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Lecture 1 – Review of Statistics and Linear Algebra (NOT Covered) 
This lecture reviews basic probability concepts, from random variables to the Law of Large 
Numbers and the Central Limit Theory. In the Appendix, the lecture introduces Linear Algebra 
and its compact notation. 

 
Random Variable 
In probability and statistics, a random variable (RV), or stochastic variable, is described 
informally as a variable whose values depend on outcomes of an experiment (or phenomenon). 
An experiment is an act or a process with an unknown outcome. For example, the CEO of Apple 
announces a new product, the effect on the price of Microsoft is unknown, thus, the price (and 
return) of Microsoft is a RV. 
 
Examples: 
1. We throw two coins and count the number of heads. 
2. We define X = 1 if the economy grows two consecutive quarters and X = 0, otherwise. (This is 
an example of a Bernouille (or indicator) RV.)  
3. We read comments from IBM’s CEO and compute IBM’s daily return. 
4. We count the days in a week that XOM has a positive return.  
5. We look at a CEO and write his/her highest education degree. 
6. We compute the weekly sign of stock returns of two unrelated firms: Positive (U: up) or 
negative (D: down). We count the times at least one stock is up: {D,U}, {U,D}, {U,U}. ¶ 
 
For some RVs, it is easy to enumerate all possible outcomes. For instance, for the fourth (XOM) 
example above: {0, 1, 2, 3, 4, 5}.  But, for some RV, it can be complicated. For example, for the 
third (IBM) example: {-100%, 𝐾}, where 𝐾 is a large positive number.   
 
The set of all possible outcomes is called sample space, denoted by Ω.  
 
An event A is a set containing outcomes from the sample space. For example, for the IBM 
example, the returns are between 2% and 12.5% is an event. 
 
The collection of all possible events is Σ. For example, for the IBM example, {(1.1%-1.2%), (-
0.02%, -0001%), (2.0%, 12.5%), (-5%, 5%), (-100%, -13.95%), (0%, 350%), … }   
 



• In general, a RV is a function whose domain is the sample space, Ω. It produces numbers. For 
instance, in example 6 above, instead of using {U, U} when both stocks go up, we use 2. 
 
Mathematically, X: Ω → R. 
 
Remark: The name “random variable” is confusing; it is just a function! 
 
• We put some mathematical structure (pdf, pmf, CDF) to the concept of RV to describe what is 
more/less likely to happen to the (randomly determined) events. 
 
For example, we would like to know which event is more/less likely for the IBM example: Is 
(1.1%-1.2%) more likely than (-0.02%, -0.001%)?  
 
Definitions & Notation: 
Ω: The sample space –the set of possible outcomes from an experiment. 
An event A is a set containing outcomes from the sample space. 
Σ: The collection of all possible events involving outcomes chosen from  Ω. (Formally: Σ is a σ -
algebra of subsets of the sample space.) 
P is a probability measure over Σ.  P assigns a number between [0,1] to each event in Σ. 
 
Remarks: 
- A random variable is a convenient way to express the elements of Ω as numbers rather than 
abstract elements of sets. 
- A random variable X is a function.  
- It is a numerical quantity whose value is determined by a random experiment. 
- It takes single elements in outcome set Ω, which can be abstract elements, and maps them to 
points in R.  
 
Example: We compute the weekly sign of stock returns of two unrelated firms: Positive (U: up) 
or negative (D: down).  
 
The sample space is Ω = {DD; DU; UD; UU}.  
 
Possible events (A):  
 - Both firms have the same signed return: {U,U} & {D,D}.   
 - At least one firm has positive returns: {U,U}; {D,U} & {U,D}. 
 - The first firm has positive returns: {U,U} & {U,D}  
 
Collection of all possible events: Σ = [Φ, {U,U}, {U,D}, {D,U}, {D,D}, {UU, UD}, {UU, DU}, 
{UU, DD}, {DD, DU}, {DD, UD}, {DU, DD}, {UU, DU, UD}, {UD, DU, DD}, {UU, UD, 
DU, DD}] 
 
Define RV: X = “Number of Up cycles.” Recall, X takes Ω into χ, & induces PX from P.  
Then, 
 χ  = {0; 1; 2}  
 Σχ = {Φ; {0}; {1}; {2}; {0;1}; {0;2}; {1;2}; {0;1;2}}. 



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Assuming U and D have the same probability, P[U] = P[D] = ½, we define PX: 
 Prob. of 0 Ups = PX[0] = P[{DD}] = ¼ 
 Prob. of 1 Ups = PX[1] = P[{UD; DU}] = ½ 
 Prob. of 2 Ups = PX[2] = P[{UU}] = ¼ 
 Prob. of 0 or 1 Ups = PX[{0; 1}] = P[{DD; UD; DU}] = ¾  
 Prob. of 0 or 2 Ups = PX[{0; 2}] = P[{DD; UU}] = ½ 
 Prob. of 1 or 2 Ups = PX[{1; 2}] = P[{DU; UD; DD}] = ¾ 
 Prob. of 1, 2, or 3 Ups = PX[{0; 1; 2}] = P[{DD; DU; UD; UU}] = 1 
 Prob. of "nothing" = PX[Φ] = P[Φ] = 0 
 
The empty set is simply needed to complete the σ-algebra (a technical point). Its interpretation is 
not important since P[Φ] = 0 for any reasonable P. 
 
Technical detail: P is the probability measure over the sample space, Ω, and PX is the probability 
measure over χ, the range of the random variable. 
 
 
Example: IBM Returns 
We buy an IBM share at USD 120 today and plan to sell the share next week. The return of IBM 
next week, 𝑟௧, depends on how the market values IBM next week –this is the experiment.  
 
The sample space is continuous, from -100% (worst case scenario) to potentially a huge 
undefined positive number. We set Ω = {𝑟௧: 𝑟௧ ∈ [-1, K], K > 0}.  
 
Possible events:  
 - IBM returns are positive.   
 - IBM returns are higher than 0.5%. 
 - IBM returns are lower than 10%.  
 - IBM returns are between -2% and 4%.  
 

{U,U} 
{D,D} 
{D,U} 
{U,D} 

0 
1 
2 

 X: Number of  Ups Ω  χ  P
X
 

P 

1 

0 



The collection of all possible events, Σ, is very, very large. We use a probability distribution, for 
example, the normal distribution, to describe the likelihood of possible events. 
 
 
Probability Function & CDF 
Definition – The probability function, p(x), of a RV, X. 
For any random variable, X, and any real number, x, we define 
 p(x) = P[ X = x ] = P[ {X = x} ],   
where {X = x} = the set of all outcomes (event) with X = x. 
 
Definition – The cumulative distribution function (CDF), F(x), of a RV, X. 
For any random variable, X, and any real number, x, we define 
 F(x) = P[ X ≤  x ] = P[ {X ≤ x} ], 
where {X ≤ x} = the set of all outcomes (event) with X ≤ x. 
 
Example: Let X be the number of days in a week that XOM has a positive return. Sample space 
S = { 0, 1, 2, 3, 4, 5 }. Assuming a binomial distribution with a probability of a daily positive 
return equal to 0.52, we have the following graph of the pdf: 
 

 
 
The actual probabilities are given by: 
𝑝ሺ𝑥 ൌ 0ሻ ൌ   0.0255  
𝑝ሺ𝑥 ൌ 1ሻ ൌ   0.1380  
𝑝ሺ𝑥 ൌ 2ሻ ൌ   0.2990  
𝑝ሺ𝑥 ൌ 3ሻ ൌ   0.3240  
𝑝ሺ𝑥 ൌ 4ሻ ൌ   0.1755  
𝑝ሺ𝑥 ൌ 5ሻ ൌ   0.0380  
 
Note: {X = x} = ϕ for all other x. 

p(x) 



 

 Below, we display the CDF of  X: 

 
 
 
PDF for a Continuous RV 
Definition: Suppose that X is a random variable. Let f(x) denote a function defined for -∞ < x < 
∞ with the following properties: 

1. 𝑓ሺ𝑥ሻ ≥ 0 
 .2 𝑓ሺ𝑥ሻ𝑑𝑥

ஶ
ିஶ ൌ 1. 

3. 𝑃ሾ𝑎  𝑋  𝑏ሿ ൌ  𝑓ሺ𝑥ሻ𝑑𝑥

  

 
Then, f(x) is called the probability density function (pdf) of X. The random variable X is called 
continuous.  
 
• PDF 
 
 
 
 
 
 
 
 
 

F(x) is a step function  

𝑃ሾ𝑎  𝑋  𝑏ሿ ൌ න𝑓ሺ𝑥ሻ𝑑𝑥





 

 



• If X is a continuous random variable with probability density function, f(x), the cumulative 
distribution function of X is given by: 
  𝐹ሺ𝑥ሻ ൌ  𝑃ሾ𝑋  𝑥ሿ ൌ  𝑓ሺ𝑡ሻ𝑑𝑡

௫
ିஶ  

 
• CDF 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
• Also because of the FTC (fundamental theorem of calculus): 
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PDF for a Discrete RV 
A random variable X is called discrete if 

  𝑝ሺ𝑥ሻ
௫

ൌ 𝑝ሺ𝑥


ୀଵ
ሻ ൌ 1 

   
All the probability is accounted for by values, x, such that p(x) > 0.  
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• For a discrete random variable X the probability distribution is described by the probability 
function p(x), which has the following properties: 
 
 1. 0  𝑝ሺ𝑥ሻ  1 
 
 2. ∑ 𝑝ሺ𝑥

ே
ୀଵ ሻ ൌ 1 

 
 3.  𝑃ሾ𝑎  𝑋  𝑏ሿ ൌ ∑  𝑝ሺ𝑥ሻ ஸ ௫ ஸ   
 
 
 
 

 
 
 
Bernouille and Binomial Distributions 
Suppose that we have a Bernoulli trial (an experiment) that has 2 results: 

1. Success (S) 
2. Failure (F) 

Suppose that p is the probability of success (S) and q = 1 – p is the probability of failure (F). 
Then, the probability distribution with probability function: 
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is called the Bernoulli distribution. 
 
• We observe an independent Bernoulli trial (S, F) n times. Let X be the number of successes in 
the n trials. Then, X has a binomial distribution:  
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where 
1.  p = the probability of success (S), and 
2.  q = 1 – p = the probability of failure (F) 
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Example: If a firm announces profits and they are “surprising,” the chance of a stock price, P, 
increase is 85%. Assume there are n=20 (independent) announcements. 
Let X be the number of increases in the stock price following surprising announcements in the n 
= 20 trials. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
The Poisson Distribution 
Suppose events are occurring randomly and uniformly in time. 
• The events occur with a known average. 
• Let X be the number of events occurring (arrivals) in a fixed period of time (time-interval of 
given length).  
• Typical example: X = Number of crime cases coming before a criminal court per year (original 
Poisson’s application in 1838.)  
• Then, X will have a Poisson distribution with parameter λ: 
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p (x ) 0.0000            0.0000    0.0000    0.0000    0.0000    0.0000    

x 6 7 8 9 10 11
p (x ) 0.0000            0.0000    0.0000    0.0000    0.0002    0.0011    

x 12 13 14 15 16 17
p (x ) 0.0046            0.0160    0.0454    0.1028    0.1821    0.2428    

x 18 19 20
p (x ) 0.2293            0.1368    0.0388    
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• The parameter λ represents the expected number of occurrences in a fixed period of time. The 
parameter λ is a positive real number. 
 
Example: On average, a trade occurs every 15 seconds. Suppose trades are independent. We are 
interested in the probability of observing 10 trades in a minute (X=10). A Poisson distribution 
can be used with λ = 4 (4 trades per minute). 
 
• Poisson probability function 
 

 
 
Poisson Distribution: Illustration 
Suppose a time interval is divided into n equal parts and that one event may or may not occur in 
each subinterval. 
 
 

 

 

 - Event occurs 
 - Event  does not occur 
 
X = # of events is Bin(n,p) 
As n → ∞, events can occur over the continuous time interval 

 

n subintervals 

time interval 



X = # of events is Poisson(λ) 
 
Poisson Distribution: Comments 
• The Poisson distribution arises in connection with Poisson processes - a stochastic process in 
which events occur continuously and independently of one another.  
 
• It occurs most easily for time-events; such as the number of calls passing through a call center 
per minute, or the number of visitors passing through a turnstile per hour. However, it can apply 
to any process in which the mean can be shown to be constant.   
 
• It is used in finance (number of jumps in an asset price in a given interval); market 
microstructure (number of trades per unit of time in a stock market); sports economics (number 
of goals in sports involving two competing teams); insurance (number of a given disaster -
volcano eruptions/hurricanes/floods- per year); etc. 
 
Example: The number of named storms over a period of a year in the Atlantic is known to have 
a Poisson distribution with λ = 13.1 
Determine the probability function of X. 
Compute the probability that X is at most 8. 
Compute the probability that X is at least 10. 
Given that at least 10 hurricanes occur, what is the probability that X is at most 15? 
Solution: 
 
   
 
 

 
 
 

 
 
 
 
 

x p (x ) x p (x )

0 0.000002        10 0.083887      
1 0.000027        11 0.099901      
2 0.000175        12 0.109059      
3 0.000766        13 0.109898      
4 0.002510        14 0.102833      
5 0.006575        15 0.089807      
6 0.014356        16 0.073530      
7 0.026866        17 0.056661      
8 0.043994        18 0.041237      
9 0.064036        19 0.028432      
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The Normal distribution 
A random variable, X, is said to have a normal distribution with mean m and standard deviation s 
if X is a continuous random variable with probability density function f(x): 
 

𝑓ሺ𝑥ሻ ൌ
1
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Normal distribution: Properties 
1. Indexed by two parameters: 𝜇 (central parameter) & 𝜎 (spread parameter). 
 
2. Symmetric around 𝜇, which is the location of the maximum of f(x). 
Check:  
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The last equality holds when 𝜇 = x. Thus, 𝜇 is an extremum point of f(x). Since f(x) is a pdf, it is 
the mode. 
 
3. The inflection points of f(x) are 𝜇 – 𝜎, 𝜇 + 𝜎. (Check: set f’’(x) = 0 and solve for x.) 
 
Normal distribution: Comments 
• The normal distribution is often used to describe or approximate any variable that tends to 
cluster around the mean. It is the most assumed distribution in economics and finance: rates of 
return, growth rates, IQ scores, observational errors, etc. 
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• The central limit theorem (CLT) provides a justification for the normality assumption when n is 
large. 
 
Notation:  PDF: x ~ N(μ,σ2)   
  CDF: Φ(x) 
 
 
The Expectation of X: E(X) 
The expectation operator defines the mean (or population average) of a random variable or 
expression. 
 
Definition 
Let X denote a discrete RV with probability function p(x) (probability density function f(x) if X is 
continuous) then the expected value of X, E(X) is defined to be: 
 𝐸ሺ𝑋ሻ ൌ ∑  𝑥 𝑝ሺ𝑥ሻ௫ ൌ ∑ 𝑥 𝑝ሺ𝑥


ୀଵ ሻ 

 
and if X is continuous with probability density function f(x) 

 𝐸ሺ𝑋ሻ ൌ  𝑥 𝑓ሺ𝑥ሻ𝑑𝑥
ஶ
ିஶ  

 
Sometimes we use E[.] as EX[.] to indicate that the expectation is being taken over f X(x) dx 
 
 
Interpretation of E(X) 
1. The expected value of X, E(X), is the center of gravity of the probability distribution of X. 
2. The expected value of X, E(X), is the long-run average value of X. (To be discussed later: Law 

of Large Numbers) 

 
 
 
E[X]: The Normal Distribution 
Suppose X has a Normal distribution with parameters m and s.  
Then, E[X] = m. 
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Proof: 
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Making the substitution: 
 
     
 
Then, 
 
 
 
 
 
 
Using the following results: 
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Thus, 𝐸ሺ𝑋ሻ ൌ 𝜇 
 
 
Expectation of a function of a RV 
Let X denote a discrete RV with probability function 𝑝ሺ𝑥ሻ, then the expected value of 𝑔ሺ𝑋ሻ, 
𝐸ሾ𝑔ሺ𝑋ሻሿ, is defined to be: 
  𝐸ሾ𝑔ሺ𝑋ሻሿ ൌ ∑  𝑔ሺ𝑥ሻ 𝑝ሺ𝑥ሻ௫ ൌ ∑ 𝑔ሺ𝑥ሻ 𝑝ሺ𝑥
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and if X is continuous with probability density function 𝑓ሺ𝑥ሻ: 

  𝐸ሾ𝑔ሺ𝑋ሻሿ ൌ  𝑔ሺ𝑥ሻ 𝑓ሺ𝑥ሻ 𝑑𝑥
ஶ
ିஶ  

 
Examples: g(x) = (x – μ)2   E[g(x)] = E[(x – μ)2]  
   g(x) = (x – μ)k   E[g(x)] = E[(x – μ)k]   
 
Example: Suppose X has a uniform distribution from 0 to b.  Then: 
 

 𝑓 ሺ𝑥ሻ  ൌ ൜
1/𝑏 0  x   b
0   𝑥  0, 𝑥  𝑏

 

 
Find the expected value of  A = X2 .  
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If X is the length of a side of a square (chosen at random from 0 to b) then A is the area of the 
square 
 
 
 
 
  = 1/3, the maximum area of the square 
 
 
Median: Another central measure 
A median is the numeric value separating the higher half of a sample, a population, or a 
probability distribution, from the lower half.  
 
Definition: Median 
The median of a random variable X is the unique number m that satisfies 
the following inequalities: 
  P(X ≤ m) ≥ ½  and   P(X ≥ m) ≥ ½. 
 
For a continuous distribution, we have that m solves: 
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Note: If the mean > median > mode (= most popular observation), the distribution will be 
skewed to the right. If the mean < median < mode, the distribution will be skewed to the left. 
 
• Calculation of medians is a popular technique in summary statistics and summarizing statistical 
data, since it is simple to understand and easy to calculate, while also giving a measure that is 
more robust in the presence of outlier values than is the mean.  
 
An optimality property 
A median is also a central point which minimizes the average of the absolute deviations. That is, 
a value of c that minimizes 
   E(|X – c|) 
is the median of the probability distribution of the random variable X. 
 
Example: Let X have an exponential distribution with parameter 𝜆. The probability density 
function of X is: 
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The median m solves the following integral of X: 
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That is, m = ln(2)/λ. 
 
 
Moments of Random Variables 
The moments of a random variable X are used to describe the behavior of the RV (discrete or 
continuous).  
 
Definition: Kth Moment 
Let X be a RV (discrete or continuous), then the kth moment of X is: 
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Definition: Central Moments 
Let X be a RV (discrete or continuous). Then, the kth central moment of X is defined to be: 
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where m = m1 = E(X) = the first moment of X. 
 
• The central moments describe how the probability distribution is distributed about the center of 
gravity, m.  
 
• The first central moments is given by:  
  𝜇ଵ

 ൌ 𝐸ሾ𝑋 െ 𝜇ሿ 
 
• The second central moment depends on the spread of the probability distribution of X about m. 
It is called the variance of X and is denoted by the symbol σ2 = var(X): 
  𝜇ଶ

 ൌ 𝐸ሾሺ𝑋 െ 𝜇ሻଶሿ = var(X) =  𝜎ଶ 
 
The square root of var(X) is called the standard deviation of X and is denoted by the symbol s = 
SD(X). We also refer to it as volatility: 

  ඥ𝜇ଶ
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Moments of a RV: Skewness 
The third central moment:  
  𝜇ଷ

 ൌ 𝐸ሾሺ𝑋 െ 𝜇ሻଷሿ 
 
𝜇ଷ
 contains information about the skewness of a distribution. 



 
• A popular measure of skewness: 
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• Distribution according to skewness: 
 

1) Symmetric distribution 
 
 
 
 
 
 
 
 
 
 
 
 
 
2) Positively (right-) skewed distribution (with mode < median < mean) 
 

 
 
 
3) Negatively (left-) skewed distribution (with mode > median > mean) 
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• Skewness and Economics 
- Zero skew means symmetrical gains and losses.  
- Positive skew suggests many small losses and few rich returns.  
- Negative skew indicates lots of minor wins offset by rare major losses.  
 
• In financial markets, stock returns at the firm level show positive skewness, but at the 
aggregate (index) level show negative skewness.  
 
• From horse race betting and from U.S. state lotteries there is evidence supporting the 
contention that gamblers are not necessarily risk-lovers but skewness-lovers: Long shots are 
overbet (positive skewness loved!). 
 
 
Moments of a RV: Kurtosis 
The fourth central moment:  
  𝜇ସ

 ൌ 𝐸ሾሺ𝑋 െ 𝜇ሻସሿ 
 
It contains information about the shape of a distribution. The property of shape that is measured 
by this moment is called kurtosis, usually estimated by  

    =  
ఓర
బ

ఙర
. 

 
• The measure of (excess) kurtosis:   

  γ2  =  
ఓర
బ

ఙర
െ 3  =  

ఓర
బ

ሺఓమ
బሻమ

െ 3 

 
Note: We subtract 3, because the kurtosis of the Normal distribution is =3. 
 
• Distributions: 
1) Mesokurtic distribution 
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2) Platykurtic distribution 
 
 
 
 
 
 
 
 
 
 
 
3) Leptokurtic distribution (usual shape for asset returns) 
 
 
 
 
 
 
 
 
 
 
 
 
 
Moments and Expected Values 
Note that moments are defined by expected values. We define the expected value of a function of 
a continuous RV X, 𝑔ሺ𝑋ሻ, as 

 𝐸ሾ𝑔ሺ𝑋ሻሿ ൌ න 𝑔ሺ𝑥ሻ𝑓ሺ𝑥ሻ𝑑𝑥

ஶ

ିஶ

 

• If X is discrete with probability function p(x) 
 
  𝐸ሾ𝑔ሺ𝑋ሻሿ ൌ ∑ 𝑔ሺ𝑥ሻ𝑝ሺ𝑥ሻ௫ ൌ ∑ 𝑔ሺ𝑥ሻ𝑝ሺ𝑥ሻ  
 
Examples: 𝑔ሺ𝑥ሻ = (x – μ)2   E[𝑔ሺ𝑥ሻ] = E[(x – μ)2]  
  𝑔ሺ𝑥ሻ= (x – μ)k    E[𝑔ሺ𝑥ሻ] = E[(x – μ)k] 
 

0

0 2 0 4 0 6 0 8 0

𝛾ଶ ൏ 0, 𝜇ସ
 small in size 
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𝛾ଶ  0, 𝜇ସ
 large in size 



• We estimate expected values with sample averages. The Law of Large Numbers (LLN) tells us 
they are consistent estimators of expected values.  
 
 
Estimating Moments 
We estimate expected values with sample averages. For example, the first moment, the mean, 
and the second central moment, the variance, are estimated by: 
 

 𝑋ത ൌ  
∑ 
ಿ
సభ

ே
 

 𝑠ଶ= 
∑ ሺିതሻమ
ಿ
సభ

ேିଵ
   (𝑁 - 1 adjustment needed for Eሾ𝑠ଶሿ ൌ 𝜎ଶ) 

 
• Besides consistent, they are both are unbiased estimators of their respective population 
moments (unbiased = “on average, I get the population parameter”). That is,  
 Eሾ𝑋തሿ ൌ  μ  “population parameter” 
 Eሾ𝑠ଶሿ ൌ 𝜎ଶ 
 
 
The Law of Large Numbers (LLN) 
Long history: Gerolamo Cardano (1501-1576) stated it without proof. Jacob Bernoulli published 
a rigorous proof in 1713. 
 
Theorem (Weak LLN) 
Let 𝑥ଵ, 𝑥ଶ, …, 𝑥ே be 𝑁 mutually independent random variables each having mean 𝜇 and a finite 
variance σ2 -i.e, the sequence {𝑥ே} is i.i.d. 

Let 𝑋ത ൌ  
∑ 
ಿ
సభ

ே
. 

Then, for any  > 0 (no matter how small)  
 P[ |𝑋ത - μ| < 𝛿 ] = P[ μ -  𝛿 <  𝑋ത < μ + 𝛿 ] → 1,   as 𝑁 →  ∞ 
 
• There are many variations of the LLN. It is a general result: A sample average as the sample 
size goes to infinite tends to its expected value. Also written as: 

    𝑋തN 
୮
→  μ.  (convergence in probability) 

 
 
The Central Limit Theorem (CLT) 
The Central Limit Theorem (CLT) states conditions for the sequence of RV {𝑥ே} under which 
the mean or a sum of a sufficiently large number of 𝑥’s will be approximately normally 
distributed.  
 
Let 𝑥ଵ, 𝑥ଶ, …, 𝑥ே be a sequence of i.i.d. RVs with finite mean 𝜇, and finite variance σ2. Then, as 
N increases, 𝑋തN, the sample mean, approaches the normal distribution with mean μ and variance 
σ2/N. 
 
This theorem is sometimes stated as: 



    √
ேሺ

_
ିఓሻ

ఙ
 →
ௗ

 𝑁ሺ0,1ሻ 

where  
ௗ
→   means “the limiting distribution (asymptotic distribution) is” (or convergence in 

distribution). 
 
• Many version of the CLT. Two versions are commonly used in economics and finance:  
- The one above is the Lindeberg-Lévy CLT, with {xN} are i.i.d., with finite μ and finite σ2.  
- The other one is the Lindeberg-Feller CLT. It requires {𝑥ே} to be independent, with finite μi, 
σi

2<∞, Sn =Σi xi, sn
2= Σi σi

2 and for ε>0,  
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Note:  
Lindeberg-Levy assumes random sampling –observations are i.i.d., with the same mean and 
same variance. 
Lindeberg-Feller allows for heterogeneity in the drawing of the observations --through different 
variances. The cost of this more general case: More assumptions about how the {𝑥ே} vary. 
 
• The CLT gives only an asymptotic distribution. We usually take it as an approximation for a 

finite number of observations. In these cases, the notation goes from 
ௗ
→ to 


→.  

 
Technical Note: The Berry–Esseen theorem (Berry–Esseen inequality) attempts to quantify the 
rate at which the convergence to normality takes place.  
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where ρ = E(|X|) < ∞ and C is a constant (best current C=0.7056). 
 
 
Asymptotic Distribution 
An asymptotic distribution is a hypothetical distribution that is the limiting distribution of a 
sequence of distributions.  
 
We will use the asymptotic distribution as a finite sample approximation to the true distribution 
of a RV when N -i.e., the sample size- is large.  
 
Practical question: When is N large? 
 
 
Sampling Distributions 
All statistics, T(X), are functions of RVs and, thus, they have a distribution. Depending on the 
sample, we can observe different values for T(X), thus, the finite sample distribution of T(X) is 
called the sampling distribution.  
 



For the sample mean, 𝑋ത, if the Xi’s are normally distributed, then the sampling distribution is 
normal with mean μ and variance σଶ/𝑁. Or 
    𝑋ത ~ N(μ, σଶ/𝑁). 
 
Then, E[𝑋ത] = μ 
 Var[𝑋ത] =  σଶ/𝑁  variance of sample mean decreases as N increases! 
 
The SD of the sampling distribution is called the standard error (SE). Then, SE(𝑋ത) = σ/sqrt(N).  
 
We usually associate the standard error with the precision of the estimate. That is, the precision 
of the estimation of the mean increases as N increases.  
 
• Below, we show the sampling distribution for the sample mean of a normal population for 
different sample sizes (N). 
 

 
 
Note: As N → ∞, 𝑋ത → μ      –i.e., the distribution becomes a spike at μ! 
 
Note: If the data is not normal, the CLT is used to approximate the sampling distribution by the 
asymptotic one, usually, after some manipulations. Again, in those cases, the notation goes from 
ௗ
→ to 


→.  

 
• For the sample variance σ2, if the Xi’s are normally distributed, then the sampling distribution is 
derived from this result:  
   (N – 1) 𝑠ଶ/2 ~ 𝜒ேିଵ

ଶ . 
 
It can be shown that a random variable that follows a 𝜒௩ଶ distribution has a variance equal to 2 
times the degrees of freedom (=2*v). Then,  
 Var[(N-1) 𝑠ଶ/2 ] = 2 * (N – 1)    Var[𝑠ଶ] = 2 * 4 /(N – 1) 
  
Then, SE(𝑠ଶ) = SD(𝑠ଶ) = 2 * ඥ2/ሺ𝑁 –  1ሻሿ. 

, 𝑋ത 



 
Note: If the data is not normal (& N is large), the CLT can be used to approximate the sampling 
distribution by the asymptotic one: 

  𝑠ଶ  

→ N(2, ସ ∗ ሺെ 1ሻ/ 𝑁) 

where  = 
ఓర
బ

ఙర
 (recall when data is normal,  = 3).  

 
Remark: The precision of the estimation increases as N increases.  
 
This remark is especially relevant in Finance, where we derive relations between expected 
returns and risk factors, like market risk or volatility. As we gather more data, expected returns 
and the volatility of returns will be more precisely estimated. 
 
 
Hypothesis Testing 
A statistical hypothesis test is a method of making decisions using experimental data. A result is 
called statistically significant if it is unlikely to have occurred by chance.  
 
• These decisions are made using (null) hypothesis tests. A hypothesis can specify a particular 
value for a population parameter, say q=q0. Then, the test can be used to answer a question like: 
 
Assuming q0 is true, what is the probability of observing a value for the (test) statistic used that is 
at least as big as the value that was actually observed? 
 
• Uses of hypothesis testing:  
 - Check the validity of theories or models.  
 - Check if new data can cast doubt on established facts.  
 
• In general, there are two kinds of hypotheses:  

 (1) About the form of the probability distribution  
 Example: Is the random variable normally distributed? 
 
 (2) About the parameters of a distribution function  
 Example: Is the mean of a distribution equal to 0? 
 

• The second class is the traditional material of econometrics. We may test whether the effect of 
income on consumption is greater than one, or whether the size coefficient on a CAPM 
regression is equal to zero.  
 
 
• Hypothesis testing involves the comparison between two competing hypothesis (sometimes, 
they represent partitions of the world). 
 - The null hypothesis, denoted H0, is sometimes referred to as the maintained hypothesis.  
 - The alternative hypothesis, denoted H1, is the hypothesis that will be considered if the  
  null hypothesis is “rejected.” 

 



Idea: We collect a sample of data X = {X1, …, XN}.  We construct a statistic T(X) = f(X), called 
the test statistic. Now we have a decision rule: 
 - If T(X) is contained in space R, we reject H0 (& we learn). 
 - If T(X) is in the complement of R (RC), we fail to reject H0. 

 
Note: T(X), like any other statistic, is a RV. It has a distribution. 
 
Example: Suppose we want to test if the mean of IBM annual returns, μIBM, is 10%.  That is, H0: 
μIBM = 10%.  
 
From the population, we get a sample: {X1962, X1963, …, XN=2024}, with 𝑁=63. We use T(X) = 𝑋ത, 
which is unbiased, consistent, and, assuming X is normally distributed, we know its distribution, 
𝑋ത ~ N(μ, σ2/N).  
 
 
 
 
 
 
 
 
Now, we need to determine the rejection region, R, such that if  
   T(X) = 𝑋ത ∉ [TLB, TUB]   Reject H0: μIBM = 10%.  
 
That is,  
  R = [𝑋ത ൏ TLB, TUB  𝑋ത] 
  

Calculate T(X) = 𝑋ത 

Get a sample (size N) 
IBM returns {X

1962
, X

1963
, …, X

2024
} 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
• Q: How do we determine TLB and TUB and, thus, make a decision? We use the distribution of 𝑋ത, 
which is derived under H0. As we will se below, we determine R in such a way that the 
probability of rejecting a true H0 is “small.” 
 
Note: In the Graph above, the blue area gives us the associated probability with R. That is, the 
probability, under H0, that the observed T(X) = 𝑋ത falls in the rejection region. The blue are is 
called the significance level. 
 
 
Hypothesis Testing: Steps 
We present the classical approach, a synthesized approach, known as significance testing. It 
relies on Fisher’s p-value: the probability, of observing a result at least as extreme as the test 
statistic, under H0.  
 
We follow these steps: 
Step 1. Identify H0 & decide on a significance level (α%) to compare your test results. 
 

Step 2. Determine the appropriate test statistic T(X) and its distribution under the assumption 
that H0 is true. 
 

Step 3. Calculate T(X) from the data. 
 

Step 4. Decision Rule:  
  Reject H0 if the p-value is sufficiently small, that is, we consider T(X) in R (we learn). 
  Otherwise, we reach no conclusion (no learning). 
 
• Q: What p-value is “sufficiently small” as to warrant rejection of H0?  
Rule:  If p-value < α (say, 5%) ⟹ test result is significant: Reject H0. 

T
LB

 T
UB

 

R
C
: (T

LB
, T

UB
).  

μIBM = 10  



 If the results are “not significant,” no conclusions are reached (no learning here). Go back 
 gather more data or modify model. 
 
• The father of this approach, Ronald Fisher, favored 5% or 1%. 
 
Example: From the U.S. Jury System 
 H0: The defendant is not guilty 
 H1: The defendant is guilty 
 
In statistics we learn when we reject. In this case, we learn a defendant is guilty when the jury 
finds the defendant guilty, by rejecting H0. 
 
Example: From the U.S. Jury System 
Step 1. Identify H0 & decide on a significance level (α%) 
 H0: The defendant is not guilty 
 H1: The defendant is guilty 
Significance level α = “beyond reasonable doubt,” presumably small level. 
 
Step 2. After judge instructions, each juror forms an “innocent index” T(X)i. 
 
Step 3. Through deliberations, jury reaches a conclusion T(X) = ∑ T(X)i

ଵଶ
ୀଵ . 

 
Step 4. Decision Rule:  
  If p-value of T(X) < α  Reject H0. That is, guilty! 
 If p-value of T(X) > α  Fail to reject H0. That is, non-guilty.  
 Alternatively, we build a rejection region, R, around H0. Then, if T(X) ∈ R, we reject H0. 
 
Note: Mistakes are made. We want to quantify these mistakes. 
 
• Failure to reject H0 does not necessarily mean that the defendant is not guilty, or rejecting H0 
does not mean necessarily the defendant is guilty. Type I error and Type II error give us an idea 
of both mistakes. 
 
Definition: Type I and Type II errors 
A Type I error is the error of rejecting H0 when it is true. A Type II error is the error of 
“accepting” H0 when it is false (that is, when H1 is true).  
 
Notation: Probability of Type I error: α = P[X  R |H0 is true] 
  Probability of Type II error: β = P[X  RC |H1 is true] 
  



 
 

State of World 

Decision H0 true H1 true (H0 false) 

Cannot reject (“accept”) H0 Correct decision Type II error 

Reject H0 Type I error Correct decision 

 
Need to control both types of error: 
 α = P[rejecting H0 |H0 is true]  
 β = P[not rejecting H0 |H1 is true] 
 
Example: From the U.S. Jury System 
Type I error is the error of finding an innocent defendant guilty. 
Type II error is the error of finding a guilty defendant not guilty.  
 
• In general, we think Type I error is the worst of the two errors, we try to minimize the error of 
sending to jail an innocent person. 
 
 Actually, we would like Type I error to be zero. However, the only way to do this (100% of 
innocent defendants are found not guilty) is to never reject H0. Then, we maximize Type II error. 
 
• There is a clear trade-off between both errors. Traditional view: Set Type I error equal to a 
small number (defined in the U.S. court system as “beyond reasonable doubt”) and design a test 
that minimizes Type II error. 
 
The usual tests (t-tests, F-tests, Likelihood Ratio tests) incorporate this traditional view. 
 
 
Hypothesis Testing: z-test & t-test 
For inferences about the population mean, the usual test statistic is the t-test. It is a modification 
of the z-test statistic. 
 
• z-test. Assuming {𝑋ଵ, 𝑋ଶ, 𝑋ଷ, …, 𝑋ே} is generated by a N(μ, 2), then, the sampling 
distribution of the sample mean is: 
  𝑋ത ~ N(μ, σ2/N).   
Using the CLT, the distribution of the standardize sample mean, z, is: 

  z = 
ത ି ఓ
σ
√ேൗ

 ~ 𝑁ሺ0,  1ሻ 

 
• t-test. In practice,  is unknown. We need to estimate it, which we do with use 𝑠. Then, 
keeping the assumption ሼ𝑋ሽ ~ N(μ, 2): 



  t = 
ത ି ఓ
௦
√ேൗ

 ~ tேିଵ  –when 𝑁 > 30, tே ~ N(0, 1).  

 
Below, we plot a simulated t-distribution with 𝜈 =5 (in red), along a normal distribution (in 
blue). It has thicker tails. As 𝜈 increases, 𝑡ఔ  converges to a N(0, 1) distribution.  
 

 
 
Technical Note 2: The distribution of t is exact if ሼ𝑋ሽ ~ N(μ, 2), otherwise, the distribution is 
asymptotic (for large 𝑁). That is,  

  t = 
ത ି μ
s
√ேൗ

  
 ௗ 
→  N(0, 1). 

 

Example: We want to test if the mean is equal to μ0. Then, 

1. H0: μ = μ0. 

 H1: μ ് μ0. 

2. Appropriate T(X): t-test (based on σ unknown and estimated by s). 
 Determine distribution of T(X) under H0. Sampling distribution of 𝑋ത, under H0:  
  𝑋ത ~ N(μ0, σ2/N).  

Then, distribution of T(X) under H0: 

  t = 
ത  ି μబ
s
√ேൗ

 ~ t
N-1

   – when N  > 30, t  ~ N(0, 1).  

3. Compute t, t ̂, using 𝑋ത, μ0, s, and N. Get p-value(t ̂). 

4. Rule: Set an α level. If p-value(t ̂) < α   Reject H0: μ = μ0. 

 Alternatively, if |t ̂| > tN-1,α/2 (=1.96, if α=.05)  Reject H0: μ = μ0. 

 

Technical Note 2: In step 2, we determine the distribution of t, by using the sampling distribution 
of 𝑋ത under H0. If H0 is not true, suppose μ = μ1, then  



  𝑋ത ~ N(μ1, σ2/N),  

and, thus, t is distributed N(0, 1) only under H0, since only under H0 the E[𝑋ത െ  μ] = 0. 



Lecture 1 – Appendix: Review of Linear Algebra 
 
A Matrix 
A matrix is a set of elements, organized into rows and columns 

 

 

 

 
• a and d are the diagonal elements.  
• b and c are the off-diagonal elements. 
 
• Matrices are like plain numbers in many ways: they can be added, subtracted, and, in some 
cases, multiplied and inverted (divided).    
 
Example: 
 

  𝑨 ൌ ቂ
𝑎ଵଵ 𝑎ଶଵ
𝑎ଵଶ 𝑎ଶଶ

ቃ ;   𝑏 ൌ ሾ𝑏ଵ 𝑏ଶ 𝑏ଷሿ. ¶ 

   
Dimensions of a matrix: numbers of rows by numbers of columns. The Matrix A is a 2x2 matrix, 
b is a 1x3 matrix. 
 
A matrix with only 1 column or only 1 row is called a vector. 
 
If a matrix has an equal numbers of rows and columns, it is called a square matrix. Matrix A, 
above, is a square matrix. 
 
 Usual Notation:  Upper case letters   matrices 
   Lower case    vectors 
 
 
Matrices - Information 
Information is described by data. A tool to organize the data is a list, which we call a vector. 
Lists of lists are called matrices. That is, we organize the data using matrices.  
 
We think of the elements of X as data points (“data entries”, “observations”), in economics, we 
usually have numerical data. 
 
We store the data in rows. In a Txk matrix, X, over time we build a database: 
  

   X ൌ 
𝒙𝟏𝟏 ⋯ 𝒙𝒌𝟏
⋮ ⋱ ⋮
𝒙𝟏𝑻 ⋯ 𝒙𝒌𝑻

൩ 

 









dc

ba

rows 

columns 



• Once the data is organized in matrices it can be easily manipulated: multiplied, added, etc. (this 
is what Excel does). 
 
• In econometrics, we have a model y = f(𝑥ଵ, 𝑥ଶ, ... , 𝑥), which we want to estimate. We collect 
data, say T (or N) observations, on a dependent variable, y, and on k explanatory variables, X. 
 
• Under the usual notation, vectors will be column vectors: y and xk

 
are Tx1 vectors:   

 𝐲 ൌ 
𝑦ଵ
⋮
𝑦்
൩    & 𝒙  ൌ 

𝑥ଵ
⋮
𝑥்

൩   j = 1,..., k  

 X is a Txk matrix:  X ൌ 
𝑥ଵଵ ⋯ 𝑥ଵ
⋮ ⋱ ⋮
𝑥ଵ் ⋯ 𝑥்

൩ 

Its columns are the k Tx1 vectors 𝒙𝒋. It is common to treat 𝒙𝟏 as vector of ones, ί. 
 
 
Special Matrices – Identity and Null 
• Identity Matrix: A square matrix with 1’s along the diagonal and 0’s everywhere else. Similar 
to scalar “1.” 

  I ൌ 
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

൩ 

 
• Null matrix: A matrix in which all elements are 0’s. Similar to scalar “0.” 

  0 ൌ 
0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

൩ 

 
• Both are diagonal matrices   off-diagonal elements are zero. 
 
Note: Both are examples of symmetric and idempotent matrices. As we will see later: 
  - Symmetric:  A = AT    
  - Idempotent:  A = A2 = A3 = … 
 
 
Elementary Row Operations 
Elementary row operations:  
  – Switching: Swap the positions of two rows  
  – Multiplication: Multiply a row by a non-zero scalar  
  – Addition: Add to one row a scalar multiple of another. 
 
• An elementary matrix is a matrix which differs from the identity matrix by one single 
elementary row operation.  



• If the matrix subject to elementary row operations is associated to a system of linear equations, 
then these operations do not change the solution set. Row operations can make the problem 
easier.  
 
• Elementary row operations are used in Gaussian elimination to reduce a matrix to row echelon 
form.  
 
 
Matrix multiplication: Details 
Multiplication of matrices requires a conformability condition 
• The conformability condition for multiplication is that the column dimensions of the lead 
matrix A must be equal to the row dimension of the lag matrix B.  
 

• If A is an (mxn) and B an (nxp) matrix (A has the same number of columns as B has rows), 
then we define the product of AB. AB is (mxp) matrix with its ikth element is 𝑐= ∑ 𝑎𝒋

𝒏
𝒋ୀଵ 𝑏𝒋.  

 
Example: Suppose we have a 1x2 vector a, and a 2x3 matrix B. What are the dimensions of the 
product: a*B? 
  

