrm{c} 1\right)\) \{
\(\mathrm{mj}<-\mathrm{c} 1[\mathrm{tj}] \quad\) \# reading exact number of days for month tj
\(\mathrm{xx}<-\mathrm{x}[\mathrm{t}:(\mathrm{t}+\mathrm{mj}-1)]-\mathrm{x} \_\mathrm{m} \quad\) \# daily returns (in deviation from mean) per month
tj
s2 \(<-\operatorname{sum}\left(x^{\wedge} \wedge 2\right) \quad \# R V\) for month \(t j\)
\(\mathrm{t}<-\mathrm{t}+\mathrm{mj}\)
```

tj <- tj + 1
rvs <- rbind(rvs,s2) \# add RV for month tj to vector rvs
rvol<- sqrt(rvs) \# realized volatility
> mean(rvol) \# mean
[1] 0.04285471
> sd(rvol) \# variance
[1] 0.02622621
> rvs_ts <- ts(rvol,start=c(1970,1),frequency=12)
> plot.ts(rvs_ts,xlab="Time",ylab="RVOL", main="Monthly RVOL for MSCI USA")

```

Monthly RVOL for MSCI USA with exact day count


Note: The results (mean, SD and shape of RV) are very similar, but if used to compare to other monthly volatility estimates, these are the correct monthly RVol estimates. ब

\section*{RV Models: Log Approximation Rules}

The log approximations rules for the variance and SD are used to change frequencies for the RV and \(R V o l\). For example, suppose we are calculating \(R V\) based on frequency \(j, R V_{t-j}\); but we are interested in the J-period \(\mathrm{RV}_{\mathrm{t}=\mathrm{J}}\). Then, the J -period (with j intervals) realized variance and realized volatility can be calculated as
\[
\begin{aligned}
& R V_{t=J}=J * R V_{t=j} \\
& R V o l_{t=J}=\operatorname{sqrt}(J) * R V o l_{t=j}
\end{aligned}
\]

Example: We calculate using 5' data the daily realized variance, \(\mathrm{RV}_{\mathrm{t}=\text { daily. }}\). Then, the annual variance can be calculated as
\[
R V_{t=\text { annual }}=260 * R V_{t=\text { daily }}
\]
where 260 is the number of trading days in the year. The annualized RVOL is the squared root of \(R V_{\text {annual }}\) :
\[
R V O L_{t=\text { annual }}=\operatorname{sqrt}(260) * R V O L_{t=\text { daily }}
\]

Example: Using daily data we calculate 3-mo Realized Volatility ( \(k=66\) days) for log returns for the MSCI (1970: March - 2020: Oct).

sample
[1] 0.02592653 . \(\mathbb{}\)

\section*{RV Models: Properties}

Under some conditions (bounded kurtosis and autocorrelation of squared returns less than 1), \(\mathrm{RV}_{\mathrm{t}}\) is consistent.

Realized volatility is a measure. It has a distribution.
For returns, the distribution of RV is non-normal (as expected). It tends to be skewed right and leptokurtic.

Daily returns standardized by RVol measures are nearly Gaussian.
RV is highly persistent. (Check with a LB test.)
Daily RV calculate with intra-daily data, it is found to be more robust than measures using daily data, like GARCH.

\section*{RV Models: ACF and Persistence}

Like all volatility measures, RVOL is highly autocorrelated.
Example: We plot the ACF and PACF for the 1-mo Realized Volatility, based on daily data for the monthly USA MSCI data.

RVOL: MSCI USA


RVOL: MSCI USA

\(\Rightarrow\) Model: AR(2)?

\section*{RV Models: Forecasting}

We can fit ARMA models to the RVOL series to generate forecasts.
Example: Based on the ACF and PACF, we fit an AR(2) model for the monthly RVOL, calculated from monthly data:
\(>\) fit_rvol_ar2 \(<-\operatorname{arima}(\) rvol, order \(=\mathrm{c}(2,0,0))\)
\(>\) fit_rvol_ar2
Call:
\(\operatorname{arima}(\mathrm{x}=\mathrm{rvol}\), order \(=\mathrm{c}(2,0,0))\)
ar1 ar2 intercept
\(\begin{array}{lll}0.5631 & 0.0967 & 0.0433\end{array}\)
s.e. 0.03960 .03960 .0023
sigma^2 estimated as \(0.0004056: \log\) likelihood \(=1568.46\), aic \(=-3128.92\)
> checkresiduals(fit_rvol_ar2)

\section*{Ljung-Box test}
data: Residuals from ARIMA \((2,0,0)\) with non-zero mean \(\mathrm{Q}^{*}=12.008, \mathrm{df}=7, \mathrm{p}\)-value \(=0.1003\)