  𝑎𝐵 ൌ ሾ𝑎ଵଵ𝑎ଵଶሿ 
𝑏ଵଵ 𝑏ଵଶ 𝑏ଵଷ
𝑏ଶଵ 𝑏ଶଶ 𝑏ଶଷ

൨ ൌ 𝑐 ൌ ሾ𝑐ଵଵ 𝑐ଵଶ 𝑐ଵଷሿ  

 
   ൌ ሾ𝑎ଵଵ𝑏ଵଵ  𝑎ଵଶ𝑏ଶଵ 𝑎ଵଵ𝑏ଵଶ  𝑎ଵଶ𝑏ଶଶ 𝑎ଵଵ𝑏ଵଷ  𝑎ଵଶ𝑏ଶଷሿ 
 
Dimensions: a(1x2), B(2x3)  c(1x3). ¶ 
 

Example: We want to multiply A (2x2) and B (2x2), where A has elements 𝑎𝒋 and B has 

elements 𝑏𝒋. Recall the  ik
th

 element is  

  𝑐= ∑ 𝑎𝒋
𝒏ୀ𝟐
𝒋ୀଵ 𝑏𝒋  

 A = ቂ2 1
7 9

ቃ 

 

 B = ቂ1 0
2 3

ቃ 

 

C = ቂ2 1
7 9

ቃ ∗ ቂ1 0
2 3

ቃ ൌ ቂ 𝟒 ൌ 2 ∗ 1  1 ∗ 2 𝟑 ൌ 2 ∗ 0  1 ∗ 3
𝟐𝟓 ൌ 7 ∗ 1  9 ∗ 2 𝟐𝟕 ൌ 7 ∗ 0  9 ∗ 3

ቃ 

𝐶ଶ௫ଶ ൌ 𝐴ଶ ௫ଶ ∗   𝐵ଶ௫ଶ 
 
Dimensions: A(2x2), B(2x2)  C(2x2), a square matrix. ¶ 
 

Example: We want to multiply X (2x2) and  (2x1), where X has elements 𝑥𝒋 and b has 
elements 𝛽𝒋: 



 X = ቂ
𝑥ଵଵ 𝑥ଶଵ
𝑥ଵଶ 𝑥ଶଶ

ቃ &   = 
𝛽ଵ
𝛽ଶ
൨ 

We compute 

    𝒚 = X   

Recall the ith element is  

   𝑦 = ∑ 𝑥𝒋
𝒏ୀ𝟐
𝒋ୀଵ 𝛽𝒋  

Then, 

  𝒚 = ቂ
𝑦ଵ
𝑦ଶ
ቃ = ቂ

𝑥ଵଵ 𝑥ଶଵ
𝑥ଵଶ 𝑥ଶଶ

ቃ ∗ 
𝛽ଵ
𝛽ଶ
൨ = 

𝑥ଵଵ 𝛽ଵ  𝑥ଶଵ𝛽ଶ
𝑥ଵଶ 𝛽ଵ  𝑥ଶଶ 𝛽ଶ

൨ 

 
Dimensions: X(2x2), (2x1)  𝒚(2x1), a row vector. ¶ 
 
 
Transpose Matrix 
The transpose of a matrix A is another matrix AT (also written A′) created by any one of the 
following equivalent actions: 
  –write the rows (columns) of A as the columns (rows) of AT  
  –reflect A by its main diagonal to obtain AT  
 
Formally, the (i,j) element of AT is the (j,i) element of A:  
 [AT]ij = [A]ji  

Example: 𝐴 ൌ ቂ3 8 െ9
1 0    4

ቃ   𝐴ᇱ ൌ ቈ
   3 1
   8 0
െ9 4

. ¶ 

• Results: 

- If A is a m × n matrix   A
T

 is a n × m matrix.  
- (A')' = A 
- Conformability changes unless the matrix is square. 
 - (AB)' = B'A' 
 
Example: In econometrics, an important matrix is X’X. Recall X:  

 X ൌ 
𝑥ଵଵ ⋯ 𝑥ଵ
⋮ ⋱ ⋮
𝑥ଵ் ⋯ 𝑥்

൩  a (Txk) matrix 

 
Then, 

 X’ ൌ 
𝑥ଵଵ ⋯ 𝑥ଵ்
⋮ ⋱ ⋮
𝑥ଵ ⋯ 𝑥்

൩  a (kxT) matrix. ¶ 

 
 
Basic Operations 
Addition, Subtraction, Multiplication 
 



ቂ𝑎 𝑏
𝑐 𝑑

ቃ  
𝑒 𝑓
𝑔 ℎ൨ ൌ 

𝑎  𝑒 𝑏  𝑓
𝑐  𝑔 𝑑  ℎ൨  Just add elements 

 

ቂ𝑎 𝑏
𝑐 𝑑

ቃ െ 
𝑒 𝑓
𝑔 ℎ൨ ൌ 

𝑎 െ 𝑒 𝑏 െ 𝑓
𝑐 െ 𝑔 𝑑 െ ℎ൨  Just subtract elements 

 

ቂ𝑎 𝑏
𝑐 𝑑

ቃ 
𝑒 𝑓
𝑔 ℎ൨ ൌ 

𝑎𝑒  𝑏𝑔 𝑎𝑓  𝑏ℎ
𝑐𝑒  𝑑𝑔 𝑐𝑓  𝑑ℎ൨ Multiply each row by each column and add 

 

 𝑘 ቂ𝑎 𝑏
𝑐 𝑑

ቃ ൌ ቂ𝑘𝑎 𝑘𝑏
𝑘𝑐 𝑘𝑑

ቃ   Multiply each row by each column and add 

 
 
Example: 
 

ቂ2 1
7 9

ቃ  ቂ3 1
0 2

ቃ ൌ ቂ5 2
7 11

ቃ   Addition  

  𝐴ଶ௫ଶ     𝐵ଶ୶ଶ  ൌ  𝐶ଶ୶ଶ 
 

ቂ2 1
7 9

ቃ െ ቂ1 0
2 3

ቃ ൌ ቂ1 1
5 6

ቃ   Subraction 

  𝐴ଶ௫ଶ െ   𝐵ଶ୶ଶ   ൌ    𝐶ଶ୶ଶ 
 

ቂ2 1
7 9

ቃ ∗ ቂ1 0
2 3

ቃ ൌ ቂ 4 3
25 27

ቃ   Multiplication 

   𝐴ଶ௫ଶ  ∗   𝐵ଶ௫ଶ   ൌ   𝐶ଶ௫ଶ 
 

  
ଵ

଼
ቂ2 4
6 1

ቃ ൌ 
1 4⁄ 1 2⁄
3 4⁄ 1 8⁄

൨    Scalar multiplication. ¶ 

 
 
Basic Matrix Operations: ′ 

In Least Squares (LS) estimation, we minimize a sum of square errors ( for = 1, 2, …, 𝑇): 

  S(𝑥, ) = ∑ 
ଶ்

ୀଵ   

Let  be the 𝑇x1 vector of errors. We use linear algebra to write the sum of squares of its 
elements as (dot product of 2 𝑇x1 vectors): 

  S(𝑥, ) = ∑ 
ଶ்

ୀଵ  = ′   

Check: 

  ′  = [ଵ ଶ.... ்] ∗ 
ଵ
⋮
்
൩ = [ଵଶ + ଶଶ + .... + ்ଶ ] = ∑ 

ଶ்
ୀଵ   



Thus, if we define 𝒚 = X + , LS estimation picks  to minimize:   

  S(𝑥, ) = ′ = (𝒚 – X)′ (𝒚 – X). 
 
 
Basic Matrix Operations: X′X 
A special matrix in econometrics, X′X (a kxk matrix):  
 

Recall X (Txk): X= 
𝑥ଵଵ ⋯ 𝑥ଵ
⋮ ⋱ ⋮
𝑥ଵ் ⋯ 𝑥்

൩ & X’ ൌ 
𝑥ଵଵ ⋯ 𝑥ଵ்
⋮ ⋱ ⋮
𝑥ଵ ⋯ 𝑥்

൩ 

 

      X’ X ൌ 
∑ 𝑥ଵ

ଶ்
ୀଵ ⋯ ∑ 𝑥ଵ𝑥

்
ୀଵ

⋮ ⋱ ⋮
∑ 𝑥𝑥ଵ
்
ୀଵ ⋯ ∑ 𝑥

ଶ்
ୀଵ

 = 

   = ∑ 
𝑥ଵ
ଶ ⋯ 𝑥ଵ𝑥
⋮ ⋱ ⋮

𝑥𝑥ଵ ⋯ 𝑥
ଶ

𝑻
𝒊ୀ𝟏  =  

  

   ൌ ∑ 
𝑥ଵ
⋮
𝑥

൩்
ୀଵ ሾ𝑥ଵ ⋯ 𝑥ሿ = ∑ 𝒙𝒊𝒙𝒊′

𝑻
𝒊ୀ𝟏  

 
 
Basic Matrix Operations: ί′X 
Recall ί is a column vector of ones (in this case, a Tx1 vector): 

   ί =

1
1
…
1

 

 
Given X (Txk), then  ί’ X  is a 1xk vector: 
 

 ί’X ൌ ሾ𝟏 … 𝟏ሿ 
𝑥ଵଵ ⋯ 𝑥ଵ
⋮ ⋱ ⋮
𝑥ଵ் ⋯ 𝑥்

൩=ሾ∑ 𝒙𝟏𝒕
𝑻
𝒕ୀ𝟏 … ∑ 𝒙𝒌𝒕

𝑻
𝒕ୀ𝟏 ሿ 

 
Note: If x1 is a vector of ones (representing a constant in the linear classical model), then: 
   ί’ x1 = ∑ 𝒙𝟏𝒕

𝑻
𝒕ୀ𝟏  = ∑ 𝟏𝑻

𝒕ୀ𝟏  = T  (“dot product”) 
 
 
Inverse of a Matrix 
Identity matrix: AI = A 



   

















100

010

001

3I

 
Notation: Ij is a jxj identity matrix. 
 
Given A (mxn), the matrix B (nxm) is a right-inverse for A iff  
 AB = Im 
 

 Given A (mxn), the matrix C (mxn) is a left-inverse for A iff  
 CA = In 
 
Theorem: If A (mxn), has both a right-inverse B and a left-inverse C, then C = B. 
 Proof: 
 We have  AB = Im and CA = In.  
 
 Thus, 
  C(AB) = C Im = C  and C(AB) = (CA)B = InB = B 
  ⇒ C(nxm)= B(mxn)  
Note:  
- This matrix is unique. (Suppose there is another left-inverse D, then D = B by the theorem, so 
D = C). 
- If A has both a right and a left inverse, it is a square matrix. It is usually called invertible. We 
say “the matrix A is non-singular.” 
 
• Inversion is tricky: 
 (ABC)-1 = C-1 B-1 A-1 
 
Theorem: If A (mxn) and B (nxp) have inverses, then AB is invertible and (AB)-1 = B-1A-1 
 Proof: 
 We have  AA-1 = Im  and  A-1A = In 
   BB-1 = In  and  B-1B = Ip 
 Thus, 
  B-1A-1(AB) = B-1 (A-1A) B = B-1 In B = B-1 B = Ip  
  (AB) B-1A-1 = A (BB-1) A-1 = A In A-1 = A A-1 = Im  
   ⇒ AB is invertible and (AB)-1 = B-1A-1 

 
Note: It is not possible to divide one matrix by another. That is, we can not write A/B.  For two 
matrices A and B, the quotient can be written as AB-1 or B-1A.  
 
• In general, in matrix algebra AB-1  B-1A. 
 
Thus, writing A/B does not clearly identify whether it represents AB-1 or B-1A.   
 
We’ll say B-1 post-multiplies A (for AB-1) and B-1 pre-multiplies A (for B-1A)  
 



 
Transpose and Inverse Matrix  
 (A + B)' = A' + B' 

If A' = A, then A is called a symmetric matrix. 

 
Theorems: 

 - Given two conformable matrices A and B, then (AB)' = B'A'  
 - If A is invertible, then (A-1)' = (A')-1 (and A' is also invertible). 
 
 
Properties of Symmetric Matrices 
Definition: 
If A' = A, then A is called a symmetric matrix. 
 
• In many applications, matrices are often symmetric. For example, in statistics the correlation 
matrix and the variance covariance matrix.  
 
• Symmetric matrices play the same role as real numbers do among the complex numbers.  
 
• We can do calculations with symmetric matrices like with numbers: for example, we can solve 
B2 = A for B if A is symmetric matrix (& B is square root of A.) This is not possible in general. 
 
Theorems: 
 - If A and B are nxn symmetric matrices, then (AB)' = BA  
 - If A and B are nxn symmetric matrices, then (A+B)' = B+A  
 - If C is any nxn matrix, then B = C'C is symmetric. 
 - (Spectral decomposition) If A is nxn symmetric matrix, then it can be diagonalized as  
  B = X-1AX, with an orthogonal X.  
 
• Useful symmetric matrices: 
 V = X’X     
 P = X(X’X)-1X’    P: Projection matrix 
 M = I – P = I – X(X’X)-1X’  M: Residual maker 
 Var[b] = σ2 (X’X)-1   OLS Variance of b 
 
 
Application 1: Linear System 
There is a functional form relating a dependent variable, 𝑦, and 𝑘 explanatory variables, X. The 
functional form is linear, but it depends on 𝑘 unknown parameters, . The relation between 𝑦 
and X is not exact. There is an error, . We have T observations of 𝑦 and X.  
 
Then, the data is generated according to: 

  𝑦  = ∑ 𝑥  𝛽𝑗

ୀଵ  + 𝜀   i = 1, 2, ...., T. 

 
Or using matrix notation:  



  y = X  +      
where y &  are (Tx1); X is (Txk); and  is (kx1).  
 
We will call this relation data generating process (DGP). 
 
The goal of econometrics is to estimate the unknown vector .  
 
• Assume an economic model as system of linear equations with:  
 aij parameters,   where i = 1,.., m rows, j = 1,.., n columns 
 xi  endogenous variables (n),  
 di  exogenous variables and constants (m). 
 

    ൞

𝑎ଵଵ 𝑥ଵ+ 𝑎ଵଶ 𝑥ଶ+ … + 𝑎ଵ  𝑥  = d1

𝑎ଶଵ 𝑥ଵ + 𝑎ଶଶ 𝑥ଶ + … + 𝑎ଶ𝑥  = d2 
⁝           ⁝            ⁝          ⁝ 

𝑎ଵ 𝑥ଵ + 𝑎ଶ 𝑥ଶ + … + 𝑎 𝑥  = dm

 

 
We can write this system using linear algebra notation: A x = d  

   
𝑎ଵଵ ⋯ 𝑎ଵ
⋮ ⋱ ⋮

𝑎ଵ ⋯ 𝑎

൩ 
𝑥ଵ
…
𝑥
൩ = 

𝐝𝟏
…
𝐝𝐦

൩ 

 
 
• Summary: System of linear equations:   
   Ax = d   
where  
 A = (mxn) matrix of parameters 
 x = column vector of endogenous variables (nx1)  
 d  = column vector of exogenous variables and constants (mx1)  
Solve for x*. 
 
• Questions:  
- For what combinations of A and d there will zero, one, many or an infinite number of 
solutions?  
- How do we compute (characterize) those sets of solutions? 
 
Theorem: Given A (mxn) invertible. Then, the equation Ax = d has one and only one solution 
for every d (mx1). That is, there is a unique x*. 
   x* = A-1 d 
 
 
Linear dependence and Rank: Example 
A set of vectors is linearly dependent if any one of them can be expressed as a linear 
combination of the remaining vectors; otherwise, it is linearly independent. 
 
• Formal definition: Linear independence (LI) 

d  = column vector  

A = (mxn) matrix x = column vector  



The set {𝒖ଵ, 𝒖ଶ, ..., 𝒖} is called a linearly independent set of vectors iff  
  𝑐ଵ 𝒖ଵ+ 𝑐ଶ 𝒖ଶ + .... + 𝑐  𝒖 = 0    𝑐ଵ = 𝑐ଶ = ... = 𝑐= 0. 
 
Notes: 
 - Dependence prevents solving a system of equations. More unknowns than independent 
equations. 
 - The number of linearly independent rows or columns in a matrix is the rank of a matrix 
(rank(A)). 
 
Examples: 
 
(1) 𝑣ଵ

ᇱ ൌ ሾ5 12ሿ  
  𝑣ଶ

ᇱ ൌ ሾ10 24ሿ 
 

 𝑨 ൌ ቂ 5 10
12 24

ቃ ൌ 
𝑣ଵ
ᇱ

𝑣ଶ
ᇱ ൨  (a 2x2 matrix) 

 
 2𝑣ଵ

ᇱ െ 𝑣ଶ
ᇱ ൌ 0  ⇒ 𝑟𝑎𝑛𝑘ሺ𝑨ሻ ൌ 1   cannot invert A 

 

(2) 𝑣ଵ ൌ ቂ2
7
ቃ ; 𝑣ଶ ൌ ቂ1

8
ቃ ; 𝑣ଷ ൌ ቂ4

5
ቃ ;   

 

 𝐴 ൌ ቂ2 1 4
7 8 5

ቃ 

 
 3𝑣ଵ′ െ 2𝑣ଶ′ ൌ ሾ6 21ሿ െ ሾ2 16ሿ 
   ൌ ሾ4 5ሿ ൌ 𝑣ଷ′ 
 
 3𝑣ଵ

ᇱ െ 2𝑣ଶ
ᇱ െ 𝑣ଷ′ ൌ 𝟎 ⇒ 𝑟𝑎𝑛𝑘ሺ𝑨ሻ ൌ 2. ¶ 

 
A matrix A has full row rank when each of the rows of the matrix are linearly independent and 
full column rank when each of the columns of the matrix are linearly independent. For a 
square matrix these two concepts are equivalent and we say matrix A has full rank. 
 
 
Determinant Test 
We can check if a matrix square matrix A has full rank, that is, all its rows/columns are linearly 
independent by computing the determinant. If a square matrix A has full rank, it is invertible. 
That is, the determinant of a square matrix A detects whether A is invertible:  
 
If det(A) = 0 then A is not invertible (equivalently, the rows/columns of A are linearly 
dependent). 
 
 

 
  



Lecture 2 - Introduction: Review, Returns and Data   
 
• All the information and material is on my webpage: 
https://www.bauer.uh.edu/rsusmel/4397/4397.htm 
 
• Textbook:  
Required: Introductory Econometrics for Finance, Cambridge University Press; 4th edition or 
older, by Chris Brooks. 
 
Recommended: R Guide for Introductory Econometrics for Finance, written by Chris 
Brooks. You can download it from my homepage (pdf format). It's also available for free through 
Amazon (kindle format). 
 
• Install R in your machine. Many students strongly prefer R Studio. Both will do fine. We will 
run programs and do some simple programing. 
 
• Two midterms and a final (optional paper for MBA/MS class). There is a project in between 
midterms. 
 
• Three homework: Two before first Midterm and one before second Midterm.  
 
 
This Class 
This is an applied technical class, with some econometric theory and many stats concepts, 
followed by related financial applications. 
 
• We will review many math and statistical topics.  
 
• Some technical material may be new to you, for example Linear Algebra. The new material is 
introduced to simplify the exposition of the main concepts. You will not be required to have a 
deep understanding of the new material, but you should be able to follow the intuition behind it. 
 
• This is not a programming class, but we will use R to do computation and to estimate models. I 
will cover some of the basics in class. But, the more you know, the more comfortable you will be 
running the programs. 
 
• For some students, the class will be dry (“He fried my brain,” a student recently wrote.) 
 
 
 • Main Topics 
We will go over a lot of statistics and math tools: tests of hypothesis, bootstrap, linear regression,  
time series modeling, etc. But keep in mind that the goal of this class is to use statistical tools to 
understand financial issues. In this class we will try to answer the following questions: 
- How do we measure returns and risks of financial assets? 
- Can we estimate expected returns with precision? What about the variance of returns? 
- Is the equity risk premium (excess returns of stocks over bonds) too high? 



- Can we explain asset returns? 
- How can one explain variations in stock returns across various stocks? 
- Is the CAPM a good model? What about the Fama-French factor models? 
- Do we need normality to test financial economics hypothesis or models? 
- How do we incorporate structural breaks in our models? Do we have to do it? 
- Are asset returns predictable? In the short run? In the long run? 
- How do we select a model to forecast asset returns? 
- Are markets efficient? 
- Does the risk of an asset vary with time? What are the implications? How can one model time-
varying risk? 
 
 
• Topics Not Covered 
This course provides an introduction to the basics of financial econometrics, focusing on 
estimation of linear models and analysis of time series. There are many more topics in financial 
econometrics that we will not cover, among them:  
- Credit risk management and probability of default 
- Interest rate models and term structure models 
- Analyzing high-frequency data and modeling market microstructure 
- Estimating models for options 
- Multivariate time series models 
- Technical methods such as state-space models and the Kalman filter, Markov processes, 
copulae, nonparametric methods, etc. 
 
 
What is Econometrics? 
Ragnar Frisch, Econometrica Vol.1 No. 1 (1933), defined the field: 
 
“Experience has shown that each of these three view-points, that of statistics, economic theory, 
and mathematics, is a necessary, but not by itself a sufficient, condition for a real understanding 
of the quantitative relations in modern economic life.  
 
It is the unification of all three aspects that is powerful. And it is this unification that constitutes 
econometrics.” 
 
 
 
 
 
 
 
 
 
 
 
 

Mathematical Statistics 

Data 

Econometrics 

Economic Theory 



Examples: We want to estimate the annual expected excess return for Exxon, E[𝑟ைெ - 𝑟].  
- Simple approach: We get monthly XOM return data to compute the average annualized return 
of XOM, since 1973. We use this average to estimate the annual expected return. Then, we get 
an annualized 2.81% estimate. Good, we use data & statistics (the average estimates the 
expectation).   
 
- More sophisticated approach: Add economic theory. That is, use econometrics. For example, 
we can use the Capital Asset Pricing Model (CAPM) that states a linear relation, in equilibrium, 
between excess market returns, 𝑟ெ - 𝑟, & excess returns, 𝑟 - 𝑟, for any asset 𝑖: 
   E[𝑟 - 𝑟] = 𝛽  E[(𝑟ெ - 𝑟)]. 
We get data on 𝑟, 𝑟, and 𝑟ெ. Then, we use a linear regression to estimate β. 
 
• Steps: 
 (1) Economic Theory:  The CAPM:  
   E[𝑟ୀைெ - 𝑟] =  𝛽  E[(𝑟ெ - 𝑟)] 
 
(2) Data: Collect data, 1973-now for 𝑟ைெ, 𝑟, & 𝑟ெ. 
 
(3) Mathematical Statistics: Use a linear regression to estimate  𝛽 :  
   𝑟ைெ - 𝑟 = 𝛼ைெ + βைெ (𝑟ெ - 𝑟) + 𝜀ைெ 
  ⇒ Compute b𝑿𝑶𝑴 (the regression estimator of  βைெ), say 0.665. 
 
• Now, we are ready to compute the expected excess return for XOM: 
 Expected excess XOM return: b𝑿𝑶𝑴 * Average(𝒓𝑴 - 𝒓𝒇). 
  :  0.665 * 0.0727 = 0.0483 (= 4.83%). ¶ 
 
Financial Econometrics is applied econometrics to financial data. That is, we study the statistical 
tools that are needed to analyze and address the specific types of questions and modeling 
challenges that appear in analyzing financial data. 
 
Always keep in mind that almost in all cases, financial data is not “experimental data.” We have 
no control over the data. We have to learn how to deal with the usual problems in financial data. 
 
Typical applications of econometric tools to finance: 
  - Describe data. For example, expected returns & volatility.  
 - Test hypothesis. For example, are stocks riskier than bonds? 
 - Build and test models. For example, the different Fama-French factor Models. 
 
In general, in finance we deal with trade-off. The usual trade-off: Risk & Return. Then: 
 – How do we measure risk and return?  
 – Can we predict them? 
 – How do we measure the trade-off? 
 – How much should I be compensated for taking a given risk? 
 



Thus, we will be concerned with quantifying rewards and risks associated with uncertain 
outcomes. 
 
• Trade-off application: Fund Management 
A fund manager has to allocate money across potentially many different investment alternatives 
to form portfolios. 
 
At the time of the investment, the fund manager does not know what the return will be on each 
investment opportunity.  (As we will see soon, returns are random variables.) 
 
However, the fund manager can still make good investment decisions. 
 
Q: How? By quantifying the uncertainty associated with all the investment alternatives. For this 
purpose, the fund manager needs a model for the returns of all the different investment 
alternatives. 
 
From the model, the fund manager gets expected returns, variances & covariances. Using these 
pieces of information, the fund manager builds a portfolio. 
 

 
This Lecture 
In the first part of the lecture, we review some of the concepts discussed in Lecture 1 (sample 
statistics, distributions, random variables, descriptive statistics, etc.). In the second part, we go 
over returns, yields and, then, we start to apply statistical concepts to financial data. We also start 
to introduce R concepts and to write some R programs.  
 
 
Review – Population and Sample  
Definition: Population 
A population is the totality of the elements under study. We are interested in learning something 
about this population. 
 
Examples: Number of alligators in Texas, percentage of unemployed workers in cities in the 
U.S., the total return of all stocks in the U.S., the 10-year Japanese government bond yield from 
1960-2023. ¶ 
 
A Random Variable (RV) X defined over a population is called the population RV. The 
population RV generates the data. We call the population RV the “Data Generating Process,” or 
DGP. 
 
 
Usually, the population is large, making a complete enumeration of all the values in the 
population impractical or impossible. Thus, the descriptive statistics describing the population –
i.e., the population parameters– will be considered unknown. 
 



Typical situation in statistics: we want to make inferences about an unknown population 
parameter θ using a sample –i.e., a small collection of observations from the general population 
ሼ𝑋ଵ, 𝑋ଶ, …, 𝑋ேሽ.   
 
We summarize the information in the sample with a statistic, which is a function of the sample. 
That is, any statistic summarizes the data, or reduces the information in the sample to a single 
number. To make inferences, we use the information in the statistic instead of the entire sample. 
 
 
 
 
 
 
 
 
 
 
Definition: Sample 
The sample is a (manageable) subset of elements of the population.  
 
Example: The total returns of the stocks on the S&P 500 index. ¶ 
 
Samples are collected to learn about the population. The process of collecting information from a 
sample is referred to as sampling.  
 
Definition: Random Sample  
A random sample is a sample where the probability that any individual member from the 
population being selected as part of the sample is exactly the same as any other individual 
member of the population.  
 
Example: The total returns of the stocks on the S&P 500 index is not a random sample. ¶ 
 
In mathematical terms, given a random variable X with distribution F, a random sample of length 
N is a set of N independent, identically distributed (i.i.d.) random variables with distribution F.  
 
We will estimate population parameters using sample analogues: mean, sample mean; variance, 
sample variance; , b; etc. 
 
• In general, in finance and economics, we do not deal with random samples. The collected 
observations will have issues that make the sample not a truly random sample. 
 
 
Review – Samples and Types of Data 
The samples we collect to learn about the population by computing sample statistics are 
classified in three groups: 
 

Get a statistic and Make inferences (“learn”) 

Get a sample (size N or T) 

Population 
(DGP) 

Sample 



- Time Series Data: Collected over time on one or more variables, with a particular frequency of 
observation. For example, we record for 10 years the monthly S&P 500 returns, or 10’ IBM 
returns.  
Usual notation: xt, t = 1, 2, …, T. 
 
- Cross-sectional Data: Collected on one or more variables collected at a single point in time. 
For example, today we record all closing returns for the members of the S&P 500 index.  
Usual notation: xi, i = 1, 2, …, N. 
 
- Panel Data: Cross-sectional Data collected over time. For example, the CRSP database collects 
daily prices of all U.S. traded stocks since 1962. 
Usual notation: xi,t, i = 1, 2, …, N & t = 1, 2, …, T. 
 
The different types of data will present different problems; for example, autocorrelated data is a 
common problem in time series. 
 
 
Review – Sample Statistic 
A statistic (singular) is a single measure of some attribute of a sample (for example, its 
arithmetic mean value). It is calculated by applying a function (statistical algorithm) to the values 
of the items comprising the sample, which are known together as a set of data. 
 
Definition: Statistic 
A statistic is a function of the observable random variable(s), which does not contain any 
unknown parameters. 
 
Examples: Sample mean (𝑋ത), sample variance (s2), minimum, median, (𝑥ଵ + 𝑥ே)/2, etc. ¶ 
 
Note:  A statistic is distinct from a population parameter. A statistic will be used to estimate a 
population parameter. In this case, the statistic is called an estimator.  
 
 
Review – Population and Sample 
Sample Statistics are used to estimate population parameters. 
 
Example:  𝑋ത is an estimate of the population mean, μ. ¶ 
 
Notation: Population parameters: Greek letters (μ, σ, θ, etc.) 
 Estimators: A hat over the Greek letter (θ). 
 
Suppose we want to learn about the mean of IBM annual returns, μIBM. From the population, we 
get a sample: {X

1962
, X

1963
, …, X

N=2023
}. Then, we compute a statistic, 𝑋ത. As we will see later, 

on average 𝑋ത is a good estimator of μ. 
  



 
 
 
 
 
 
 
 
The definition of a sample statistic is very general. For example, (𝑥ଵ + 𝑥ே)/2 is by definition a 
statistic; we could claim that it estimates the population mean of the variable X. However, this is 
probably not a good estimate.  
 
We would like our estimators, θ, to have certain desirable properties, for example, low bias and 
low variance, where bias and varianc are defined below: 
 - Bias[θሿ = E[θ] െ θ 

 - Var[θሿ = E[ሺθ െ E[θ])
ଶ
]  

 
Ideally, we would like to have θ with both low bias and low variance, but as we would see later, 
in general, we have a trade-off between these two properties. 
 
 
Review – Sample Statistic 
Some simple properties for estimators: 
- An estimator θ is unbiased estimator of θ if E[θ] = θ. 
- An estimator is most efficient if the variance of the estimator is minimized. 
- An estimator is BUE, or Best Unbiased Estimate, if it is the estimator with the smallest 
variance among all unbiased estimates. 
- An estimator is consistent if as the sample size, n, increases to ∞, θn converges to θ. We write   

  θn 

→  θ.    (A LLN is behind this result.) 

- An estimator is asymptotically normal if as the sample size, n, increases to ∞, θn, often 
standardized or transformed, converges in distribution to a Normal distribution. We write  

   θn 
ௗ
→  N(θ, Var(θn)).   (A CLT is behind this result.) 

 
The first two properties for estimators hold for samples of any size, not just large samples –i.e., 
when 𝑁 →  ∞. We associate bias with lack of accuracy and efficiency/variance with uncertainty. 
  
It is common to evaluate an estimator using the Mean Squared Error (MSE), which combines the 
bias and the variance: 

 MSE[θ] = E[ሺθ െ θ)
ଶ
] = 𝐵𝑖𝑎𝑠ሾθሿଶ + Var[θሿ. 

 
 
Review – PDF for a Discrete RV 
Definition: Let 𝑋 be a discrete RV. Let 𝑝ሺ𝑥ሻ be a function with the following properties: 
 

Calculate 𝑋ത and infer μIBM 

Get a sample (size N) 

IBM returns {X
1962

, X
1963

, …, X
2023

} 



 1. 0  𝑝ሺ𝑥ሻ  1 
 
 2. ∑ 𝑝ሺ𝑥


ୀଵ ሻ ൌ 1 

 
  3. 𝑃ሾ𝑎  𝑋  𝑏ሿ ൌ ∑  𝑝ሺ𝑥ሻ ஸ ௫ ஸ   
 
Then, 𝑝ሺ𝑥ሻ is called the probability function or probability mass function (pmf) of 𝑋. We use 
𝑝ሺ𝑥ሻ to describe the behavior of a discrete RV. 
 
Example: Suppose the discrete RV 𝑋 is the number of days in a week that XOM has a positive 
return. Using Property 3, we can compute the probability that XOM’s has a positive return in 3 
or more days in a week: 
 
 𝑃ሾ𝑎 ൌ 3  𝑋  𝑏 ൌ 5ሿ ൌ  𝑝ሺ𝑥 ൌ 3ሻ  𝑝ሺ𝑥 ൌ 4ሻ  𝑝ሺ𝑥 ൌ 5ሻ. ¶  
 
 
Review – PDF for a Continuous RV 
Analogous definition applies for a continuous RV, where the notation uses f(x) instead and the 
summation sign is replaced by the integral.  
 
Definition: Suppose that X is a random variable. Let f(x) denote a function defined for -∞ < x < 
∞ with the following properties: 
 

1. 𝑓ሺ𝑥ሻ ≥ 0 
 .2 𝑓ሺ𝑥ሻ𝑑𝑥

ஶ
ିஶ ൌ 1. 

3. 𝑃ሾ𝑎  𝑋  𝑏ሿ ൌ  𝑓ሺ𝑥ሻ𝑑𝑥

  

 
Then, f(x) is called the probability density function (pdf) of X. The RV X is called continuous.  
 
The pdf is non-negative and integrates to   𝑓ሺ𝑥ሻ𝑑𝑥

ஶ
ିஶ ൌ 1. The probability that  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑃ሾ𝑎 ൌ െ1.645  𝑋  𝑏 ൌ 1.645 ሿ ൌ න 𝑓ሺ𝑥ሻ𝑑𝑥

ୀଵ.ସହ

ୀିଵ.ସହ

 

𝑏 𝑎



Remark: We use the pdf to describe the behavior of a continuous RV.  
 
Example: Suppose the continuous RV 𝑋 is IBM’s daily stock returns and we know the pdf. 
Then, using Property 3, we can compute the probability that IBM’s daily return is between 𝑎 =-
1.64% and 𝑏=1.64%: 
 

 𝑃ሾെ1.64%  𝑋  1.64%ሿ ൌ  𝑓ሺ𝑥ሻ𝑑𝑥
ୀଵ.ସ
ୀିଵ.ସ  (the red area in the above graph). ¶ 

 
 
Review – Popular PDFs: Normal Distribution 
A RV X is said to have a normal distribution with parameters μ (mean) and σ2 (variance) if X is a 
continuous RV with pdf f(x): 

𝑓ሺ𝑥ሻ ൌ
1

√2𝜋𝜎ଶ
exp ቈെ

ሺ𝑥 െ 𝜇ሻଶ

2𝜎ଶ
 

 

 
Note: Described by two parameters: μ and σ2. We write X ~ N(μ, σ2) 
 
When μ = 0 and σ2 = 1, we call the distribution standard normal. We write X ~ N(0, 1). This is 
the distribution that is tabulated. 
 
The normal distribution is often used to describe or approximate any variable that tends to cluster 
around the mean. It is the most assumed distribution in economics and finance: rates of return, 
growth rates, IQ scores, observational errors, etc. 
 
The central limit theorem (CLT) provides a justification for the normality assumption when the 
sample size, n, is large. 
 
Notation:  PDF:   X ~ N(μ, σ2) 
  CDF:   Φ(x) 
 
 



Review – Popular PDFs: Gamma Distribution 
 Let the continuous RV X have density function): 

 

   
1 0

0 0

xx e x
f x

x


 


 

  
   

 
where α, λ > 0 and Γ(α) is the gamma function evaluated at α.  
 
Then, X  is said to have a Gamma distribution with parameters  and , denoted as X ~ 
Gamma(, ) or Γ(). 
 
It is a family of distributions, with special cases:  
 - Exponential Distribution, or Exp(λ): α = 1. 
 - Chi-square Distribution, or 𝜒ఔଶ: α = 𝜈/2 and  λ = ½.   
 
The Chi-square distribution, 𝜒ఔଶ, will appear a lot in this class, since it is derived from a sum of 
independent square standard normals. It is the distribution of many popular test statistics. Below 
we plot the Chi-square distribution with parameter υ, which we refer as degrees of freedom: 
 
 
 
 
 
 
 
 
 
 
 
 
Note: When 𝜈 is large, the 𝜒ఔଶ converges to a N(𝜈, 2𝜈). 
 
 
 
Review – Popular PDFs: Other Distributions 
Other distributions that we will use in this class: the t-distribution and the F-distribution.  
 
(1) t-distribution 
The t-distribution is the ratio of a standard normal and the square root of a Chi-squared 
distribution, divided by its degrees of freedom. That is, let Y ~ N(0, 1) and W ~ 𝜒ఔଶ, then  

  t = 


ඥௐ/ఔ
 ~ 𝑡ఔ. 

 

0

0 .1

0 .2

0 4 8 1 2 1 6
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The t-distribution is indexed by its degrees of freedom. Below, we plot a simulated t-distribution 
with 𝜈 =5 (in red), along a normal distribution (in blue). It looks like a normal distribution, but 
with thicker tails. As 𝜈 increases, the t-distribution converges to a standard normal distribution.  
 

 
 
(2) F-distribution 
The F-distribution is the ratio of two independent Chi-squared distributions, divided by their 
degrees of freedom. That is, let 𝑍ଵ ~ 𝜒ఔభ

ଶ  and 𝑍ଶ ~ 𝜒ఔమ
ଶ , then  

  F = 
భ /ఔభ
మ /ఔమ

 ~ 𝐹ఔభ,ఔమ 

The F distribution is indexed by two degrees of freedom, informally referred as “numerator  and 
denominator degrees of freedom.” 
 

 
We will use both distributions in the context of testing null hypothesis.  
 
Note: t2 ~ 𝐹ଵ,ఔ. 
 
 
Review – CDF for a Continuous RV 
If X is a continuous random variable with probability density function, f(x), the cumulative 
distribution function (CDF) of X is given by: 



𝐹ሺ𝑥ሻ ൌ 𝑃ሾ𝑋  𝑥ሿ ൌ න𝑓ሺ𝑡ሻ𝑑𝑡

௫

ିஶ

 

 

 
 
 
 
 
 
 
 
 
 
 
 
The plot of 𝐹ሺ𝑥ሻ is: 

 
Note: The FTC (fundamental theorem of calculus) implies:  

𝐹ᇱሺ𝑥ሻ ൌ
𝑑𝐹ሺ𝑥ሻ
𝑑𝑥

ൌ 𝑓ሺ𝑥ሻ 

 
Example: Let 𝑋 above, in the previous graph, be the daily IBM’s returns, then, the probability 
that IBM’s daily returns are 1.645% or less is 95% (red area in the first graph). ¶  

 
 
Review – The Empirical Distribution  
The empirical distribution (ED) of a dataset is simply the distribution that we observe in the data.  
 
The ED is a discrete distribution that gives equal weight to each data point, assigning a 1/N 
probability to each of the original N observations.  
 

𝐹ሺ𝑥 ൌ 𝑏 ൌ 1.645ሻ 

𝑏 ൌ 1.645 

0.95 

ሺ𝑥 ൌ 1.645ሻ 



We form a cumulative distribution function, F*, that is a step function that jumps up by 1/N at 
each of the N data point: 
   F*(x) = 1/N ∑ 𝐼ሺ𝑥  𝑥ሻே

ୀଵ , 
where I(.) is the indicator function: 
 𝐼ሺ𝑥  𝑥ሻ=1,   if 𝑥  𝑥  
 𝐼ሺ𝑥  𝑥ሻ=0,   if 𝑥  𝑥  
 
Example: We throw 100 times two dice and sum the results. The CDF is given below:  
 
 

 
 
In general, we use a histogram to describe the ED of a dataset. ¶ 
 
Important result: Let F be the true distribution of the data and F∗ be the ED of the data. As 
N→∞, the Law of large numbers (LLN) tells us that F∗ becomes a good approximation of F. 
 
 
Review – Histogram of a RV 
Recall that a histogram is an approximate representation of the distribution of numerical data. 
 
Example: We use a histogram to estimate the distribution of a RV. Below we display two 
histograms. For the first histogram, let X = Percentage changes in the CHF/USD exchange rate 
= 𝑒 ; while for the second one, let X = MSCI USA Index returns. 
 
Data: For the CHF/USD exchange rate, we have monthly data from January 1971 to March 2024 
(N= 6155 observations) and for the MSCI USA returns we have monthly data from January 1970 
to June 2020 (N=607). 
 



 
 

 
Note: We overlay a Normal density (blue line) over the histograms. ¶ 
 
 
Review – Moments of Random Variables 
The moments of a random variable X are used to describe the behavior of the RV (discrete or 
continuous).  
 
Definition: Kth Moment 
Let X be a RV (discrete or continuous), then the kth moment of X is: 
 



𝜇 ൌ 𝐸ሺ𝑋ሻ  ൌ

⎩
⎪
⎨

⎪
⎧ 𝑥𝑝ሺ𝑥ሻ

௫

if 𝑋 is discrete

න 𝑥𝑓ሺ𝑥ሻ𝑑𝑥

∞

ି∞

if 𝑋 is continuous
 

 
Example: Suppose 𝑋 is the number of days in a week that XOM has a positive return. We want 
to know the first moment, the mean, of the distribution. That is, 
  𝜇ଵ ൌ ∑ 𝑥 𝑝ሺ𝑥ሻ௫  = 1 * 𝑝ሺ𝑥 ൌ 1ሻ + 2 * 𝑝ሺ𝑥 ൌ 2ሻ + 3 * 𝑝ሺ𝑥 ൌ 3ሻ + 4 * 𝑝ሺ𝑥 ൌ 4ሻ + 5 * 𝑝ሺ𝑥 ൌ 5ሻ 
  
Suppose we can describe 𝑋 with a Binomial distribution, with p=0.52, that is, we sssume that 
XOM has a 52% probability of having a positive return. Then, 
 𝜇ଵ ൌ 0 * 0.0255 + 1* 0.1380 + 2 * 0.2990 + 3 * 0.3240 + 4 * 0.1755 + 5 * 0.0380 = 2.60 
 
Interpretation: The expected number of days in week with positive returns for XOM is 2.6 days. 
 
Note: For a continuous RV, we need to integrate to get moments. 
 
 
Definition: Central Moments 
Let X be a RV (discrete or continuous). Then, the kth central moment of X is defined to be: 
 

𝜇
 ൌ 𝐸ሾሺ𝑋 െ 𝜇ሻሿ  ൌ ቊ

∑ ሺ𝑥 െ 𝜇ሻ𝑝ሺ𝑥ሻ௫ if 𝑋 is discrete

 ሺ𝑥 െ 𝜇ሻ𝑓ሺ𝑥ሻ𝑑𝑥
ஶ
ିஶ if 𝑋 is continuous

 

 
where 𝜇 = 𝜇ଵ = E(X) = the first moment of X. 
 
The central moments describe how the probability distribution is distributed about the center of 
gravity, m.  
 
The first central moments is given by:  
  𝜇ଵ

 ൌ 𝐸ሾ𝑋 െ 𝜇ሿ 
 
The second central moment depends on the spread of the probability distribution of X about m. It 
is called the variance of X and is denoted by the symbol σ2 = var(X): 
  𝜇ଶ

 ൌ 𝐸ሾሺ𝑋 െ 𝜇ሻଶሿ = var(X) =  𝜎ଶ 
 
The square root of var(X) is called the standard deviation of X and is denoted by the symbol s = 
SD(X). We also refer to it as volatility: 

  ඥ𝜇ଶ
 ൌ ඥ𝐸ሾሺ𝑋 െ 𝜇ሻଶሿ = 𝜎 

 
Example: Suppose 𝑋 is the number of days in a week that XOM has a positive return. We want 
to know the second central moment, 𝜇ଶ

 = ଶ (& volatility), and the third central moment, 𝜇ଷ
. 

(Recall that 𝜇ଵ = 𝜇 = 2.6 days)  
 



Then, the second central moment is given by: 
𝜇ଶ
 ൌ  ଶ ൌ ∑ ሺ𝑥 െ 𝜇ሻଶ 𝑝ሺ𝑥ሻ௫  = ሺ0 െ 2.6ሻଶ * 𝑝ሺ𝑥 ൌ 0ሻ  ሺ1 െ 2.6ሻଶ * 𝑝ሺ𝑥 ൌ 1ሻ  

  + ሺ2 െ 2.6ሻଶ * 𝑝ሺ𝑥 ൌ 2ሻ + ሺ3 െ 2.6ሻଶ * 𝑝ሺ𝑥 ൌ 3ሻ    
  + ሺ4 െ 2.6ሻଶ * 𝑝ሺ𝑥 ൌ 4ሻ + ሺ5 െ 2.6ሻଶ * 𝑝ሺ𝑥 ൌ 5ሻ  
\ 
Again, assume 𝑋 follows a Binomial distribution, with p=0.52. Then, 
 ଶ ൌ ሺ0 െ 2.6ሻଶ * 0.0255 + ሺ1 െ 2.6ሻଶ * 0.1380 + ሺ2 െ 2.6ሻଶ * 0.2990 + ሺ3 െ 2.6ሻଶ * 0.3240 
 + ሺ4 െ 2.6ሻଶ * 0.1755 + ሺ5 െ 2.6ሻଶ * 0.0380 
 = 1.24802     = sqrt(1.24802) = 1.117148 
 
Interpretation: The volatility of 𝑋 is 1.12 days. 
 
Then, the second central moment is given by: 
𝜇ଷ
 ൌ ሺ0 െ 2.6ሻଷ * 0.0255 + ሺ1 െ 2.6ሻଷ * 0.1380 + ሺ2 െ 2.6ሻଷ * 0.2990 + ሺ3 െ 2.6ሻଷ * 0.3240 

 + ሺ4 െ 2.6ሻଷ * 0.1755 + ሺ5 െ 2.6ሻଷ * 0.0380 = -0.04989 
 
Note: Again, for a continuous RV, we need to integrate to get central moments. ¶ 
 
 
Review – Moments of a RV: Skewness 
The third central moment:  
  𝜇ଷ

 ൌ 𝐸ሾሺ𝑋 െ 𝜇ሻଷሿ 
𝜇ଷ
 contains information about the skewness of a distribution. We use skewness as a gauge of 

symmetry. If 𝜇ଷ
 ൌ 0 the distribution is symmetric; otherwise, asymmetric. 