Model df: 3. Total lags used: 10

- AR(2) model seems to pass diagnostic tests. Now, we forecast RVOL.
fcast_rvol <- forecast(fit_rvol_ar2, h=12, level=.95) \# h=number of step-ahead forecasts \(>\) fcast_rvol

Point Forecast Lo 95 Hi 95
6320.052016880 .01254198110 .09149178
6330.049378520 .00407615480 .09468088
\(634 \quad 0.04757422-0.00058224560 .09573069\)
\(635 \quad 0.04630317-0.00317169030 .09577804\)
\(636 \quad 0.04541302-0.00469926670 .09552532\)
637 0.04478891-0.0056334466 0.09521126
\(638 \quad 0.04435142-0.00622262870 .09492546\)
\(639 \quad 0.04404473-0.00660368680 .09469315\)
\(640 \quad 0.04382975-0.00685518090 .09451467\)
\(641 \quad 0.04367904-0.00702381750 .09438190\)
\(642 \quad 0.04357339-0.00713827180 .09428506\)
\(643 \quad 0.04349934-0.00721665770 .09421533\). व

\section*{RVOL: Forecast 2020:Oct - 2021:Jun}


Note: The VIX index ("fear index") is a forecast for the next 30-day volatility, derived from S\&P 500 options. The VIX on Sep 30, 2020 was 26.37 , that is, the volatility at the end of October is expected to be \(26.37 \%\) annualized or \(7.61 \%\) monthly, higher than \(5.20 \%\), but, well within the \(95 \%\) C.I. (More on this later.)

\section*{RV Models: Forecasting - Using VIX}

Empirical work uses the VIX to calculate the implied volatility, IVt, for the S\&P500. The VIX index is based on the S\&P500 index options (on a panel of S\&P 500 option prices), using the
"model-free" approach tailored to replicate the (annualized) risk-neutral volatility of a fixed 30day maturity.

\section*{VIX Index}


Example: We use VIX to forecast monthly RV based on daily data (1990:May - 2020:Sep). We regress
\[
\mathrm{RV}_{t+1}=\alpha+\beta \mathrm{VIX}_{t}+\varepsilon \mathrm{t}
\]

Mid_da <- read.csv("https://www.bauer.uh.edu/rsusmel/4397/Mid1_U_B_data.csv", head=TRUE, sep=",") v_date <- Mid da\$Code
VIX \(<-\) Mid daSVIX \# Extract VIX data
T_rv<- length(rvol) \# End of sample for RVol (2020:Oct)
rvol_90<- as.numeric(rvol_ts[245:T_rv])*100 \# RVol starting in 1990:May in \%
rvol_0<- rvol_90[-1] \# remove first observation \(\left(\mathrm{RV}_{\mathrm{t}+1}\right)\)
VIX_m \(<-\) VIX/sqrt(12) \# VIX in monthly \%
lm_rvol_f \(<-\operatorname{lm}(\) rvol_0 \(\sim\) VIX_m)
\(>\) summary (lm_rvol_f)
Coefficients:
Estimate Std. Error t value \(\operatorname{Pr}(>|t|)\)
\(\begin{array}{lllll}\text { (Intercept) } & -0.89301 & 0.28021 & -3.187 & 0.00156 * *\end{array}\)
VIX_m \(0.949970 .04641 \quad 20.469<2 \mathrm{e}-16^{* * *}\)
---
Signif. codes: \(0{ }^{\prime * * * ’} 0.001^{\text {'**' }} 0.01^{\prime *} 0.05^{\prime} .{ }^{\prime} 0.1^{\prime}{ }^{\prime} 1\)
Residual standard error: 1.967 on 363 degrees of freedom
Multiple R-squared: 0.5358, Adjusted R-squared: 0.5345
F-statistic: 419 on 1 and 363 DF, p-value: \(<2.2 \mathrm{e}-16\)
Note: In sample, a strong positive predictive relation.


Note: There is good match between the two series. RVOL shocks (Financial crisis, Covid) are unexpected by IV.
- We also check the contemporaneous relation between RVOL and VIX.
lm_rvol <- lm(rvol_90[-length(rvol_90)] ~ VIX_m)
> summary (lm_rvol)
Estimate Std. Error t value \(\operatorname{Pr}(>|t|)\)
(Intercept) -1.88538 \(0.20458-9.216<2 \mathrm{e}-16^{* * *}\)
VIX_m \(1.125430 .0338833 .214<2 \mathrm{e}-16^{* * *}\)
---
Signif. codes: \(0{ }^{\prime * * * ’} 0.001^{\prime * *} 0.01^{\prime *} 0.05^{\prime} .{ }^{\prime} 0.1^{\prime}{ }^{\prime} 1\)
Residual standard error: 1.436 on 363 degrees of freedom
Multiple R-squared: 0.7524, Adjusted R-squared: 0.7517
F-statistic: 1103 on 1 and 363 DF , p-value: \(<2.2 \mathrm{e}-16\)
Note: A strong contemporaneous relation. RVOL is highly correlated. \(\mathbb{}\) I

\section*{RV Models: Variance Risk Premium (VRP)}

The implied volatility of an option, calculated today, or \(\mathrm{IV}_{\mathrm{t}}\), is a measure of the ("ex ante") expected variance over the remaining life of the option.