 
A popular measure of skewness: 

  𝛾ଵ ൌ
ఓయ
బ

ఙయ
ൌ ఓయ

బ

൫ఓమ
బ൯
య
మ
 

 
• Distribution according to skewness: 
1) Symmetric distribution 

 
 
2) Positively (right-) skewed distribution (with mode < median < mean) 

𝜇ଷ
 ൌ 0, 𝛾ଵ ൌ 0 



 
 
3) Negatively (left-) skewed distribution (with mode > median > mean) 

 
Example (continuation): Now, we can compute 𝛾ଵ for 𝑋, the number of days in a week that 
XOM has a positive return. Recall 𝜇ଶ

 = 1.24802 and  𝜇ଷ
 = -0.04989, then, 

   𝛾ଵ ൌ
ఓయ
బ

ఙయ
ൌ ି.ସଽ଼ଽ

ሺଵ.ଵଵଵହሻయ
 = -0.03578522  

 
Interpretation: 𝑋 has a small, but negative skewness. The left tail is a little bit longer. ¶ 
 
• Skewness and Economics 
For changes in asset prices: 
-  Zero skew means symmetrical gains and losses –i.e., extreme values tend to occur on both 
sides of the curve on similar proportions.  
-  Positive skew suggests many small losses and few rich returns –i.e., extreme values tend to 
occur in the right tail 
- Negative skew indicates a lot of minor wins offset by rare major losses –i.e., extreme values 
tend to occur in the left tail.  
 
In financial markets, stock returns at the firm level show positive skewness, but at the aggregate 
(index) level show negative skewness.  
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From horse race betting and from U.S. state lotteries there is evidence supporting the contention 
that gamblers are not necessarily risk-lovers but skewness-lovers: Long shots are overbet 
(positive skewness loved!). 
 
 
Review – Moments of a RV: Kurtosis 
The fourth central moment:  
  𝜇ସ

 ൌ 𝐸ሾሺ𝑋 െ 𝜇ሻସሿ 
 
It contains information about the shape of a distribution. The property of shape that is measured 
by this moment is called kurtosis, usually estimated by : 

    =  
ఓర
బ

ఙర
. 

 
Kurtosis measures how much weight there is in the tails of the distribution relative to the middle 
(we call this a measure of the “fatness” of the tails). We usually compare the kurtosis of a series 
relative to the kurtosis of a normal distribution, which is equal to 3. We measure the “excess” 
fatness of the tail over the normal curve. That is, the measure of (excess) kurtosis:   

  γ2 = 
ఓర
బ

ఙర
െ 3 = 

ఓర
బ

ሺఓమ
బሻమ

െ 3 

 
• Distributions: 
1) Mesokurtic distribution 
 

 
 
2) Platykurtic distribution 

𝛾ଶ ൌ 0 



 
 
 
3) Leptokurtic distribution (usual shape for asset returns) 
 

 
 
 
• Positive excess kurtosis, 𝛾ଶ  0, is the norm for financial returns. Below I simulate a series 
with 𝜇=0, 𝜎=1, zero skewness & kurtosis = 6 (𝛾ଶ=3), overlaid with a standard normal 
distribution. Fat tails are seen on both sides of the distribution. 

 
 

𝛾ଶ ൏ 0 

𝛾ଶ  0 



Review – Moments and Expected Values 
Note that moments are defined by expected values. We define the expected value of a function of 
a continuous RV X, 𝑔ሺ𝑋ሻ, as 
   𝐸ሾ𝑔ሺ𝑋ሻሿ ൌ  𝑔ሺ𝑥ሻ𝑓ሺ𝑥ሻ𝑑𝑥

ஶ
ିஶ  

 
If X is discrete with probability function p(x) 
   𝐸ሾ𝑔ሺ𝑋ሻሿ ൌ ∑ 𝑔ሺ𝑥ሻ𝑝ሺ𝑥ሻ௫ ൌ ∑ 𝑔ሺ𝑥ሻ𝑝ሺ𝑥ሻ  
 
Examples: g(x) = (x – μ)2   E[g(x)] = E[(x – μ)2]  
  g(x) = (x – μ)k   E[g(x)] = E[(x – μ)k]. ¶ 
 
We estimate expected values with sample averages. As we will see below, the Law of Large 
Numbers (LLN) tells us they are consistent estimators of expected values.  
 
 
Review – Estimating Moments 
We estimate expected values with sample averages. For example, the first moment, the mean, 
and the second central moment, the variance, are estimated by: 

  𝑋ത ൌ  
∑ 
ಿ
సభ

ே
 

  𝑠ଶ =  
∑ ሺିതሻమ
ಿ
సభ

ேିଵ
   (N - 1 adjustment needed for Eሾ𝑠ଶሿ ൌ 𝜎ଶ) 

 
They are both unbiased estimators of their respective population moments (unbiased = “on 
average, I get the population parameter”). That is,  
  Eሾ𝑋തሿ ൌ  μ  “μ is the population parameter of interest” 
  Eሾ𝑠ଶሿ ൌ 𝜎ଶ  “𝜎ଶ is population parameter of interest” 
 
 
Review – Law of Large Numbers (LLN) 
Long history: Gerolamo Cardano (1501-1576) stated it without proof. Jacob Bernoulli published 
a rigorous proof in 1713. 
 
Theorem (Weak LLN) 
Let X1, … , XN be N mutually independent random variables each having mean m and a finite s -
i.e, the sequence {XN} is i.i.d. 

Let 𝑋ത ൌ  
∑ 
ಿ
సభ

ே
. 

 
Then, for any  > 0 (no matter how small)  
 P[|𝑋ത - μ| < 𝛿 ] = P[ μ -  𝛿 <  𝑋ത < μ + 𝛿] → 1,   as N →  ∞ 
 
There are many versions of the LLN. It is a general result: A sample average as the sample size 
goes to infinite tends to its expected value. Also written as: 

    𝑋തN 
୮
→  μ.  (convergence in probability) 

 



As an illustration, below, we randomly generate 10,000 observations from a N(0, 1) and compute 
the sample mean as a function of 𝑁. As expected, as 𝑁 increases, the sample mean gets closer to 
the population mean (m =0). 
 

 
 
 
Review – Central Limit Theorem (CLT) 
Let X1, X2, …, XN be a sequence of i.i.d. RVs with finite mean m, and finite variance s2. Then as 
N increases, 𝑋തN, the sample mean, approaches the normal distribution with mean μ and variance 
s2/N. 
 
This theorem is sometimes stated as  

   
√ேሺ

_
ିఓሻ

ఙ
  →ௗ  𝑁ሺ0,1ሻ 

where  
ௗ
→   means “the limiting distribution (asymptotic distribution) is” (or convergence in 

distribution). 
 
Many versions of the CLT. This one is the Lindeberg-Lévy CLT. 
 
The CLT gives only an asymptotic distribution. We usually take it as an approximation for a 

finite number of observations. In these cases, the notation goes from 
ௗ
→ to 


→.  

 
 
Review – Sampling Distributions 
All statistics, T(X), are functions of RVs and, thus, they have a distribution. Depending on the 
sample, we can observe different values for T(X), thus, the finite sample distribution of T(X) is 
called the sampling distribution.  
 
• For the sample mean, 𝑋ത, if the Xi’s are normally distributed, then the sampling distribution is 
normal with mean μ and variance σ2/N. Or 



   𝑋ത ~ N(μ, σ2/N). 
 
Note: If the data is not normal, the CLT is used to approximate the sampling distribution by the 
asymptotic one, usually after some manipulations. Again, in those cases, the notation goes from 
ௗ
→ to 


→.  

 
The SD of the sampling distribution is called the standard error (SE). Then, SE(𝑋ത) = σ/sqrt(N). 
 
Example: We plot a Sampling Distribution for the sample mean, 𝑋ത, of a normal population, as a 
function of the sample size (N). For this purpose, we generate 10,000 samples from a N(2, 4) 
population. We plot the distribution of 𝑋ത for three sizes of N = 10, 60 & 200: 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
Note: As N → ∞, 𝑋ത→ μ      –i.e., the distribution becomes a spike at μ=2! ¶ 
 
• For the sample variance σ2, if the Xi’s are normally distributed, then the sampling distribution is 
derived from this result:  
   (N – 1) s2/2 ~ 𝜒ேିଵ

ଶ . 
 

We use the properties of  a 𝜒
ଶ to derive the mean & variance of 𝑠ଶ:  

Property 1. Let Z ~ 𝜒
ଶ. Then, E[Z] = 𝑘. 

Property 2. Let Z ~ 𝜒
ଶ. Then, Var[Z] = 2 ∗ 𝑘. 

Application: ሺ𝑁 െ 1ሻ 𝑠ଶ/2 ~ 𝜒ேିଵ
ଶ   

From Property 1: E[ሺ𝑁 െ 1ሻ 𝑠ଶ/2] = 𝑁 െ 1   

  Eሾ𝑠ଶሿ ൌ 𝜎ଶ 

From Property 2: Var[ሺ𝑁 െ 1ሻ 𝑠ଶ/ଶ] = 2 * ሺ𝑁 െ 1ሻ   

  Varሾ𝑠ଶሿ ൌ 2 ∗ 𝜎ସ/(N – 1). 

N = 10 N = 60 N = 200 



  SE(𝑠ଶ) = SD(𝑠ଶ) = 2 * sqrt[2/(N – 1)]. 
 
Summary for 𝑠ଶ:  
 Sampling distribution:  (N – 1) 𝑠ଶ/2 ~ 𝜒ேିଵ

ଶ . 
 Mean:     Eሾ𝑠ଶሿ ൌ 𝜎ଶ 
 Variance:   Varሾ𝑠ଶሿ ൌ 2 ∗ 𝜎ସ/(N – 1). 
 
Note: If the data is not normal (& N is large), the CLT can be used to approximate the sampling 
distribution by the asymptotic one: 

  𝑠ଶ  

→ N(2, ସ ∗ ሺെ 1ሻ/ 𝑁) 

where  = 
ఓర
బ

ఙర
 (recall when data is normal,  = 3).  

 
Example: We plot a Sampling Distribution for the sample variance, s2, of a normal population, 
as a function of the sample size (N). Above, we generated 10,000 samples from a N(2, 4) 
population. Now, we plot the distribution of s2 for three sizes of N = 10, 60 & 200: 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: As N → ∞, the distribution of 𝑠ଶ looks more Normal – the CLT at work! ¶ 
 
 
Review – Estimating Moments in R 
First, we need to import the data. In R, we use the read function, usually followed by the type of 
data we are importing. Below, we import a comma separated values (csv) file with monthly data 
for the S&P Composite Index (P), Dividends (D), Earnings (E), CPI, Long interest rates 
(Long_i), and some transformations of the data (Real Prices, Real Dividends, Real Returns, etc). 
We use the read.csv function: 
 
Sh_da <- read.csv("https://www.bauer.uh.edu/rsusmel/4397/Shiller_2021_m_data.csv", 
head=TRUE, sep=",") 
 
To check the names of the variables we imported, we use the names() function. It describes the 
headers of the file imported (41 headers): 

N = 10 N = 60 N = 200 



 
> names(Sh_da) 
[1] "Date"          "P"             "D"             "E"             "CPI"           "Fraction"      "Long_i"        
[8] "Real_P"        "Real_D"        "Real_Pd"       "Real_E"        "Scaled_Real_P" 
 
The summary() function provides some stats of variables imported: 
> summary(Sh_da) 
      Date             P    D  E  CPI       
Min.   :1871 Min.   :   2.73 Min.   : 0.180  Min.   :  0.16 Min.   :  6.28   
1st Qu.:1908 1st Qu.:   7.89 1st Qu.: 0.420  1st Qu.:  0.56 1st Qu.: 10.19   
Median :1946  Median :  17.35 Median : 0.870 Median :  1.45   Median : 20.30   
Mean   :1946 Mean   : 321.51 Mean   : 6.732 Mean   : 15.15   Mean   : 62.05   
3rd Qu.:1983 3rd Qu.: 163.25 3rd Qu.: 7.053 3rd Qu.: 14.71   3rd Qu.:101.25   
Max.   :2021 Max.   :4358.13 Max.   :59.680 Max.   :139.47   Max.   :270.80 
 
• Second, we extract from the imported data, Sh_da, the column corresponding to the i_10 and 
for, later use, the S&P 500 Index (SP):That is, we extract from Sh_da, the column corresponding 
to the 10-year interest rate (Long_i) and, for later use, the S&P Composite Index (P): 
 
SP <- Sh_da$P    # Extract P = S&P500 series 
i_10 <- Sh_da$Long_i   # Extract Long_i = Interest rates 
N <- length(SP)    # Length of data 
 
• Then, we estimate the sample moments for.  
 
x <- i_10      # Series to be analyzed 
n <- length(x)              # Number of observations 
m1 <- sum(x)/n              # Mean (𝑋ത) 
m2 <- sum((x-m1)^2)/n      # Used in denominator of both 
m3 <- sum((x-m1)^3)/n      # For numerator of S 
m4 <- sum((x-m1)^4)/n      # For numerator of K 
b1 <- m3/m2^(3/2)       # Sample Skewness (γ1) 
b2 <- (m4/m2^2)             # Sample Kurtosis (γ2) 
s2 <- sum((x-m1)^2)/(n-1)      # Sample Variance (s2) 
sd_s <- sqrt(s2)     # Sample SD (s) 
 
• R output: 
> m1       # Sample mean (4.51% annual) 
[1] 4.509972 
> s2       # Sample Variance 
[1] 5.306247 
> sd_s       # Sample SD (2.30% annual) 
[1] 2.303529 
> b1       # Sample Skewness 
[1] 1.795057 
> b2       # Sample Kurtosis 



[1] 6.751023 
 
• Table 2.A presents a summary of the moments:  
 

Table 2.A – 10-year Bond Rate (“Long interest Rate”): (1871: February – 2021: 
September) 

 
Statistic ef 

Mean 4.51 

Median 3.82 

Maximum 15.32  

Minimum 0.62 

Std. Dev. 2.30 

Skewness 1.7951 

Kurtosis 6.7510 

 
Interest rates are right skewed and have kurtosis greater than 3, pointing out to non-normality of 
data (“fatter tails”): 

   γ2 = 
ఓర
బ

ఙర
 – 3 = 3.7510. ¶  

 
 
Returns 
Returns have better statistical properties than prices, as we will mention below, returns have a 
well-defined (long-run) mean and variance, while asset prices, in general, do not. Thus, financial 
models tend to focus on returns. The return is the profit rate of holding an asset from time t − 1 
to t. 
 
We define net or simple (total) return, Rt , as: 

  𝑅௧ ൌ  
ሺ𝑃𝑡 െ 𝑃𝑡െ1ሻ  𝐷𝑡

𝑃𝑡െ1
 = capital gain + dividend yield  

 
where Pt = Stock price or Value of investment at time t 
 Dt = Dividend or payout of investment at time t 
 
Note: This is the return from time t-1 to time t. To be very explicit we can write this as 𝑅௧ିଵ,௧. 
 
Then, the gross (total) return is given by: 

  𝑅௧  1 ൌ 𝑃𝑡  𝐷𝑡
𝑃𝑡െ1

 

 



In general, when the word “total return” is used in the definition, it  means “returns including 
dividends.” Sometimes, total returns are also called “overall returns.” 
 
If Dt  = 0, the total return is just the capital gain. In this situation, it is common to just use the 
word returns. 
 
• There is another commonly used definition of return, the log return, 𝑟௧,  defined as the log of 
the gross return: 
  𝑟௧ = log(1 + Rt) = log(𝑃௧ + 𝐷௧) – log(𝑃௧ିଵ) 
 
Note: When the values are small (-0.1 to +0.1), the two returns are approximately the same: 𝑟௧ ≈ 
Rt. In general –i.e., when returns are not small, rt < Rt .   
 
Derivation: 

Recall: ln(1) = 0,  &  
ఋ୪୬ ሺ௫ሻ

ఋ௫
ൌ ଵ

௫
.  

 
Now do a 1st-order Taylor expansion around x0 to get  

 log(x) ≈ log(𝑥)  + 
ఋ ୪୭ሺ௫ሻ

ఋ௫
|௫బ ∗ ሺ𝑥 െ 𝑥ሻ ൌ log(x0) + 

ଵ

௫బ
ሺ𝑥 െ 𝑥ሻ 

 
Thus, expanding around x0 = 1, we have for x ≈ 1: 

  log(x) ≈ 0 + 
ଵ

ଵ
ሺ𝑥 െ 1ሻ ൌ 𝑥 െ1 

 
Set x = (1 + Rt) to get the result. 
 
The log return is also called continuously compounded return. 
 
When returns are small, say for daily or weekly data, the numerical differences between simple 
and compounded returns are very small. 
 
In this class, we will use log returns. 
 
Example: We estimate sample averages for ef = log returns for the CHF/USD. Note that there 
is no dividends or payouts for holding currency. That is, in this case, returns = capital gains. 
 
PPP_da <- 
read.csv("https://www.bauer.uh.edu/rsusmel/4397/ppp_2020_m.csv",head=TRUE,sep=",") 
 
x_chf <- PPP_da$CHF_USD  
 
• Now, we define ef = log returns (≈ % changes) for the CHF/USD.  
 
T <- length(x_chf)     # Size of series read (T or N notation is OK) 
e_chf <- log(x_chf[-1]/x_chf[-T])   # Log returns 
 



• Then, we estimate the sample moments for.  
 
x <- e_chf      # Series to be analyzed 
N <- length(x)              # Number of observations 
m1 <- sum(x)/N              # Mean (𝑋ത) 
m2 <- sum((x - m1)^2)/N      # Used in denominator of both 
m3 <- sum((x - m1)^3)/N      # For numerator of S 
m4 <- sum((x - m1)^4)/N      # For numerator of K 
b1 <- m3/m2^(3/2)       # Sample Skewness (γ1) 
b2 <- (m4/m2^2)             # Sample Kurtosis (γ2) 
s2 <- sum((x - m1)^2)/(N-1)      # Sample Variance (s2) 
sd_s <- sqrt(s2)     # Sample SD (s) 
 
• R output: 
> m1 
[1] -0.002550636 
> s2 
[1] 0.001115257 
> sd_s     
[1] 0.03339546 
> b1        # Sample Skewness (γ1) 
[1] -0.06733514 
> b2       # Sample Kurtosis () 
[1] 4.621602 
 
 
 
• Summary of moments of ef = % changes in the CHF/USD exchange rate (1971:Jan – 
2020:Jun): 
 

Statistic ef 

Mean -0.002551 

Median -0.001431 

Maximum 0.145542 

Minimum -0.145639 

Std. Dev. 0.033395 

Skewness -0.067335 

Kurtosis 4.621602 

 
Small mean (-0.25%), slight negative skewness, kurtosis greater than 3, pointing out to fatter 
tails: 

   γ2 = 
ఓర
బ

ఙర
െ 3 = 1.62. ¶  



 
 
Portfolio Returns 
For portfolios, the simple rate of return has an advantage: The rate of return on a portfolio is the 
portfolio of the rates of return. 
 
Let VP,t be the value of a portfolio at time t.  
  𝑉,௧ = ∑ 𝑁𝑃,௧

ே
ୀଵ  

where Ni is the investment in asset i, which has a value 𝑃,௧ at time t. Then, the return is: 

  RP,t = 
ು, ି ು,షభ

ು,షభ
ൌ

∑ ே,
ಿ
సభ  ି ∑ ே,షభ

ಿ
సభ

∑ ே,షభ
ಿ
సభ

 = ∑ 𝑤𝑟,௧
ே
ୀଵ  

where 𝑤 is the portfolio weight in asset i. 
 
This relationship does not hold for log returns because the log of a sum is not the sum of the 
logs. 
 
 
Multi-period holding return 
To simplify notation, include dividends into prices. That is, 
   Pd ,t +1 = Pt +1 + Dt  

 
The two-period holding return is: 
 

  𝑅௧,௧ାଶ ൌ
,శమ

,
െ 1 ൌ

,శమ

,శభ
∗
,శభ

,
 െ1 = ሺ1  𝑅௧ାଵ,௧ାଶሻ ∗ ሺ1  𝑅௧,௧ାଵሻ െ 1 

Or 
 1  𝑅௧,௧ାଶ = ሺ1  𝑅௧ାଵ,௧ାଶሻ ሺ1  𝑅௧,௧ାଵሻ 
 
For small returns, we can use the log approximation: 
  𝑟௧,௧ାଶ ≈ 𝑟௧,௧ାଵ  𝑟௧ାଵ,௧ାଶ 
 
The k-period gross holding return ሺ1  𝑅௧,௧ାሻ = ∏ ሺ1  𝑅௧ା,௧ାାଵሻ

ିଵ
ୀ  

 
Or with the log approximation: 𝑟௧,௧ା = ∑ 𝑟௧ା,௧ାାଵ

ିଵ
ୀ  

 
If the (expected) returns are equal, that is, 𝑅௧ା,௧ାାଵ ൌ 𝑅. Then, the log approximation 
produces: 
  𝑟௧,௧ା = ∑ 𝑟௧ା,௧ାାଵ

ିଵ
ୀ ൌ 𝑘 ∗ 𝑟 

 
If the returns, 𝑅௧ା,௧ାାଵ, are independent (covariance is 0) and with a constant variance equal to 
𝜎ଶ(a constant), then under the log approximation 
  Var(𝑟௧,௧ାሻ ൌ ∑ 𝑣𝑎𝑟ሺ𝑟௧ା,௧ାାଵሻ ൌ 𝑘 ∗ 𝜎ଶ

ିଵ
ୀ  

 
Then, the SD is equal to  



  SD(𝑟௧,௧ାሻ ൌ ඥ𝑘 ∗ 𝜎ଶ ൌ √𝑘 ∗ 𝜎 
 
 
Real returns 
We will deflate values by a Price Index, for example the CPI. Then, 

  Real Pricet ൌ 𝑃௧
 ൌ


ூ

 

Then, the real return becomes:   

 𝑅௧
 ൌ


ೝೌ

షభ
ೝೌ െ 1 ൌ

ು
ು
ುషభ
ುషభ

െ 1 ൌ

షభ

∗
ூషభ
ூ

െ 1 ൌ
ሺଵାோሻ

ሺଵାగሻ
െ 1  

where 𝜋௧ is the inflation rate at time t.  
 
The log approximation (for small returns) produces  
  𝑟௧

 ൎ 𝑟௧ െ 𝜋௧ 
 
Example: Below, we plot the long-run S&P Composite Index monthly data, nominal and real. 
Data taken from Robert Shiller’s website (1871:Jan  - 2021: Sep). 
 

Sh_da <- read.csv("http://www.bauer.uh.edu/rsusmel/4397/Shiller_2021_m_data.csv", 
head=TRUE, sep=",") 
SP <- Sh_da$P    # Extract SP = S&P Composite series 
D <- Sh_da$D     # Extract D = S&P Dividends series 
CPI <- Sh_da$CPI     # Extract CPI = Price Index series 
R_SP <- Sh_da$Real_P   # Extract R_SP = Real S&P500 series 
i_10 <-  Sh_da$Long_i   # Extract Long_i = Interest rates 
 
lr <- log(SP[-1]/SP[-T])   # Define log returns 
lr_R <- log(R_SP[-1]/R_SP[-T])  # Define log Real returns 
 
plot(SP, col="blue",ylab ="S&P Index", type="l", xlab ="Date") 
lines(R_SP, col="red") 
title("S&P Composite Index: Nominal & Real (1871-2021)") 
legend("topleft", legend = c("Nominal", "Real"), 
       lwd = 3, col = c("blue", "red")) 
 



 
 
R Note: A more elegant plot, with dates, can be done with the package ggplot2. You need to 
install it first with install.packages(“ggplot2”). Then, you need to call it, with:  
 
library(ggplot2) 
 
ggplot(data = Sh_da, aes(x = Date)) + 
  geom_line(aes(y = SP, color = "Nominal")) + 
  geom_line(aes(y = R_SP, color = "Real")) + 
  scale_colour_manual("",  
                      breaks = c("Nominal", "Real"), 
                      values = c("Nominal"="blue", "Real"="red")) + 
  scale_y_continuous("S&P Index", limits = c(0,4500)) +  
  labs(title = "S&P Composite Index: Nominal and Real", 
       subtitle = "Period: January 1871: September 2021") 
 
 

 
 
Long-run S&P 500 monthly log returns, from Robert Shiller’s website (1871:Jan -2020: Sep; 
T = N = 1805). 



 
T <- length(SP) 
 
# Define log (percent) changes 
lr <- log(SP[-1]/SP[-T])   # log capital gains 
lr_t <- log(SP[-1] + D[-1]/12) - log(SP[-T]) # log (total) returns, includes dividends 
I <- log(CPI[-1]/CPI[-T])   # Log Inflation rate 
 

 
Prices have a clear trend, returns do not. In statistics, we prefer to work with data with no trends, 
like returns; they have better properties, for example, a well defined long-run mean (expected 
value). 
  mean changes with time (& variance too)  

 non-stationary data  

mean seems constant over time 
(& variance too)  stationary data  



Distribution of S&P 500 monthly log returns 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: We observe slight negative skewness –left tail events are more common (steeper) than 
right tail events and fatter tails than the normal distribution. These two features are part of the 
“stylized facts” for stock (index) returns. 
 
Example: Table 2.B reports univariate statistics for Shiller’s monthly S&P 500 returns (total, 
capital gains & real) and U.S. inflation.  
 

Table 2.B – S&P Composite Returns (Total, Capital Gains and Real) and Inflation Rate: 
(1871: February – 2021: September) 

  
Total Return Capital Gains Inflation Real Total Return 

Mean 0.007378 0.003801 0.001707 0.005615 

Median 0.009928 0.006756 0.001432 0.009367 

Maximum 0.414151 0.407459 0.068054 0.421504 

Minimum -0.30365 -0.30753 -0.06805 -0.30364 

Std. Dev. 0.040455 0.040650 0.010344 0.040726 

Skewness -0.47050 -0.51512 -0.14404 -0.36439 

Kurtosis 14.61046 14.35809 9.81997 14.33933 

Jarque-Bera 10205.0 9782.2 3504.3 9719.3 

P-value (JB) 2.2e-16 2.2e-16 2.2e-16 2.2e-16 

 

fat tail  



Monthly total returns are slightly (left-) skewed (& median > mean), and with “fat tails”–i.e., 
kurtosis is higher than 3.  
 
• Check some results from log approximation: 

(1)  𝑟௧
 ൎ 𝑟௧ െ 𝜋௧ (for small % changes) 

 0.005615 ൎ 0.007378 െ 0.001707 = 0.005671 

(2) Multiperiod return: 𝑘 = 12 –i.e., from monthly to annual,  

- annual return = 0.007378 * 12 = 0.088531   (8.85%) 

- annual SD = 0.040455 * sqrt(12) = 0.14014  (14.01%) 

Note: Compounding the return: (1 + 0.007378)^12 – 1 = 0.0922.  

According to the annualized numbers from the above Table, since 1871, the average total stock 
market return has been 8.85% per year. ¶ 
 
 
Returns: Sample Moments – Changing Frequency 
Assuming independence of returns and constant moments, we can use the log returns to easily 
change frequencies for the mean and variance of returns.  
 
Suppose we have compounded data in base frequency b (say, monthly), but we are interested in 
compounded data in frequency q (say, annual). The approximation formulas for mean and 
standard deviation (SD) are: 
 q-frequency mean = b-freq mean * q/n  
 q-freq SD = b-freq SD * √(q/b)  q-freq Variance = sqrt(q-freq SD) 
 
Example: Using the data from the previous table we calculate the weekly mean and standard 
deviation for returns (b=30, q=7). 

- weekly return = 0.007378 * (7/30) = 0.00172  (0.172%) 

- weekly SD = 0.040455 * sqrt(7/30) = 0.01954  (1.95%) 

Note: de-compounding the return: (1 + 0.007378)^(7/30) = 0.00172. ¶ 
 
 
Returns: Sampling Distribution 
Recall that the sampling distribution of the sample mean is: 
   𝑋ത ~ N(, σ2/N) 
 

Example: Before, using monthly S&P 500 log returns (N = 1805), we got:   

Estimated Monthly mean return = 𝑋ത = 0.007378  

Estimated Var(𝑋ത) = s2/N =  0.0404552 /1805 = 9.067075e-07  

The SD of the monthly mean (also called the Standard Error, SE):  



 S.E.(𝑋ത) = sqrt(9.067075e-07) = 0.000952 (or 0.095%). 

    𝑋ത ~ N(0.007378, .000952) 

Note: Compared to returns, expected returns, estimated by the sample mean, are more precisely 
estimated (0.1% vs 4.05%). Not surprised, the sampling distribution of the mean shrinks 
towards the population mean as N increases. ¶  
 
 
Yields 
Consider an n−period discount bond. Time is measured in years. Today is 𝑡. Bond (asset) pays 
𝐹௧ା  dollars n years from now, at 𝑡  𝑛. 
𝐹௧ା= Face value (value at time 𝑡  𝑛).  
𝑃௧   = Market price of the bond.  
𝑟,௧  = Yield to maturity (YTM) at time 𝑡 for a maturity of n years. 
n = Maturity of bond 

  𝑃௧ ൌ
ிశ

ሺଵ ା ,ሻ
 

 
Interpretation: If our initial capital, 𝑃௧  dollars, is invested today at the interest rate rn,t  for n years 
compounded annually, then, at time 𝑡  𝑛, the payoff is 𝐹௧ା. 
 
YTM, 𝑟,௧ ,  is a raw number: 4% at an annual rate is 0.04. 
 
 
Continuous Compounding 
More generally, suppose an investment is compounded m times per n years; where m is number 
of times return (yield) is compounded, for example, m = 4 for quarterly, m = 12 for monthly, m = 
∞ for continuous compounding. Then, the market price of the bond is: 

  𝑃௧ ൌ
ிశ

ሺଵା
ೝ

ሻ 

 
As m → ∞, 𝐹௧ା ൌ 𝑃௧ ሺ1 



ሻ → 𝑃௧ 𝑒 

 
where we used   

  lim
→ஶ

ቀ1 
௫


ቁ


= 𝑒௫ 

Then,  
  𝑃௧ ൌ  𝑒ି 𝐹௧ା 
 
• Suppose the continuously compounded bond at maturity pays $1 (=𝐹௧ା) and the remaining 
duration is D units of time. Then, 
  𝑃௧ ൌ  𝑒ି $1 
 
Then, the log return per year is: 
  log(𝑃௧ାଵ) – log(𝑃௧) = D (𝑟௧ െ 𝑟௧ାଵሻ 



 
where we ignore that D has one unit of time less at time t+1. That is, the daily return of a bond is 
the change of yields multiplied by its duration. 
 
• Now, suppose we invest 𝑃 in a bond with continuous compounding at an annual rate 𝑟. Then, 
the value of the investment at year t is:     
  Vt ൌ 𝑃 𝑒௧  
 
The log return (log of gross return) per year is 𝑟: 
  log(Vt+1) – log(Vt) = 𝑟 
 
The simple annual interest rate r quoted in the market is the annual log return if the interest is 
compounded continuously. 
 
The effective annual interest rate, ra, is simple the annual rate of return: 

 ሺ1  𝑟ሻ = ቀ1  


ቁ


   𝑟 ൌ ቀ1  


ቁ

െ 1   

 
Example: Table 2.C reports descriptive statistics for monthly long-run S&P 500 (blue) returns 
and 10-year bond (red) rates, from Robert Shiller’s website. Interest Returns are reported 
annually. 
 

Table 2.C – S&P Composit Returns & 10-year Bond Rates (1871-2021) 
  

Total Return 10-year Interest 
Rates 

Mean 0.007378 0.04511 

Median 0.009928 0.0382 

Maximum 0.414151 0.1532  

Minimum -0.30365 0.0062 

Std. Dev. 0.040455 0.02304 

Skewness -0.47050 1.79664 

Kurtosis 14.61046 6.75173 

Jarque-Bera 10205.0 2029.7 

P-value (JB) 2.2e-16 2.2e-16 

 
We plot long-run S&P returns (blue) and 10-year Bond interest rates (red) data.  
 



 
 
Note: Interest rates have a lower monthly mean (0.003759 = 0.04511/12), & lower volatility and 
kurtosis than stock returns.  
 
We plot the histogram for bond rates, with a normal curve (in blue) for comparison purposes 
 

 
 
 
Returns: Expected Returns & The Equity Risk Premium 
As mentioned above, returns are not very precisely estimated. They have a large variance. 
Things get better for expected returns, which are estimated by the sample mean, since the S.E. of 
the sample mean gets smaller with N. That expected returns are better estimated that returns is a 
good property for financial models, since expected returns are a key component of every 
valuation model.  
 
The expected return on any investment can be written as the sum of a risk-free rate and a risk 
premium to compensate for the risk of the investment. A key element in equity valuation models 



is the risk premium that investors demand to hold “average (equity) risk” or market (equity) risk,  
which in turn affects the prices of all risky investments.  
 
The difference between the expected risky market return and a risk-free rate is called the equity 
risk premium or ERP: 
  ERP = E[ሺ𝑟 – 𝑟)], 
where E[𝑟] is the expected return on a well-diversified market portfolio and 𝑟 is the risk-free 
rate. It is common to find that the ERP changes over time. In this case, we write the ERP at time 
𝑡  𝑘, 𝐸𝑅𝑃௧ା, as: 
  𝐸𝑅𝑃௧ା = 𝐸௧ሾሺ𝑟 – 𝑟ሻ௧ା] 
where the subscript 𝑡 means the expectations for period 𝑡  𝑘 are taken at time 𝑡. 
 
In standard macroeconomic-finance models, the ERP is determined by the aggregate risk 
aversion of investors and the volatility of equity markets. The ERP drives expectations of future 
equity market returns. It is an input in equilibrium asset pricing models like the capital asset 
pricing model (CAPM) and multi-factor models, like the Fama-French 3-factor model. 
 
 
Returns: Expected Returns & The ERP - Components 
To calculate the ERP we need 𝑟 and E[𝑟]. 
 
(1) The risk-free rate. The risk-free rate, 𝑟, is approximated by the mean yield of government 
securities, typical examples, the 3-month U.S. Treasury bill or the 10-year U.S. Treasury bond. 
In general, given the upward sloping terms structure, using the T-bill rate will give result in a 
higher E[ሺ𝑟 – 𝑟)]. 
 
The risk-free rate used to compute the ERP has to be consistent with the risk-free rate used to 
compute expected returns. If we are estimating the cost of capital for a project that is expected to 
last 10 years, rf is approximated by the yield of 10-year government securities, for example, 10-
year Treasury bonds. 
 
(2) Expected Market Return. To determine E[𝑟,௧] we need to determine the Market Portfolio. 
 
Q: What is the Market Portfolio? In theory, it represents the universe of risky assets. In practice 
it represents the universe of traded equities, not just domestic, but in the world. Returns on this 
equity market portfolio should be measured free of survivor bias. .  
 
In general, we approximate (“proxy”) the Market Portfolio, with a well-diversified equity index. 
Also, in general, market-weighted indexes are preferred. For example, the S&P 500 Index, the 
MSCI World Index, or the Weighted Average of CRSP returns. 
 
Q: How do we calculate E[𝑟,௧]? 
There are three different ways to compute E[𝑟,௧]: 
 



1) Surveys. Usually an average of ERPs provided by individual investors, institutional investors, 
managers and, even, academics. 
 

2) Historical data. Expectations are computed using past data. This is the most popular 
approach. For example, compute E[𝑟,௧] with sample averages of market returns, 𝑋ത. As we have 
seen above, if we use this approach, it pays to use as much data as possible –more data, lower 
S.E. We think of E[𝑟,௧] as a long-run average of market returns. Robert Shiller’s website has 
U.S. market equity returns from 1871, but if we think that the ERP is time varying, for example 
we consider the stock market in 1871 and in 2021 are very different, it may be better to use a 
shorter period, for example, 50 years or, may be shorter period, 20 years to compute the ERP. 
 

3) Forward-looking data. We derive an (implied) ERP using market prices, for example, 
market indexes, options & futures on market indexes, etc. Of course, we also need a model (a 
formula) that extracts the ERP from market prices. 
 
 
Returns: Expected Returns & The ERP – The Equity Risk Premium Puzzle 
Once we determine E[𝑟,௧] and the risk-free rate, we are ready to calculate the ERP. But, keep in 
mind that we make decisions along the way. 
 
For example, using Shiller’s monthly data, with 150 years of data, we produce an estimate of the 
ERP = E[ሺ𝑟 – 𝑟)]. Decisions made: computation of returns (log returns); method of computing 
ERP (Historical data); sample period (1871-2021); market portfolio (S&P Composite Index); 
risk-free rate (10-year U.S. bond rate). Then, 
 
 Annualized Market return = 0.007378 * 12 = 0.088536 
 Annualized risk-free rate = 0.04511 
 ERP = 0.088536 -  0.04511 = 0.043426  (4.34%) 

Many economists would consider this estimate of the ERP “too high.” Why is 4.34% too high? 
Using standard macroeconomic (neoclassical) models, the degree of risk aversion to justify it is 
unreasonable high, between 30 and 50, while a reasonable degree of risk aversion is no larger 
than 10. 
 
A too high (for economic models) ERP was first reported by Mehra and Prescott (1985), which 
they estimated around 6%. According to their calibration of their “standard” model, the ERP 
should be, at most, 1%. Mehra and Prescott (1985) labeled the incompatibility of theory & 
observed data the equity risk premium puzzle. 
 
There have been many attempts to explain the puzzle: statistical artifact (survivor bias); disaster 
insurance (peso problem/sample period), transaction costs & taxation, model’s preferences, 
behavioral issues (mainly, myopic loss aversion & overreactions).  
 
Damodaran (2021), who produces an annual update of the literature and the numbers, said in 
overview of the possible explanations:  



“It is true that historical risk premiums are higher than could be justified using conventional 
utility models for wealth. However, that may tell us more about the dangers of using historical 
data and the failures of classic utility models than they do about equity risk premiums.” 
 
 
Returns: Expected Returns & The ERP – Wide Range 
Is it 4% or 6%? It turns out that even with 100+ years of data for developed markets there is no 
consensus on an ERP. Different choices in how to compute the ERP produce different estimates. 
For example, for the U.S. market, considered one of the best in terms of quality of data, Duarte 
and Rosa (2015) list over 20 approaches (“models”) to estimate the ERP in the U.S.  
 
With 1960-2013 data, D&R (2015) report estimates from -0.4% to 13.1%, with a 5.7% average 
for all models. A wide range! This wide range is consistent with the reported averages for 
developed markets that we present below in Tables 2.D and 2.E. 
 
In Table 2.D, using 50 years of monthly return data of log returns for some developed 
markets, we report mean equity annualized returns (in USD), the annualized standard deviation 
of returns (in USD) and the annualized ERP, which, again, is defined as the expected market 
excess return over the risk-free rate.  
 
There is a wide range of ERP estimates from 0.88% (Italy) to 11.56% (HK), using the sample 
mean return for the MSCI country index (in USD) and the average U.S. T-Bill rate for the period 
(≈ 4.50%). The World Index, a weighted average of all equity markets, has an ERP equal to 
3.17%, where the EAFE (Europe, Australia and the Far East) Index has a slightly lower ERP,  
3.06%. 
  



Table 2.D - MSCI Index USD Equity Returns and ERP: (1970-2021) 
 

Market (N = 620) Equity Return Standard Deviation ERP 

U.S. 8.31 15.01 3.82 

Canada 7.95 19.21 3.46 

France 8.80 21.95 4.31 

Germany 8.80 21.48 4.31 

Italy 5.37 25.25 0.88 

Switzerland 10.34 17.64 5.85 

U.K. 7.37 21.20 2.88 

Japan 9.56 20.46 5.06 

Hong Kong 16.06 33.23 11.56 

Singapore 11.71 27.48 7.22 

Australia 7.35 23.42 2.73 

        

World 7.66 14.54 3.17 

EAFE 7.69 16.64 3.06 

 
 
In Table 2.E, using 34 years of monthly return data or less, we report ERP (annualized) 
estimates for some emerging markets (in USD), where we observe a big dispersion of estimates, 
with higher mean returns, but also, higher standard deviations. 
 

Table 2.E - MSCI Index USD Equity Returns and ERP: (1987* - 2021) 
 

Market (N) Equity Return Standard Deviation ERP 

Argentina (404) 24.21 51.49 19.72 

Brazil (404) 22.23 47.67 17.74 

Mexico (404) 17.67 29.26 13.18 

Poland  (344) 15.88 43.24 11.39 

Russia  (320) 21.09 47.54 16.60 



India (344) 12.10 28.35 7.60 

China (344)  4.90 31.94 0.41 

Korea (404) 11.75 34.08 0.726 

Thailand (404) 11.58 32.24 6.06 

Egypt (320)  11.61 31.69 8.62 

South Africa (344)  9.47 26.31 4.98 

        

World (620) 7.66 14.54 3.17 

EM Asia 8.85 23.13 4.36 

 
• We use the SE as a measure of precision of an estimate. For the sample mean, 𝑋ത, we have:  
 S.E.(𝑋ത) =  s

√𝑁ൗ  

 
Using the previous data, we calculate the S.E.(𝑋ത) for several markets: 
 U.S. : 15.01/sqrt(620/12) = 2.0882% 
 Germany: 21.48/sqrt(620/12) = 2.9883% 
 Singapore: 27.48/sqrt(620/12) = 3.8231% 
 Hong Kong: 33.23/sqrt(620/12) = 4.6230 % 
 
 Brazil: 47.67/sqrt(404/12) = 8.2157 % 
 Russia: 47.54/sqrt(320/12) = 9.2061% 
 India: 28.35/sqrt(344/12) = 5.2950% 
 China: 31.94/sqrt(344/12) = 5.9654% 
 
A big difference in precision between Developed and Emerging Markets. 
 
Note: Notice the effect of N. Hong Kong has a larger SD than India and China, but more 
observations make the mean estimate more precise. 
 
 
Returns: Risk-Return – The Sharpe Ratio 
The most commonly cited statistics that provides a measure of the risk-return trade-off for an 
asset is the Sharpe ratio (SR), the ratio of the excess expected return of an asset to its risk, 
measured by its return volatility (SD). We estimate the SR of asset i with 
 

   𝑆𝑅  =  
ఓෝ i – rf

௦
, 

where �̂�i is the sample mean (𝑋ത) return of asset i, 𝑟 is the risk-free rate and 𝑠 is the SD of the 
return of asset i. 



 
Interpretation: A 1% change in risk, increases excess returns by SR%.  
 
The higher the SR, the better the risk-return trade-off. That is, if we compare assets, the asset 
with the higher SR provides the better trade-off. 
 
Using the previous data, we calculate the SR for several markets: 

U.S.:    0.0382/.1501 = 0.254497  

Switzerland:  0.0585/17.64 = 0.3316    

Hong Kong:   0.1156/.3323 = 0.3479  

Russia:    0.1660/.4754 = 0.3492  ⟸  Best trade-off! 

India:    0.0760/.2835 = 0.2681. 
 
 
Review – Hypothesis Testing 
A statistical hypothesis test is a method of making decisions using experimental data. A result is 
called statistically significant if it is unlikely to have occurred by chance.  
 
These decisions are made using (null) hypothesis tests. A hypothesis can specify a particular 
value for a population parameter, say q=q0. Then, the test can be used to answer a question like: 
 
Assuming q0 is true, what is the probability of observing a value for the (test) statistic used that is 
at least as big as the value that was actually observed? 
 
Uses of hypothesis testing:  
 - Check the validity of theories or models.  
 - Check if new data can cast doubt on established facts.  
 
Testing involves the comparison between two competing hypothesis (sometimes, they represent 
partitions of the world). 
 - The null hypothesis, denoted H0, is sometimes referred to as the maintained hypothesis.  
 - The alternative hypothesis, denoted H1, is the hypothesis that will be considered if the  
  null hypothesis is “rejected.” 

 
Idea: We collect a sample of data X = {𝑋ଵ, 𝑋ଶ, 𝑋ଷ, … , 𝑋ே}.  We construct a statistic T(X) = 
f(X), called the test statistic. Now we have a decision rule: 
 - If T(X) is contained in space R, we reject H0 (& we learn). 
 - If T(X) is in the complement of R (RC), we fail to reject H0. 

 
Note: T(X), like any other statistic, is a RV. It has a distribution. We will use the distribution of 
T(X) under H0 to determine R. 
 



Example: Suppose we want to test H0: μ = 𝜇. We collect data, {𝑋ଵ, 𝑋ଶ, 𝑋ଷ, …, 𝑋ே}, and 
decide to use the statistic T(𝑋). We know the distribution that T(𝑋) follows under H0. Suppose 
this distribution is the Normal distribution.  
 
Then, we build a symmetric rejection region, R, around μ=𝜇, in such a way that R contains α% 
of the Normal distribution. Note that by deriving the distribution of T(𝑋) under μ=𝜇, we assume 
H0 to be the true. Then, R is:     
   R = [𝑋ത ൏ TLB, TUB  𝑋ത] such that P[R|H0] = α. 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 

We call the blue area “significance level” (α%). If H0 is true, the blue area represents the 
probability of rejecting a true H0 or, just, P[R|H0]. ¶ 
 
Remark: We determine TLB and TUB in such a way that the probability of rejecting H0 when it is 
true –i.e., when μ = 𝜇- is equal to α. In practice, since we try to avoid rejecting a true H0, we 
usually set α  (= P[R|H0]) equal to a small number. 
 
 
Example: Following the above example, we now test if the mean of IBM annual returns, μIBM, is 
10%.  That is, H0: 𝜇ூெ = 10%.  
 
From the population, we get a sample: {𝑋ଵଽଶ, 𝑋ଵଽଷ, …, 𝑋ேୀଶଶସ }, with N = 63. We use 𝑋ത, 
which is unbiased, consistent, and, assuming X is normally distributed, we know its distribution, 
𝑋ത ~ N(μ, .152/N), where 𝜎 is .15. 
 
 
 
 
 
 
 
 
 

Calculate 𝑋ത 

Get a sample (size N) 

IBM returns {X
1962

, X
1963

, …, X
2020

} 

T
LB

 T
UB

 
𝜇 



Now, we need to determine the rejection region, R. We define T(X) =  (𝑋ത  െ  .10ሻ/ሺ.15/√63ሻ, 
which follows a N(0,1). Then, setting α equal to 5%,  
  R = [T(𝑋) ൏ -1.96, 1.96  T(𝑋)]  (that is, P[R|H0] = .05). 
 

 
 
R is represented in the above graph by the blue area. That is, if T(X) falls in the “blue region,” we 
reject H0: 𝜇ூெ  = 10%. ¶ 
 

 

Review – Hypothesis Testing: p-value and steps 

We present the classical approach, a synthesized approach, known as significance testing. It 
relies on Fisher’s p-value:  
 
p-value is the probability of observing a result at least as extreme as the test statistic, under H0.  
 

Example: Suppose T(X) ~ 𝜒ଶ
ଶ. We compute  T(X) = 7.378. Then,  

p-value(T(X) = 7.378) =  1 - Prob[T(X) < 7.378] = 0.025 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

2.5% 

7.378 



R Note: We compute the p-value using pchisq(q, df), which computes the CDF at value q of a 
Chi-square distribution with df degrees of freedom. Then, 
 

> pchisq(q = 7.378, df = 2)    # Prob[T(X) < 7.378] 
0.975003 
p_val <- 1 - pchisq(q = 7.378, df = 2)  # p-value(T(X) = 7.378) = 1 - Prob[T(X) < 7.378] 
> p_val 
[1] 0.02499699. ¶ 
 
Using the distribution of the test statistic T(X) under the null hypothesis, Fisher’s significance 
testing approach determines a rejection region, based on the significance level (α%). 
 
We follow these steps: 
1. Identify H0 & decide on a significance level (α% = P[R|H0]) to compare your test results. 
 

2. Determine the appropriate test statistic T(X) and its distribution under the assumption that H0 
is true. 
 

3. Calculate T(X) from the data. 
 

4. Rule: Reject H0 if the p-value is “sufficiently small,” then, we consider T(X) in R (we learn). 
Otherwise, we reach no conclusion (no learning). 
 
Note: In Step 4, setting α% is equivalent to setting R. 
 
• Q: What p-value is “sufficiently small” as to warrant rejection of H0?  
Rule:  If p-value < α (say, 5%)  ⟹ test result is significant: Reject H0. 
 If p-value > α   ⟹ test results are “not significant.” No conclusions are 
 reached (no learning here). Go back and gather more data or modify model. 
 
The father of this approach, Ronald Fisher, favored 5% or 1%. 
 
Example: From the U.S. Jury System 
 H0: The defendant is not guilty. 
 H1: The defendant is guilty. ¶ 
 
In statistics, we learn when we reject. In this case, we learn a defendant is guilty when the jury 
finds the defendant guilty, by rejecting H0. 
 
Example: From the U.S. Jury System 
1. Identify H0 & decide on a significance level (α%) 
 H0: The defendant is not guilty 
 H1: The defendant is guilty 
Significance level α = “beyond reasonable doubt,” presumably, a small level. 
 

2. After judge instructions, each juror forms an “innocent index” T(X)i. 
 

3. Through deliberations, jury reaches a conclusion T(X) = ∑ T(X)i
ଵଶ
ୀଵ . 

 



4. Rule: If p-value of T(X) < α   Reject H0. That is, guilty! 
 If p-value of T(X) > α   Fail to reject H0. That is, non-guilty.  
 Alternatively, jury builds a rejection region around H0. If T(X) ∈ R, jury rejects H0. ¶ 
 
Note: Mistakes are made. We want to quantify these mistakes.  
 
Failure to reject H0 does not necessarily mean that the defendant is not guilty, or rejecting H0  
does not mean necessarily the defendant is guilty. Type I error and Type II error give us an idea 
of both mistakes. 
 
Definition: Type I and Type II errors 
A Type I error is the error of rejecting H0 when it is true. A Type II error is the error of 
“accepting” H0 when it is false (that is, when H1 is true).  
 
Notation: Probability of Type I error: α= P[X  R| H0] 
  Probability of Type II error: β = P[X  RC| H1] 
We call 1 – β the power of the test –i.e., the probability of rejecting a false null hypothesis. 
 
Example: From the U.S. Jury System 
Type I error is the error of finding an innocent defendant guilty. 
Type II error is the error of finding a guilty defendant not guilty.   
 

 State of World 

Decision H0true 
(“not guilty”) 

H1 true 
(“guilty”) 

Cannot reject H0 Correct decision Type II error 

Reject H0 Type I error Correct decision 

 
Note: We usually think that we learn when we reject H0. Note that some “learning” comes from 
Type I error –i.e., from false positives. ¶ 
 
In general, we think Type I error is the worst of the two errors: We try to minimize the error of 
sending to jail an innocent person. 
 
Actually, we would like Type I error to be zero. However, the only way to do this (100% of 
innocent defendants are found not guilty) is to never reject H0. Then, we maximize Type II error. 
 
There is a clear trade-off between both errors. Traditional view: Set Type I error equal to a small 
number (defined in the U.S. court system as “beyond reasonable doubt”) and design a test that 
minimizes Type II error. 
 
The usual tests (t-tests, F-tests, Likelihood Ratio tests) incorporate this traditional view. 



Example: We want to test if the mean is equal to μ, against the alternative hypothesis of 

different than μ.Then, 

1.  H0: μ = μ. 
 H1: μ ് μ.   

Notice that we have a double sided alternative, which creates a rejection region on both sides of 
the distribution of T(X). 
  

2. Appropriate T(X): t-test (based on σ unknown and estimated by s). 
 Determine distribution of T(X) under H0. Sampling distribution of 𝑋ത, under H0:  
  𝑋ത ~ N(μ, σ2/N).  

Then, distribution of T(X) under H0: 

  t  =  
ത  ି μబ
s
√ேൗ

 ~ tN-1   –when N > 30, t  ~ N(0, 1).  

 

3. Compute t, t ̂, using 𝑋ത, μ, s, and N. Since it is a double sided t-test, we look at |t ̂|. Then, get p-
value(|t ̂|). 
 

4. Rule: Set α level. If p-value(|t ̂|) < α   Reject H0: μ = μ. 

 Alternatively, if |t ̂| > tN-1,1-α/2 (=1.96, if α=.05)  Reject H0: μ = μ.¶ 

 

Notice the alternative Rule; it sets a Rejection region:  
   R = ሾ|t ̂| >  t

N-1,1-α/2
] 

 

 

 

 

 

 

 

 

 

 

 

If α = 5% and N > 30, then tN>30, .025  = -1.96 &  tN>30, .975 = 1.96 (≈ 2).  (The distribution is 
symmetric, that is, -tN>30, .025  = tN>30, .975 = 1.96). 

t
N-1,α/2

 t
N-1,1-α/2

 
cc 



Remark: Under H0, the blue area represents the Type I error –i.e., the probability of rejecting a 
true H0, which is by design equal to .. 

 
Technical Note 1: In step 2, the distribution of the t-statistic, t, is exact if { 𝑋 } follows a normal 
distribution, otherwise, the distribution is asymptotic (for this we need a large 𝑁); that is  

  t = 
ത  ି μబ
s
√ேൗ

  
ௗ
→  N(0, 1).  

 
Technical Note 2: In step 2, we determine the distribution of t, by using the sampling distribution 
of 𝑋ത under H0. If H0 is not true, say μ = μଵ. then  
  𝑋ത ~ N(μଵ, σ2/N),  

thus, t is distributed N(0, 1) only under H0, since only under H0 the E[𝑋ത െ  μ] = 0. 
 
 
Review – Hypothesis Testing: Examples 
Example 1: We want to test if the monthly mean total return of the S&P 500 is equal to zero 
using α = .05. We use the S&P 500 monthly returns (1871-2021) with the following mean and 
variance: 𝑋ത = 0.007378, s = 0.04046, 𝑁 = 1805. 
 
1. H0: μ = 0.  (μ = 0) 
 H1: μ ≠ 0.  (a two-sided alternative.) 
 

2.  t  =  
ത  ି μబ
s
√ேൗ

   

 

3.  t ̂  =  
0.007378

0.04046
√ଵ଼ହ
ൗ

  = 7.7478  &  p-value(|t ̂|) = 9.325873e-15 –multiply by 2 p-value(t ̂). 

 

4.  Rule: p-value(|t ̂|) = 9.325873e-15 < α = .05  Reject H0: μ = 0.  
 Alternatively, |t ̂ = 7.7478 | > t1789,.025 = 1.96   Reject H0: μ = 0.  
 

Conclusion: S&P 500 monthly mean total returns are not equal to zero.   

 
• Computation in R, using our previous extracted variables, SP & D: 
T <- length(SP) 
lr_t <- log(SP[-1] + D[-1]/12) - log(SP[-T]) # Define log total returns 
x <-  lr_t      # Series to be analyzed 
N <- length(x)           # Number of observations 
m1 <- sum(x)/N           # Mean 
s2 <- sum((x - m1)^2)/(N - 1)   # Sample Variance 



sd_s <- sqrt(s2)   # Sample SD 
t1 <- m1/(sd_s/sqrt(N)) # t-test 
> t1 
[1] 7.747794 
p_val <- (1 - pnorm(t1)) * 2 # p-value of a two sided test, |t|. => Multiply by 2 
> p_val 
[1] 9.325873e-15 

 

R Note: We find the t1789,.025 using qt (p, df), which gives the quantile of the t-distribution with df 
degrees of freedom. That is, 

 
> qt(.975, 1789)   # = (-1)*qt(.025, 1789) by symmetry. 
[1] 1.961291 
 
# Check result with pt (q, df) 
> pt (q=1.96, df=1789)  
[1] 0.9749246.     1 - pt (q=1.96, df=1789) ≈ 0.025. ¶ 

 

Q: How do we calculate the p-value? Recall, it is the probability of observing a result at least as 
extreme as the test statistic, under H0.  

In this case, we know that under H0: μ = 0, the t-stat is well approximated by a N(0,1) 
distribution (since N>30). Then, we use the R function pnorm to calculate the cumulative 
standard normal value up to 7.7478, and then subtract it from 1:  
 
p_val_1 <- 1 - pnorm(7.7478)  # p-value of (one-sided) t_test  
> p_val_1 * 2   # Multiply by 2 since it is a double sided test 
[1] 9.325873e-15 

The observed t (t ̂ = 7.7478) is outside the non-rejection region (RC) built around H0: (-1.96, 
1.96).  

  Rejection region = R = ([-∞, -1.96] U [1.96, ∞]). ¶ 

 

 

 

 

 

 

 

 

 

R: (1.96, ∞), with α/2 = 2.5% 
R: (-∞, -1.96), with α/2 = 2.5% 

R
C

: (-1.96, 1.96), with 95% prob.  

p-value( 7.7478) 



 

 

Note: : p-value(|t̂|) = p-value( 3.7121) * 2 (double-sided test, multiply by 2). ¶ 

 
Example 2: We want to test if monthly S&P 500 total returns (1871-2021) follow a normal 
distribution using α = .05. If the distribution is normal, skewness is zero and kurtosis is equal to 
3 (or excess kurtosis equals 0). The estimated moments are: γଵෝ  = -0.4705,  𝛾ଶෞ  = (14.6105 - 3) = 
11.6105, & N = 1805. 

1. H0 (Data is normal): γଵ = 
ఓయ
బ

ఙయ
 = 0 and γଶ= 

ఓర
బ

ఙర
െ 3 = 0. 

 H1 (Data is not normal): γଵ ≠ 0 and/or γଶ ≠ 0.  

2.  Appropriate T(X): the Jarque-Bera test (JB), JB = 
ே


∗ ሺγଵ

ଶ + 
γమ
మ

ସ
ሻ 

 Under H0, JB 
ௗ
→  𝜒ଶ

ଶ (chi-square distribution with 2 degrees of freedom) 

3. JB = 
𝟏𝟖𝟎𝟓


∗ ሾሺ-0.4705ሻଶ +  

(11.6105)మ

ସ
ሿ ൌ 10,204.89 

4. Rule:  p-value(JB = 10,204.9) ≈ 0 < α = .05    Reject H0.  
 Alternatively, compare JB to the 𝜒ଶ,.ଽହ

ଶ  value (𝜒ଶ,.ଽହ
ଶ  = 5.991). That is,  

   JB > 𝜒ଶ,.ଽହ
ଶ    Reject H0. (A strong rejection!) 

 

 

 

 

 

 

 

 

 

 

Conclusion: Monthly S&P 500 returns are not normally distributed. ¶ 

 

Conclusion: We strongly reject H0. That is, monthly S&P 500 returns are not normally 
distributed. ¶ 
 
 
Review – Confidence Intervals (C.I.) 

|t ̂ = 7.7478 |  

JB = 10,204.9 

R
C
: (0, 5.991), with 95% prob.  



When we estimate parameters with an estimator, θ, we get a a point estimate for θ, meaning that 
θ is a single value in Rk. For example, in the previous example, we get 𝑋ത = 0.003571. 
 
Broader concept: Estimate a set 𝐶, a collection of values in Rk. For example, 𝝁 ∈ {0.00155, 
0.00554}. 
 
 It is common to focus on intervals 𝐶 = [𝐿; 𝑈], called an interval estimate for θ. The goal of 
𝐶 is to contain the true population value, θ. We want to see θ  𝐶, with high probability. 
 
Technical detail: Since 𝐶 is a function of the data, it is a RV and, thus, it has a pdf associated 
with it. The coverage probability of the interval 𝐶= [𝐿; 𝑈] is Prob[θ  𝐶]. 
 
Intervals estimates 𝐶 provide an idea of the uncertainty in the estimation of θ: The wider the 
interval 𝐶, the more uncertain we are about our estimate, θ.  
 
Interval estimates 𝐶 are called confidence intervals (C.I.) as the goal is to set the coverage 
probability to equal a pre-specified target, usually 90% or 95%. 𝐶 is called a (1 – α)% C.I. 
 
When we know the distribution for the point estimate, it is straightforward to construct a C.I. For 
example, if θ ~N(θ, Var[θ]), then a (1 – α)% C.I. is given by: 
 𝐶 = [θ + zα/2 * Estimated SE(θ), θ + z1- α/2 * Estimated SE(θ)] 
 
This C.I. is symmetric around θ. Its length is proportional to SE(θ). 
 
The z values are taken from the standard normal distribution, which is symmetric around 0. That 
is, z(1- α/2) = -zα/2  = |zα/2|. 
 
hus, we can write the above (1 – α)% C.I. as: 
    𝐶 = [θ – z(1- α/2) * Estimated SE(θ), θ + z(1- α/2) * Estimated SE(θ)] 
 
Popular values for α and z : 
 α = .10   z.95 = 1.645 (z.05 = -1.645)  
 α = .05   z.975 = 1.96  (z.025 = -1.96)  
 α = .02   z.99 = 2.33  (z.01 = -2.33)  
 
If the data follows a Normal distribution, then for the sample mean a (1 – α)% C.I. is given by: 
 Cn= [𝑋 ഥ– z1-α/2  * SD(𝑋)തതത, 𝑋 ഥ+ z1-α/2  * SD(𝑋)തതത] 
 
The size of the symmetric C.I. depends on the SD (=SE). The higher SD, the wider the C.I.  
 
  



Example: Two 95% C.I. for the mean, with 𝑋 ഥ= 0, with two different SD (=1, 2), are plotted 
below. (Recall: z1-.05/2 = 1.96).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example: We estimate a 95% C.I. for the monthly total mean return of the S&P 500. The 
sampling distribution of the sample mean (assuming normality) is 𝑋ത ~ N(μ, σ2/ 𝑁), then, a (1 – 
α)% C.I. is given by: 
 Cn = [𝑋 ഥ– z1-α/2  * SD(𝑋)തതത,  𝑋 ഥ+ z1-α/2  * SD(𝑋)തതത]  The higher SD, the wider the C.I.  
Then, 
 Cn = [0.00738 – 1.96 * (0.04046/√𝟏𝟖𝟎𝟓),  0.00738  + 1.96 * ((0.04046/√𝟏𝟖𝟎𝟓 )] 
   = [0.005511, 0.00924] = [0.55%,  0.92%].  
 

 
By looking at the 95% C.I., we can reject the null hypothesis that monthly S&P 500 total returns 
are 0, since 0% is outside the 95% C.I.  But, the C.I is wide, even after 150 years of data.  
 
Conclusion: Reject H0: μ = 0, since 0 is outside the observed 95% C.I.  
 

2.5% 

2.5% 



Note: Using the above confidence interval, we can also reject that monthly excess returns are 
equal to 0.0833% (= 1%/12). Recall that Mehra & Prescott (1983) reported that the ERP is too 
high since in their calculation the annualized equilibrium ERP is equal to 1%. ¶ 
 
 
Confidence Interval (C.I.) for the Variance 
We want to estimate a (1 - α)% C.I. for the variance. Assuming normality, the sample variance, 
once scaled, is distributed:  
  (𝑁 - 1) 𝑠ଶ/2 ~ 𝜒ேିଵ

ଶ . 
 
To derive a (1 - α)% C.I. for the variance, we rewrite the standard confidence interval for a chi-
squared variable: 
 P(𝜒జ,ఈ/ଶ

ଶ  <  𝜒జଶ  <  𝜒జ,ଵିఈ/ଶ
ଶ ) = P(𝜒జ,ఈ/ଶ

ଶ   <  ሺ𝑁 െ 1ሻ 𝑠ଶ/2  <  𝜒జ,ଵିఈ/ଶ
ଶ ) = 1 -  

 
For example, for 𝑁=11 (𝜐 = 10), a 95% C.I. for a 𝜒జୀଵ

ଶ  RV can be built as: 

 P[𝜒ଵ,.ଶହ
ଶ  = 3.246973 < (10) 𝑠ଶ/

2

 < 𝜒ଵ,.ଽହ
ଶ  = 20.48318] = .95% 

 

 
 
Then, after some algebra (recall inversion changes inequality signs), we derive: 
 P[ሺ𝑁 െ 1ሻ 𝑠ଶ/𝜒జ,ଵିఈ/ଶ

ଶ  <  2  < ሺ𝑁 െ 1ሻ 𝑠ଶ/𝜒జ,ఈ/ଶ
ଶ ] = 1 - . 

 
Note: This C.I. is not symmetric. But, as the degrees of freedom get large, the 𝜒ேିଵ

ଶ  starts to look 
like the normal distribution and, thus, CIs will look more symmetric. 
 
Example: We estimate a 95% C.I. for the variance of monthly S&P 500 mean total return 
ሺ𝑁=1805). Then, from the 𝜒ଵ଼ସ

ଶ  distribution, we get: 𝜒ଵ଼ସ,.ଶହ
ଶ  = 1688.2 &  𝜒ଵ଼ସ,.ଽହ

ଶ  = 1923.7. 
(You get these values in R with qchisq(.025, df=N-1) & qchisq(.975, df=N-1), respectively.) 
 
 

P[3.246973 <(10) 𝑠ଶ/
2

 < 20.48318] = .95% 

20.48318 3.246973 



 
  
 P[(1804) * (0.04046)2/(1923.6) <  2  <  (1804) * (0.04046)2/(1688.2)] = .95 
 P[0.001535  <  2  <  0.001749] = .95 
 
Taking square root above delivers a 95% C.I. for : 
   95% C.I. for  is given by (3.918%, 4.182%).  
 
The C.I. is quite compact around the sample point estimate. Compared to the mean,  is 
measured with accuracy. 
 
Note: Usually 𝑁 is large (𝑁 > 30). We can use the normal approximation to calculate CIs for the 
population  (check the pdf above!). For the S&P data, we estimate the S.E. for the sample SD:   
 SE(s) = s/ඥ2 ∗ ሺ𝑁 െ 1ሻ = 0.04046/sqrt(2*1804) = 0.000673 (or .067%). 
 
A 95% CI for  is given by  
 (4.046% ± 1.96 * .067%) = (3.914%, 4.178%). (Very close!)  ¶ 
 
 
C.I. Application: Using the ED – The Bootstrap 
In the previous examples, we assumed that we knew the distribution of the data: Stock returns 
follow a normal distribution. What happens when the data follows an unknown distribution, F? 
 
We still can use the sample mean, 𝑋ത, or the sample variance, s2, as estimates of μ and σ2, since 
the LLN tell us  that they are both consistent estimators. If we have a “large” dataset –i.e., large 
𝑁– we can use the CLT to justify a C.I based on a normal distribution.  
 
But, when we have an unknown distribution F and we do not have a large enough N or we 
suspect the normal approximation is not a good one, we still can build a C.I. for any statistic 
using a new method: a bootstrap. 
 
Bootstrapping is the practice of estimating the properties of an estimator -say, its variance- by 
measuring those properties when sampling from an approximating distribution (the bootstrap 
DGP).  

1688.2 1923.6 



 
That is, it is necessary to estimate a bootstrap DGP from which to draw the simulated samples. 
The DGP that generated the original data is unknown, and so it cannot be used to generate 
simulated data.  
  ⇒ The bootstrap DGP estimates the unknown true DGP. 
 
Idea: We use the data at hand -the empirical distribution (ED)- to estimate the variation of 
statistics that are themselves computed from the same data. Recall that, for large samples, the ED 
approximates the CDF very well. 
 
The empirical bootstrap is a statistical technique, easy to implement, that takes advantage of 
today’s modern computers, by resampling from the ED. Bootstrapping uses the ED –i.e., sample- 
as if it were the true CDF. 
 
 
 
 
 
• Suppose we have a sample with N observations drawn from F(x):  
    {𝑥ଵ, 𝑥ଶ, …, 𝑥ே}  
 
From the ED, F*, we sample (“resample”) with replacement N observations:  
    {xଵ

∗  = 𝑥ଶ, xଶ
∗  = 𝑥ସ, 𝑥ଷ

∗ = 𝑥ସ, … , 𝑥ே
∗  = 𝑥ேି଼} 

 
This is an empirical bootstrap sample, which is a resample of the same size 𝑁 as the original 
data, drawn from F*. 
 
For any statistic θ computed from the original sample data, we can define a statistic θ* by the 
same formula, but computed instead using the resampled data. Then,  
 {xଵ

∗  = 𝑥ଶ, xଶ
∗  = 𝑥ସ, 𝑥ଷ

∗ = 𝑥ସ, … , 𝑥ே
∗  = 𝑥ேି଼} ⇒ θଵ

∗
 

 
θ* is computed by resampling the original data; we can compute many θ* by resampling many 
times from F*. Say, we resample θ* B times. 
 
We have a collection of estimated θ*:  
    {θଵ

∗
, θଶ

∗
, θଷ

∗
, ... , θ

∗
}. 

From this collection of θ*’s, we can compute the mean, the variance, skewness, draw a 
histogram, etc., and confidence intervals. From this collection of θ*’s, we learn about the 
behavior of statistic θ. 
 
Example: We are interested in estimating the variance of monthly  S&P 500 returns. We have 
already estimated it, using Shiller’s data: (0.04046)2. We also estimated a 95% C.I. based on the 
normal distribution,  but, we are not sure it is a reliable C.I. since we already know that monthly 
returns are not normally distributed.  
 
We use a bootstrap to study the distribution of the sample variance. 

Bootstrap resampling 
Sample  

{𝑥ଵ, 𝑥ଶ, …, 𝑥ே} 
Bootstrap samples (B) 



 
• Randomly construct a sequence of B samples (all with 𝑁=1,871). Say, 
B1 = {𝑥ଵ, 𝑥ଶ, 𝑥, 𝑥, 𝑥, 𝑥, 𝑥ଵ, ..., 𝑥ଵସହ଼, 𝑥ଵହ଼, 𝑥ଵ଼ହଽ}  ⇒ θଵ

∗
 = 𝑠ଵ

ଶ 
B2 = {𝑥ହ, 𝑥, 𝑥଼, 𝑥ଽ, 𝑥ଶଵ, 𝑥ଶଵ, 𝑥ଶ, ..., 𝑥ଵଵ, 𝑥ଵଷ, 𝑥ଵ଼}  ⇒ θଶ

∗
 = 𝑠ଶ

ଶ 
 .... 
BB = {𝑥ଶ, 𝑥ଷ, 𝑥଼, 𝑥ଵଵ, 𝑥ଶଵ, 𝑥ଶଵ, 𝑥ଶଶ, ..., 𝑥ଵ଼ହ ,𝑥ଵ଼ହ, 𝑥ଵ଼}   ⇒ θ

∗
= 𝑠

ଶ 
 
We have a collection of estimated sample variances:   
    {𝑠ଵ

ଶ, 𝑠ଶ
ଶ, 𝑠ଷ

ଶ, ... , 𝑠
ଶ}. 

 
From this collection of 𝑠ଶ’s, we can compute the mean, the variance, skewness, draw a 
histogram, etc., and confidence intervals. From this collection of 𝑠ଶ’s, we learn about 2. ¶ 
 
 
• Bootstrap Steps:  
1. From the original sample, draw a random sample with size 𝑁. 
2. Compute statistic θ from the resample in 1: θଵ

∗
. 

3. Repeat steps 1 & 2 B times  Get B statistics: {θଵ
∗
, θଶ

∗
, θଷ

∗
, ... , θ

∗
} 

4. Compute moments; draw histograms; etc. for these B statistics. 
 
Using the histogram or the sorted {θଵ

∗
, θଶ

∗
, θଷ

∗
, ... , θ

∗
}, we can build  a ሺ1 െ 𝛼ሻ% C.I. Using the 

histogram, the lower bound leaves 𝛼/2% of the θ* to the right and (1 െ 𝛼/2)% of the θ* to the 
left. 
 
Example: We construct a 95% C.I. for the variance of S&P 500 returns. (You need to install R 
package resample, using the install.packages() function.) 
 
Sh_da <- read.csv("https://www.bauer.uh.edu/rsusmel/4397/Shiller_2020data.csv", head=TRUE, 
sep=",") 
SP <- Sh_da$P 
T <- length(SP) 
lr <- log(SP[-1]/SP[-T]) 
lr_var <- var(lr) 
T_s <- length (lr) 
sim_size <- 1000      # B = size of bootstrap 
 
library(resample)      # call library resample 
data_star <- sample(lr, T_s*sim_size, replace=TRUE)  # create B resamples of  size T_s 
boot_sample <- matrix(data_star, nrow= T_s, ncol=sim_size)  # organize resamples in matrix 
boots_vars  <- colVars(boot_sample)  # compute the variance for each bootsrap sample 
q <- quantile(boots_vars, c(0.025, 0.975)) # Find the 0.025 and 0.975 quantile for q 
ci <- lr_var - c(q[1], q[2])   # Calculate the 95% C.I. for the variance. 
cat("Confidence interval: ",ci, "\n")  # Print C.I using cat  
 
> lr_var 



[1] 0.001637 
> ci 
      97.5%        2.5%  
0.001376664 0.001909769 
> cat("Confidence interval: ", ci, "\n") 
Confidence interval:  0.001376664 0.001909769  
> 
Or, taking square roots above, we can get a 95% CI for : (3.71%, 4.37%). ¶ 
 
• Results (bootstrap principle): 
1. With a large enough B, the LLN allows us to use the θ*’s to estimate the distribution of θ, 
F(θ).   
2. The variation in θ is well approximated by the variation in θ*. 
 
Result 2 is the one that we use to estimate the size of a C.I. 
 
Technical Note: The bootstrap delivers consistent results only.  
 
 
C.I. Application: The Bootstrap Percentile Method 
There are many ways to construct a C.I. using bootstrapping. The easier one is the one described 
above. Just use the distribution of the θ*’s to compute directly a C.I. This is the bootstrap 
percentile method. 
 
The percentile method uses the distribution of θ* as an approximation to the distribution of θ. It 
is very simple, but not as appealing, since comparing differences tends to work better. 
 
Example: (Continuation of previous example.) We construct a 95% C.I. for the variance of S&P 
500 returns. Using the boot.ci function, with type=perc, from boot package (install boot first, using 
the install.packages() function and then call library(boot) before you use it): 
 
library(boot) 
boot.samps <- boot(data=lr, statistic=var_p, R=sim_size) # resampling and θ* estimation 
boot.ci(boot.samps, type = "perc") 
 
> boot.ci(boot.samps, type = "perc") 
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS 
Based on 1000 bootstrap replicates 
 
CALL :  
boot.ci(boot.out = boot.samps, type = "perc") 
 
Intervals :  
Level     Percentile      
95%   ( 0.0014,  0.0020 )   
Calculations and Intervals on Original Scale 



 
• Draw a Histogram to Check Distribution of θ* (=boot.samps$t). 
> hist(boot.samps$t, breaks=12, main="Histogram for Boostrapped Variances", 
xlab="Bootstrapped Variances") 
 

 
 
• Check results by sorting boot.samps$t. 
> new <- sort(boot.samps$t) 
> new[25]         # CI's Lower Bound  
[1] 0.001398215 
> new[975]         # CI's Upper Bound  
[1] 0.001955096 
Or for , taking square root of the above bounds, the 95% CI is given by (3.74%, 4.42%). 
 
> new <- sort(boot.samps$t) 
> new[25]         # CI's Lower Bound  
[1] 0.001398215 
> new[975]         # CI's Upper Bound  
[1] 0.001955096 
Or for , the 95% CI is given by (3.74%, 4.42%). ¶ 
 
 
C.I. Application: The Empirical Bootstrap 
The percentile method uses the distribution of θ* as an approximation to the distribution of θ. It 
is very simple, but there are more appealing methods. In general, a bootstrap based on comparing 
differences is sounder. This is the key to the empirical bootstrap. 
 
To build a C.I. for θ, we use θ, computed from the original sample. As in the previous C.I.’s, we 
want to know how far is θ from θ.  For this, we would like to know the distribution of  
      q = θ – θ. 



If we knew the distribution of q = θ – θ, we build a (1 – α)% C.I., by finding the critical values 
qα/2 & q(1- α/2) to have: 
    Pr (qα/2 ≤   θ – θ   ≤ q(1- α/2) |θ) = 1 – α  
Or, after some manipulations:  
     Pr (θ – qα/2   ≥  θ   ≥  θ – q(1- α/2) |θ) = 1 – α, 
which gives a (1 – α)% C.I.: 
    Cn = [θ – q(1- α/2),  θ – qα/2] 
We do not know the distribution of q, but we can use the bootstrap to estimate it with  
     q* = θ*– θ.  
 and then to get qఈ/ଶ

∗  & qሺଵିఈሻ/ଶ
∗ : 

    Cn = [θ – qሺଵିఈሻ/ଶ
∗ ,  θ – qఈ/ଶ

∗ ] 

This C.I. is called the pivotal C.I.  
 
Intuition: The distribution of θ is ‘centered’ at θ, while the distribution of θ* is centered at  θ. If 
there is a significant separation between θ and θ, these two distributions will also differ 
significantly.  
 
On the other hand, the distribution of q = θ − θ describes the variation of θ about its center. 
Similarly, the distribution of q∗ = θ* − θ  describes the variation of θ* about its center.  
 
Then, even if the centers are quite different, the two variations about the centers can be 
approximately equal.  
 
Example: (Continuation of previous example.) We want to estimate a 95% C.I. for the variance 
of monthly returns of the S&P 500. (You need to install R package resample, using the 
install.packages() function.) 
 
sim_size <- 1000      # B = size of bootstrap 
 
library(resample)      # call library resample 
data_star <- sample(lr, T_s * sim_size, replace=TRUE)  # create B resamples of size T_s 
boot_sample <- matrix(data_star, nrow=T_s, ncol=sim_size)  # organize resamples in matrix 
 
boots_vars <- colVars(boot_sample)    # variance for each bootstrap sample 
q_star <- boots_vars - lr_var    # Compute q* for each bootstrap sample 
q <- quantile(q_star, c(0.025, 0.975))   # Find the 0.025 & 0.975 quantile for q* 
ci <- lr_var -c(q[2], q[1])    # Calculate the 95% C.I. for the variance. 
cat("Confidence interval: ",ci, "\n")   # Print C.I using cat  
 
> lr_var 
[1] 0.001637 
> ci 
      97.5%        2.5%  
0.001376664 0.001909769 
> cat("Confidence interval: ",ci, "\n") 



Confidence interval:  0.001376664 0.001909769  
> 
Or for , the 95% CI is given by (3.71%, 4.37%).  
 
Note: We got very similar results to the percentile bootstrap. ¶ 
 
Example: Now, we construct the same 95% C.I. for the variance of monthly S&P 500 returns but 
using the R package boot. You need to install package first, using the install.packages() function. 
 
library(boot) 
# function to obtain the variance from the data 
var_p <- function(data, i) { 
 d <-data[i] 
return(var(d)) 
}  
 
boot.samps <- boot(data=lr, statistic=var_p,  R=sim_size) # resampling and θ* estimation 
boot.ci(boot.samps, type = "basic")   # boot computes the CI with type=basic. 
 
> boot.ci(boot.samps, type = "basic") 
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS 
Based on 1000 bootstrap replicates 
 
CALL :  
boot.ci(boot.out = boot.samps, type = "basic") 
 
Intervals :  
Level      Basic          
95%   ( 0.0014,  0.0019 )   
Calculations and Intervals on Original Scale 
 
• Check results using previous step-by-step process: 
q_star <- boot.samps$t - lr_var     # q* = θ* −  θ 
q_ad <- sort(q_star)      # sort q* 
> lr_var - q_ad[975]      # CI's Lower Bound 
[1] 0.001357793 
> lr_var - q_ad[25]       # CI's Upper Bound   
[1] 0.001914674  
 
We can transform this CI for the variance into a CI for the SD: 
> sqrt(lr_var - q_ad[975]) 
[1] 0.03684825 
> sqrt(lr_var - q_ad[25]) 
[1] 0.04375699 
 



A 95% CI for  is given by (3.68%, 4.38%), wider than the CI assuming a Normal distribution 
for returns. ¶ 
 
Note that we can also gauge the uncertainty of the estimation of θ by computing the sample 
standard error, SE(θ*). (Recall we call the standard deviation of an estimator its standard error.):  
 
• Steps 
1. Computing the sample variance:   

   Var(θ*) = 
ଵ

ିଵ
∑ ሺθ

∗
ୀ െ �̅�*)2,    

 where �̅�* = 
ଵ


∑ θ

∗
ୀ . 

2. Estimate the S.E. of θ*: SE(θ*) = sqrt[Var(θ*)]. 
 
 
C.I. Application: The Parametric Bootstrap Method 
If we assume the data is from a parametric model (say, from a Normal or a Gamma distribution), 
we can use the parametric bootstrap to access the uncertainty (variance, C.I.) of the estimated 
parameter. In a parametric bootstrap, we generate bootstrap samples from the assumed 
distribution, based on moments computed from the sample. We do not use the ED.  
 
Suppose we have a sample with N observations drawn from F(x; θ):  
    {𝑥ଵ, 𝑥ଶ, …, 𝑥ே} 
 
In the parametric bootstrap, we know F(x; θ), the distribution of x, but we do not know its 
parameters. Suppose there is only one unknown parameter, θ (say, the variance). From the 
sample, we compute θ, the estimator of θ. Then, we bootstrap from F(x; θ) and proceed as before 
to form a C.I..  
 
• Steps: 
1. Draw B samples of size N from F(x; θ). 
2. For each bootstrap sample, {xଵ

∗ , xଶ
∗ , 𝑥ଷ

∗, ..., 𝑥ே
∗ }, calculate θ*.  Get B θ*. 

3. Estimate a C.I. using the previous methods. 
 
Example: Suppose S&P 500 monthly returns follow a N(0, σ2). We estimate σ2 with s2 = 
0.040462.  
> lr_var 
[1] 0.001637 
 
x <- rnorm(T_s*sim_size, mean=0, sd=lr_sd)  # generate normal data 
boot_sample <- matrix(x, nrow=T_s, ncol=sim_size) # organize simulated data 
boots_vars  <- colVars(boot_sample)    # compute variances 
q_star <- boots_vars - lr_var 
q <- quantile(q_star, c(0.025, 0.975)) 
ci <- lr_var - c(q[2], q[1])  
> ci  
      97.5%        2.5%  



0.001547382 0.001760286  
 
Or for , the 95% CI is given by (3.94%, 4.20%). Very close to the C.I.’s we obtained before 
assuming a Normal distribution for returns. Not a surprise! ¶ 
 
Note: In the previous example, to gauge the uncertainty of  the estimation of s2, we can also 
compute the sample standard error, SE(s2).  
 
• Steps 
1. Draw B samples of size N from a N(0, s2)     Get B s2*. 
2. Estimate the variability of s2 by computing the sample variance   

   Var(s2) = 
ଵ

ିଵ
∑ ሺ𝑠

ଶ∗
ୀ െ 𝑠

ଶሻ2,    

 where 𝑠
ଶ = 

ଵ


∑ 𝑠

ଶ∗
ୀ . 

3. Estimate the S.E. of s2: SE(s2) = sqrt[Var(s2)].  
  
Remark: An important difference between the nonparametric and parametric bootstrap procedures 
is that in the nonparametric procedure, only values of the original sample appear in the bootstrap 
samples. In the parametric bootstrap, the range of values in the bootstrap sample is the entire 
support of F(x; θ). In the parametric bootstrap of the above example, the values in the bootstrap 
sample could be any value between negative and positive infinity. 

 
C.I. Application: Bootstrapping – Why? 
Question: Why do we need a bootstrap? 

- Sample sizes are “small” and asymptotic assumptions do not apply 
- DGP assumptions are violated.  
- Distributions are complicated. 

 
Usually, we would not use a bootstrap to compute C.I.’s for the mean; in general, the normal 
distribution works well, as long as 𝑁 is large enough. The bootstrap is used to generate 
standard errors for estimates of other statistics where the normal distribution is not a good 
approximation. A typical example is the median, where for non-normal underlying 
distributions the SE of the median is complicated to compute. 
 
Efron (1979) is the seminal paper. But, the related literature is older. It became popular in the 
1980’s due to the explosion of computer power. 
 
Disadvantages and Advantages: 
- Disadvantage: Only consistent results, no finite sample results. 
- Advantage: Simplicity. 
 
 
C.I. Application: Value-at-Risk 



What is the most an investor can lose with a particular investment over a given time framework? 
Or, what is the worst case scenario? Value-at-Risk (VaR) provides one answer to this question: It 
gives a (lower) bound with a probability attached to it. 
 
So far, we have measured risk of an asset/investment with its volatility.  
 
Volatility is calculated including positive (right tail) and negative (left tail) returns. Investors, 
however, love the right tail of the returns distribution, but dislike the other tail. Value-at-Risk 
(VaR) focuses on the left tail. 
 
VaR gives a formal definition of “worst case scenario” for an asset over a period of time. 
 
VaR: Maximum expected amount (loss) in a given time interval within a (one-sided) (1 - α)% 
C.I.: 
  VaR(1 - α) = Amount exposed * (1 + worst % change scenario in C.I.) 
 
It is common to express the “expected loss” relative to today’s expected value of 
asset/investment: 
  VaR-mean(1 - α) = VaR – E[Amount exposed] 
 
There are different ways to compute the worst case scenario within a time interval. We go over 
two approaches: 
 - Assuming a probability distribution (normal, in our case). 
 - Using the empirical distribution (a bootstrap, using the past). 
 
Example: Let α = .025 
VaR = Amount exposed * (1 + worst change scenario in 97.5% C.I.). 
VaR-mean(97.5%) = VaR – E[Amount exposed].   
 

 

 

 

 

 

 

 

 

 

 VaR(97.5%): Minimum Amount within C.I.   

α = 2.5% Amount Exposedt 

VaR-mean(97.5%). ¶ 



 
 
C.I. Application: Range Estimates & VaR for Transaction Exposure - Normal 
When a company is involved with transactions denominated in foreign currency (FC), it is 
exposed to currency risk. Transaction exposure (TE) provides a simple measure of this exposure: 

   𝑇𝐸௧= Value of a fixed future transaction in FC * 𝑆௧  

where St is the exchange rate expressed as units of domestic currency (USD for us) per unit of FC 
(say, EUR). 
 
Example: A Swiss company, Swiss Cruises, sells packages in USD. 
Amount = USD 1 million.  
Payment: 30 days. 
𝑆௧  

= 0.92 CHF/USD  
     𝑻𝑬𝒕 = USD 1M * 0.92 CHF/USD = CHF 0.92M.  
If 𝑆௧ is described by a Random Walk (E[𝑆௧ା்]=𝑆௧), then 𝑇𝐸௧ is a forecast of the value of the 
transaction in 30 days (𝑇𝐸௧ାଷ). ¶ 
 
Swiss Cruises wants a measure of the uncertainty related to the amount to receive in CHF in 30 
days, since St+30 is unknown.  
 
We can use a range to quantify this uncertainty; we want to say   
     𝑇𝐸௧ାଷ [TELB, TEUB]. with high probability. 
To determine this range for TE, we assume that (log) changes in 𝑆௧, 𝑒,௧, are normally 
distributed:  𝑒,௧ ~ N(, 2).  
 
Then, we build a (1-α)% interval around the mean: [  z1-α/2 * ].  
 
Usual α’s in interval calculations:  α =.05   |z.025| = 1.96 (≈ 2) 
     α =.02   |z.01| = 2.33  
As usual, we estimate (, ) using (𝑋ത, s). ¶ 
 
Example: Range estimate based on a Normal distribution. 
Assume Swiss Cruises believes that CHF/USD monthly changes (𝑒,௧) follow a normal 
distribution. Swiss Cruises estimates the mean and variance using the last 15 years of data: 
𝑋ത = Monthly mean = -0.00152 ≈ -0.15% 
s2 = Monthly variance = 0.001014 ( s = 0.03184, or 3.18%) 
𝑒,௧ ~ N(-0.00152, 0.031842),    𝑒,௧ = CHF/USD monthly log changes.  
 
Swiss Cruises constructs a 95% CI for CHF/USD monthly changes. 
  
Recall that a 95% C.I. for ef,t+30 (which applies to any t) is given by:  
   𝑒,௧ [-0.00152  1.96 * 0.03184] = [-0.06393; 0.06089].  
 



Based on this range for ef,t, we build a 95% C.I. for St+30 and, then, for TEt+30 (= USD 1M * 
𝑆௧ାଷ). 
   𝑒,௧ାଷ  [-0.00152  1.96 * 0.03184] = [-0.06393; 0.06089]. 
 

 
 
Now, we derive a range for 𝑆௧ାଷ: 
(A) Upper bound  
𝑆௧ାଷ, = 𝑆௧* (1+ ef,t,UB) = 0.92 CHF/USD * (1 + 0.06089) = 0.97602 CHF/USD 
 
(B) Lower bound  
𝑆௧ାଷ, = 𝑆௧* (1 +  𝒆𝒇,𝒕,𝑳𝑩)) = 0.92 CHF/USD * (1 + (-0.06393))] = 0.86118 CHF/USD 
  𝑆௧ାଷ  [= 0.86118 CHF/USD; 0.97602 CHF/USD].  
 
Finally, we derive the bounds for the TE: 
(A) Upper bound (with 𝑆௧ାଷ, = 0.97602 CHF/USD)  
 TEUB: USD 1M * [0.97602 CHF/USD] = CHF 976,019. 
 
(B) Lower bound (with St+30,LB = 0.86118 CHF/USD)  
 TELB: USD 1M * [0.86118 CHF/USD] = CHF 861,184. 
    TEt+30  [CHF 0.861M;  CHF 0.976M]. ¶ 
 
• The lower bound, for a receivable, represents the worst case scenario within the interval in 30 
days. That is, this is the VaR: 
 
 VaR  = Amount exposed * (1+ worst % change scenario in C.I.) 
  = 𝑻𝑬𝒕 * (1 + 𝒆𝒇,𝒕,𝑳𝑩) 
  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
It is common to express the “expected loss” relative to today’s expected value of transaction (or 
asset): 
 VaR-mean = VaR – 𝑻𝑬𝒕  =  𝑻𝑬𝒕* (1 + 𝒆𝒇,𝒕,𝑳𝑩) – 𝑻𝑬𝒕 
  = 𝑻𝑬𝒕 * 𝒆𝒇,𝒕,𝑳𝑩 
Or just  
  VaR-mean = Amount exposed * worst case scenario 
 
The minimum revenue to be received by SC in the next 30 days, within a 97.5% CI.  
 VaR(97.5%) = CHF 0.92M * [1+ (-0.06393)]  
  = CHF 0.8612M.  
 
Interpretation of VaR: If SC expects to cover expenses with this USD 1M inflow, the maximum 
amount in CHF to cover, within a 97.5% one-sided CI, should be CHF 0.8612M. 
 
Relative to today’s valuation (or expected valuation, according to RWM), the maximum 
expected loss in 30 days within a  97.5% one-sided C.I. is: 
 VaR-mean(.975)= CHF 0.8612M – CHF 0.92M = CHF -0.0927M.  
 
Note that we can also compute the VaR-mean as: 
 VaR-mean(.975)= CHF 0.92M * (-0.06393)  
   = CHF -0.0588M. ¶ 
 
Technically speaking, the VaR is a quantile, where a quantile is the fraction of observations that 
lie below a given value (in this case the VaR).  
 

CHF 0.976M CHF 0.861M 

VaR(97.5%): Minimum revenue within a 97.5% C.I.   

2.5% 2.5% TE = CHF 0.92M 



Example: In the previous example, the 0.025 quantile (or 2.5% quantile) for expected loses is 
CHF -0.0588M. 
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Note: We could have used a different quantile –i.e. a different significant level- to calculate the 
VaR, for example 1% ( z.01 = 2.33). Then, 
 VaR(99%) = CHF 0.92M * [1+ (-0.00152 – 2.33 * 0.03184)]  
  = CHF 0.92M * [1 + (-0.0757072)] 
  = CHF 0.8503M (A more conservative bound.) 
 
  VaR-mean (.99) = CHF 0.92M * (-0.0757072) = CHF -0.0697M. 
 
Interpretation of VaR-mean: Relative to today’s valuation (or expected valuation, according to 
RWM), the maximum expected loss with a 99% “chance” is CHF -0.0697M.  
 
Note: As the C.I. gets wider, Swiss Cruises can spend less CHF on account of the USD 1M 
receivable. ¶ 
 
 
C.I. Application: Range Estimates & VaR for TE - Bootstrap 
VaR is a statistic –a function of the data, in our case, a function of 𝑒,௧. We can do an empirical 
bootstrap to calculate the mean, SE (=SD), C.I., etc. 
  
Example: We want to calculate the average VaR(97.5%) and its S.E., using all CHF/USD data 
from 1990:Jan - 2020:Sep. Then, 
 
chfusd <- read.csv("https://www.bauer.uh.edu/rsusmel/4386/chfusd.csv",sep=",")  # Data 
S <- chfusd$CHF_USD   # Extract CHF_USD column of the data 

VaR (97.5%) = 0.8612M 

2.5% quantile TE = CHF 0.92M 

VaR(97.5%)-mean = CHF -0.0588M  



T <- length(S)    # Check total T (1971:1 to 2020:9) 
Tstart <- 229    # Start of sample period: 1990:1 
SP <- S[Tstart: T]   # FX rate during relevant period (1990:1 on) 
T <- length(SP) 
Val <- 1000000   # Value of transaction in FC (in M) 
S_0 <- S[T]    # FX Rate at T (Today's S_t) 
e_f <- log(SP[-1]/SP[-T])   # Log changes in FX Rate 
T_s <- length(e_f) 
alpha <- .05    # Specify alpha level for VaR 
T_s_low <- round(T_s*alpha/2)   # Obs corresponding to alpha/2*T_s 
TE_o <- Val*S_0*(1+e_f)   # calculate Original TE values  
STE_o <- sort(TE_o)   # sort Original TE 
VaR_o <- STE_o[T_s_low]    # Original VaR 
> VaR_o 
[1] 860293 
 
# function to obtain VaR from the data 
varisk <- function(data, i) { 
 d <-data[i] 
TE <- Val*S_0*(1+d)     # calculate R TE values  
STE <- sort(TE)     # sort TE 
VaR <- STE[T_s_low] 
return(VaR) 
} 
 
library(boot) 
sim_size <- 1000 
boot.samps <- boot(data=e_f, statistic=varisk, R=sim_size) 
> boot.samps 
 
ORDINARY NONPARAMETRIC BOOTSTRAP 
 
Call: 
boot(data = e_f, statistic = varisk, R = sim_size) 
 
Bootstrap Statistics : 
    original   bias    std. error 
t1*   860293 1929.305    4870.733  
 
> boot.ci(boot.samps, type = "basic")   # boot computes the CI. 
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS 
Based on 1000 bootstrap replicates 

CALL :  
boot.ci(boot.out = boot.samps, type = "basic") 
 
Intervals :  



Level      Basic          
95%   (849352, 867587 )  
 
> mean(boot.samps$t) 
[1] 862222.3 
> sd(boot.samps$t) 
[1] 4870.733 
 
hist(boot.samps$t, xlab="VaR (in CHF)", breaks=30) 

 
Bootstrap estimated VaR(97.5%) = CHF 0.8622M. ¶ 
 
 
C.I. Application: Performance Evaluation 
In the 1990s, Bankers Trust evaluated traders based on a risk-adjusted performance measure 
called RAROC: Risk-adjusted return on capital.  
 RAROC = Profits/Capital-at-Risk 
 
RAROC adjusts profits taking into account the exposure of the bank, called capital-at-risk. BT 
defined this exposure as the amount of capital needed to cover 99% of the maximum expected 
loss over a year.  
 
That is, capital-at-risk is the worst loss within one-sided 99% C.I. We called this VaR-
mean(99%).  
 
The rationale for this measure: BT needs to hold enough cash to cover 99% of possible losses.  
 
Example: Ranking two traders I and II, dealing in different markets.  
  



 
 

Segment Profits (in USD, 

annualized) 

Position (in 
USD) 

Volatility 

(annualized) 

Trader I Futures stock 
indices 

3.3 M 45 M 21% 

Trader II FX Market 3.0 M 58 M 14% 

 
To calculate RAROC, we calculate the VaR-mean(99%) –i.e., worst possible loss in a 99% CI.  
 
Assuming normality for profits with mean equal to zero (not important, since all traders are 
evaluated using the same mean). Then, (since α =.01  z.01 = 2.33):  
 VaR-mean(99%) = Amount exposed * worst case scenario 
 = Position * z.01 * Volatility  
Since α =.01  z.01 = 2.33.  
 
(1) Calculate VaR-mean (99%) for each trader (under normal distribution) 
Trader I:  USD 45M * 2.33 * 0.21 = USD 22,018,500. 
Trader II:  USD 58M * 2.33 * 0.14 = USD 18,919,600. 
 
(2) Calculate RAROC: 
Trader I: RAROC = USD 3.3M /USD 22,018,500 = .1499. 
Trader II: RAROC = USD 3.0M /USD 18,919,600 = .1586. 
  
Conclusion: Once adjusted for risk, Trader II provided a better return. ¶  



Lecture 3 – Least Squares 
So far, we have focused on one RV at a time, say stock returns, and learning about its 
distribution, for example, using descriptive statistics. In econometrics, we are more interested in 
describing or measuring the expected effect of a tax on consumption or the expected effect of 
education on an employee’s salary or a CEO’s compensation.  
 
That is, we usually care about a functional relation between y, the dependent variable, and x, a 
set of explanatory variables.  
 
In this lecture, we linearly relate y to 𝑥 & an error term, :  
   𝑦  = α +  𝑥 + ,   i = 1, 2, ...., N, 
where α &  are parameters to be estimated and , the error term or disturbance, has zero mean 
and constant variance, σ2. That is,  is a RV with E[i] = 0 & Var[i] = σ2.  
 
We think of  as the effect of individual variation that have not been “controlled for” with x. The 
disturbance i is part of the model. Even if we know that the relation between y and x is linear 
and we also know α &   with certainty –i.e, no need to estimate them- we still would not be able 
to compute 𝑦 with 100% accuracy.  
 
We call the above equation the Data Generating Process (DGP), that is, the data we observe (𝑦 
and 𝑥) are generated following this equation. 
 
Given the always present uncertainty, we focus on expected values. Then, under the assumption 
E[i] = 0, we have: 
  E[𝑦] =  α +  E[𝑥].  
We have a linear relation between the expected value of 𝑦 and the expected value of 𝑥. 
 
Example: The CAPM posits a relation between the excess return of asset 𝑖, 𝑦 = 𝑟,௧ –  𝑟, and the 
excess return of the market, 𝑥 = 𝑟,௧ –  𝑟. In equilibrium, the CAPM states: 
   E[(𝑟,௧ –  𝑟)] = β E[(𝑟,௧ –  𝑟)], 
where β is the sensitivity of asset 𝑖 to market risk. 
 
CAPM DGP:   𝑦  =  𝛼 + β୧ 𝑥 + ,    𝑖 = 1, 2, ...., 𝑁. 
where 𝛼 & β are parameters to be estimated. Once we estimate 𝛼 & , we can test the CAPM 
for IBM, since according to the CAPM 𝛼 = 0. 
 
The previous mathematical structure allows us to estimate βIBM and also test the CAPM for asset 
i = IBM. Define  
𝑦 = excess returns for IBM  
𝑥 = excess returns for the market (the “Market”).  
 
Using time series data, we express the underlying relation behind the CAPM as: 
   𝑦௧  =  α +  𝑥௧ + ௧,  t = 1, 2, ...., T, 
where α &  are parameters to be estimated and  is the error term with E[] = 0 & Var[] = σ2.  
 



Taking expectations:  
  E[𝑦௧] =  α +  E[𝑥௧].  
 
Then, once we estimate α & , we can compute the expected excess return for IBM. We can also 
test the CAPM for IBM, since according to the CAPM α = 0. That is, we test: H0: α = 0 vs H1: α 
≠ 0. ¶ 
 
To gain intuition and easy interpretation of the model, it is useful to think of x as given or 
predetermined (realized before 𝑦) variable. Then, we can express the relation between 𝑦 & 𝑥, in 
terms of the conditional expectation of 𝑦, conditioning on the predetermined value of 𝑥: 
  E[𝑦 |xi] =  α +  𝑥.   (“Regression equation”) 
 
The conditional expectation of 𝑦 is what we model; in general, based on finance theory or the 
experience of the practitioner. To be technically precise, for the regression equation we require 
E[ |𝑥] = 0. 
 
Note: We started with:  𝑦  =  α +  𝑥 +   
which can be converted to:   𝑦 =  E[𝑦 | 𝑥] +   
 
That is, 𝑦 is what we model plus something unexpected, a surprise. 
 
 
• In the CAPM example above, we have that IBM excess returns are only related to (“explained 
by”) the market excess returns. This is a one variable model. 
 
But, we could have used a DGP with more explanatory variables, for example the 3 factors in the 
standard Fama-French (1993) model: Excess market returns (market factor), SMB (size factor), 
and HML (book-to-market factor).  This represents a multivariate model for IBM returns: 
Fama-French DGP:  𝑦 = α + βଵ 𝑥ଵ,+ βଶ 𝑥ଶ, + βଷ 𝑥ଷ, + 𝜀 
 
Though not necessary correct, we usually think of 𝑦 as the endogenous variable and 𝑥 as the 
exogenous variable, determined “outside” the model. (If 𝑥 is not endogenous, we have a lot of 
issues that will force us to change the model or the way we estimate the model.) 
 
• The goal of this lecture is to learn how to estimate the population parameters α &  and, at the 
same time, learn the properties of estimators. 
 
 
Technical Note: We can study the joint distribution of 𝑦 & 𝑥, f(𝑥, 𝑦) and describe the joint 
behavior in terms of expectations, conditional expectations, correlations, etc. For example, 
assuming joint normality for 𝑦 & 𝑥, we can derive the conditional expectation of 𝑦, given 𝑥 : 
  E[𝑦 | 𝑥] = α + β 𝑥, 
which gives a functional (& linear) relation between 𝑦 & 𝑥. 
 



Thus, in a joint normality context, we can study the effect of a change in 𝑥 on 𝑦. Moreover, after 
a lot of manipulations and applying statistical definitions, we get a formula to estimate α & β in 
terms of moments of 𝑦 & 𝑥. 
 
Then, why do we need other methods to estimate α & β? Two things to consider: 
1) In general, assuming joint normality is not realistic in economics and finance.  
2) In many situations, we think of the explanatory variable, 𝑥, as control, not necessarily as RV.   
 
Remark: Without making any reference to a joint distribution, we will derive the formulas to 
estimate parameters in a linear relation.  
 
 
LS Estimation – OLS 
Old method: Gauss (1795, 1801) used it in astronomy. 
 
Idea: We relate a dependent variable 𝑦 to a set of k explanatory variables 𝒙. This function 
depends on unknown parameters, θ, which we want to estimate. The relation between 𝑦 and 𝒙 is 
not exact. There is an error, . We have T observations of 𝑦 and 𝒙.  
 
The model is: 
   𝑦 =  f(𝑥ଵ,, 𝑥ଶ,, …, 𝑥,; θ) + , i = 1, 2, ...., T. 
 
If the functional form is known, we estimate the parameters θ by minimizing a sum of squared 
errors:  

  minθ { S(𝑥ଵ, , 𝑥ଶ, , … , 𝑥,; θ) = ∑ 𝜀
்


ଶ
=  ∑ ሺ𝑦 െ 𝑓൫𝑥ଵ, , 𝑥ଶ, , … , 𝑥,;  𝜽൯ሻ்


ଶ
}  

 
The estimator obtained is called the Least Squares (LS) estimator.   
 
LS is a general estimation method. It can be applied to almost any function.  
 
The functional form, f(𝑥, θ), is dictated by theory or experience. In this class, we mainly work 
with the linear case: 
  f(𝑥, θ) = 1  𝑥ଵ, + 2  𝑥ଶ, + 3 x3,i + … + k  𝑥,. 
 
Now, we estimate the vector θ = {1, 2, … , k} by minimizing    

 S(𝒙, θ) = ∑ 𝜀
்


ଶ
= ∑ ሺ𝑦 െ  1 𝑥ଵ, െ 2 𝑥ଶ, െ ⋯െ 𝑘 𝑥,ሻ

்


ଶ
 

In this case, we call this estimator the Ordinary Least Squares (OLS) estimator. (Ordinary = 
Linear functional form.) 
 
Notation: In lecture 2, we used ^ over the estimator of the parameter of interest. For example, θ 
is the estimator of the parameter θ. Sometimes, to emphasize the method of estimation, we add to 
the estimated parameter the initials of the method used, say θௌ.  
 
For historical reasons, in the linear model, b is popularly used to denote the OLS estimator of .  
 



Example 1: We want to study the effect of the tech boom (𝑥) on the San Francisco housing 
market (𝑦). We rely on a simple linear model, with only one explanatory variable, the tech boom 
variable. That is,  
   𝑦 =  α +  𝑥+ . 
 
In this model, we are interested in estimating , our parameter of interest.  measures the 
marginal effect of x on y. We can use the estimate of  to check if the high tech boom has a 
positive effect on SF housing prices. In this case we test: 
 H0 (No or Negative effect):  ≤ 0. 
 H1 (Positive effect):  > 0. 
 
We have monthly data on SF Housing Prices and a Tech Indicator, developed by the Federal 
Reserve. We transform the data in percentage changes. Below, we plot the data: SF House Prices 
vs Tech Indicator (both in % changes). 

 
 
Example 2: We want to study the effect of a CEO’s education (𝑥) on a firm’s CEO’s 
compensation (y). We build a CEO’s compensation model including a CEO’s education (𝑥) and 
other “control variables” (𝑾: experience, gender, etc.), controlling for other features that make 
one CEO’s compensation different from another. That is,  
   𝑦 =  f( 𝑥,  𝑾, θ) + ,   i = 1, 2, ...., T. 
 
The term  represents the effects of individual variation that have not been controlled for with 
 𝑾, or  𝑥 and θ is a vector of parameters. 
 



Usually, f(𝑥, θ) is linear. Then, the compensation model becomes: 
   𝑦  = α +   𝑥 + γ1  𝑊ଵ, + γ2  𝑊ଶ, + ... +  
 
Again, in this model, we are interested in the estimation of , our parameter of interest, which 
measures the effect of a CEO’s education on a CEO’s compensation. We can use the estimate of 
 to check if CEO’s education has a positive effect on CEO’s compensation. In this case we test: 
  H0 (No or Negative effect):  ≤  0. 
  H1 (Positive effect):  > 0.  ¶ 
 
 
LS Estimation – General Functional Form 
We start with a general functional form, 𝑓ሺ𝑥 ,θሻ, where θ  is a vector of k parameters.  
 
The general model:    
  𝑦 = 𝑓ሺ𝑥 ,θሻ +  
 
We want to estimate k parameters.  
 
Objective function:   

   S(xi, 𝜽) = ∑ 𝜀ଶ
்
  = ∑ ሼ𝑦 െ 𝑓ሺ𝑥 ,θሻሽ்


ଶ
  

 = ሺ𝑦ଵ െ 𝑓ሺ𝑥ଵ, θሻሽଶ + ሺ𝑦ଶ െ 𝑓ሺ𝑥ଶ, θሻሽଶ + … + ሺ𝑦் െ 𝑓ሺ𝑥் , θሻሽଶ 
 
• We minimize S(xi, θ) with respect to θ. That is, 

  minθ { S(xi, 𝜽) = ∑ 𝜀ଶ
்
  = ∑ ሼ𝑦 െ 𝑓ሺ𝑥 ,θሻሽ்


ଶ
} 

 

  
డௌሺ௫,θሻ

డθ
ൌ 2 ሼ𝑦ଵ െ 𝑓ሺ𝑥ଵ, θሻሽሺെ𝑓′ሺ𝑥ଵ, θሻሻ  ⋯  2 ሼ𝑦் െ 𝑓ሺ𝑥் , θሻሽሺെ𝑓′ሺ𝑥், θሻሻ 

 ൌ െ2∑ ሼ𝑦 െ 𝑓ሺ𝑥 ,θሻሽ𝑓′ሺ𝑥 , θሻሽ்
  

  
  f.o.c.  െ2∑ ሼ𝑦 െ 𝑓ሺ𝑥 , θௌሻሽ𝑓′ሺ𝑥 , θௌሻሽ

்
 ൌ 0 

  ∑ ሼ𝑦 െ 𝑓ሺ𝑥 , θ𝑳𝑺ሻሽ𝑓′ሺ𝑥 , θ𝑳𝑺ሻሽ
்
 ൌ 0  

 
Suppose we have q elements in θ, the f.o.c.’s have set up a qxq system of equations. This system 
of equations is called the normal equations. The solution to the normal equation, θௌ, is the Least 
Squares estimator.    
 
We do not always can solve analytically the normal equations. Two cases: 
- When 𝑓ሺ𝑥 ,θሻ is linear, we have an analytic, explicit solution, the OLS estimator, θைௌ = b.  
- When 𝑓ሺ𝑥 ,θሻ is non-linear, we do not have an explicit solution for θௌ. The system, however, 
can be solved numerically. In this case, the estimator is usually referred as Non-linear Least 
Squares estimator, θேௌ. 
 
The estimator θௌ is a function of the data (yi, xi). 
 
 



OLS Estimation – One Variable Model 
One explanatory variable in a linear model: 
   f(xi, θ) = 1 + 2 xi 
 
Linear Model:  𝑦 = 1 + 2 𝑥 +  
 
We have two parameters to estimate. 
 
Objective function:   

 S(𝒙; 1,  2) = ∑ 𝜀ଶ
்
  = ∑ ሺ𝑦 െ  1 െ 2 𝑥ሻ

்


ଶ
  

 = ሼ𝑦ଵ െ 1 െ 2 𝑥ଵሻଶ + ሼ𝑦ଶ െ 1 െ 2 𝑥ଶሻଶ + … +  ሼ𝑦் െ 1 െ 2 𝑥்ሻଶ 
 
First, we take first derivatives: 
 (1):   2 ∑ ሺ𝑦 െ  1 െ 2 𝑥ሻ

்
  (-1)  

 (2):   2 ∑ ሺ𝑦 െ  1 െ 2 𝑥ሻ
்
  (-𝑥)  

 
Second, we set the f.o.c. and get the normal equations (2 equations, 2 unknowns): 
 (1):   2 ∑ ሺ𝑦 െ  b1 െ 𝑏2 𝑥ሻ

்
  (-1) = 0    ∑ ሺ𝑦 െ  b1 െ 𝑏2 𝑥ሻ

்
  = 0  (1) 

 (2):   2 ∑ ሺ𝑦 െ  b1 െ 𝑏2 𝑥ሻ
்
  (-xi) = 0  ∑ ሺ𝑦 𝑥 െ 𝑏1 𝑥 െ 𝑏2 𝑥

ଶ்
 ሻ = 0   (2) 

 
Now, we solve for b1 & b2, the OLS estimators: 
 
From (1): ∑ 𝑦

்
  – ∑ b1

்
  – b2 ∑ 𝑥

்
  = 0   

   ⇒ ∑ 𝑦
்
  – 𝑇 b1 – b2 ∑ 𝑥

்
  = 0     ⇒ b1 = 𝑦ത – b2 �̅� 

 
From (2): ∑ 𝑦𝑥

்
  – (𝑦ത – b2 �̅�) ∑ 𝑥

்
   – b2 ∑ 𝑥

ଶ்
  = 0  

  ⇒ ∑ 𝑦𝑥
்
  – 𝑦ത ∑ 𝑥

்
  – b2  (∑ 𝑥

ଶ்
 –  �̅� ∑ 𝑥

்
  )= 0 ⇒ b2 = 

∑ ሺ௬

 ି ௬തሻ ௫

∑ ሺ௫

 ି ௫̅ሻ ௫

 

or, more elegantly,   

  b2 = 
∑ ሺ௬

 ି ௬തሻሺ௫ ି ௫̅ሻ

∑ ሺ௫ ି ௫̅ሻమ


ൌ ௩ሺ௬,  ௫ሻ

௩ሺ௫ሻ 
 

Note that we need 𝑣𝑎𝑟ሺ𝑥ሻ ≠ 0 to get b2.  
 
• Interpretation of coefficients 
- b1 estimates the constant of the regression, the value of 𝑦, when 𝑥 equals to 0.  
- b2 estimates the slope of the regression, the marginal effect –i.e., the first derivative of 𝑦with 
respect to 𝑥:  

  
ఋ௬
ఋ௫

 = 2   

That is, if 𝑥 increases by one unit (say, 1%), then, 𝑦 is estimated to increase by b2 units (say, 
b2%). 
 
• Conditional Prediction 



Suppose analysts estimate that 𝑥 will be z%, then, you estimate (or predict, given the z% value 
of 𝑥) yi: 
 Predicted[𝑦 |𝑥=z%] = b1 + b2 * z. 
 
 
OLS Estimation – One Variable Model: CAPM 
As mentioned in the introduction, a typical finance application of a one variable linear model is 
the CAPM. Recall that the (Sharpe-Litner) CAPM, in equilibrium, implies: 
   E[(𝑟,௧ – 𝑟)] =  β E[(𝑟,௧ – 𝑟)],  
where 
𝑟,௧ = return on asset i at time t. 
𝑟   = return of riskless asset at time t.  
𝑟,௧ = return on the market portfolio at time t. 
β  = asset i’s sensitivity to market (systematic) risk. 
 
Note: The market portfolio in the CAPM represents wealth. All wealth. We need to include not 
only all stocks, but all bonds, real estate, privately held capital, publicly held capital (roads, 
universities, etc.), and human capital in the world. (Easy to state, but complicated to form.) In 
general, we proxy the Market Portfolio, with a well-diversified index, that only includes equities, 
like the S&P 500 Index, or the MSCI World Index. 
  
The CAPM is a particular case of what in financial theory we call “factor models.” Factors 
represent the systematic component that drives the cross-section of returns over time; they can be 
observed or unobserved. For example, a k-factor model for returns is given by: 
  𝑟,௧ = α + βଵ 𝑓ଵ,௧+ βଶ  𝑓ଶ,௧ + … + β 𝑓,௧ + 𝜀,௧ 
where 𝑓,௧ is the j (common) factor at time t, and constant over i, and 𝜀,௧ represents the 
idiosyncratic component of asset i.  
 
Thus, we think of returns as driven by common or systematic factors (undiversifiable) and 
idiosyncratic factors (diversifiable in large portfolios.) Thus, in equilibrium, investors get 
compensated only for the systematic risk they take. 
 
The CAPM has only one factor: market excess returns (“the market”). The higher the exposure to 
this factor –i.e., β-, the higher the expected compensation.  
 
• A linear data generating process (DGP) consistent with the CAPM is:  
  (𝑟,௧ – 𝑟) = α + β (𝑟,௧ – 𝑟) + ,௧,  𝑖 = 1, .., N  &  𝑡 = 1, …,T 
where  
α and β are the coefficients to be estimated by LS. 
Cov(𝑟,௧, ,௧) = 0  -i.e., market returns are exogenous. 
 
If β = 0, asset i is not exposed to market risk. Thus, the investor is not compensated with a 
higher return than 𝑟.  
 
If β  > 0, asset i is exposed to market risk & 𝑟,௧ ≥ 𝑟  , provided that E[(𝑟,௧ – 𝑟)] > 0. 



 
If β  > 1 (β < 1), asset i is “riskier” (“safer”) than the market. That is, the expected return for 
asset i is higher (lower) than the expected return for the market. For  β > 1, we have  
  E[(𝑟,௧ – 𝑟)] > β E[(𝑟,௧ – 𝑟)] -higher compensation for higher risk. 
 
If αi > 0, then asset i has higher expected returns than what is expected in equilibrium –i.e., what 
the CAPM implies. 
 
• Then, in our linear model let 𝑦 represent IBM excess returns (𝑟ூெ,௧ – 𝑟) at time t and let 𝑥 
represent Market excess returns (say, 𝑟,௧ – 𝑟) at time t. Then, b2 estimates IBM’s beta in the 
CAPM. 
 
Then, b2 (= 𝛽መெ) estimates the stock’s beta in the CAPM; in the IBM case, we have :  
 

  b2 = βூெ ൌ 
௩ሺಳಾ, –  ,  , – ሻ

௩ሺ, – ሻ 
 

 
That is, the CAPM 𝛽 is the ratio of a covariance over a variance.  
 
Recall that the CAPM 𝛽 measures a stock's risk in relation to the risk (volatility) of the market. 
That is, we think of 𝛽 as a measure of the relative risk exposure of holding a particular stock 
(IBM, in this case) in relation to the market. 
 
• Interpretation of coefficients 
- b1 estimates the constant of the regression: IBM excess returns in excess of Market excess 
returns. In the CAPM, it should be 0 (= αi).  
 
- b2 estimates the slope of the regression. In the CAPM: ୀூெ 

  
ఋ௬
ఋ௫

 =  ୀூெ  ⇒ estimated by b2. 

That is, if Market excess returns increases by one 1% (unit), then we estimate that IBM excess 
returns are expected to increase by b2% (b2 units). The IBM also tells us if IBM is riskier (IBM 

>1) or safer (IBM <1) than the market. 
 

• Conditional Prediction 

Suppose analysts estimate that Market excess returns will be 10%, then, we estimate (or predict, 
given the 10% value for Market excess returns): 

  Predicted [൫𝑟ூெ,௧ – 𝑟൯| ( 𝑟,௧ – 𝑟) = 10%] =  b1 + b2 * .10. 

We will call the Predicted 𝑦 = 𝑦ොi = fitted value. 
 
Example: We estimate the CAPM for IBM returns using lm R function. 
 
• Import data with read function 



SFX_da <- read.csv("https://www.bauer.uh.edu/rsusmel/4397/Stocks_FX_1973.csv", 
head=TRUE, sep=",") 
 
• Extract variables from imported data 
x_ibm <- SFX_da$IBM   # extract IBM price data 
x_Mkt_RF <- SFX_da$Mkt_RF  # extract Market excess returns (in %) 
x_RF <- SFX_da$RF    # extract Risk-free rate (in %) 
 
• Define log returns & adjust size of variables accordingly 
T <- length(x_ibm)    # sample size 
lr_ibm <- log(x_ibm[-1]/x_ibm[-T])  # create IBM log returns (in decimal returns) 
Mkt_RF <- x_Mkt_RF[-1]/100  # Adjust sample size to ( T-1) by removing 1st obs  
RF <- x_RF[-1]/100    # Adjust sample size and use decimal returns. 
 
• Define excess returns and estimate CAPM with lm function. Then, print results to screen with 
summary function:  
ibm_x <- lr_ibm – RF    # IBM excess returns 
fit_ibm_capm <- lm(ibm_x ~ Mkt_RF) # lm (=linear model) package  
summary(fit_ibm_capm)   # print lm results 
 
> summary(fit_ibm_capm) 
Call: 
lm(formula = ibm_x ~ Mkt_RF) 
 
Residuals: 
      Min        1Q    Median        3Q       Max  
-0.314401 -0.031692 -0.000537  0.031447  0.248201  
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept)  -0.005791 0.002487 -2.329   0.0202 *    b1 = -0.005791   
xMkt_RF    0.895774 0.053867 16.629   <2e-16 ***  b2 = 0.895774    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
Residual standard error: 0.05887 on 567 degrees of freedom 
Multiple R-squared:  0.3278,    Adjusted R-squared:  0.3266  
F-statistic: 276.5 on 1 and 567 DF,  p-value: < 2.2e-16 
 
Interpretation of b1 and b2: 
b1 = constant. The additional IBM return, after excess market returns are incorporated, is 0.58% 
(under the CAPM, b1 should be close to 0). 
b2 = slope. It is the marginal effect. If market excess returns increase by 1%, IBM excess returns 
increase by .90%. The estimate of the CAPM 𝛽 < 1, implying that IBM is less volatile (“safer”) 
than the market. 
 
Unconditional (average) Expected IBM excess returns 



We observed an average excess market monthly return in the sample: 0.0056489. 
Then, the expected IBM excess monthly return in the sample was: 
  -0.005791 + 0.895774 * 0.0056489 = -0.000731 (0.07%). 
 
Conditional prediction of IBM excess returns:  
Suppose market excess returns are expected to be 1% next month, then we predict next month 
IBM excess returns: 
  -0.005791 + 0.895774 * .1 = 0.00317 (0.32%). 
 

Note: According to the CAPM, IBM excess monthly returns should have been: 

- IBM excess returns (IBM) = 0.895774 * mean(Mkt_RF)  

  = 0.895774 * 0.0056489 = 0.0050601 

But, in the sample, we observed 

- IBM excess returns = mean(ibm_x) = -0.00073141.  

That is, IBM underperformed relative to the CAPM. ¶ 
 
 
LS Estimation – Application 1: The CAPM & The Cost of Equity 
As mentioned in Chapter 2, the ERP is central to many financial theories, for example, as 
illustrated above the CAPM uses the ERP as an input to price assets. The CAPM states that, in 
equilibrium, the expected excess return for asset i is proportional to the expected market excess 
return or expected market risk premium (ERP), given by E[(𝑟,௧ – 𝑟)]. That is: 
  E[(𝑟,௧ – 𝑟)] = β E[(𝑟,௧ – 𝑟)].  
 
In equilibrium, the cost of equity, ke, is equal to the required (expected) rate of return a firm has 
to pay to investors/shareholders. Firms need to calculate the cost of equity to estimate the cost of 
capital, kc, which is used to discount the cash flows of a firm or a firm’s project. According to 
the weighted average cost of capital (WACC) method, kc is given by: 

  𝑘 ൌ


ାா
𝑘ௗሺ1 െ 𝑡ሻ  ா

ାா
𝑘      

where E represents total equity, D  is total Debt, t is the effective tax rate and kd is the cost of 
debt. 
 
Firms routinely use expected returns to calculate the cost of equity. For example, using the 
CAPM we have:  
  ke = 𝑟+ β E[(𝑟,௧ – 𝑟)]. 
 
Thus, in this case, in order to compute ke, a firm needs to determine β, the risk-free rate, 𝑟, and 
the Market Portfolio, usually, a local market index, like the S&P 500 or the Nikkei 225, or a 
global index like the MSCI World Index. 
 
Example: Suppose IBM wants to determine its cost of equity. IBM decides to use the CAPM, with a U.S. 
ERP and U.S 𝑟.  
Data: 



Estimated βIBM = 0.895774 ≈ 0.90 
Risk-free rate, 𝑟 = 4.50% 
ERP = E[(𝑟,௧ – 𝑟)] =  0.0382 
  ke,IBM  = 𝑟+ βiBM E[(𝑟,௧ – 𝑟)] = 0.045 + 0.90 * 0.0382 = 0.07938 
 
The required (or expected) rate of return for IBM investors is 7.938%. This is what IBM will use 
as ke to determine its cost of capital and, therefore, discount the cash flows associated with new 
projects.  
 
Note: If IBM decides to use the MSCI World Index as the benchmark for the Market Porfolio, 
then, 
  ke,IBM  = 𝑟+ βiBM E[(𝑟,௧ – 𝑟)] = 0.045 + 0.90 * 0.0317 = 0.07353 
a smaller number, which would produce a smaller cost of capital and, thus, increase the NPV of 
IBM or an IBM’s project! ¶ 
 
Q: Which one should a firm use: a Domestic-based ERP or a World-based ERP? It depends on the view 
that a company has regarding capital markets. If capital markets are integrated (or if the shareholders are 
world-wide diversified) the appropriate equity risk premium should reflect a world benchmark (say, MSCI 
World Index), (𝑟,௧ – 𝑟)W. But, if markets are segmented (or if the shareholders hold domestic portfolios), 
then the appropriate equity risk premium should be based on a domestic benchmark (say, the MSCI US 
Index for U.S. companies), (𝑟,௧ – 𝑟)D. The risk-free rate should also be adjusted accordingly. Then, 
using the CAPM we have: 
 
 - World CAPM:   ke = ke,W = 𝑟 ,W  + W E[(𝑟,௧ – 𝑟)W] 
 - Domestic CAPM:   ke = ke,D = 𝑟 ,D  + D E[(𝑟,௧ – 𝑟)D] 
 
The difference between these two models can be considerable. In our previous example we have 
a 0.585% difference. According to Bruner et al. (2008), on average, there is a 5.55% absolute 
difference for emerging markets and a 3.58% absolute difference for developed markets. 
 
 
LS Estimation – Application 2: Hedging 
In the linear model, we can estimate the optimal hedge ratio using a regression. To see this, we 
derive the optimal hedge ratio for a position in foreign currency (FC). 
 
Notation: 
St: Exchange rate at time t. We use direct quotations, that is, DC units per unit of FC, say St = 
1.30 USD/GBP. 
Ft,T: Forward/Futures price at time t with a T maturity.  
ns: Number of units of foreign currency held. 
nf: Number of futures foreign exchange units held (opposite position).  
πh,t: (Uncertain) profit of the hedger at time t. 
ΔX: Change in X (= Xt – Xt-1) 
 h = hedge ratio =(nf/ns)= Number of futures per spot in position. 
 



We want to calculate h* (optimal h): We minimize the variability of πh,t. 
 πh,T = ΔSt ns + ΔFt,T nf  (Or, πh,T/ns = ΔSt + h ΔFt,T.) 
 
We want to select h to minimize:  
 Var(πh,T/ns) = Var(ΔST) + h2 Var(ΔFt,T) + 2 h Covar(ΔST,ΔFt,T)  
   = σS

2 + h2 σF
2 + 2 h σSF  

f.o.c.   
   2 h* σF

2 + 2 * σSF = 0 
    h* = -σSF/σF

2  
 
Note: A covariance over a variance. It can be estimated by LS: 
 ΔSt = 1+ 2 ΔFt,T + t    b2 estimates h*. 
 
Example: In March, we are long a GBP 1M position. We are uncertain about St in the next 90 
days. We hedge this position using June GBP futures (size of contract = GBP 62,500). We want 
to determine h*. 
 
Get Data (St and Ft,90-days , for say 10 years). Do a regression. 
  ΔSt = 1 + 2 ΔFt,T + t  
 
Suppose we estimate this regression: 
 ΔSt = .001 + .82 ΔFt,T,   
   h* = -.82.  
Now, we determine the number of June GBP futures contracts: 
  nf/size of the contract = h * ns / size of the contract =  
    = -.82 * 1,000,000 / 62,500 = -13.12  13 contracts sold! ¶ 
 
 
LS Estimation – Multivariate OLS 
The CAPM is a particular case of what in financial theory is called “factor models.” Factors 
represent the systematic component that drives the cross-section of returns over time; they can be 
observed or unobserved. For example, a k-factor model for returns is given by: 
  𝑟,௧ = α + βଵ 𝑓ଵ,௧+ βଶ 𝑓ଶ,௧ + … + β 𝑓,௧ + 𝜀,௧ 
where 𝑓,௧ is the j (common) factor at time t, and constant over i, and 𝜀,௧ represents the 
idiosyncratic component of asset i.  
 
Thus, we think of returns as driven by common or systematic factors (undiversifiable) and 
idiosyncratic factors (diversifiable in large portfolios.) Thus, in equilibrium, investors get 
compensated only for the systematic risk they take. 
 
The CAPM has only one factor: market excess returns (“the market”). The higher the exposure to 
this factor –i.e., βi-, the higher the expected compensation. 
 
LS is a general estimation method. It allows any functional form for the relation between 𝑦 and 
𝑥. and it allows 𝑦 to be related to many explanatory variables, like the above mentioned multi-
factor models for excess returns.  



 
In this lecture, we cover the case where f(𝑥, θ) is linear. We assume a linear system with 𝑘 
independent variables and 𝑇 observations. That is, 
  𝑦 = βଵ 𝑥ଵ, + βଶ 𝑥ଶ, + ... + β 𝑥, + 𝜀,  𝑖 = 1, 2, ...., 𝑇 
 
The whole system (for all 𝑖) is: 

  

𝑦ଵ = 𝛽1 𝑥ଵଵ + 𝛽2 𝑥ଶଵ + ... + β 𝑥ଵ + 𝜀ଵ
𝑦ଶ = 𝛽1 𝑥ଵଶ + 𝛽2 𝑥ଶଶ + ... + β 𝑥ଶ + 𝜀ଶ

... .           .. ..             . ...           ... 
𝑦்  = 𝛽1 𝑥ଵ் + 𝛽2 𝑥ଶ் + ... + β  𝑥் + 𝜀்

 

  
It is cumbersome and complicated to write the whole system. Using linear algebra, we can 
rewrite the system in a more compact and simplify derivations.  
 
For example, after some definitions, we can write the whole system as: 
  𝒚 = X  +   
 
 
Linear Algebra: Brief Review – Matrix 
Life (& notation) becomes easier with linear Algebra. Concepts: 
 
• Matrix.  
A matrix is a set of elements, organized into rows and columns 
    
 

  ቂ𝑎 𝑏
𝑐 𝑑

ቃ 
 
• a & d are the diagonal elements.  
• b & c are the off-diagonal elements. 
 
Matrices are like plain numbers in many ways:  they can be added, subtracted, and, in some 
cases, multiplied and inverted (divided).    
 
 
Linear Algebra: Matrices and Vectors 
Examples: 
 
 
 
Dimensions of a matrix: numbers of rows by numbers of columns. The Matrix A is a 2x2 matrix, 
b is a 1x3 matrix. 
 
A matrix with only 1 column or only 1 row is called a vector. 
 

  𝐴 ൌ ቂ
𝑎ଵଵ 𝑎ଶଵ
𝑎ଵଶ 𝑎ଶଶ

ቃ ;   𝑏 ൌ ሾ𝑏ଵ 𝑏ଶ 𝑏ଷሿ.  

Columns 

Rows 



If a matrix has an equal numbers of rows and columns, it is called a square matrix. Matrix A, 
above, is a square matrix. 
 
Usual Notation:  Upper case letters   matrices 
   Lower case    vectors 
 
 
Linear Algebra: Matrices – Information 
Information is described by data. A tool to organize the data is a list, which we call a vector. 
Lists of lists are called matrices. That is, we organize the data using matrices.  
 
We think of the elements of X as data points (“data entries”, “observations”), in economics, we 
usually have numerical data. 
 
We store the data in rows. In a Txk matrix, X, over time we build a database: 
 

 X ൌ 
𝑥ଵଵ 𝑥ଶଵ ⋯ 𝑥ଵ
⋮ ⋮ ⋱ ⋮
𝑥ଵ் 𝑥ଶ் ⋯ 𝑥்

൩ 

 
Once the data is organized in matrices it can be easily manipulated: multiplied, added, etc. (This 
is what Excel does). 
 
 
Linear Algebra: Matrices in Econometrics 
In econometrics, we have a model y = f(x1, x2, ..., xk), which we want to estimate. We collect 
data, say T (or N) observations, on a dependent variable, y, and on k explanatory variables, X. 
 
Under the usual notation, vectors will be column vectors: y and xk are Tx1 vectors:   

 𝐲 ൌ 
𝑦ଵ
⋮
𝑦்
൩    & xj ൌ 

𝑥ଵ
⋮
𝑥்

൩   j = 1,..., k 

   

X is a Txk matrix:  X ൌ 
𝑥ଵଵ 𝑥ଶଵ ⋯ 𝑥ଵ
⋮ ⋮ ⋱ ⋮
𝑥ଵ் 𝑥ଶ் ⋯ 𝑥்

൩ 

 
Its columns are the k Tx1 vectors xj. It is common to treat x1 as vector of ones, ί. 
 
In general, we import matrices (information) to our programs. 
 
Example: In R, we use the read function, usually followed by the type of data we are importing. 
Below, we import a comma separated values (csv) file with monthly CPIs and exchange rates for 
20 different countries, then we use the read.csv function: 
PPP_da <- 
read.csv("https://www.bauer.uh.edu/rsusmel/4397/ppp_2020_m.csv",head=TRUE,sep=",") 



 
The names() function describes the headers of the file imported (41 headers): 
> names(PPP_da) 
 [1] "Date"      "BG_CPI"    "IT_CPI"    "GER_CPI"   "UK_CPI"    
 [6] "SWED_CPI"  "DEN_CPI"   "NOR_CPI"   "IND_CPI"   "JAP_CPI"  
[11] "KOR_CPI"   "THAI_CPI"  "SING_CPI"  "MAL_CPI"   "KUW_CPI"   
[16] "SUAD_CPI"  "CAN_CPI"   "MEX_CPI"   "US_CPI"    "EGY_CPI“ [...] 
 
The summary() function provides some stats of variables imported: 
> summary(PPP_da) 
        Date         BG_CPI           IT_CPI          GER_CPI       
 1/15/1971:  1   Min.   : 19.77   Min.   :  5.90   Min.   : 31.20   
 1/15/1972:  1   1st Qu.: 49.32   1st Qu.: 32.25   1st Qu.: 57.17   
 1/15/1973:  1   Median : 69.91   Median : 67.30   Median : 75.30   
 1/15/1974:  1   Mean   : 67.92   Mean   : 60.14   Mean   : 72.29   
 1/15/1975:  1   3rd Qu.: 89.40   3rd Qu.: 89.65   3rd Qu.: 91.17   
 1/15/1976:  1   Max.   :109.71   Max.   :103.50   Max.   :106.60   
 (Other)  :588  
 
We extract a variable from the matrix by the name of file followed by $ and the header of 
variable: 
> x_chf <- PPP_da$CHF_USD   # extract CHF/USD exchange rate data 
 
We can transform the vector x_chf. For example, for % changes: 
T <- length(x_chf)    # length of CHF/USD exchange rate data 
lr_chf <- log(x_chf[-1]/x_chf[-T])  # create log returns (changes) for the CHF/USD. ¶ 
 
 
Linear Algebra: Special Matrices 
• Identity Matrix, I: A square matrix with 1’s along the diagonal and 0’s everywhere else. Similar 
to scalar “1.” A*I = A 


1 0 0
0 1 0
0 0 1

൩ 

 
• Null matrix, 0: A matrix in which all elements are 0’s. Similar to scalar “0.” A*0 = 0 


0 0 0
0 0 0
0 0 0

൩ 

 
Both are diagonal matrices   off-diagonal elements are zero. 
 
Both are examples of symmetric matrices. That is, element 𝑎 is equal to element 𝑎. (Later, 
we’ll see A = AT). For example: 

    A =
2 5 9
5 െ1 0
9 0 1

൩    is a symmetric 



 
 
Linear Algebra: Multiplication 
We want to multiply two matrices: A*B. But, multiplication of matrices requires a 
conformability condition. 
 
Conformability condition: The column dimensions of the lead matrix A must be equal to the row 
dimension of the lag matrix B.  
 
If A is an (mxn) and B an (nxp) matrix (A has the same number of columns as B has rows), then 
we define the product of AB. AB = C is (mxp) matrix with its ik-th element is 𝑐 ൌ ∑ 𝑎𝒋

𝒏
𝒋ୀଵ 𝑏𝒋 

 
Q: What are the dimensions of the vector, matrix, and result? 

𝑎𝐵 ൌ ሾ𝑎ଵଵ𝑎ଵଶሿ 
𝑏ଵଵ 𝑏ଵଶ 𝑏ଵଷ
𝑏ଶଵ 𝑏ଶଶ 𝑏ଶଷ

൨ ൌ 𝑐 ൌ ሾ𝑐ଵଵ 𝑐ଵଶ 𝑐ଵଷሿ 

ൌ ሾ𝑎ଵଵ𝑏ଵଵ  𝑎ଵଶ𝑏ଶଵ 𝑎ଵଵ𝑏ଵଶ  𝑎ଵଶ𝑏ଶଶ 𝑎ଵଵ𝑏ଵଷ  𝑎ଵଶ𝑏ଶଷሿ 
Dimensions: a(1x2), B(2x3)  c(1x3) 

 

Example 1: We want to multiply A (2x2) and B (2x2), where A has elements 𝑎𝒋 and B has 
elements 𝑏𝒋. Recall the  ikth element is ∑ 𝑎𝒋

𝒏ୀ𝟐
𝒋ୀଵ 𝑏𝒋  

 A = ቂ2 1
7 9

ቃ 

 B = ቂ1 0
2 3

ቃ 

 

C = ቂ2 1
7 9

ቃ ∗ ቂ1 0
2 3

ቃ ൌ ቂ 𝟒 ൌ 2 ∗ 1  1 ∗ 2 𝟑 ൌ 2 ∗ 0  1 ∗ 3
𝟐𝟔 ൌ 7 ∗ 1  9 ∗ 2 𝟐𝟕 ൌ 7 ∗ 0  9 ∗ 3

ቃ 

𝐶ଶ௫ଶ ൌ 𝐴ଶ ௫ଶ ∗   𝐵ଶ௫ଶ 
 
Dimensions: A(2x2), B(2x2)  C(2x2), a square matrix. ¶ 
 

Example 2: We want to multiply X (2x2) and b (2x1), where X has elements 𝑥𝒋 and  has elements 
𝛽𝒋: 

 X = ቂ
𝑥ଵଵ 𝑥ଶଵ
𝑥ଵଶ 𝑥ଶଶ

ቃ &   = 
𝛽ଵ
𝛽ଶ
൨ 

We compute 

    𝒚 = X   

Recall the i-th element is  

   𝑦 = ∑ 𝑥𝒋
𝒏ୀ𝟐
𝒋ୀଵ 𝛽𝒋  

Then, 

  𝒚 = ቂ
𝑦ଵ
𝑦ଶ
ቃ = ቂ

𝑥ଵଵ 𝑥ଶଵ
𝑥ଵଶ 𝑥ଶଶ

ቃ ∗ 
𝛽ଵ
𝛽ଶ
൨ ൌ 

𝑥ଵଵ 𝛽ଵ  𝑥ଶଵ𝛽ଶ
𝑥ଵଶ 𝛽ଵ  𝑥ଶଶ 𝛽ଶ

൨ 

 



Dimensions: X (2x2),  (2x1)  𝒚 (2x1), a row vector. ¶ 
 
 
Linear Algebra: Transpose 
The transpose of a matrix A is another matrix AT (also written A′) created by any one of the 
following equivalent actions: 
  –write the rows (columns) of A as the columns (rows) of AT  
  –reflect A by its main diagonal to obtain AT  
 

Example: 𝐴 ൌ ቂ3 8 െ9
1 0    4

ቃ   𝐴ᇱ ൌ ቈ
   3 1
   8 0
െ9 4

.  ¶ 

 
Some transpose results:  
• If A is a m × n matrix  AT is a n × m matrix.  
• (A')' = A 
• Conformability changes unless the matrix is square. 
• (AB)' = B'A' 
 
Example: In econometrics, an important matrix is X’X. Recall X (usually, the matrix of k 
independent variables): 

 X ൌ ൦

𝑥ଵଵ 𝑥ଶଵ ⋯ 𝑥ଵ
𝑥ଵଶ 𝑥ଶଶ ⋯ 𝑥ଶ
⋮ ⋮ ⋱ ⋮
𝑥ଵ் 𝑥ଶ் ⋯ 𝑥்

൪  a (Txk) matrix 

Then, 

 X ′ൌ ൦

𝑥ଵଵ 𝑥ଵଶ ⋯ 𝑥ଵ்
𝑥ଶଵ 𝑥ଶଶ ⋯ 𝑥ଶ்
⋮ ⋮ ⋱ ⋮
𝑥ଵ 𝑥ଶ ⋯ 𝑥்

൪  a (kxT) matrix 

 
 
Linear Algebra: Math Operations 
Addition, Subtraction, Multiplication 
 
- Addition: Just add elements 

  ቂ𝑎 𝑏
𝑐 𝑑

ቃ  
𝑒 𝑓
𝑔 ℎ൨ ൌ 

𝑎  𝑒 𝑏  𝑓
𝑐  𝑔 𝑑  ℎ൨ 

 
- Subtraction: Just subtract element 

  ቂ𝑎 𝑏
𝑐 𝑑

ቃ െ 
𝑒 𝑓
𝑔 ℎ൨ ൌ 

𝑎 െ 𝑒 𝑏 െ 𝑓
𝑐 െ 𝑔 𝑑 െ ℎ൨ 

 
- Multiplication: Multiply each row by each column and add 

  ቂ𝑎 𝑏
𝑐 𝑑

ቃ 
𝑒 𝑓
𝑔 ℎ൨ ൌ 

𝑎𝑒  𝑏𝑔 𝑎𝑓  𝑏ℎ
𝑐𝑒  𝑑𝑔 𝑐𝑓  𝑑ℎ൨ 



 
- Scalar Multiplication: Multiply each element by the scalar, k 

𝑘 ቂ𝑎 𝑏
𝑐 𝑑

ቃ ൌ ቂ𝑘𝑎 𝑘𝑏
𝑘𝑐 𝑘𝑑

ቃ 

 
Examples: 

Addition:  ቂ2 1
7 9

ቃ  ቂ3 1
0 2

ቃ ൌ ቂ5 2
7 11

ቃ 

𝐴ଶ௫ଶ   𝐵ଶ௫ଶ ൌ  𝐶ଶ௫ଶ 
 

Subtraction:  ቂ2 1
7 9

ቃ െ ቂ1 0
2 3

ቃ ൌ ቂ1 1
5 6

ቃ 

 

Multiplication:  ቂ2 1
7 9

ቃ x ቂ1 0
2 3

ቃ ൌ ቂ 4 3
26 27

ቃ 

𝐴ଶ ௫ଶ   x   𝐵ଶ௫ଶ  ൌ 𝐶ଶ௫ଶ 
 

Scalar Multiplication:  
ଵ

଼
ቂ2 4
6 1

ቃ ൌ 
1 4⁄ 1 2⁄
3 4⁄ 1 8⁄

൨.  ¶ 

 
 
Linear Algebra: Math Operations – X’X 
A special matrix in econometrics, X′X (a kxk matrix). First, we look at this matrix for the simple  
case, with k = 2:  

 X (Tx2) = ൦

𝑥ଵଵ 𝑥ଶଵ
𝑥ଵଶ 𝑥ଶଶ
⋮ ⋮
𝑥ଵ் 𝑥ଶ்

൪  &  X’ ൌ ቂ
𝑥ଵଵ 𝑥ଵଶ ⋯ 𝑥ଵ்
𝑥ଶଵ 𝑥ଶଶ ⋯ 𝑥ଶ்

ቃ 

 

 X’′X (2x2) ൌ ቈ
∑ 𝑥ଵ

ଶ்
ୀଵ ∑ 𝑥ଶ𝑥ଵ

்
ୀଵ

∑ 𝑥ଵ𝑥ଶ
்
ୀଵ ∑ 𝑥ଶ

ଶ்
ୀଵ

 = ∑ ቈ
𝑥ଵ
ଶ 𝑥ଶ𝑥ଵ

𝑥ଶ𝑥ଵ 𝑥ଶ
ଶ 𝑻

𝒊ୀ𝟏  

 

 = ∑ ቂ
𝑥ଵ
𝑥ଶ

ቃ𝑻
𝒊ୀ𝟏 ሾ𝑥ଵ 𝑥ଶሿ  

 

 = ∑ 𝒙𝒙′
𝑻
𝒊ୀ𝟏  

 
For the general case, with k explanatory variables, we have X′X (a kxk matrix):  

X (Txk) = ൦

𝑥ଵଵ 𝑥ଶଵ ⋯ 𝑥ଵ
𝑥ଵଶ 𝑥ଶଶ ⋯ 𝑥ଶ
⋮ ⋮ ⋱ ⋮
𝑥ଵ் 𝑥ଶ் ⋯ 𝑥்

൪ & X’ ൌ ൦

𝑥ଵଵ 𝑥ଵଶ ⋯ 𝑥ଵ்
𝑥ଶଵ 𝑥ଶଶ ⋯ 𝑥ଶ்
⋮ ⋮ ⋱ ⋮
𝑥ଵ 𝑥ଶ ⋯ 𝑥்

൪ 

 

X’′X (kxk) ൌ

⎣
⎢
⎢
⎡
∑ 𝑥ଵ

ଶ்
ୀଵ ∑ 𝑥ଵ𝑥ଶ

்
ୀଵ ⋯ ∑ 𝑥ଵ𝑥

்
ୀଵ

∑ 𝑥ଶ𝑥ଵ
்
ୀଵ ∑ 𝑥ଶ

ଶ்
ୀଵ ⋯ ∑ 𝑥ଶ𝑥

்
ୀଵ

⋮ ⋮ ⋱ ⋮
∑ 𝑥𝑥ଵ
்
ୀଵ ∑ 𝑥𝑥ଶ

்
ୀଵ ⋯ ∑ 𝑥

ଶ்
ୀଵ ⎦

⎥
⎥
⎤
 = 

 



   = ∑ 
𝑥ଵ
ଶ ⋯ 𝑥ଵ𝑥
⋮ ⋱ ⋮

𝑥𝑥ଵ ⋯ 𝑥
ଶ

்
ୀଵ  = ∑ 

𝑥ଵ
⋮
𝑥

൩்
ୀଵ ሾ𝑥ଵ ⋯ 𝑥ሿ  

 
   = ∑ 𝒙𝒙′

்
ୀଵ  

 
 
Linear Algebra: Math Operations – ί’X 
Recall ί is a column vector of ones (in this case, a Tx1 vector): 

   ί =

1
1
⁞
1

 

 
Given X (Txk), then  ί′ X  is a 1xk vector: 

  ί′X ൌ ሾ1 … 1ሿ 
𝑥ଵଵ ⋯ 𝑥ଵ
⋮ ⋱ ⋮
𝑥ଵ் ⋯ 𝑥்

൩ = ሾ∑ 𝒙𝟏𝒕
𝑻
𝒕ୀ𝟏 … ∑ 𝒙𝒌𝒕

𝑻
𝒕ୀ𝟏 ሿ 

 
Note: If x1 is a vector of ones (representing a constant in the linear classical model), then: 
  ί′ x1 = ∑ 𝑥ଵ௧

𝑻
𝒕ୀ𝟏  = ∑ 1𝑻

𝒕ୀ𝟏  = T  (dot product, “•” ) 
 
 
Linear Algebra: Inverse of a Matrix 

Identity matrix: AI = A,  where 𝐼 ൌ ൦

1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋯ ⋮
0 0 ⋯ 1

൪ 

Notation: Ij is a jxj identity matrix. 
 
• Given A (mxn), the matrix B (nxm) is a right-inverse for A iff AB =Im 
• Given A (mxn), the matrix C (nxm) is a left-inverse for A iff CA = In 
 
• Theorem: If A (mxn), has both a right-inverse B and a left-inverse C, then C = B = A-1  
 
Note:  
 - If A has both a right and a left inverse, it is a square matrix (m=n). It is usually called  
  invertible. We say “the matrix A is non-singular.” 
 - This matrix, A-1, is unique.  
 - If det(A) ≠ 0   A is non-singular.  
 
 
Linear Algebra: Symmetric Matrices 
Definition: 
 If A' = A, then A is called a symmetric matrix. 
 



In many applications, matrices are often symmetric. For example, in statistics the correlation 
matrix and the variance covariance matrix.  
 
Symmetric matrices play the same role as real numbers do among the complex numbers.  
 
We can do calculations with symmetric matrices like with numbers: for example, we can solve 
B2 = A for B if A is symmetric matrix (& B is square root of A.) This is not possible in general. 
X’X is symmetric. It plays a very important role in econometrics. 
 
 
Linear Algebra: Operations in R  
Many ways to create a vector (c, 2:7, seq, rep, etc) or a matrix (c, cbind, rbind). We use c(), the 
combine function:  
v1 <- c(1, 3, 8)  # a (3x1) vector (vectors are usually treated as a column list) 
> v1 
[1] 1 3 8  
 
A <- matrix(c(1, 2, 3, 7, 8, 9), ncol = 3) # a (2x3) matrix 
> A 
     [,1] [,2] [,3] 
[1,]    1    3    8 
[2,]    2    7    9 
 
B <- matrix(c(1, 3, 1, 1, 2, 0), nrow = 3) 
> B 
 [,1] [,2] 
[1,]    1    1 
[2,]    3    2 
[3,]    1    0 
 
• Now, we use rbind to create A and cbind to create B 
v1 <- c(1, 3, 8)   # a (3x1) vector 
v2 <- c(2, 7, 9) 
A <- rbind(v1, v2) 
> A     # a (2x3) matrix 
   [,1] [,2] [,3] 
v1    1    3    8 
v2    2    7    9 
 
v3 <- c(1, 3, 1) 
v4 <- c(1, 2, 0) 
B <- cbind(v3,v4) 
> B     # a (3x2) matrix 
     v3 v4 
[1,]  1  1 
[2,]  3  2 



[3,]  1  0 
 
• Matrix addition/subtraction: +/-   –element by element. 
• Matrix multiplication: %*% 
C <- A%*%B    #A is 2x3; B is 3x2  C is 2x2 
> C 
 [,1] [,2] 
[1,]   18    7 
[2,]   32   16 
 
• Scalar multiplication: *   
> 2*C     # elementwise multiplication of C by scalar 2 
     [,1] [,2] 
[1,]   36   14 
[2,]   64   32 
 
Note: Usually, matrices will be data –i.e., read as input. 
 
• Dot product “•” is a function that takes pairs of vectors, with same length, and produces a number. 
For vectors c & z, it is defined as: 
 𝒄 • 𝒛 ൌ 𝑐ଵ ∗ 𝑧ଵ + 𝑐ଶ ∗ 𝑧ଶ + ... + 𝑐 ∗ 𝑧 ൌ ∑ 𝑐𝑧


ୀଵ  

 
• Dot product with 2 vectors: v1 • v2: sum of the elementwise multiplied elements of both vectors 
> t(v1) %*% v2   # v1 <- c(1, 3, 8) & v2 <- c(2, 7, 9) 
 [,1] 
[1,]   95 
 
• Dot product with a vector itself: v1 • v1: Sum of the square elements of vector 
> t(v1) %*% v1 
     [,1] 
[1,]   74 
 
• Dot product with ί (a vector of ones): sum of elements of vector 
i <- c(1,1,1)    # vector of ones (iota)   
> t(i) %*% v1     # v1 <- c(1, 3, 8) 
 [,1] 
[1,]    12 
 
• Product of 2 vectors: v1 & t(v2): A (3x3) matrix.  
> v1%*%t(v2)     # v1 <- c(1, 3, 8)  --a (3x1) vector x (1x3) vector 
     [,1] [,2] [,3] 
[1,]    2    7    9 
[2,]    6   21   27 
[3,]   16   56   72 
 



Property of dot product: If the dot product of two vectors is equal to zero, then the vectors are 
orthogonal (perpendicular or “┴”) vectors. We interpret this result as “the vectors are 
uncorrelated.”  
 
• Matrix transpose: t 
> t(B)      #B is 3x2   t(B) is 2x3 
     [,1] [,2] [,3] 
[1,]    1    3    1 
[2,]    1    2    0 
 
• X'X   (a symmetric matrix) 
> t(B)%*%B    # command crossprod(B) is more efficient 
     [,1] [,2] 
[1,]   11    7 
[2,]    7    5 
 
• Determinant: det    (a symmetric matrix) 
> det(t(B)%*%B)   # Matrix has to be square. If det(A)=0  A non-invertible 
[1] 6 
 
• (X'X)-1: Inverse: solve  
> solve(t(B)%*%B)    # Matrix inside solve() has to be square 
  [,1]      [,2] 
[1,]  0.8333333 -1.166667 
[2,] -1.1666667  1.833333 
 
• Take the diagonal elements of a matrix A: diag() 
 > diag(solve(t(B)%*%B)) 
[1] 0.8333333 1.833333 
 
• Square root of (positive) elements of a matrix A: sqrt() 
> sqrt(diag(solve(t(B)%*%B))) 
 v3        v4  
0.9128709 1.3540064 
 
 
Linear Algebra: Examples  
Example 1 – Linear DGP 
There is a functional form relating a dependent variable, y, and k explanatory variables, X. The 
functional form is linear, but it depends on k unknown parameters, . The relation between y and 
X is not exact. There is an error, . We have T observations of y and X.  
 
• Then, the data is generated according to: 
  𝑦 = 𝛴ୀଵ

 𝑥,β୩ +   i = 1, 2, ...., T. 
Or using matrix notation:  
  𝒚 = X  +      



where 𝒚 &  are (Tx1); X is (Txk); and  is (kx1).  
 
• We will call this relation data generating process (DGP). 

 
• The goal of econometrics is to estimate the unknown vector . ¶ 
 
Example 2 – Linear System 
Assume an economic model as system of linear equations with:  
aij  parameters,   where i = 1,.., m rows, j = 1,.., 𝑛 columns 
𝑥  endogenous variables (n),  
𝑑 exogenous variables and constants (m). 
 

 ൞

𝑎ଵଵ𝑥ଵ + 𝑎ଵଶ 𝑥ଶ + ... + 𝑎ଵ 𝑥 = 𝑑ଵ
𝑎ଶଵ 𝑥ଵ + 𝑎ଶଶ 𝑥ଶ + ... + 𝑎ଶ 𝑥 = 𝑑ଶ 
... .           .. ..             . ...           ... 

𝑎ଵ 𝑥ଵ + 𝑎ଶ  𝑥ଶ + ... + 𝑎  𝑥 = 𝑑

 

 
• Using linear algebra, we have a system of linear equations: Ax = d  
 

 
𝑎ଵଵ ⋯ 𝑎ଵ
⋮ ⋱ ⋮

𝑎ଵ ⋯ 𝑎

൩ 
𝑥ଵ
…
𝑥
൩=

𝑑ଵ
…
𝑑

൩  

where  
 A = (mxn) matrix of parameters 
 x = column vector of endogenous variables (nx1)  
 d = column vector of exogenous variables and constants (mx1). ¶  
 
We want to solve for the solution of Ax = d,  x*.  

 
Theorem: Given A (mxn) invertible. Then, the equation Ax = d has one and only one solution 
for every d (mx1). That is, there is a unique x*. 
   x* = A-1 d 
 
Example: In practice, we avoid computing A-1, we solve a system. 
A <- matrix(c(1, 1, 5, 7, 9, 11, 10, 10, 14), ncol = 3) # check det(A) for singularity (det(A)=-72) 
d <- c(2, 5, 2) 
> solve(A,d) 
[1] -0.7222222  1.5000000 -0.7777778 ¶ 
 
  
Linear Algebra: Linear Dependence and Rank 
A set of vectors is linearly dependent if any one of them can be expressed as a linear 
combination of the remaining vectors; otherwise, it is linearly independent. 
 
Formal definition: Linear independence (LI) 
The set {𝒖ଵ, 𝒖ଶ, ..., 𝒖} is called a linearly independent set of vectors iff  



 𝑐ଵ 𝒖ଵ+ 𝑐ଶ 𝒖ଶ + .... + 𝑐  𝒖 = 0    𝑐ଵ = 𝑐ଶ = ... = 𝑐= 0. 
 
Example: We want to check if {𝑣ଵ,   𝑣ଶ, 𝑣ଷ} are linearly independent: 

 𝑣ଵ ൌ ቂ2
7
ቃ ; 𝑣ଶ ൌ ቂ1

8
ቃ ; 𝑣ଷ ൌ ቂ4

5
ቃ 

Then, 

 3𝑣ଵ െ 2𝑣ଶ ൌ ቂ 6
21
ቃ െ ቂ 2

16
ቃ ൌ ቂ4

5
ቃ ൌ 𝑣ଷ 

⇒  3𝑣ଵ െ 2𝑣ଶ െ 𝑣ଷ𝟎 ሺ𝑐ଵ ൌ 3, 𝑐ଶ ൌ െ2, 𝑐ଷ ൌ െ1ሻ 
⇒ The set {𝑣ଵ,   𝑣ଶ, 𝑣ଷ} is linearly dependent. ¶ 
 
Notes: 
 - Dependence prevents solving a system of equations (A is not invertible). More unknowns than 
independent equations. 
 - The number of linearly independent rows or columns in a matrix is the rank of a matrix 
(rank(A)). 

- If A, a (𝑘 x 𝑘) square matrix, has rank(A)= 𝑘, then A is invertible. 
 
 
Examples: 

(1) 𝑣ଵ ൌ ቂ 5
12
ቃ ; 𝑣ଶ ൌ ቂ10

24
ቃ  

 

 𝑨 ൌ ቂ 5 10
12 24

ቃ ൌ ሾ𝑣ଵ 𝑣ଵሿ 

 
 2𝑣ଵ ൌ 𝑣ଶ   ⇒ 𝑟𝑎𝑛𝑘ሺ𝑨ሻ ൌ 1 
 

(2) 𝑩 ൌ ቂ2 1 6
2 4 0

ቃ 

 
 4𝑣ଵ െ 2𝑣ଶ ൌ 𝑣ଷ ⇒ 𝑟𝑎𝑛𝑘ሺ𝑩ሻ ൌ 2. ¶ 
 
 
Least Squares Estimation with Linear Algebra – Rules for Vector Derivatives 
Below we present the tules for vector differentiation of linear functions and quadratic forms (for 
derivation of the rules, see Appendix at end of Lecture 4): 
 
(1) Linear function:   𝒚 = 𝑓ሺ𝒙ሻ = 𝒙′  +  
where 𝒙 and  are 𝑘-dimensional vectors and  is a constant. Then, 
   ∇𝑓ሺ𝒙ሻ =  
 
(2) Quadratic form:   q = 𝑓ሺ𝒙ሻ = 𝒙′ A 𝒙 
where 𝒙 is 𝑘x1 vector and A is a 𝑘x𝑘 matrix, with 𝑎 elements. Then, 
    ∇𝑓ሺ𝒙ሻ = A′ 𝒙 + A 𝒙 = (A′ + A) 𝒙  
If A is symmetric, then ∇𝑓ሺ𝒙ሻ = 2 A 𝒙. 
 



 
In the next section, we apply these rules to    
 S(𝒙; ) = ∑ 𝜀

ଶ்
ୀଵ  = ′ = (𝒚 – X)′ (𝒚 – X) 

  = (𝒚′ – ′X′) (𝒚 – X) 
  = (𝒚′𝒚 – ′X′𝒚 – 𝒚′X + ′X′X)  
  = (𝒚′𝒚 – 2 ′X′𝒚 + ′X′X) 
where we take derivatives with respect to the 𝑘x1 vector . Note that since you take 𝑘 
derivatives, the first derivative vector will be a 𝑘x1 vector, like . 
 
 
Least Squares Estimation with Linear Algebra 
Let’s assume a linear system with k independent variables and T observations. That is, 
  𝑦 = 𝛽1 𝑥ଵ  + 𝛽2 𝑥ଶ + ... + 𝛽k 𝑥 + 𝜀,   𝑖 = 1, 2, ...., 𝑇 
 
 
The whole system (for all i) is:  

  
 𝑦ଵ  ൌ 𝛽1 𝑥ଵଵ   𝛽2  𝑥ଶଵ   ...  𝛽k  𝑥ଵ   𝜀1

𝑦ଶ  ൌ 𝛽1 𝑥ଵଶ   𝛽2 𝑥ଶଶ   ...  𝛽k 𝑥ଶ   𝜀2

... .           .. ..             . ...           ... 
   𝑦்  ൌ 𝛽1 𝑥ଵ்   𝛽2 𝑥ଶ்   ...  𝛽k 𝑥்  𝜀T

 

 
Using linear algebra we can rewrite the system as:  
 𝒚 = X  +   
 
Vectors will be column vectors: 𝒚, xj, and  are Tx1 vectors:   
  

 𝒚 ൌ 
𝑦ଵ
⋮
𝑦்
൩    ⇒  y′ = [𝑦ଵ 𝑦ଶ .... 𝑦்]  

 xj ൌ 
𝑥ଵ
⋮
𝑥்

൩    ⇒  xj ′= [𝑥ଵ 𝑥ଶ .... 𝑥்]  

  ൌ 
ଵ
⋮
்
൩    ⇒   ′ = [ଵ ଶ.... ்] 

  
X is a Txk matrix.   ⇒   X = [x1 x2 .... xk] 
 

⇒  X ൌ 
𝒙𝟏𝟏 𝒙𝟐𝟏 ⋯ 𝒙𝒌𝟏
⋮ ⋮ ⋱ ⋮
𝒙𝟏𝑻 𝒙𝟐𝑻 ⋯ 𝒙𝒌𝑻

൩  

 

     = 
ଵ
⋮

 

 



• With the linear assumption: f(X, θ) = X , we can write the objective function as:  
 S(𝒙; θ) = ∑ 𝜀

ଶ்
ୀଵ  = ′ = (𝒚 – X)′ (𝒚 – X) = (𝒚′ – ′X′) (𝒚 – X) 

  
We want to minimize S(xi, θ). After some simple algebra we have: 
 S(𝒙; )  = (𝒚′𝒚 – ′X′𝒚 – 𝒚′X + ′X′X)   
  = (𝒚′𝒚 – 2 ′X′𝒚 + ′X′X)   
  = (c – 2 ′d + ′A)     (d = X′𝒚 & A = X′X is symmetric) 
 
First derivative w.r.t. ′:      ∇Sሺ𝒙;  𝜃ሻ   = (–2 d + 2 A )       (𝑘x1 vector) 
  = -2 (X′𝒚 – X′X )  
 
F.o.c. (normal equations):  (X′𝒚 – X′X b) = 0 
 
Simple algebra   (X′X) b = X′𝒚 
  
Assuming (X′X) 

 is non-singular –i.e., invertible-, we solve for b:   b = (X′X)-1 X′𝒚 
 
Note: b is called the Ordinary Least Squares (OLS) estimator. (Ordinary = f(X, θ) is linear.) 
 
Remark: Technically, we still need to check the Second Order condition, we need the 2nd 
derivative to be positive for a minimum:  

  
డమS(௫, )

డడᇱ
ൌ 2 X′X,  

which is a positive definite (pd) matrix, the counterpart to positive numbers for matrices.  
  b is a minimum!  
 
  
X is a Txk matrix. Its columns are the 𝑘 Tx1 vectors xj. It is common to treat x1 as vector of ones: 

 𝒙𝟏 ൌ 
𝑥ଵଵ
⋮
𝑥ଵ்

൩  ൌ 
1
⋮
1
൩  ⇒  𝒙𝟏

ᇱ  = [1 1 .... 1] = ί’ 

 
This vector of ones represent the usual constant in the model. Then, 

𝑿 ൌ  ൦

1 𝑥ଶଵ ⋯ 𝑥ଵ
1 𝑥ଶଶ ⋯ 𝑥ଵ
⋮ ⋮ ⋱ ⋮
1 𝑥ଶ் ⋯ 𝑥்

൪ 

 
Note: Recall the dot product: Post-multiplying a vector (1x T) xk by ί (or ί′ xk) produces a scalar, 
the sum of all the elements of vector 𝒙𝒌: 
  𝒙𝒌′ ί = ί′ 𝒙𝒌 = 𝑥𝒌𝟏 + 𝑥ଶ  + .... + 𝑥் =  ∑ 𝑥 

்
 . 

 
 
Least Squares Estimation with Linear Algebra: The Fama-French Model 
The CAPM is routinely rejected. A popular alternative model is the empirically derived 3-factor 
Fama-French (1993) model, which adds two risk factors to the market factor: a size factor, 



measured as the returns of a portfolio of small firms minus the returns of a portfolio of big firms 
(SMB), and a book-to-market (BM) factor (or value factor), measured as the returns of a 
portfolio of high BM firms minus the returns of a portfolio of low BM firms (HML). SMB 
accounts for companies with small market caps that generate higher returns, while HML 
accounts for value stocks with high book-to-market ratios that generate higher returns in 
comparison to the market.  
 
Then, a linear DGP generating this model is: 
  𝑟,௧ – 𝑟 = αi + β1 (𝑟,௧ – 𝑟) + β2 𝑺𝑴𝑩௧ + β3 𝑯𝑴𝑳௧ + ε,௧.   
 
The interpretation of the coeffcientes is the usual interpretation, they measure the sensitivity of 
excess returns to the risk factors. For example, β2 measures the exposure of asset i to the size 
factor (in general, β2 > 0 means that returns of asset i behaves like small stocks).  
 
Like the CAPM, the 3-factor FF model produces expected excess returns: 
  E[𝑟,௧ – 𝑟] = β1 E[𝑟,௧ – 𝑟] + β2 E[𝑺𝑴𝑩௧] + β3 E[𝑯𝑴𝑳௧]. 
 
A significant constant would be evidence against this model: something is missing. 
 
Below, we present in more detail this 3-factor model. 
 
Example: Fama-French 3-factor Model for IBM returns:  
SFX_da <- 
read.csv("https://www.bauer.uh.edu/rsusmel/4397/Stocks_FX_1973.csv",head=TRUE,sep=",")  
x_ibm <- SFX_da$IBM    # Read IBM price data (Mkt_RF Factor) 
x_Mkt_RF <- SFX_da$Mkt_RF   # Read Factor data -Mkt_RF Factor (in %) 
x_SMB <- SFX_da$SMB   # Read Factor data -SMB Factor (in %) 
x_HML <- SFX_da$HML   # Read Factor data -HML Factor (in %) 
x_RF <- SFX_da$RF    # Read Factor data –Risk free rate (in %) 
T <- length(x_ibm)    # Sample size 
 lr_ibm <- log(x_ibm[-1]/x_ibm[-T])   #  Log returns for IBM (lost one observation) 
 Mkt_RF <- x_Mkt_RF[-1]/100   # Adjust size (take one observation out ) 
 SMB <- x_SMB[-1]/100 
 HML <- x_HML[-1]/100 
 RF <- x_RF[-1]/100 
 
y <- ibm_x     # Define y (IBM excess returns) 
x1 <- Mkt_RF     # Regressor 1 (Mkt_RF) 
x2 <- SMB     # Regressor 2 (SMB) 
x3 <- HML     # Regressor 3 (HML) 
T <- length(x1)     # New sample size (Original – 1 observation) 
x0 <- matrix(1,T,1)    # Define vector of ones (the constant in X) 
x <- cbind(x0,x1,x2,x3)    # Matrix X 
k <- ncol(x)     # Number of regressors (=rank(X)=k) 
b <- solve(t(x)%*% x)%*% t(x)%*%y   # b = (X′X)-1X′ y  (OLS regression) 
 
> t(b) 
                      Mkt_RF        SMB        HML 



[1,] -0.005088944 0.9082989 -0.2124596 -0.1715002 
 
R Note: You should get the same numbers using R’s lm (use summary(.) to print results): 
  
fit_ibm_ff3 <- lm(ibm_x ~ Mkt_RF + SMB + HML) 
> summary(fit_ibm_ff3)     # print lm results 
Call: 
lm(formula = ibm_x ~ Mkt_RF + SMB + HML) 
 
Residuals: 
      Min        1Q     Median        3Q       Max  
-0.307488 -0.030388 -0.000861  0.034350  0.252667  
 
Coefficients: 
              Estimate  Std. Error t value Pr(>|t|)     
(Intercept) -0.005089 0.002488 -2.046   0.0412 *   
Mkt_RF    0.908299 0.056722 16.013   <2e-16 *** 
SMB        -0.212460 0.084112 -2.526   0.0118 *   
HML      -0.171500 0.084682 -2.025   0.0433 *   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.05848 on 565 degrees of freedom 
Multiple R-squared:  0.3389,    Adjusted R-squared:  0.3354  
F-statistic: 96.55 on 3 and 565 DF,  p-value: < 2.2e-16.   
 
Conclusion: IBM has a positive exposure to the market, and negative exposure to the size and value 
factors. ¶ 
 
 
OLS – Assumptions 
Typical OLS Assumptions   
(1) DGP:  𝑦 = 𝛽1 𝑥ଵ  + 𝛽2 𝑥ଶ + ... + 𝛽k 𝑥 + 𝜀,   𝑖 = 1, 2, ...., 𝑇 
     functional form known, but  is unknown. 
 
(2) E[i] = 0.   expected value of the errors is 0. 
 
(3) Explanatory variables X1, X2, ..., Xk, are given (& non random)  
    no correlation with  (Cov(𝜀, Xki) = 0.)  for all k. 
 
(4) The k explanatory variables are independent. 
  
(5) Var[ 𝜀] = E[𝜀

ଶ] = σ2 < ∞ (homoscedasticity = same variance for all i) 
 
(6) Cov( 𝜀, 𝜀) = E[𝜀 𝜀] = 0.  (no serial/cross correlation for all i≠j) 
 
• These are the assumptions behind the classical linear regression model (CLM). 
 



 
Least Squares – Assumptions with Linear Algebra Notation 
We can rewrite the assumptions, conditioning on X, which allows X to be a random variable 
(though, once we condition, X becomes a matrix of numbers). Using linear algebra:   
 
(A1) DGP: 𝒚 = f(X, θ) +  is correctly specified.  
(A2) E[|X] = 0   
(A3) Var[|X] = σ2 IT 
(A4) X has full column rank –rank(X)=k–, where T ≥ k. 
 
• Assumption (A1) is called correct specification. We know how the data is generated. We call  

𝒚 = f(X, θ) +   the Data Generating Process (DGP). 
 
Note: The errors, , are called disturbances. They are not something we add to f(X, θ) because 
we don’t know precisely f(X, θ). No. The errors are part of the DGP. 
 
• Assumption (A2) is called regression.   
 
From Assumption (A2) we get: 
(i)  E[|X] = 0    E[𝒚|X] = E[f(X, θ)|X] + E[|X] = f(X, θ)  
That is, the observed y will equal E[𝒚|X] + random variation.  
 
(ii) Using rules of expectations and the law of iterated expectations (LIE), we get two results: 
 (1) E[|X] = 0    E[] = 0  
    The conditional expectation = unconditional expectation 
 
 (2) Cov(, X) = E[( - 0)(X - μX)] = E[X -  μX]   

= E[X] - μX E[] = E[X] = 0   (by LIE, E[X] = EX[X E[|X]] = 0.)      
   That is, E[X] = 0     X.  
 There is no information about  in X and viceversa. 
 
• Assumption (A3) gives the model a constant variance for all errors and no relation between the 
errors at different measurements/times. That is, we have a diagonal variance-covariance matrix:  
 

  Var[|X] = Σ = ൦

𝜎ଶ 0 ⋯ 0
0 𝜎ଶ ⋯ 0
⋮ ⋮ ⋮ ⋮
0 0 ⋯ 𝜎ଶ

൪ = 2 IT (kxk) matrix 

 
This assumption implies 
 (i) homoscedasticity       E[

ଶ|X] = 2 for all 𝑖. 
 (ii) no serial/cross correlation   E[ 𝜀  𝜀  |X] = 0 for 𝑖 ≠ 𝑗. 
 
It can be shown using the law of total variance that  
 Var[|X] = 2 IT    Var[] = 2IT  



 
Note: Var[|X] = E[( – E[] ) ( – E[])′|X]  
 = E[( – 0) ( – 0)′|X]  
 = E[ ′|X]  
 

 = 

⎣
⎢
⎢
⎡

E[ଵଶ|X] E[ 𝜀ଶ 𝜀ଵ|X] ⋯ E[ 𝜀் 𝜀ଵ|X]
E[ 𝜀ଵ 𝜀ଶ|X] E[ଶଶ|X] ⋯ E[ 𝜀் 𝜀ଶ|X]

⋮ ⋮ ⋮ ⋮
E[ 𝜀ଵ 𝜀் |X] E[ 𝜀ଶ 𝜀் |X] ⋯ E[்ଶ |X] ⎦

⎥
⎥
⎤
  

 

 = ൦

σଶ 0 ⋯ 0
0 σଶ ⋯ 0
⋮ ⋮ ⋮ ⋮
0 0 ⋯ σଶ

൪ = 2 IT  

 
• From Assumption (A4)  the k independent variables in X are linearly independent. Then, the 
kxk matrix X′X will also have full rank –i.e., rank(X′X) = k.  
 
Thus, X′X is invertible. We need this result to solve a system of equations given by the 1st-order 
conditions of Least Squares Estimation (normal equations): 
   X′𝒚 – X′X b = 0 
 
Note: To get asymptotic results we will need more assumptions about X. 
 
• We assume a linear functional form for f(x, θ) = X : 
(A1’) DGP:  y = X  +   
 
 
CLM: OLS – Summary 
Classical linear regression model (CLM) - Assumptions: 
 (A1) DGP: 𝒚 = X  +  is correctly specified.  
 (A2) E[|X] = 0   
 (A3) Var[|X] = σ2 IT 
 (A4) X has full column rank –rank(X) = k, where T ≥ k. 
 
Objective function:  S(𝑥, ) = 𝛴ୀଵ

் 𝑥
ଶ = ′ = (𝒚 – X)′ (𝒚 – X)  

 = (𝒚′𝒚 – 2 ′X′𝒚 + ′X′X) 
First order conditions:  -2 (X′𝒚 – X′X b) = 0 
Solving for b:     b = (X′X)-1 X′ 𝒚 (kx1) vector 
 
 
OLS Estimation: Second Order Condition 
 



𝜕ଶSሺ𝑥 , ሻ
𝜕𝑏𝜕𝑏′

ൌ 2𝑿′𝑿 ൌ 2

⎣
⎢
⎢
⎡ 𝛴ୀଵ

் 𝑥ଵ
ଶ 𝛴ୀଵ

் 𝑥ଵ𝑥ଶ . . . 𝛴ୀଵ
் 𝑥ଵ𝑥

𝛴ୀଵ
் 𝑥ଶ𝑥ଵ 𝛴ୀଵ

் 𝑥ଶ
ଶ . . . 𝛴ୀଵ

் 𝑥ଶ𝑥
. . . . . . . . . . . .

𝛴ୀଵ
் 𝑥𝑥ଵ 𝛴ୀଵ

் 𝑥𝑥ଶ . . . 𝛴ୀଵ
் 𝑥

ଶ ⎦
⎥
⎥
⎤
 

 
If there were a single b, we would require this to be positive,  which it would be: 

 2 𝐱ᇱ𝐱 = 2 𝛴ୀଵ
் 𝑥

ଶ  0. 
 
The matrix counterpart of a positive number is a positive definite (pd) matrix. We need X′X to 
be pd.  
 
A square matrix (mxm) A “takes the sign” of the quadratic form, z′A z, where z is a mx1 vector. 
Then, z′A z is a scalar.  
 
A form is a polynomial expression in which each component term has a uniform degree. A 
quadratic form has a uniform 2nd degree. 
 
Examples: 
 9 𝑥 + 3 𝑦 + 2 𝑧     - 1st degree form. 
 6 𝑥2 + 2 𝑥 𝑦 + 2 𝑦2   - 2nd degree (quadratic) form. 
 d2z = 𝑓௫௫ d𝑥2 + 2 𝑓௫௬d𝑥 d𝑦  + 𝑓௬௬ d𝑦2 - quadratic form. ¶ 
 
A quadratic form can be written in matrix notation as z′A z , where A is (mxm) A and  z is an 
mx1 vector. Then, z′A z is a scalar.  
 
Example: The fiear quadratic form from the previous example can be written as 

 q = ሾ𝑥  𝑦ሿ ∗ ቂ6 1
1 2

ቃ ∗ ቂ
𝑥
𝑦ቃ = 6 𝑥2 + 2 𝑥 𝑦 + 2 𝑦2  

Once we know 𝑥 & 𝑦, q is a number. 
 
• Let q be a quadratic form. We say q is: 
 - Positive definite if q is invariably positive (q > 0) 
 - Positive semi-definite if q is invariably non-negative (q ≥ 0) 
 - Negative semi-definite if q is invariably non-positive (q ≤ 0) 
 - Negative definite if q is invariably negative (q < 0) 
 
Definition: Positive definite matrix 
A matrix A is positive definite (pd) if z′A z >0 for any z (a kx1 vector).  
 
For some matrices, it is easy to check. Let A = X′X  (a kxk matrix). 
Then, z′A z = z′X′X z = v′v = ∑ 𝑣

ଶே
ୀଵ  > 0.  (v=Xz  is an Nx1 vector) 

    ⇒ X′X is pd  ⇒ b is a min! 
 
Technical notes:  
1) In general, we need eigenvalues of A to check this. If all the eigenvalues are positive, then A 
is pd. 



2) If A is pd, then A-1 is also pd. 
3) In optimization problems in multivariate calculus, the second order condition requires the 
evaluation of the matrix of second derivatives, the Hessian. If all the leading principal minors are 
positive, then the critical point obtained is a minimum. In our case, this means that the Hessian is 
pd. 
 
Loosely speaking, a matrix is positive definite if the diagonal elements are positive and the off-
diagonal elements are not too large in absolute value relative to the diagonal elements. This is a 
very informal way of looking at a pd matrix, but, keep in mind for later, that the diagonal 
elements are positive. 
 
 
OLS Estimation – Properties of b 
The OLS estimator of  in the CLM is 
  b = (X′X)-1X′ 𝒚 ⇒ b is a (linear) function of the data (yi ,xi).  
  b = (X′X)-1X′ 𝒚 = (X′X)-1 X′(X + ) =  + (X′X)-1X′ 
   ⇒ b –  = (X′X)-1X′ 
 
Under the typical assumptions, we can establish properties for b. 
1) E[b|X] = E[|X] + E[(X′X)-1X′|X]  
 =  + (X′X)-1X′ E[|X] =    (b is unbiased.) 
 
2) Var[b|X] = E[(b – ) (b – )′|X] = E[(X′X)-1 X′  ′ X(X′X)-1] 
  = (X′X)-1 X′ E[ ′|X] X(X′X)-1   
  = (X′X)-1 X′ {σ2 IT} X(X′X)-1 = σ2 (X′X)-1 X′X (X′X)-1  
  = σ2 (X′X)-1     (kxk) matrix 
 
3) Gauss-Markov Theorem: b is BLUE (Best Linear Unbiased Estimator). No other linear & 
unbiased estimator has a lower variance. 
Proof:  
 Let b* = C𝒚 (linear in 𝒚) 
 E[b*|X] = E[C𝒚|X] = E[C(X + )|X] =   (unbiased if CX=I) 
 Var[b*|X] = E[(b* – )(b* – )′|X] = E[C ′C ′|X] = σ2 CC′  
 
Now, we relate Var[b|X] to Var[b*|X]. 
 
Let D = C – (X′X)-1 X′  (note DX = 0) 
 
Then,  
 Var[b*|X] = σ2 (D + (X′X)-1X′) (D′ + X(X′X)-1)  
  = σ2 DD′ + σ2 (X′X)-1 = Var[b|X] + σ2 DD′.  
Since DD′ is positive definite  Var[b*|X] > Var[b|X] ▪ 
 
4) If we make an additional assumption:  
 (A5) |X ~ i.i.d. N(0, σ2IT)  
we can derive the distribution of b.  



 
Since b =  + (X′X)-1X′, we have that b is a linear combination of normal variables and, thus, 
follows a normal distribution:  
 b|X ~ i.i.d. N(, σ2 (X′X)-1) 
 
then,  SD[b|X] = sqrt(diagonal elements of σ2 (X′X)-1) 
 
Note: The marginal distribution of a multivariate normal distribution is also normal, then   
   bk|X ~ N(βk,vk

2)  
  Std Dev [bk|X] = sqrt{[σ2(X′X)-1]kk} = vk 

 
Remark: With (A5) we can do tests of hypothesis.  
 
5) If (A5) is not assumed, we still can obtain a (limiting) distribution for b. Under additional 
assumptions –mainly, the matrix X′X does not explode as T becomes large–, as T→ ∞ 

 (i)  b 

→      (b is consistent) 

 (ii) b 

→  N(, σ2 (X′X)-1)  (b is asymptotically normal) 

 
• Properties (1)-(4) are called finite (or small) sample properties, they hold for every sample size. 
 
• Properties (5.i) and (5.ii) in (5) are called asymptotic properties, they only hold when T is large 
(actually, as T tends to ∞). Property (5.ii) is very important: When the errors are not normally 
distributed we still can do testing about , but we rely on an “approximate distribution.” 
 
 
OLS Estimation – Fitted Values and Residuals 
OLS estimates  with b. Now, we define fitted values as:  
  𝒚ෝ = X b 
 
Now we define the estimated error, 𝒆:   
  𝒆 = 𝒚 – 𝒚ෝ 
𝒆 represents the unexplained part of y, what the regression cannot explain. They are usually 
called residuals. 
 
Note that e is uncorrelated (orthogonal) with X      X 
  𝒆 = 𝒚 – Xb    X′𝒆 = X′ (𝒚 – Xb) = X′𝒚 – X′X (X′X)-1 X′𝒚 = 0 
 
Using e, we can define a measure of unexplained variation:  
 Residual Sum of Squares (RSS) = 𝒆ᇱ𝒆 = ∑ 𝑒ଶ  
 
OLS Estimation – Var[b|X] 
We use the variance to measure precision of estimates. For OLS:  

Var[b|X] = σ2 (X′X)-1  
 
Example: One explanatory variable model.  
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• In general, we do not know σ2. It needs to be estimated. We estimate σ2 using the residual sum 
of squares (RSS): 
  RSS = ∑ 𝑒ଶ    
The natural estimator of σ2 is 𝜎ොଶ = RSS/T.  Given the LLN, this is a consistent estimator of σ2. 
However, this not unbiased. 
 
• The unbiased estimator σ2 is s2    
  s2 = RSS/ሺ𝑇 െ 𝑘ሻ = ∑ 𝑒ଶ /(T - k) ൌ 𝒆ᇱ𝒆/ሺ𝑇 െ 𝑘ሻ  
 
To get E[s2], we use a property of a RV with a 𝜒జଶ distribution: 
  E[𝜒జଶ]  = 𝜐  
 
Given that 
   ሺ𝑇 െ 𝑘ሻ 𝑠ଶ/2 ~ 𝜒்ି

ଶ . 
Then,  
  E[ሺ𝑇 െ 𝑘ሻ 𝑠ଶ/2 | X]  = ሺ𝑇 െ 𝑘ሻ 
  E[𝒆ᇱ𝒆/2| X]  = ሺ𝑇 െ 𝑘ሻ  
   E[𝒆ᇱ𝒆/ ሺ𝑇 െ 𝑘ሻ| X] = E[𝑠ଶ|X] = 2    E[s2|X] = 2 

  
Note: (T-k) is referred as a degrees of freedom correction. 
 
• Then, the estimator of  Var[b|X] = s2 (X′X)-1   (a 𝑘x𝑘  matrix) 
 
This estimator gives us the standard errors (SE) of the individual coefficients. For example, for 
the bk coefficient:  
  SE[𝑏 |X] = sqrt[s2(X′X)-1]kk = sb,k 
 
 
OLS Estimation – Testing Only One Parameter   
We are interested in testing a hypothesis about one parameter in our linear model: y = X  +  
 
1. Set H0 and H1 (about only one parameter):  H0: k  =  

   

       H1: k  ≠  
 . 



 
2. Appropriate T(X): t-statistic. To derive the distribution of the test under H0, we will rely on 
assumption (A5) |X ~ N(0, σ2IT)  (otherwise, results are only asymptotic).   
 
Let  𝑏 = OLS estimator of β  
 SE[bk|X] = sqrt{[s2(X’X)-1]kk} = sb,k 

 
From assumption (A5), we know that 
   ሺ𝑏 |X ~ N(βk,vk

2)  Under H0:  𝑏 |X ~ N( 
 , sb,k

2). 

      Under H0: 𝑡 ൌ 
ೖ – ೖ

బ

௦್,ೖ
 |X ~ 𝑡்ି.  

 
• We measure distance in standard error units: 

  𝑡 ൌ 
ೖ – ೖ

బ

௦್,ೖ
 

Note: 𝑡 is an example of the Wald (normalized) distance measure. Most tests statistics in 
econometrics will use this measure. 
 
3. Compute 𝑡, tመ, using 𝑏, 

 , s, and (X’X)-1. Get p-value(tመ). 
 
4. Rule: Set an α level. If p-value(tመ) < α   Reject H0: k =  

  

 Alternatively, if |t ̂| > 𝑡்ି.ଵି/ଶ   Reject H0: k =  
 . 

 
• Special case:  H0: k = 0 
   H1: k ≠ 0. 
Then, 

  𝑡 = 
ೖ

sqrtሼ௦మሺX'Xሻ-1ሿೖೖ 
 ൌ ೖ

SEሾೖሿ
 ⇒ 𝑡 ~ 𝑡்ି. 

 
This special case of tk is called the t-value or t-ratio (also refer as the “t-stats”). That is, the t-
value is the ratio of the estimated coefficient and its SE.  
 
• The t-value is routinely reported in all regression packages. In the lm() function, it is reported 
in the third column of numbers. 
 
• Usually, α = 5%, then if |𝑡 | > 1.96 ≈ 2, we say the coefficient bk is “significant.” 
 
Example: Using the 1-factor CAPM for IBM returns, we test if IBM’s market β = 1, that is, if 
IBM bears the same market risk as the market. WE use R lm function. 
 
SFX_da <- 
read.csv("http://www.bauer.uh.edu/rsusmel/4397/Stocks_FX_1973.csv",head=TRUE,sep=",")  
x_ibm <- SFX_da$IBM  # Extract IBM price data  
x_Mkt_RF <- SFX_da$Mkt_RF # Extract Market excess returns (in %) 
x_RF <- SFX_da$RF  # Extract risk free rate (in %) 



T <- length(x_ibm)   # Sample size 
lr_ibm <- log(x_ibm[-1]/x_ibm[-T])  #  Log returns for IBM (lost one observation) 
Mkt_RF <- x_Mkt_RF[-1]/100 # Adjust size (take one observation out ) 
RF <- x_RF[-1]/100  # Adjust size (take one observation out ) 
ibm_x <- lr_ibm – RF  # Define excess returns for IBM 
 
fit_ibm_capm <- lm(ibm_x ~ Mkt_RF) # OLS estimation with lm package in R 

> summary(fit_ibm_capm) 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept) -0.005791   0.002487  -2.329   0.0202 *   

xMkt_RF   0.895774   0.053867  16.629   <2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

b_ibm <- fit_ibm_capm$coefficients # Extract from lm function OLS coefficients 

SE_ibm <- sqrt(diag(vcov(fit_ibm_ff3))) # SE from fit_ibm (also a kx1 vector) 

t_beta1 <- (b_ibm[2] - 1)/SE_ibm[2] # t-stat for H0: βଵ 
 
- 1  

 
> t_beta1 
[1] -1.934877  |�̂�

1 
= -1.934877|< 1.96   Cannot reject H

0
 at 5% level 

p_val <- (1- pnorm(abs(t_beta1))) * 2 # pvalue for t_beta (adjusted b/c two sided test) 

> p_val 
[1] 0.0530  cannot reject H0: βூெ 

 
= 1 at 5% level, but a borderline case! 

 

Conclusions: Cannot reject H0: βூெ 
 
 IBM has a one-to-one risk relation with the market, but 

borderline test decision! 

Note: You can get same results using linear algebra. From last class: 

b <- solve(t(x)%*% x)%*% t(x)%*%y  # b = (X′X)
-1

X′ y  (OLS regression) 

SE <- sqrt(diag(vcov(fit_ibm_capm))) # SE from fit_ibm (also a kx1 vector) 

t_beta1 <- (b[2] - 1)/SE[2]  # t-stat for H
0
: Beta

1 
- 1  

> t(b) 

                     Mkt_RF  

[1,] -0.005791039 0.895773564 

> t(SE_b) 

                     Mkt_RF  

[1,] 0.002487 0.053867  

> t_beta1 



[1] -1.934877). ¶ 
 
 
OLS Estimation – Testing Only One Parameter: The CAPM  
Recall that the CAPM states:  

  E[𝑟,௧ - 𝑟,௧] = β E[(𝑟ெ,௧ - 𝑟,௧)]. 

A linear data generating process (DGP) consistent the CAPM is:  

 𝑟,௧ - 𝑟,௧ = 𝛼 + β (𝑟ெ,௧ - 𝑟,௧ሻ + ,௧,  i = 1, .., N  &  t = 1, …,T 

Then, using the time series of stock returns, we test the CAPM for asset i by testing: 

  H0 (CAPM holds): 𝛼 = 0  

 H1 (CAPM rejected): 𝛼 ≠ 0  

 

Example: Testing the CAPM for IBM returns with time series. 

For IBM, we test the CAPM by testing:  H0 (CAPM holds): 𝛼ୀூெ = 0  

      H1 (CAPM rejected): 𝛼ୀூெ ≠ 0  

SFX_da <- 
read.csv("https://www.bauer.uh.edu/rsusmel/4397/Stocks_FX_1973.csv",head=TRUE,sep=",")  
x_ibm <- SFX_da$IBM   # Read IBM price data  
x_Mkt_RF <- SFX_da$Mkt_RF  # Read Market excess returns (in %) 
x_RF <- SFX_da$RF 
T <- length(x_ibm)    # Sample size 
 lr_ibm <- log(x_ibm[-1]/x_ibm[-T])  #  Log returns for IBM (lost one observation) 
Mkt_RF <- x_Mkt_RF[-1]/100  # Adjust size (take one observation out ) 
RF <- x_RF[-1]/100 
ibm_x <- lr_ibm – RF    # Define excess returns for IBM 
 

fit_ibm_capm <- lm(ibm_x ~ Mkt_RF) # OLS estimation with lm package  

> summary(fit_ibm_capm) 

Coefficients: 

             Estimate  Std. Error t value Pr(>|t|)     

(Intercept) -0.005791   0.002487  -2.329   0.0202 *   

xMkt_RF   0.895774   0.053867  16.629   <2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

• Q: Is the intercept (αIBM) equal to 0? We use the t-value: 

  𝑡ఈ = 
ఈసಳಾ

SE[ఈసಳಾ]
 = 

-0.005791

0.002487
  = -2.329  (the t-value) 

  |�̂�α = -2.329| > 1.96         Reject H0 at 5% level  



Conclusion: The CAPM is rejected for IBM at the 5% level.  

Note: You can also reject H0 by looking at the p-value of intercept (0.0202 < .05)  

 

Interpretation: Given that the intercept is significant (& negative), IBM underperformed relative 
to what the CAPM expected: 

- IBM excess returns: mean(ibm_x) = -0.00073141 

- IBM excess returns (CAPM) = 0.895774 * mean(Mkt_RF)  

  = 0.895774 * 0.0056489 = 0.0050601 

- Ex-post difference: -0.00073141 - 0.0050601 = -0.00579151 (≈ αIBM). ¶ 
 
Remark: Above we tested (& rejected) the CAPM for one asset only, IBM. But, the CAPM 
should apply to all assets, that is, in the cross-section. Suppose we have 𝑁 assets. Then, a test for 
the CAPM involves testing  𝛼’s: 
 H0: 𝛼ଵ = 𝛼ଶ = …. = 𝛼ே = 0 
 H0: at least one 𝛼 ≠ 0. 
 
This test is a joint test. It requires a simultaneous estimation of 𝑁 CAPM DGPs (with a 
constant). There are different ways to approach testing the CAPM in a cross-sectional setting. 
The popular approaches use a two-step estimation, for example, the popular Fama-MacBeth 
(1973) two-step estimation.  
 
 
OLS Estimation – Testing The CAPM  (Cross-Section) 
The CAPM tells also a cross-section story for asset returns: Assets with higher βi should get, on 
average, higher compensation.  
 CAPM (cross-section):  E[𝑟,௧ – 𝑟] = β 𝜆 
where 𝜆, in equilibrium, is the market excess return (or factor return). It is sometimes referred as 
the price of risk. 
 
If we have β′𝑠 for 𝑁 assets, we can estimate the security market line (SML), where we show the 
effect of βi on E[𝑟,௧ – 𝑟]. Below we show the SML in red. All stocks on the SML are priced 
correctly, all above are underpriced securities, that is, the return is higher than what is expected 
for a given level of risk (βi). Similarly, all stocks under the SML are overpriced. For example, 
above we determined that IBM has a  βୀூெ ൌ 0.895774, but its average excess return is  
negative, -0.00073141. Then, IBM is under the SML line and, thus, IBM is overvalued. 
 



 
 
The SML answers the question: Which stocks deserve higher returns? Assets with higher 
exposure to market risk –i.e., higher β. 
 
A linear cross-sectional DGP consistent with the CAPM is:  
  𝑟 – 𝑟 = α + β 𝜆 + ,  i = 1, .., 𝑁  
 
Testing implication of the SML for the cross-section of stock returns: 
 H0 (CAPM holds in the CS): α = 0 and 𝜆 = E[𝑟,௧ – 𝑟] 
 H1 (CAPM rejected in the CS): α ≠ 0 and/or 𝜆 ≠ E[𝑟,௧ – 𝑟].  
 
Again, we have a joint test. As metioned above, there are different ways to approach this 
simultaneous estimation, a common approach is the Fama-MacBeth (1973) two-step estimation. 
 
Fama-French (1992, 1993) adapted the Fama-MacBeth (1973) procedure, to produce a well-
know approach to test the relevance of the CAPM in explaining the cross-section of stock 
returns. The first step, or first pass, involves a time-series regression to estimate the betas for 
each asset (IBM, GE, MSFT, etc.), the second step, or second pass, regresses the average excess 
return of eah asset (IBM, GE, MSFT, etc.) on the estimated betas (OLS b’s, also called “factor 
loadings”). That is: 
 
(1) First Pass 
Using the time series (𝑇 observations), run a CAPM regression to estimate β  for each asset 𝑖 ൌ
1, … ,𝑁. 
  𝑟,௧ - 𝑟,௧ = 𝛼 + β (𝑟ெ,௧ - 𝑟,௧ሻ + ,௧,   𝑡 = 1, …, 𝑇   Get 𝑁 b’s. 
 
(2) Second Pass 
Using the 𝑁 b’s as regressors, estimate 
   (�̅� – �̅�) = α + b 𝜆 + ,   𝑖 = 1, ...,   𝑁 
where (�̅� – �̅�) is the average excess return of asset 𝑖 in our sample. 
 
According to the CAMP, we expect 𝜆0. 
 
The usual execution of almost all 2-step procedures involves: 



1) Since returns are estimated with a lot of noise, portfolios are used, not individual securities.  
2) The estimation takes into account the possible change over time of beta coefficients, by 
estimating the coefficients every 5 or 10 years. 
 
Example: We test the CAPM, in the cross-section, using the 2-step Fama-French approach. We 
use returns of 25 Fama-French portfolios, sorted by Size (ME) and Book-to-Market (BM). We 
downloaded the returns of the 25 portfolios, along the 3-Fama-French factors, from Ken 
French’s website: 
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html#Research. 
 
Note: the files are zip files. I unzipped them and put them on my website.  
 
FF_p_da <- read.csv("https://www.bauer.uh.edu/rsusmel/4397/FF_25_portfolios.csv", 
head=TRUE, sep=",") 
FF_f_da <- read.csv("https://www.bauer.uh.edu/rsusmel/4397/FF_3_factors.csv", head=TRUE, 
sep=",") 
 
# Extract variables from imported data 
Mkt_RF_fm <- FF_f_da$Mkt_RF # extract Market excess returns (in %) 
HML_fm <- FF_f_da$HML  # extract HML returns (in %) 
SMB_fm <- FF_f_da$SMB  # extract HML returns (in %) 
RF_fm <- FF_f_da$RF  # extract Risk-free rate (in %) 
Y_p <- FF_p_da[,2:26] - RF_fm # Compute excess returns of 25 portfolios  
 
T <- length(HML_fm)  # Number of observations (1926:July on)  
x0 <- matrix(1,T,1)   # Vector of ones, represents constant in X 
x <- cbind(x0, Mkt_RF_fm)  # Matrix X (Tx2) 
k <- ncol(Y_p) 
 
## First Pass (CAPM to get 𝑔𝑒𝑡 𝑁 b) 
Allbs = NULL    # Initialize empty (a space to put betas)   
for (i in seq(1,k,1)){ 
  y <- Y_p[,i]     # select Y (portfolio) 
  b <- solve(t(x)%*% x)%*% t(x)%*%y  # OLS regression = (X'X)^(-1) X'y 
  Allbs  =cbind(Allbs,b)    # accumulate b as rows 
}  
 
beta_ret <- cbind(colMeans(Y_p),t(Allbs)) # Mean portfolio returns along alpha & beta 
estimates 
 
cor(beta_ret[,1], beta_ret[,3])  # Correlation of mean portfolio return & beta 
> cor(beta_ret[,1], beta_ret[,3]) 
[1] 0.3326008 
 
plot(beta_ret[,1], beta_ret[,3], main="Scatterplot: Portfolio Returns & CAPM Beta", 
     xlab="Mean Portfolio Returns ", ylab="Market Beta", pch=19) 



 
 
## Second Pass (cross-sectional SML) 
fit_fm_capm_25 <- lm(beta_ret[,1] ~ beta_ret[,3]) 
> summary(fit_fm_capm_25) 
 
Coefficients: 
               Estimate Std. Error t value Pr(>|t|) 
(Intercept)     0.3728     0.3113   1.198    0.243 
beta_ret[, 3]   0.4289     0.2536   1.691    0.104    Not significant: Beta plays no role!  
 
Residual standard error: 0.2 on 23 degrees of freedom 
Multiple R-squared:  0.1106, Adjusted R-squared:  0.07195  
F-statistic: 2.861 on 1 and 23 DF,  p-value: 0.1043 
 
Conclusion: The CAPM’s beta is not significant. That is, in the cross-section, Beta plays no role 
in determining expected returns for assets. ¶ 
 
• Fama and French (1992, 1993) estimate variations of the DGP with more factors. They find 
that  is weakly significant or not significant (“Beta is dead”) in explaining the C-S of stock 
returns. They even report the wrong sign for beta in the second pass. 
 
But, other researchers dispute the “Beta is dead” finding, criticizing the selection of estimation 
period, construction of portfolios, number of factors, statistical problems like measurement error 
and incorrect SE, etc.  
 
The debate about  & what (& how many) factors to include in the DGP continues. 
 
 
The 3-Factor Fama-French Model 
As mentioned above, the CAPM is routinely rejected. A popular alternative model is the 
empirically derived 3-factor Fama-French (1993) model, which adds two rsik factors, related to 
firm characteristics, to the market factor:  



 
a) Size factor (SMB): It is measured as the difference between the returns on diversified 
portfolios of small stocks (small size portfolio) and big stocks (big size portfolio) = long Small & 
short Big. 
 
b) Value factor or book-to-market factor (HML): It is measured as the difference between the 
returns on diversified portfolios of high stocks (high B/M portfolio) and low B/M stock (low B/M 
portfolio) = long High & short Low. 
 
Using monthly data from July 1927- July 2024 (98 years), we have the following returns for the 
three Fama-French macro-factors: 
 

 
(𝑟ெ,௧ - 𝑟,௧ሻ  𝑆𝑀𝐵௧ 𝐻𝑀𝐿௧ 

Min -29.1300 -17.2000  -13.8800  

Median 1.0600 0.0700 0.1200 

Mean 0.6845 0.1801 0.3449  

Max 38.8500 36.5600  35.6100  

SD 5.33431 3.176139 3.568389 

 
The annualized average returns (& SD) for Market, SMB, and HML are, respectively, 8.21% 
(18.48%), 2.16% (11%) and 4.14% (12.36%). High premiums, but with high estimation 
uncertainty (high SD). 
 
Below, we plot the SMB and HML cumulative returns 
 



 
 

 
 
The SMB or size factor performed very well up to about 1982, generating over 600% returns. 
Then, on average, the reverse occurred: large-cap stocks outdid small caps. The value factor 
performed extremely well up to financial crisis 2008, generating over 4,500% returns. Value 
investing was very profitable. Since, then, on average, the pattern has changed.  
 
• The three (macro-) factors are, in theory, “factor mimicking portfolios,” that is, portfolios with 
exposure only to the factor in question (market, size, or value), and no exposure to any other 
factor.  
 



The correlation matrix below show that, though not high, the correlations are not zero, especially 
with the market. 
 
 

 
 Mkt_RF SMB  HML 

Mkt_RF 1.00000 0.31507 0.22697 

SMB  0.31507 1.00000 0.12044 

HML  0.22697 0.12044 1.00000 

 
Note: For a long time, before the early 1980s, any significant factor, beyond the market factor, 
was considered a “CAPM anomaly.” 
 
 

The 3-Factor Fama-French Model: Construction of Factors 

The portfolios are formed as follows: 

Step 1. At the end of June of year 𝑡, sort the stock returns by attribute (size of Size, or B/M). 

Step 2. Split the sorted assets by attribute into 3 equal/value-weighted portfolios (3 tercile 
portfolios). Split can be thinner (quintile portfolios) or based on more complicated sorts, for 
example, using 6 portfolios constructed by intersecting 2 size portfolios & 3 value portfolios. 

Step 3. At the end of each month (week or day), from July of year t to June of year 𝑡 +1, based 
on the portfolios constructed in Step 1, compute the returns of each of the split portfolios. 

Step 4 Form a “hedge portfolio”: long the top portfolio (say, top tercile) and short the bottom 
portfolio (say, bottom tercile). 

 
Note: The portfolios for July of year t to June of t+1 include all NYSE, AMEX, and NASDAQ 
stocks for which there is data for June of t. 

 

This approach to construct factors is very popular. Using this procedure it is possible to construct 
other factors, for example, a PE factor or a Profitability factor, where we sort stock by PE or 
Profitability. 
 
 

The 3-Factor Fama-French Model: Intrepretation of Coefficients 
A linear DGP generating the 3-factor Fama-French model is: 
  𝑟,௧ – 𝑟 = 𝛼+ β1 (𝑟,௧ – 𝑟) + β2 SMBt + β3 HMLt +  𝜀,௧. 
 
That is, according to this model, excess returns are driven by their sensitivity to the market, to 
size, and to value stocks, as measured by the book-to-market ratio. The estimated parameters in 



the time-series regressions are called “factor loadings,” they measure the sensitivity of asset i to 
changes in the factor. 
 
• Interpretation of coefficients: 
- β1 has the same as the interpretation in the CAPM, it measures the relation between asset i risk 
and market risk.  
- β2 measures how tilted asset i is towards small stock (in general, β2 > 0 means that returns of 
asset i behaves like small stocks.  
- β3 measures how tilted asset i is towards value stock (in general, β3 > 0 means that returns of 
asset i behave like high book-to-market stocks). 
 
 

The 3-Factor Fama-French Model: Testing the model (in the Time Series) 
Like the CAPM, the 3-factor Fama-French model produces expected excess returns: 
  E[𝑟,௧ - 𝑟,௧] = β1 E[𝑟,௧ – 𝑟] + β2 E[𝑆𝑀𝐵௧] + β3 E[𝑆𝑀𝐵௧] 
 
A significant constant, 𝛼, would be evidence against this model: something is missing in the 
model. Thus, using the time series of asset 𝑖 to estimate the 3-factor FF model DGP with a 
constant, we test the FF model for asset 𝑖:  
  H0 (3-factor FF model true) = 𝛼   
  H1 (3-factor FF model not true) = 𝛼  
This test can be implemented by a simple t-test on the estimated 𝛼.  
 
Example (continuation): Using the time-series, we test the significance of the 3-factor Fama-
French model for IBM returns:  
 
SFX_da <- 
read.csv("http://www.bauer.uh.edu/rsusmel/4397/Stocks_FX_1973.csv",head=TRUE,sep=",")  
x_ibm <- SFX_da$IBM  # Extract IBM price data  
x_Mkt_RF <- SFX_da$Mkt_RF # Extract Market excess returns (in %) 
x_SMB <- SFX_da$SMB  # Extract SMB factor returns (in %) 
x_HML <- SFX_da$HML  # Extract HML factor returns (in %) 
x_RF <- SFX_da$RF  # Extract Risk-free rate factor returns (in %) 
Mkt_RF <- x_Mkt_RF[-1]/100 # Adjust size (take one observation out ) 
SMB <- x_SMB[-1]/100  # Adjust size (take one observation out ) 
HML <- x_HML[-1]/100  # Adjust size (take one observation out ) 
RF <- x_RF[-1]/100 
 
T <- length(x_ibm)   # Sample size 
 lr_ibm <- log(x_ibm[-1]/x_ibm[-T])  #  IBM log returns (lost one observation) 
ibm_x <- lr_ibm  - RF 
fit_ibm_ff3 <- lm(ibm_x ~ Mkt_RF + SMB + HML) 
> summary(fit_ibm_ff3)   # print lm results 
Coefficients: 
              Estimate  Std. Error t value Pr(>|t|)     
(Intercept) -0.005089 0.002488  -2.046   0.0412 *   



Mkt_RF    0.908299 0.056722  16.013   <2e-16 *** 
SMB        -0.212460 0.084112  -2.526   0.0118 *     significant at 5% level. 
HML      -0.171500 0.084682  -2.025   0.0433 *     significant at 5% level.   
--- 
Residual standard error: 0.05848 on 565 degrees of freedom 
Multiple R-squared:  0.3389,    Adjusted R-squared:  0.3354  
F-statistic: 96.55 on 3 and 565 DF,  p-value: < 2.2e-16 
 
Conclusion: Consistent with the 3-factor Fama-French model, Mkt_RF, SMB and HML are 
drivers of the expected returns for IBM. The signs of β2 & β3: IBM behaves like a large & low 
B/M firm. 
 
Note 1: The constant is significant, that is, there is an “extra” component of expected returns not 
explained by the 3 F-F factors. 
Note 2: The CAPM is also rejected for IBM, since there are, beyond the market factor, other 
significant factors. 
 
 
• Now, to gauge the behavior of the 3-factor model, we plot fitted IBM values and compare with 
actual IBM values.  
 
y_hat <-fit_ibm_ff3$fitted.values     # Extract from fit_ibm_ff3 fitted values 
plot(y, type = "l", col = "blue",      # Plot IBM returns 
main = "IBM Returns: Actual Returns and Fitted Values", ylab = "Returns", xlab = "Time") 
lines(y_hat, type = "l", col = "red")    # Add fitted values to plot 
legend("topleft",                                          # Add legend to plot 
       legend = c("Actual", "Fitted"), col = c("blue", "red"), lty = 1) 
 

 
We observe some periods with good fit –mainly early and late periods- and some periods with 
poor fit –mainly the middle period.    
 



• In the context of the 3-factor Fama-French model, we test again if IBM’s risk has a one-to-one 
relation with the market risk. That is, we test if the market beta (1) is equal to 1. Formally, we 
test:  
 H0: 1 = 1    
 H1: 1 ≠ 1 
 
Using the previous estimation, we have: 
  𝑡 = ሺ𝑏 –

)/Est. SEሺ𝑏)  
   �̂�1 = (0.9082989 – 1)/ 0.05672206 = -1.616674 
  | �̂�1= -1.616674 | < 1.96          Cannot reject H0 at 5% level. 

Conclusion: IBM bears the same market risk as the market. 
 
R Note: You should get the same numbers using R’s lm and extracting information from lm:  
 
b_ibm <- fit_ibm_ff3$coefficients  # Extract from lm function OLS coefficients 
SE_ibm <- sqrt(vcov(fit_ibm_ff3))  # SE from fit_ibm (also a kx1 vector) 
t_beta1 <- (b_ibm[2] – 1)/SE_ibm[2]  # t-stat for H0: 1 = 1. 
> t_beta1 
[1] -1.616674    
p_val <- 1- pnorm(abs(t_beta1))  # pvalue for t_beta1 (one-sided) 
> p_val * 2     # two-sided test (multiply one-side p-value by 2) 
[1] 0.1059487. ¶ 
 
 
• A cross-section test of the 3-factor FF model is a joint test:  
   H0: 𝛼ଵ = 𝛼ଶ = …. = 𝛼ே = 0 
  H1: at least one 𝛼 ≠ 0. 
A Fama-MacBeth (1973) two-step procedure is usually implemented. 
 
 
The 3-Factor Fama-French Model: Testing Multi-factor Models  (Cross-
Section) 
The 2-step framework can be extended to include more factors in both steps, for example, Fama-
French (1993) introduce their well-known 3-factor model to test if beta is a significant driver of 
expected excess returns in the cross-section. Fama and French (1993) added to the CAPM a size 
factor (SMB) and a value factor (HML). Then, for asset 𝑖 we have 
 𝑟,௧ - 𝑟,௧ = 𝛼 + βଵ, (𝑟ெ,௧ - 𝑟,௧ሻ + βଶ, 𝑆𝑀𝐵௧ +  βଷ, 𝐻𝑀𝐿௧  + ,௧,  𝑡 = 1, …, 𝑇 
 
In this case, the Fama-MacBeth two-step procedure involves: 
(1) First pass 
Using the time series (𝑇 observations), run a regression with the 3 Fama-French factors (Market, 
SMB, HML) to estimate 3 β′𝑠 for each asset 𝑖 ൌ 1, … ,𝑁. 
  𝑟,௧ - 𝑟,௧ = 𝛼 + βଵ, (𝑟ெ,௧ - 𝑟,௧ሻ + βଶ, 𝑆𝑀𝐵௧ +  βଷ, 𝐻𝑀𝐿௧  + ,௧,  𝑡 = 1, …, 𝑇 
     Get 𝑁 b ൌ ሾbଵ,, bଶ, , bଷ,ሿ. 
(2) Second Pass 



Using the 𝑁 b’s as regressors, estimate 
   (�̅� – �̅�) = α + bଵ, λଵ +  bଶ, λଶ  bଷ, λଷ  ,   𝑖 = 1, ...,   𝑁 
where (�̅� – �̅�) is the average excess return of asset 𝑖 in our sample. 
 
Using the estimates from the second pass, we test 
  H0 (FF holds in the CS): α = 0 & 𝜆 > 0,  𝑗 = 1, 2,   𝑘 ൌ 3 
  H1 (FF rejected in the CS): α ≠ 0 and/or  
Note: In equilibrium, 𝜆ଵ=E[𝑟,௧ – 𝑟], 𝜆ଶ=E[𝑆𝑀𝐵௧] & 𝜆ଷ=E[𝐻𝑀𝐿௧]. 
 
Example: We test the 3-factor Fama-French model, in the cross-section, using the 2-step Fama-
McBeth method. We use returns of 25 Fama-French portfolios (sorted by Size & BM), 
downloaded, along the 3-Fama-French factors from Ken French’s website.  
 
FF_p_da <- read.csv("https://www.bauer.uh.edu/rsusmel/4397/FF_25_portfolios.csv", 
head=TRUE, sep=",") 
FF_f_da <- read.csv("https://www.bauer.uh.edu/rsusmel/4397/FF_3_factors.csv", head=TRUE, 
sep=",") 
 
# Extract variables from imported data 
Mkt_RF_fm <- FF_f_da$Mkt_RF # extract Market excess returns (in %) 
HML_fm <- FF_f_da$HML  # extract HML returns (in %) 
SMB_fm <- FF_f_da$SMB  # extract HML returns (in %) 
RF_fm <- FF_f_da$RF  # extract Risk-free rate (in %) 
Y_p <- FF_p_da[,2:26] - RF_fm  # Compute excess returns of 25 portfolios  
 
T <- length(HML_fm)  # Number of observations (1926:July on)  
x0 <- matrix(1,T,1)   # Vector of ones, represents constant in X 
x <- cbind(x0, Mkt_RF, SMB, HML) # Regressors (vector of ones + 3 Factors) 
k <- ncol(Y_p) 
 
## First Pass 
Allbs = NULL    # Initialize empty (a space to put betas)   
for (i in seq(1,k,1)){ 
  y <- Y_p[,i]     # select Y (portfolio) 
  b <- solve(t(x)%*% x)%*% t(x)%*%y  # OLS regression = (X'X)^(-1) X'y 
  Allbs  =cbind(Allbs,b)    # accumulate b as rows 
}  
beta_ret <- cbind(colMeans(Y_p),t(Allbs)) # Mean portfolio returns along alpha & beta 
estimates 
> cor(beta_ret) 
                                    Mkt_RF      SMB      HML 
          1.000000  0.5242033 -0.2502789 0.26183205 0.69403377 
          0.524203 1.0000000 -0.7533964 -0.3289295  -0.02888856 
Mkt_RF  -0.250279 -0.7533967 1.0000000 0.1747401 0.11693857 
SMB     0.261832 -0.328929 0.1747402 1.0000000  0.03922282 
HML     0.694034 -0.028888 0.1169386 0.0392228 1.00000000 



 
 
plot(beta_ret[,1], beta_ret[,3], main="Scatterplot: Portfolio Returns & Market Beta", 
     xlab="Mean Portfolio Returns ", ylab="Market Beta", pch=19) 

 
 
## Second Pass (CAPM) 
fit_fm_ff3_25 <- lm(beta_ret[,1] ~ beta_ret[ , 3:5]) 
> summary(fit_fm_ff3_25) 
Coefficients: 
                       Estimate Std. Error t value   Pr(>|t|)     
(Intercept)             1.98661   0.33046  6.012 5.76e-06 ***    Significant! 
beta_ret[, 3:5]Mkt_RF -0.98579  0.32011 -3.080  0.00568 **    Negative! & significant 
beta_ret[, 3:5]SMB    0.11140   0.04633  2.405  0.02550 *     Positive as expected 
beta_ret[, 3:5]HML   0.37471   0.06393   5.861 8.11e-06 ***   Positive as expected 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1   
 
Conclusion: The 3-factor FF model has a significant constant, which strong evidence against the 
model –i.e., something is missing. The negative coefficient of the market beta goes against 
theory. Question: Is Beta dead? Or, maybe, something is not right in the way we structure the test 
(incorrect model, problems with the data, the period, etc)? ¶ 
 
 
The 3-Factor Fama-French Model: Remarks & Extension 
There is a big debate about the number of factors and how they are “discovered.” 
 
Q: How where these factors determined to be drivers of stock returns? 
By looking at data characteristics, not theory. As seen in the previous graphs, by the mid-1990s 
there was evidence that small firms outperformed big firms and that high BM firms 
outperformed low BM firms. Thus, data mining issues are likely present. Data mining issues are 
likely present. 



 
Q Are these 3 factors the definitive number of factor? 
No. There have been over 200 factors proposed, counting interactions among factors, the 
potential number can be, easily, in the thousands. Many of these factors are likely a product of 
data mining, which is a problem for correct statistical inference and, more important, for out-of-
sample forecasting. Feng, Giglio and Xiu (2020), who propose a methodology to select factors 
that explain the cross-section of expected return, call their paper “Taming the Factor Zoo.” 
 
• In 2014, Fama and French added two additional factors to their 3-factor model: RMW & CMA. 
- RMW measures the return of the portfolio of most profitable firms (“robust”) minus the returns 
of portfolio least profitable (“weak”). 
- CMA measures the return of a portfolio of firms that invest conservatively minus the returns 
portfolio of firms that invest aggressively. 
 
Again, the 5-factor FF model produces expected excess returns: 
 E[𝑟,௧ – 𝑟] = β1 E[𝑟,௧ – 𝑟] + β2 E[𝑆𝑀𝐵௧] + β3 E[𝑆𝑀𝐵௧] + β4 E[𝑅𝑀𝑊௧] + β5 E[𝐶𝑀𝐴௧] 
  
There is debate regarding the validity or usefulness of this extension, especially, outside the U.S. 
market. 
 
 
 
OLS Estimation – Linear Algebra Interpretation 
• Disturbances and Residuals  
 In the population: E[X′ ] = 0.  
 In the sample:  X′e = X′(y – Xb) = X′y – X′X(X′X)-1X′y 
 = 1/T(X′ e) = 0. 
 
• We have two ways to look at y: 
 y = E[y|X] +  = Conditional mean + disturbance 
 y = Xb + e = Projection + residual 
 

 



 
 
OLS Estimation – Important Matrices: M 
Important Matrices 
 
(1) “Residual maker”     
  M  =  IT – X(X′X)-1X′    (TxT matrix) 
  M𝒚 = 𝒚 – X(X′X)-1X′ 𝒚 = 𝒚 – Xb = e (residuals) 
  MX = (IT – X(X′X)-1X′) X = 0  
 
- M is symmetric  – M = M′ 
- M is idempotent   – M*M = M 
- M is singular   – M-1 does not exist.   ⇒ rank(M) = T – k 
 
- Special case: X = ί  
 M0 = I – ί(ί ί)-1 ί = I – ί ί/T    - since ί ί = T  
 M0 𝒚 = 𝒚 – ί(ί ί)-1 ί 𝒚 = 𝒚 – ί 𝒚ഥ   - since ί 𝒚/T = 𝑦ത   
 

 M0 𝒚 ൌ ൦

𝑦ଵ
𝑦ଶ
⋮
𝑦்

൪ - ൦

1
1
⋮
1

൪ 𝑦ത ൌ ൦

𝑦ଵ െ 𝑦ത
𝑦ଶ െ 𝑦ത
⋮

𝑦் െ 𝑦ത

൪ 

  
Interpretation of M0: De-meaning matrix. 
 
 
(2) “Projection matrix”     
 P = X(X′X)-1X′     (TxT matrix) 
 Py = X(X′X)-1X′y = Xb = ŷ   (fitted values) 
 Py = Projection of y into the column space (dimension k) of X.   
 PX = (X(X′X)-1X′) X = X 
 PX = Projection of X into X = X.   
 PM = MP = 0  
Note: M  =  IT – X(X′X)-1X′ = IT – P 
 
- P is symmetric  – P = P′ 
- P is idempotent  – P*P = P 
- P is singular   – P-1 does not exist.    rank(P) = k 
 
 
Results when X Contains a Constant Term 
Let the first column of X be a column of ones. That is 

    X = [ί, x2, …, xK] 
 
• Recall  ί′ 𝒛 = ∑ 𝑧

்
 ,  where 𝒛 and ί are 𝑇x1.  

 



Then, 
(1) Residuals sum to zero. 
Since X′ 𝒆 = 0  

 = ൦

1 1 ⋯ 1
𝑥ଶଵ 𝑥ଶଶ ⋯ 𝑥ଶ்
⋮ ⋮ ⋱ ⋮
𝑥ଵ 𝑥ଶ ⋯ 𝑥்

൪*൦

𝑒ଵ
𝑒ଶ
⋮
𝑒்

൪ ൌ 0  ∑ 𝑒
்
 ൌ  0  

 
  x1′ 𝒆 = ∑ 𝑒

்
 ൌ  0  –the residuals sum to zero. 

 
(2) Regression line passes through the means 
Recall we can write   𝒚 = fitted value + residual 
  𝒚 = Xb + 𝒆  
 
Pre-multiply by ί′ : ί′ 𝒚 = ί′Xb + ί′ 𝒆   
   ∑ 𝑦

்
  = ∑ ሼ𝑏1 1 + 𝑏2 𝑥ଶ + ... + 𝑏k 𝑥 ሽ

்
  + ∑ 𝑒

்
  

   ∑ 𝑦
்
  = 𝑏1 ∑ 1்

  + 𝑏2 ∑ 𝑥ଶ + ... +்
  𝑏k ∑ 𝑥 

்
  

   ∑ 𝑦
்
  = 𝑏1 𝑇 + 𝑏2 ∑  𝑥ଶ + ... +்

  𝑏k ∑  𝑥 
்
   

 
Dividing both sides by 𝑇:    
  ∑ 𝑦/𝑇

்
  = 𝑏1 + 𝑏2 ∑  𝑥ଶ /𝑇 + ... +்

  𝑏k ∑  𝑥 /𝑇
்
  

  �̄� = 𝑏1 + 𝑏2 �̅�ଶ+ … 𝑏k �̅� 
    �̄� ൌ �̄�′ 𝐛  
 

That is, the regression line passes through the means. 
 
Note: These results are only true if X contains a constant term! 
 
 
Goodness of Fit of the Regression 
After estimating the model (A1), we would like to judge the adequacy of the model. There are 
two ways to do this: 
 - Visual: Plots of fitted values and residuals, histograms of residuals. 
 - Numerical measures: R2, adjusted R2, AIC, BIC, etc.  
 
Numerical measures. In general, they are simple and easy to compute. We call them goodness-
of-fit measures. Most popular: R2. 
 
Definition: Variation 
In the context of a model, we consider the variation of a variable as the movement of the 
variable, usually associated with movement of another variable. 
Total variation = Total sum of squares (TSS) =  ∑ ሺ𝑦 െ 𝑦തሻଶ   
 
We want to decompose TSS in two parts: one explained by the regression and one unexplained 
by the regression. 
 



 TSS  =  ∑ ሺ𝑦 െ 𝑦തሻଶ = ∑ ሺ𝑦 െ 𝑦ො  𝑦ො െ 𝑦തሻଶ 
  = ∑ ሺ𝑦 െ 𝑦ොሻଶ+ ∑ ሺ𝑦ො െ 𝑦ത ሻଶ+2 ∑ ሺ𝑦 െ 𝑦ොሻሺ𝑦ො െ 𝑦തሻ 
  = ∑ 𝑒ଶ  + ∑ ሺ𝑦ො െ 𝑦തሻଶ  
Since 
 ∑ ሺ𝑦 െ 𝑦ොሻሺ𝑦ො െ 𝑦തሻ ൌ ∑ 𝑒ሺ𝑦ො െ 𝑦തሻ ൌ 0   
 
Or  TSS = RSS + SSR  
 
RSS: Residual Sum of Squares (also called SSE: SS of errors) 
SSR: Regression Sum of Squares (also called ESS: explained SS) 
 
 
Goodness of Fit of the Regression – Linear Algebra 
Recall that we can use the de-meaning matrix M0 to write  
 𝒚 െ ί 𝑦ത = M0y (Tx1 vector) where M0 = I – ί(ί ί)-1 ί  
 
Using linear algebra we also get the decomposition of TSS. Now,  
 TSS = ∑ ሺ𝑦 െ 𝑦തሻଶ = 𝒚M0 M0𝒚 = 𝒚M0M0𝒚 = 𝒚M0𝒚.  
 
We want to decompose the total variation of y (assume X1 = ί –a constant.) 
 𝒚 = Xb + 𝒆,    
then,  
      M0 𝒚 = M0Xb + M0e = M0Xb + 𝒆     (deviations from means)  
 𝒚M0𝒚 = b(X M0)(M0X)b + ee   (sum of squared deviations from means) 
         = bX M0Xb + ee.          (M0 is idempotent & e M0X = 0) 
 TSS  = SSR + RSS 
 
 
A Goodness of Fit Measure: R-squared 
We want to have a measure that describes the fit of a regression. Simplest measure: the standard 
error of the regression (SER) 

  SER = ට
RSS

ି
    SER depends on units. Not good! 

 
• R-squared (R2) 
  1  = SSR/TSS + RSS/TSS 
  R2 = SSR/TSS = Regression variation/Total variation   
  R2 = bXM0Xb/yM0y = 1 – 𝒆 𝒆/𝒚M0𝒚   
 = (ŷ - ί 𝑦ത) (ŷ - ί 𝑦ത)/(𝒚 – ί𝑦ഥ) (𝒚 – ί𝑦ഥ) = [ ŷŷ – T �̄�2]/[𝒚𝒚–T�̄�2] 
 
As introduced here, R2 lies between 0 and 1 (& it is independent of units of measurement!). It 
measures how much of total variation (TSS) is explained by regression (SSR): the higher R2, the 
better.  
 
Note:  R2 is bounded by zero and one only if: 



 (a) There is a constant term in X –we need e’ M0X=0!  
 (b) The line is computed by linear least squares.  
 
• Main problem with R2: Adding regressors 
Given the above interpretation of R2, it seems an appropriate criteria to select a model: If we 
have several models, the model with the higher R2 should be selected. However, R2 favors the 
addition of “irrelevant” explanatory variables. 
 
It can be shown that R2 never falls when regressors (say z) are added to the regression. This 
occurs because RSS decreases with more information. 
  
Problem: Judging a model based on R2 tends to over-fitting –i.e., in our linear model, including 
too many explanatory variables. 
 
• Comparing Regressions 
When R2 is used as a criteria for model selection, make sure the denominator in R2 is the same - 
i.e., same left hand side variable. For example, R2 will not be an appropriate criteria to select 
between a linear vs. loglinear specifications of the dependent variable, 𝑦. Loglinear will almost 
always appear to fit better because taking logs reduces variation.  
 
• Linear Transformation of data does not change R2. 
- Based on X, b = (XX)-1X𝒚. 
Suppose we work with X* = cX, instead (c is a constant).  
 P* 𝒚 = X* b* = cX (cX cX)-1cX𝒚          
  = cX  (c2 XX)-1 cX 𝒚  
  = X (XX)-1 X𝒚 = P𝒚    
   same fit, same residuals, same R2!  
 
 
Adjusted R-squared 
To avoid over-fitting, R2 is modified with a penalty for number of parameters: Adjusted-R2  

  𝑅2 = 1 െ  
(T – 1)

(T – k)
 (1 – R2) = 1 െ

(T – 1)

(T – k)

RSS

TSS
 = 1 െ 

s2

TSS/(T – 1)
 

 maximizing 𝑅2  <=> minimizing [RSS/(T – k)] = s2  
 
There is a trade-off in s2: higher 𝑘 decreases the numerator, RSS, but it also decreases the 
denominator, ሺ𝑇 െ 𝑘ሻ, the 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝑜𝑓 𝑓𝑟𝑒𝑒𝑑𝑜𝑚 . 
  
𝑅2 includes a penalty for variables that do not add much fit. Can fall when a variable is added to 
the equation.   
 
Technical note: 𝑅2  will rise when a variable, say z, is added to the regression if and only if the t-
ratio on z is larger than one in absolute value.  
 



Theil (1957) shows that, under certain assumptions (an important one: the true model is being 
considered), if we consider two linear models:  
     M1:    𝒚 = X1 β1 + ε1  (the true model) 
     M2:    𝒚 = X2 β2 + ε2  
 
and choose the model with smaller s2 (or, larger Adjusted R2), we will select the true model, M1, 
on average.  
 
In this sense, we say that “maximizing Adjusted R2” is an unbiased model-selection criterion. 
 
 
Other Goodness of Fit Measures 
There are other goodness-of-fit measures that also incorporate penalties for number of 
parameters (degrees of freedom). We minimize these measures. 
 
Information Criteria 
- Amemiya: [ee/(T – k)] * (1 + k/T) = s2 * (1 + k/T)  
 
- Akaike Information Criterion (AIC) 
 AIC = -2/T(ln L – k)    L: Likelihood 
   if normality AIC = ln(e’e/T) + (2/T) k         (+constants) 
  
- Bayes-Schwarz Information Criterion (BIC) 
 BIC = -(2/T ln L – [ln(T)/T] k) 
   if normality AIC = ln(e’e/T) + [ln(T)/T] k   (+constants) 
 
Example: 3 Factor F-F Model (continuation) for IBM returns:  
b <- solve(t(x)%*% x)%*% t(x)%*%y    # b = (X′X)-1X′ y  (OLS regression) 
e <- y - x%*%b      # regression residuals, e 
k <- ncol(x)      # Number of parameters estimated  
RSS <- as.numeric(t(e)%*%e)    # RSS 
R2 <- 1 - as.numeric(RSS)/as.numeric(t(y)%*%y) # R-squared  
Adj_R2 <- 1 - (T-1)/(T-k)*(1-R2)    # Adjusted R-squared   
AIC <- log(RSS/T) + 2*k/T    # AIC under N(.,.) –i.e.,  under (A5) 
 
> R2 
[1] 0.338985    The 3 factors explain 34% of the variability of IBM returns. 
> Adj_R2 
[1] 0.3354752 
> AIC 
[1] -5.671036.   
 
R Note: We can extract R2 and Adjusted R2 from the lm function: 

r2_fit_ff3r <- summary(fit_ibm_ff3)$r.squared  
adjr2_fit_ff3r <- summary(fit_ibm_ff3)$adj.r.squared.  ¶ 
 
 



Maximum Likelihood Estimation 
Idea: Assume a particular distribution with unknown parameters. Maximum likelihood (ML) 
estimation chooses the set of parameters that maximize the likelihood of drawing a particular 
sample. 
 
Example: Suppose we have a sample with 𝑁 realizations of a coin flip. The coin was flipped 
𝑁=100 times: 60 heads (H)  & 40 tails (T).  
 
We know the distribution of the RV 𝑋 = number of H & T from N coin flips. It follows a 
binomial distribution, with parameter 𝑝, the probability of a head. Then the probability of having 
𝑥 heads in 𝑁 trials is given by: 
   𝑃ሾ𝑋 ൌ 𝑥,  𝑁|𝑝 ሿ ൌ ൫ே௫൯𝑝

௫ሺ1 െ 𝑝ሻேି௫ 
MLE estimates 𝑝 as the probability that maximizes what we observed in our particular sample. In 
our case, our intuition suggests that the  MLE is 𝑝 = 0.60. 
 
To check our intuition that 𝑝 = 0.60, we compute 𝑃ሾ𝑋 ൌ 60,  𝑁 ൌ 100ሿ for different 𝑝: 
𝑝 = 0.50 𝑃ሾ𝑋 ൌ 60,  𝑁 ൌ 100|𝑝 ሿ ൌ ൫ଵ ൯. 50ሺ. 50ሻସ = 0.010844 

𝑝 = 0.55 𝑃ሾ𝑋 ൌ 60,  𝑁 ൌ 100|𝑝 ሿ ൌ ൫ଵ ൯. 55ሺ. 45ሻସ = 0.048803 

𝑝 = 0.60 𝑃ሾ𝑋 ൌ 60,  𝑁 ൌ 100 |𝑝ሿ ൌ ൫ଵ ൯. 60ሺ. 40ሻସ = 0.081219 

𝑝 = 0.65 𝑃ሾ𝑋 ൌ 60,  𝑁 ൌ 100|𝑝 ሿ ൌ ൫ଵ ൯. 65ሺ. 35ሻସ = 0.047392 

𝑝 = 0.70 𝑃ሾ𝑋 ൌ 60,  𝑁 ൌ 100|𝑝 ሿ ൌ ൫ଵ ൯. 70ሺ. 30ሻସ = 0.008491 
 
It checks! But, in general, it will be easier to find the 𝑝 that maximizes 𝑃ሾ𝑋 ൌ 𝑥,  𝑁|𝑝ሿ using 
calculus. That is, taking the 1st derivative of 𝑃ሾ𝑋 ൌ 𝑥,  𝑁|𝑝 ሿ with respect to 𝑝, set the first order 
condition and solve for 𝑝 (we get �̂�ொ = 𝑥/𝑁ሻ. ¶ 
 
Formally speaking, we form a function that describes the likelihood of observing the sample 
results. In the previous example, for 𝑋 = 𝑥:    

𝐿ሺ𝑋 ൌ 𝑥,  𝑁|𝑝ሻ ൌ ൬
𝑁
𝑘
൰ 𝑝௫ሺ1 െ 𝑝ሻேି௫ 

Then, we maximize 𝐿ሺ𝑋 ൌ 𝑥,𝑁|𝑝ሻ with respect to 𝑝.  
  
More general, let’s consider a sample (𝑋ଵ, 𝑋ଶ,... , 𝑋ே) which is drawn from a pdf f(X|θ), where θ 
are 𝑘 unknown parameters. If the 𝑋’s are independent with pdf 𝑓ሺ𝑋|𝜃ሻ, the joint probability for 
the whole sample is just: 
 
  𝐿ሺ𝑿|𝜃ሻ ൌ 𝑓ሺ𝑋ଵ, 𝑋ଶ,..., 𝑋ே|𝜃 ሻ= 𝑓ሺ𝑋ଵ|𝜃ሻ ∗ 𝑓ሺ𝑋ଶ|𝜃ሻ ∗ … ∗ 𝑓ሺ𝑋ே|𝜃ሻ 
 ൌ ∏ 𝑓ሺ𝑋|𝜃

ே
ୀଵ ሻ 

 
The function L(X| θ) –also written as L(X; θ)– is called the likelihood function. This function can 
be maximized with respect to θ to produce maximum likelihood estimates: 𝜃ொ. 
 
It is often convenient to work with the Log of the likelihood function. That is,   
  ln 𝐿ሺ𝑋|𝜃ሻ = ∑ ln 𝑓ሺ𝑋|𝜃ሻ

ே
ୀଵ  



 
Then, we maximize as usual: 
 

 1st-derivative ⇒ డ୪୬ሺ|ఏሻ 

డఏ
ൌ ∑ డ ୪୬ሺ|ఏሻ 

డఏ
ே
ୀଵ  = ∑ ᇱሺ|ఏሻ

ሺ|ఏሻ
ே
ୀଵ  

 f.o.c.  ⇒ డ୪୬ሺ|ఏಾಽಶሻ 

డఏ
ൌ  0 

 
Usually, the first order conditions are solved using numerical optimization. 
 
Example: Let the sample be X = {5, 6, 7, 8, 9, 10} drawn from a Normal(μ, 1).  The probability 
of each of these points based on the unknown mean, μ, can be written as: 
 

𝑓ሺ5|𝜇ሻ ൌ
1

√2𝜋
exp ቈെ

ሺ5 െ 𝜇ሻଶ

2
 

𝑓ሺ6|𝜇ሻ ൌ
1

√2𝜋
exp ቈെ

ሺ6 െ 𝜇ሻଶ

2
 

⋮ 

𝑓ሺ10|𝜇ሻ ൌ
1

√2𝜋
exp ቈെ

ሺ10 െ 𝜇ሻଶ

2
 

 
Assume that the sample is independent. Then, the joint pdf function can be written as:  
 
 𝐿ሺ𝑋|𝜇ሻ ൌ  𝑓ሺ5|𝜇ሻ *  𝑓ሺ6|𝜇ሻ * … * 𝑓ሺ10|𝜇ሻ 
 

   = 
ଵ

ሺଶగሻ
ల
మൗ
𝑒𝑥𝑝 ቂെ

ሺହିఓሻమ

ଶ
െ

ሺିఓሻమ

ଶ
െ ⋯െ

ሺଵିఓሻమ

ଶ
ቃ 

 
The value of m that maximizes the likelihood function of the sample can then be defined by  
  𝑚𝑎𝑥 

ఓ
𝐿ሺ𝑋|𝜇ሻ. 

It easier, however, to maximize the Log likelihood, ln L(X|μ). That is, 
 

𝑚𝑎𝑥
ఓ

𝑙𝑛൫𝐿ሺ𝑋|𝜇ሻ൯ൌ െ

ଶ
 𝑙𝑛 ሺ2𝜋ሻ  ቂെ

ሺହିఓሻమ

ଶ
െ

ሺିఓሻమ

ଶ
െ ⋯െ

ሺଵିఓሻమ

ଶ
ቃ 

 

1st-derivative  ⇒ డ

డఓ
ቂ𝐾 െ

ሺହିఓሻమ

ଶ
െ

ሺିఓሻమ

ଶ
െ ⋯െ

ሺଵିఓሻమ

ଶ
ቃ 

 
f.o.c.    ሺ5 െ �̂�ொሻ  ሺ6 െ �̂�ொሻ  ⋯ ሺ10 െ �̂�ொሻ ൌ 0 
 
Solving for μො: 

    �̂�ொ ൌ  
5  6  7  8  9  10

6
 ൌ  7.5 ൌ 𝑥

_
 

 
Note: The MLE estimator μො is equal to the sample mean. This is good for the sample mean: 
MLE has very good properties! ¶ 
 



 
The ML estimation approach is very general. In the context of the CLM, we need a model (A1) 
and a pdf for the errors, for example, normality, to apply ML. Now, if the model is not correctly 
specified, the estimates are sensitive to misspecification. 
 
A lot of applications in finance and economics: Time series, volatility (GARCH and stochastic 
volatility) models, factor models of the term structure, switching models, option pricing, logistic 
models (mergers and acquisitions, default, etc.), trading models, etc. 
 
In general, we rely on numerical optimization to get MLEs. 
 
 
Maximum Likelihood Estimation: Properties 
ML estimators (MLE) have very appealing properties: 
 
(1) Efficiency. Under general conditions, they achieve lowest possible variance for an estimator.  
 
(2) Consistency. As the sample size increases, the MLE converges to the population parameter it 
is estimating: 

    𝜃ொ

→ θ 

(3) Asymptotic Normality: As the sample size increases, the distribution of the MLE converges to 
the normal distribution.  

   𝜃ொ  
  
ሱ⎯⎯ሮ  𝑁ሺ𝜃, ሾ𝑛𝐈ሺ𝜃ሻሿିଵሻ 

where I(θ) is the information matrix: 

   𝐸 ቀడ ୪୭
డఏ

ቁ ቀడ ୪୭
డఏ

ቁ

൨ ൌ 𝐼ሺ𝜃ሻ  (kxk matrix) 

   SE[𝜃ொ, |X] = sqrt{diagሺሾ𝐈ሺ𝜃|𝑋ሻିଵሿሻሽ 
 
(4) Invariance. The ML estimate is invariant under functional transformations. That is, if  𝜃𝑀𝐿𝐸 
is the MLE of θ and if g(θ) is a function of θ, then g(𝜃𝑀𝐿𝐸) is the MLE of g(θ).  
 
(5) Sufficiency. If a single sufficient statistic exists for θ, the MLE of θ must be a function of it. 
That is, 𝜃ொ depends on the sample observations only through the value of a sufficient statistic.  
 
 
Maximum Likelihood Estimation: Numerical Optimization 
We have a function 𝑓ሺ𝑋|θሻ ൌ  ln L(X|θ), with 𝑘 unknown parameters. We use numerical 
optimization to estimate θ. Numerical optimization are methods that search over the parameter 
space of θ looking for the values that optimize –i.e., maximize or minimize– the function 𝑓ሺ𝑋|θሻ.  
 
In R, the functions optim & nlm do numerical optimization. Both minimize any non-linear 
function 𝑓ሺ𝑋|θሻ. Recall that max 𝑓ሺ𝑋|θሻ = min - 𝑓ሺ𝑋|θሻ. Then, in practice, we numerically 
minimize the negative of the likelihood function, or  ln L(X|θ) * (-1).   
 
Example: In Example I above, we numerically minimize ln L(X|μ) * (-1).  ¶ 



 
Most common optimization algorithms are based on the Newton-Raphson method (N-R). It is 
an iterative algorithm:  
- At iteration 𝑗  1, based on information from the previous iteration 𝑗, N-R update the estimate 
of 𝜽.  
- N-R stops when the values of 𝜽 at 𝑗 is similar to the value at 𝑗 െ 1. 
 
In our ML case, at iteration 𝑗  1, N-R computes 𝜽ାଵ (or updates 𝜽) based on 𝜽 plus an 
update. The update is based on the first and second derivatives of ln 𝐿ሺ𝑋|𝜽ሻ.  
 
• NR’s 𝑗  1 iteration:    

 𝜽ାଵ= 𝜽 – A
ିଵ ∗ 𝝏𝒍𝒏𝑳

𝝏θ
|  (= 𝜽 + update ) 

𝝏𝒍𝒏𝑳

𝝏θ
| = (𝑘x1) Vector of 1st derivatives of ln 𝐿ሺ𝑋|𝜽ሻ, evaluated at iteration 𝑗, with parameter 𝜽.  

A  = (𝑘x𝑘) Matrix of 2nd derivatives of  ln 𝐿, evaluated at 𝜽.  
 
Note: At iteration 𝑗 = 1, we input initial values for 𝜽ୀ, called 𝜽, which we use to compute A 

and  
𝝏𝒍𝒏𝑳

𝝏θ
|. 

 
The vector of first derivatives of 𝑙𝑛 𝐿 is called the Score. The matrix of second derivatives is 
called the Hessian. 
 
• To run optim or nlm, we need to specify:  
 - Initial values for the parameters, θ0.  
 - Function to be minimized (in Example I, ln L(X|μ) * (-1)). 
 - Data used.  
 - Other optional inputs: Choice of method, hessian calculated, etc. 
 
• More on this topic in Lecture 10. 
 

Maximum Likelihood Estimation: Estimating μ & 𝝈𝟐 from a Normal Sample 
Now, we generalize the previous example to an i.i.d. sample X = {X1, X2,..., XT} drawn from a 
Normal(μ, σ2). Then, the joint pdf function is: 

 𝐿ሺ𝑋|𝜇ሻ ൌ
ଵ

ሺଶగఙమሻష

మൗ

exp ቂെ
ሺ௫భି ఓሻమ

ଶఙమ
െ

ሺ௫మି ఓሻమ

ଶఙమ
െ ⋯െ

ሺ௫ିఓሻమ

ଶఙమ
ቃ   

Then, taking logs, we have: 

ln 𝐿 ൌ െ
𝑇
2

ln ሺ2𝜋𝜎ଶሻ െ
1

2𝜎ଶ
ሺ𝑋 െ 𝜇ሻଶ ൌ

்

ୀଵ

െ
𝑇
2

ln 2𝜋 െ
𝑇
2

ln𝜎ଶ െ
1

2𝜎ଶ
ሺ𝑿 െ 𝜇ሻᇱሺ𝑿 െ 𝜇ሻ 

 
Then, taking logs, we have: 

 ln 𝐿 ൌ െ
்

ଶ
lnሺ2𝜋𝜎ଶሻ െ

∑ ሺ௫ିఓሻమ

సభ

ଶఙమ
  ൌ െ

்

ଶ
ln 2𝜋 െ

்

ଶ
ln𝜎ଶ െ

ሺିఓሻᇲሺିఓሻ 

ଶఙమ
 

 
Taking first derivatives: 



 
డ ୪୬ 

డఓ
ൌ െ

∑ ଶሺ௫ିఓሻሺିଵሻ

సభ

ଶఙమ
ൌ

∑ ሺ௫ିఓሻ

సభ

ఙమ
 

 
డ ୪୬

డఙమ
ൌ െ ்

ଶఙమ


∑ ሺ௫ିఓሻమ

సభ

ଶఙర
 

 
We can write the first derivatives as a vector, the gradient, whose length is the number of 
unknown parameters in the likelihood –i.e., size of 𝜃. In this case, a 2x2 vector: 

 
డ ୪୬ 

డఏ
ൌ 

డ ୪୬ 

డఓ
డ ୪୬

డఙమ

 = 

∑ ሺ௫ିఓሻ

సభ

ఙమ

െ ்

ଶఙమ


∑ ሺ௫ିఓሻమ

సభ

ଶఙర

 

 
In the case of a log likelihood function, the vector of first derivatives is called the Score. 
 
When we set the Score equal to 0, we have the set of first order conditions (f.o.c.).Then, we have 
the f.o.c. and jointly solve for the ML estimators: 

 ሺ1ሻ 
𝜕 ln 𝐿
𝜕𝜇

ൌ
ଵ

ఙෝಾಽಶ
మ ∑ ሺ𝑋 െ �̂�ொሻ

்
ୀଵ ൌ 0 ⇒ �̂�ொ ൌ

ଵ

்
∑ 𝑋
்
ୀଵ ൌ 𝑋ሜ  

 
Note: The MLE of μ is the sample mean. Therefore, it is unbiased. 
 

 ሺ2ሻ 
డ ୪୬

డఙమ
ൌ െ

்

ଶఙෝಾಽಶ
మ 

ଵ

ଶఙෝಾಽಶ
ర ∑ ሺ𝑋 െ �̂�ொሻଶ

்
ୀଵ ൌ 0  

   ⇒ 𝜎ොொ
ଶ ൌ ଵ

்
∑ ሺ𝑋 െ 𝑋ሜሻଶ்
ୀଵ  

 
Note: The MLE of σ2 is not s2. Therefore, it is biased! But, it is consistent. 
 

Example: Using X = {5, 6, 7, 8, 9, 10}, now drawn from a Normal(μ, 𝜎ଶ).  

  �̂�ொ ൌ 𝑋ሜ  = 7.5 

  𝜎ොொ
ଶ ൌ

∑ ሺ௫ ି𝟕.𝟓ሻమల
సభ


ൌ 

ଵ.ହ


 = 2.916667 

  𝜎ොொ = sqrt(2.916667) = 1.707825 

Note 1: s2 = 
ଵ.ହ

ሺିଵሻ
 = 3.5 

Note 2: The computation of MLE for the mean parameter �̂�ொ is independent of the 
computation of the MLE for the variance 𝜎ොொ

ଶ .  ¶ 
 
• To obtain the variance of  𝜃ொ = [�̂�ொ ,𝜎ොொ

ଶ ሿ we invert the information matrix for the whole 
sample 𝐈ሺ𝜃|𝑋ሻ. Recall,   

  𝜃ொ  
  
ሱ⎯⎯ሮ  𝑁ሺ𝜃,  𝐈ሺ𝜃|𝑋ሻିଵሻ  

where 𝐈ሺ𝜃|𝑋) is the Information matrix for the whole sample. It is generally calculated as: 



  𝐸 ቂെ ቀడ
మ ୪୬ሺఏ|ሻ

డఏడఏᇱ
ቁቃ ൌ 𝐼ሺ𝜃|𝑋ሻ,  (kxk matrix) 

where the matrix of second derivatives is the Hessian matrix, H: 

  
డమ ୪୬ ሺఏ|ሻ

డఏడఏᇱ
 = H   (kxk matrix) 

 
The inverse of the Hessian gives the variance of the MLE estimator:  
  Var(𝜃ொ) = 𝐸ሾെ 𝐇ሿ-1 = 𝐼ሺ𝜃ሻ-1 (kxk matrix) 
 
In practice, we use numerical optimization packages (say, nlm in R), which minimize a function. 
Thus, we minimize the negative log 𝐿ሺ𝜃|𝑋ሻ and, thus, to get Var[𝜃ொ] we do not need to 
multiply H by (-1). 
 
Then, MLE standard error of parameter 𝑘 is given by:  
   SE[𝜃ொ, |X] = sqrt{diagሺሾHିଵሿሻሽ 
 

Example: For X = {5, 6, 7, 8, 9, 10} ~ N(μ, 𝜎ଶ), code to get MLEs.  

mu <- 0    # assumed mean (initial value) 

sig <- 1    # assumed sd (initial value) 

x_6 <- c(5, 6, 7, 8, 9, 10) 

# Step 1 - Create Likelihood function 
likelihood_lf <- function(x){  # Create a prob function with mu & sig as arguments 
mu <- x[1] 
sig <- x[2] 
sum(log(dnorm(x_6, mu, sd=sig))) 
} 
negative_likelihood_lf <- function(x){   # R uses a minimization algorithm, change sign 
mu <- x[1] 
sig <- x[2] 
sum(log(dnorm(x_6, mu, sd=sig))) * (-1) 
} 
negative_likelihood_lf(x) 
 

# Step 2 - Maximize Log Likelihood function (or Minimize negative Likelihood function) 
results_lf <- nlm(negative_likelihood_lf, x, stepmax=4)   # nlm minimizes the function 
> results_lf     # displays nlm results 
$minimum 
[1] 11.72496    <=  Minimized value of function  
$estimate 
[1] 7.500000 1.707825   <= MLEs for μ & σ2 (=�̂�ொ & 𝜎ොொ

ଶ ) 
$gradient 
[1] -1.846772e-07 -7.986103e-08 <= ൎ  0 if we’re at a minimum 
$code   
[1] 1     <= ൌ 1 if we program  stopped at a minimum 



$iterations 
[1] 34     <= Number of iterations 
 
par_max <- results_lf$estimate # Extract estimates 
> par_max    # Should be equal to sample mean 
[1] 7.500000 1.707825 
> likelihood_lf(par_max)  # Check max value of likelihood function 
[1] -11.72496 

 

# Step 3 – Standard Errors (by inverting the Hessian) 
results_lf <- nlm(negative_likelihood_lf, x, stepmax=4 , hessian=TRUE) 
 
par_hess <- results_lf$hessian # Extract Hessian 
> par_hess     # Show Hessian 

 [,1]          [,2] 

[1,]  2.0571428731 -0.0009030531 

[2,] -0.0009030531  4.1122292411 

 
cov_lf <- solve(coeff_hess)   # invert Hessian to get cov(MLEs) 
> cov_lf     # Show covariance matrix 
 [,1]         [,2] 
[1,] 0.4861111542 0.0001067509 
[2,] 0.0001067509 0.2431771280 
 
se_lf <- sqrt(diag(cov_lf))  # Compute standard errors of MLEs 
>se_lf 
[1] 0.6972167 0.4931299 
 
# t-tests 
> par_max[1]/se_lf[1]   # t-ratio for mu 
[1] 10.75706 
par_max[2]/se_lf[2]   # t-ratio for sigma2 
[1] 3.463236. ¶ 
 
 
Maximum Likelihood Estimation: Linear Model Example  
We will work the previous example with matrix notation. Suppose we assume:  

𝑦 ൌ 𝒙′𝜷  𝜀, 𝜀 ~ 𝑁ሺ0,𝜎ଶሻ 
or 𝒚 ൌ 𝑿𝜷  𝜺,  𝜺 ~ 𝑁ሺ0,𝜎ଶ𝐼்ሻ 
 
where xi is a kx1 vector of exogenous numbers and β is a kx1 vector of unknown parameters. 
Then, the joint likelihood function becomes: 

𝐿 ൌ ∏ ଵ

√ଶగఙమ
𝑒𝑥𝑝 ቀെ

ఌ
మ

ଶఙమ
ቁ்

ୀଵ ൌ ሺ2𝜋𝜎ଶሻି்/ଶ ∏ 𝑒𝑥𝑝 ቀെ
ఌ
మ

ଶఙమ
ቁ்
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Taking logs, we have the log likelihood function:  

ln 𝐿 ൌ െ
𝑇
2

ln 2𝜋𝜎ଶ െ
1

2𝜎ଶ
𝜀
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ୀଵ

െ
𝑇
2

ln 2𝜋𝜎ଶ െ
1

2𝜎ଶ
ሺ𝒚 െ 𝑿𝜷ሻᇱሺ𝒚 െ 𝑿𝜷ሻ 

 
The joint likelihood function becomes:  

 ln 𝐿 ൌ െ
்

ଶ
ln 2𝜋𝜎ଶ െ

ଵ

ଶఙమ
∑ 𝜀

ଶ ൌ்
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ଶ
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்

ଶ
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ଵ

ଶఙమ
ሺ𝑦 െ 𝑋𝛽ሻᇱሺ𝑦 െ 𝑋𝛽ሻ 

 
We take first derivatives of the log likelihood w.r.t. β and σ2:  
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்
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1
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𝜀′𝜀
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Using the f.o.c., we jointly estimate β and σ2: 

𝜕 ln 𝐿
𝜕𝛽

ൌ െ
1
𝜎ଶ

𝑿′𝜺 ൌ
1
𝜎ଶ
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Under (A5) –i.e., normality for the errors–, we have that 𝜷𝑀𝐿𝐸ൌ b. 
This is a good result for OLS b. ML estimators have very good properties: Efficiency, 
consistency, asymptotic normality and invariance.  
 
𝜎ොொ
ଶ  is biased, but given that it is an ML estimator, it is efficient, consistent and asymptotically 

normally distributed. 
 

Example: We estimate the 3 F-F factor model for IBM. 

SFX_da <- 
read.csv("https://www.bauer.uh.edu/rsusmel/4397/Stocks_FX_1973.csv",head=TRUE,sep=",") 
x_ibm <- SFX_da$IBM 
x_Mkt_RF<- SFX_da$Mkt_RF 
x_SMB <- SFX_da$SMB 
x_HML <- SFX_da$HML 
x_RF <- SFX_da$RF 
T <- length(x_ibm) 
lr_ibm <- log(x_pfe[-1]/x_pfe[-T]) 
x0 <- matrix(1,T-1,1) 
 Mkt_RF <- x_Mkt_RF[-1]/100 



 SMB <- x_SMB[-1]/100 
 HML <- x_HML[-1]/100 
 RF <- x_RF[-1]/100 
ibm_x <- lr_ibm - RF 
X <- cbind(x0, Mkt_RF, SMB, HML) 

 

# Step 1 - Negative Likelihood function  
likelihood_lf <- function(theta, y ,X) { 
N <- nrow(X) 
k <- ncol(X) 
beta <- theta[1:k] 
sigma2 <- theta[k+1]^2 
e <- y - X%*%beta 
logl <- -.5*N*log(2*pi)-.5*N*log(sigma2)- ((t(e)%*%e)/(2*sigma2)) 
return(-logl) 
} 
theta <- c(0,1,1,1,.1)    # initial values 

likelihood_lf(theta,ibm_x,X) 

  [,1] 

[1,] -599.0825 

 

# Step 2 - Maximize (or Minimize negative Likelihood function) 

results_lf <- nlm(likelihood_lf, theta, hessian=TRUE, y=ibm_x, X=X)  # nlm minimizes l_f 
par_max <- results_lf$estimate   # Extract estimates 
> par_max      # Should be equal to OLS results 
[1] -0.0005907974  0.8676052091 -0.6815947799 -0.2284249895  0.0557422421 
> likelihood_lf(par_max,ibm_x,X)   # Check max value of likelihood function 
 [,1] 
[1,] -835.3316 
 
# Compare with OLS results 
fit_ibm_ff3 <- lm(ibm_x ~ Mkt_RF + SMB + HML) 
> summary(fit_ibm_ff3)  

Coefficients: 

 Estimate  Std. Error  t value  Pr(>|t|)     

(Intercept)  -0.0005903 0.0023793   -0.248   0.80416     

Mkt_RF    0.8676042 0.0542554   15.991   < 2e-16 *** 

SMB -0.6815950 0.0804542   -8.472   < 2e-16 *** 

HML -0.2284263 0.0809992   -2.820   0.00497 **  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 



 
 
Maximum Likelihood Estimation: Score and Information Matrix 
Definition: Score (or efficient score) 
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S(X; θ) is called the score of the sample. It is the vector of partial derivatives (the gradient), with 
respect to the parameter θ. If we have k parameters, the score will have a kx1 dimension. 
  
Definition: Fisher information for a single parameter for observation i: 

  𝐸 ቀడ ୪୭ሺሺ௫|ఏሻሻ
డఏ

ቁ
ଶ
൨ ൌ 𝐼ሺ𝜃ሻ 

I(θ) is sometimes just called information. It measures the shape of the log f(X|θ).  
 
The concept of information can be generalized for the k-parameter case. In this case, for the 
whole sample: 
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This is kxk matrix. 
 
If L is twice differentiable with respect to θ, and under certain regularity conditions, then the 
information may also be written as 
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I(θ) is called the information matrix (negative Hessian). It measures the shape of the likelihood 
function.  
 
• The inverse of the information matrix for the whole sample is the Variance of 𝜃ொ. That is, 
  Var(𝜃ொ) = 𝐼ሺ𝜃ሻ-1 
 
Sometimes, the notation for the information matrix for the whole sample is 𝐼ሺ𝜃|𝑋ሻ. 
 
Remark: In practice, we use the inverse of the Hessian, evaluated at 𝜃ொ, as the estimator of the 
variance. R calculates the Hessian in all optimization packages (for example, nlm or optim). In 
the previous example, we extracted the Hessian from the nlm function with 
 coeff_hess <- results_lf$hessian  # Extract Hessian 
 
Example: We assume: 
  𝒚 ൌ 𝑿𝜷  𝜺,  𝜺 ~ 𝑁ሺ0,𝜎ଶ𝐼்ሻ 
 
Taking logs, we have the log likelihood function: 
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The score function is –first derivatives of log L w.r.t.  θ = (β, σ2): 
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Then, we take second derivatives to calculate I(θ): 
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Using linear algebra notation: 
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   a (k+1)x(k+1) matrix.   

 
To get SE for 𝜃ொ, we invert the (𝑘+1)x(𝑘+1) information matrix. 
 
Technical Note: The information matrix is block-diagonal, the inverse is the inverse of the 
diagonal blocks. Then, 
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Then, 
 Var[𝜷ொ] = 𝜎ොொ

ଶ  ሺ𝑿ᇱ𝑿ሻ ିଵ 
 Var[𝜎ොொ

ଶ ] = 2 𝜎ොொ
ସ /T. ¶ 

 

Example: We continue the previous IBM example, computing MLE SEs for linear model 

 

# Step 3 - Compute S.E. by inverting Hessian 
par_hess <- results_lf$hessian   # Extract Hessian 
> par_hess       # Show Hessian matrix 



  [,1]         [,2]         [,3]          [,4]          [,5] 
[1,] 183123.2131 1034.3403801 300.5280632 452.9161743 -3.243494e+02 
[2,]   1034.3404  390.1995683  71.3131499 -55.6126338 -6.913297e-01 
[3,]    300.5281   71.3131499 170.5839168 -26.9486009 -3.023956e-01 
[4,]    452.9162  -55.6126338 -26.9486009 165.2938181 -2.928687e-01 
[5,]   -324.3494   -0.6913297  -0.3023956  -0.2928687  3.629895e+05 

 
cov_lf <- solve(par_hess)    # invert Hessian to get covariance 
se_lf <- sqrt(diag(cov_lf))   # Compute standard errors (compare with OLS SE) 
> se_lf 
[1] 0.002370939 0.054063912 0.080170161 0.080713227 0.001659791 

 
# We can do testing. For example, H0: Beta = 1. 
> (par_max[2] -1)/se_lf[2]   # t-test for H0: beta=1 
[1] -2.448857 
 
 
• Summary: OLS vs MLE 
 

 
OLS MLE 

 
Coefficients S.E. Coefficients S.E. 

Intercept -0.00509 0.00238 -0.00509 0.00237 

Mkt_RF 0.86761 0.05425 0.86761 0.05406 

SMB  -0.68159 0.08045 -0.68159 0.08017 

HML -0.22842 0.08100 -0.22842 0.08071 

 
Conclusion: Same coefficients as expected. Very similar results for the S.E. ¶ 
 
 
Data Problems 
“If the data were perfect, collected from well-designed randomized experiments, there would 
hardly be room for a separate field of econometrics.” Zvi Griliches (1986, Handbook of 
Econometrics)  
 
Three important data problems: 
(1) Missing Data – very common, especially in cross sections and long panels.  
(2) Outliers - unusually high/low observations.  
(3) Multicollinearity - there is perfect or high correlation in the explanatory variables.  
 



• In general, data problems are exogenous to the researcher. We cannot change the data or collect 
more data. 
 
 
Missing Data 
General Setup 
We have an indicator variable, si. If si = 1, we observe Yi, and if si = 0 we do not observe Yi. 
 
Note: We always observe the missing data indicator si.  
 
Suppose we are interested in the population mean 𝜃 = E[Y]. 
 
With a lot of information -large T-, we can learn p = E[s] and 𝜇ଵ = E[Y| s = 1], but nothing 
about 𝜇 = E[Y|s = 0].  
 
We can write: 𝜃 = p ∗ 𝜇ଵ +(1 − p) ∗ 𝜇. 
Problem: Even in large samples we learn nothing about 𝜇. Without additional information 
and/or assumptions there is no much we can say about 𝜃. 
 
Now, suppose the variable of interest is binary: Yi ∈ {0, 1}. We also have an explanatory variable 
of Yi, say Wi. 
 
Then, the natural (not data-informed) lower and upper bounds for 𝜇 are 0 and 1 respectively. 
This implies bounds on 𝜃: 
  𝜃 ∈ [𝜃LB, 𝜃UB] = [p ∗ 𝜇ଵ,  p ∗ 𝜇ଵ +(1 − p) ∗ 𝜇]. 
 
These bounds are sharp, in the sense that without additional information we cannot improve on 
them. 
 
If from variable W we can infer something about the missing  values, these bounds can be 
improved. 
 
 
Missing Data – CLM 
Now, suppose we have the CLM: 𝑦 = 𝒙 ′  +  
 
We use the selection indicator, s, where s = 1 if we can use observation 𝑖. After some algebra 
we get, 
  b =   + (∑ s 𝒙 ' 𝒙

்
ୀଵ /T)-1 (∑ s 𝒙 '்

ୀଵ /T) 
 
• For unbiased (and consistent) results, we need E[s 𝒙 ′ ] = 0,  
implied by  E[| s 𝒙 ′ ] = 0 (*) 
 
In general, we find that when si = h( 𝒙), that is, the selection is a function of  𝒙, we have an 
inconsistent OLS b. This situation is called selection bias. 
 



Example of Selection Bias: Determinants of Hedging. 
A researcher only observes companies that hedge. Estimating the determinants of hedging from 
this population will bias the results! ¶ 
 
If missing observations are randomly (exogenously) “selected,” it is likely safe to ignore 
problem. Rubin (1976) calls this assumption “missing completely at random” (or MCAR). 
 
In general, MCAR is rare. In general, it is more common to see “missing at random,” where 
missing data depends on observables (say, education, sex) but one item for individual i is NA 
(Not Available).  
 
If in the regression we “control” for the observables that influence missing data (not easy), it is 
OK to delete the whole observation for i. 
 
 
Missing Data – Usual Solutions 
Otherwise, we can: 
a. Fill in the blanks –i.e., impute values to the missing data- with averages, interpolations, or 
values derived from a model.  
 
b. Use (inverse) probability weighted estimation. Here, we inflate or “over-weight” 
unrepresented subjects or observations.  
 
c. Heckman selection correction. We build a model for the selection function, h(xi). 
 
 
Outliers  
Many definitions: Atypical observations, extreme values, conditional unusual values, 
observations outside the expected relation, etc.  
 
In general, we call an outlier an observation that is numerically different from the data. But, is 
this observation a “mistake,” say a result of measurement error, or part of the (heavy-tailed) 
distribution? 
 
In the case of normally distributed data, roughly 1 in 370 data points will deviate from the mean 
by 3*SD. Suppose  T=1,000 and we see 9 data points deviating from the mean by more than 
3*SD indicates outliers. We expect 3 data points to deviate by more than 3*SD. Which of the 9 
observations can be classified as an outlier? 
 
Problem with outliers: They can affect estimates. For example, with small data sets, one big 
outlier can seriously affect OLS estimates. 
 
 
Outliers: Identification 
• Informal identification method: 
- Eyeball: Look at the observations away from a scatter plot. 



 
Example: Plot residuals for the 3 FF factor model for IBM returns 
e_ibm <- residuals(fit_ibm_ff3) # Extract IBM residuals from FF regression fit_ibm_ff3. 
plot(e_ibm, type ="l", col="blue", main ="IBM Residuals from 3 FF Factor Model", 
xlab="Date", ylab="IBM residuals") 
 
  

Outliers? 



• Formal identifications methods: 
- Standardized residuals, ei/SD(ei):  Check for errors that are 2*SD (or more) away from the 
expected value. 
 
- Leverage statistics: It measures the difference of an independent data point from its mean. High 
leverage observations can be potential outliers. Leverage is measured by the diagonal values of 
the P matrix: 
   ht = 1/T + (xt – ¤𝑥�)/[(T – 1)sx

2 ]. 
 
 
• Formal identifications methods: 
- Standardized residuals, ei/SD(ei):  Check for errors that are 2*SD (or more) away from the 
expected value. 
 
Example: Plot standardized residuals for IBM residuals 
x_stand_resid <- e_ibm /sd(e_ibm)   # standardized residuals 
plot(x_stand_resid, type ="l", col="blue", main ="IBM Standardized Residuals from 3 FF Factor 
Model", xlab="Date", ylab="IBM residuals") 
 

 
 
 
- Leverage statistic: It measures the difference of an independent data point from its mean. High 
leverage observations can be potential outliers. Leverage is measured by the diagonal values of 
the P matrix: 
   ht = 1/T + (xt – �̄�)/[(T – 1)sx

2 ]. 
But, an observation can have high leverage, but no influence. 
 
- Influence statistic: Dif beta. It measures how much an observation influences a parameter 
estimate, say bj. Dif beta is calculated by removing an observation, say i, recalculating bj, say bj(-
i), taking the difference in betas and standardizing it. Then,   
   Dif betaj(-i) = [bj – bj(-i)]/SE[bj]. 
 

Outliers? 



- Influence statistic: Distance D (as in Cook’s D). It measures the effect of deleting an 
observation on the fitted values, say ŷj.  
   Dj = Σj [ŷj – ŷj(-i)]/[k * MSE], 
where k is the number of parameters in the model and MSE is mean square error of the 
regression model ((MSE=RSS/T).. 
 
The identification statistics are usually compared to some ad-hoc cut-off values. For example, for 
Cook’s D, if Di > 4/T  observation i is considered a (potential) highly influential point. 
 
The analysis can also be carried out for groups of observations. In this case, we would be looking 
for blocks of highly influential observations. 
 
 
Outlier Identification: Leverage & Influence 
 

 
 
Deleting the observation in the upper right corner has a clear effect on the regression line. This 
observation has leverage and influence. 
 
 
Outliers: Summary of Rules of Thumb 
General rules of thumb (ad-hoc thresholds) used to identify outliers: 
  
Measure  Value 
abs(stand resid) > 2 
leverage  > (2k+2)/T 
abs(Dif Beta)  > 2/sqrt(T) 
Cook's D  > 4/T 
 
In general, if we have 5% or less observations exceeding the ad-hoc thresholds, we tend to think 
that the data is OK. 
 



Example: Cook’s D for IBM returns using the 3 FF Factor Model 
y <- ibm_x  
x <- cbind(x0, Mkt_RF, SMB, HML) 
dat_xy <- data.frame(y, x) 
fit_ibm_ff3 <- lm(y ~ x - 1) 
cooksd <- cooks.distance(fit_ibm_ff3) 
# plot cook's distance 
plot(cooksd, pch="*", cex=2, main="Influential Obs by Cooks distance")  
# add cutoff line 
abline(h = 4*mean(cooksd, na.rm=T), col="red")  # add cutoff line 
# add labels 
text(x=1:length(cooksd)+1, y=cooksd, labels=ifelse(cooksd>4*mean(cooksd, na.rm=T), 
names(cooksd),""), col="red")  # add labels 
 
 # influential row numbers 
influential <- as.numeric(names(cooksd)[(cooksd > 4*mean(cooksd, na.rm=T))])   
 # print first 10 influential observations. 
head(dat_xy[influential, ], n=10L) 
 

 
 
> # print first 10 influential observations. 
>head(dat_xy[influential, ],n=10L)  
 
  V1   Mkt_RF     SMB     HML 
8   -0.16095068  1  0.0475  0.0294  0.0219 
94   0.01266444  1  0.0959 -0.0345 -0.0835 
227 -0.04237227  1  0.1084 -0.0224 -0.0403 
237 -0.19083575  1  0.0102  0.0205 -0.0210 
239 -0.30648638  1  0.0153  0.0164  0.0252 
282  0.07787100  1 -0.0597 -0.0383  0.0445 
286  0.20734626  1  0.0625 -0.0389  0.0117 
291  0.15218986  1  0.0404 -0.0565 -0.0006 
306  0.13928315  1 -0.0246 -0.0512 -0.0096 
315  0.16196934  1  0.0433  0.0400  0.0253 



 
Note: There are easier ways to plot Cook’s D and identify the suspect outliers. The package olsrr 
can be used for this purpose too. ¶ 
 
Example: Different tools to check for outliers for residual in the FF model for IBM returns. 
We will use the package olsrr --install it with install.packages(). 
install.packages(“olsrr”)  
 
library(olsrr)      # need to install package olsrr 
e_ibm <- residuals(fit_ibm_ff3) 
x_stand_resid <- e_ibm /sd(e_ibm)    # standardized residuals 
sum(x_stand_resid > 2)    # Rule of thumb count (5% count is OK) 
x_lev <- ols_leverage(fit_ibm_ff3)   # leverage residuals 
sum(x_lev > (2*k+2)/T)     # Rule of thumb count (5% count is OK) 
sum(cooksd > 4/T)     # Rule of thumb count (5% count is OK) 
ols_plot_resid_stand(fit_ibm_ff3)   # Plot standardized residuals  
ols_plot_cooksd_bar(fit_ibm_ff3)    # Plot Cook’s D measure 
ols_plot_dfbetas(fit_ibm_