The Black-Scholes (BS) and similar models for option prices produce the same option prices as would be seen under modified probabilities in a world of investors who were indifferent to risk (risk neutral).

IV \& other parameters extracted from options market prices embed these modified "risk neutral" probabilities, that combine investors' objective predictions of the real world returns distribution with their risk preferences.

Under BS assumptions, IV and market volatility are the same. But, BS assumptions do not hold. The VRP uses this disparity.

We define the variance risk premium (VRP) as the difference between the "ex-ante" risk neutral expectation at time \(t\) of the future return variation over the period \([t, t+l]\) time interval and the ex-post realized return variation over the \([t-1, t]\) :
\[
\mathrm{VRP}_{t}=\mathrm{IV}_{t}-\mathrm{RV}_{\mathrm{t}} .
\]

It is an ad-hoc definition, we could have defined \(\operatorname{VRP}_{t}\) based on the expectation at time \(t\) for \(R V_{t+1}\), in this case \(\mathrm{E}_{\mathrm{t}}\left[\mathrm{RV}_{\mathrm{t}+1}\right]\). The one-step-ahead forecast can be obtained using an ARMA process for \(\mathrm{RV}_{\mathrm{t}}\).

In practice, using \(\mathrm{E}_{\mathrm{t}}\left[\mathrm{RV}_{\mathrm{t}+1}\right]\) or \(R V_{t}\), does not affect \(\mathrm{VRP}_{t}\) that much.
The are many ways to calculate IV: based on models, like the BS, or "model free," similar to how we calculated IV, in this case, using changes in option prices for different strike prices and computing an average.

Example: We plot \(\mathrm{IV}_{\mathrm{t}}(=\mathrm{VIX}), \mathrm{RV}_{\mathrm{t}} \&\) VRP \(_{\mathrm{t}}\) for the \(\mathrm{S} \& \mathrm{P} 500\) Index (shaded blue area are U.S. recessions). Data: Monthly 1990-2008.

- Bollerslev et al. (2009) use 5 ' intervals to calculate \(\mathrm{RV}_{\mathrm{t}}\) find that \(\mathrm{VRP}_{\mathrm{t}}\) is a predictor of stock market excess returns at different horizons \((t+h)\). That is, they regress:
\[
\mathrm{r}_{t+h}-\mathrm{r}_{\mathrm{f}, t+h}=\left[\log \left(\mathrm{P}_{\mathrm{t}}\right)-\log \left(\mathrm{P}_{\mathrm{t}-1}\right)\right]=\mu+\delta \mathrm{VRP}_{\mathrm{t}}+\varepsilon_{t}
\]

They find that \(\hat{\delta}\) is positive and has a \(t\)-stat \(=1.76\) for monthly data ( \(h=1\) ) and a \(t\)-stat \(=2.86\) for quarterly data ( \(h=3\) ). The \(\mathrm{R}^{2}\) is \(1.07 \%\) for monthly data and \(6.82 \%\) for quarterly data. For annual data the t -stat is not significant.
\begin{tabular}{c|cccccccc}
\hline \hline Monthly Return Horizon & 1 & 3 & 6 & 9 & 12 & 15 & 18 & 24 \\
\hline Constant & -0.55 & -2.08 & 1.12 & 3.63 & 4.62 & 4.84 & 5.61 & 6.48 \\
& \((-0.13)\) & \((-0.56)\) & \((0.33)\) & \((1.15)\) & \((1.50)\) & \((1.59)\) & \((1.81)\) & \((2.07)\) \\
\hline\(I V_{t}-R V_{t}\) & 0.39 & 0.47 & 0.30 & 0.17 & 0.12 & 0.11 & 0.06 & 0.01 \\
& \((1.76)\) & \((2.86)\) & \((2.15)\) & \((1.36)\) & \((1.00)\) & \((0.94)\) & \((0.56)\) & \((0.11)\) \\
\hline Adj. \(R^{2}(\%)\) & 1.07 & 6.82 & 5.42 & 2.30 & 1.23 & 1.00 & 0.05 & -0.50 \\
\hline \hline
\end{tabular}

Example: We regress excess next-month returns, using the FF Mkt-RF factor as the dependent variable, on today's VRP:
FF_da <- read.csv("https://www.bauer.uh.edu/rsusmel/4397/FF_5_factors.csv",header=TRUE)
x_Mkt_RF <- FF_da\$Mkt_RF
T_FF <- length(x_RF)
Mkt_RF <- x_Mkt_RF[323:T_FF]/100
vrp <- VIX_m^2 - rvol_90[-length(rvol_90)]^2
pred_vrp <-lm(Mkt_RF[-1] ~ vrp)
> summary(pred_vrp)
Estimate Std. Error t value \(\operatorname{Pr}(>|t|)\)
(Intercept) 6.655e-03 2.335e-03 \(2.850 \quad 0.00462\) **
\(\begin{array}{lllll}\operatorname{vrp} \quad 1.815 \mathrm{e}-05 & 6.210 \mathrm{e}-05 & 0.292 & 0.77029 \quad \Rightarrow \text { not significant }\end{array}\)
---
Signif. codes: \(0^{\prime * * * ’} 0.001^{\prime * *} 0.01^{\prime *} 0.05^{\prime}{ }^{\prime} 0.1^{\prime}{ }^{\prime} 1\)
Residual standard error: 0.04346 on 363 degrees of freedom
Multiple R-squared: 0.0002352, Adjusted R-squared: -0.002519. ब|

\section*{Other Models: Parkinson's (1980) Estimator}

The Parkinson's (1980) estimator:
\[
s_{\mathrm{t}}^{2}=\left\{\Sigma_{\mathrm{t}}\left[\ln \left(\mathrm{H}_{\mathrm{t}}\right)-\ln \left(\mathrm{L}_{\mathrm{t}}\right)\right]^{2} /(4 \ln (2) T)\right\}
\]
where \(\mathrm{H}_{\mathrm{t}}\) is the highest price and \(\mathrm{L}_{\mathrm{t}}\) is the lowest price.
There is an RV counterpart, using HF data: Realized Range (RR):
\[
\mathrm{RR}_{\mathrm{t}}=\left\{\Sigma_{\mathrm{j}}\left[100 *\left(\ln \left(\mathrm{H}_{\mathrm{t}, \mathrm{j}}\right)-\ln \left(\mathrm{L}_{\mathrm{t}, \mathrm{j}}\right)\right)\right]^{2} /(4 \ln (2)\},\right.
\]
where \(\mathrm{H}_{\mathrm{t}, \mathrm{j}}\) and \(\mathrm{L}_{\mathrm{t}, \mathrm{j}}\) are the highest and lowest price in the \(\mathrm{j}^{\text {th }}\) interval.
These "range" estimators are very good and very efficient.
These estimators can be applied to intra-daily data. The Realized Range works well with combined with other models.

\section*{Stochastic volatility (SV/SVOL) models}

Now, instead of a known volatility at time \(t\), like ARCH models, we allow for a stochastic shock to \(\sigma t, \eta_{\mathrm{t}}\) or \(v_{\mathrm{t}}\) :
\[
\sigma_{t}=\omega+\beta_{1} \sigma_{t-1}+\eta_{t}, \quad v_{t} \sim N\left(0, \sigma_{\eta}^{2}\right)
\]

Or using logs:
\[
\log \sigma_{t}=\omega+\beta_{1} \log \sigma_{t-1}+v_{t}, \quad v_{t} \sim N\left(0, \sigma_{v}^{2}\right)
\]

The difference with ARCH models: The shocks that govern the volatility are not necessarily the shocks to the mean process, \(\varepsilon\) t's.

Usually, the standard model centers log volatility around \(\omega\) :
\[
\log \sigma_{t}=\omega+\beta_{1}\left(\log \sigma_{t-1}-\omega\right)+v_{t}
\]

Then,
\(E\left[\log \left(\sigma_{t}\right)\right]=\omega\)
\(\operatorname{Var}\left[\log \left(\sigma_{t}\right)\right]=\kappa^{2}=\sigma_{v}^{2} /\left(1-\beta^{2}\right)\).
\(\Rightarrow\) Unconditional distribution: \(\log \left(\sigma_{\mathrm{t}}\right) \sim \mathrm{N}\left(\omega, \kappa^{2}\right)\)
Like ARCH models, SV models produce returns with kurtosis > 3 (and, also, positive autocorrelations between squared excess returns).

We have 3 SVOL parameters to estimate: \(\varphi=\left(\omega, \beta, \sigma_{v}\right)\).
Estimation: The modern approach uses Bayesian methods (MCMC), which are advanced for this class. Brooks discusses the estimation of SVOL.```

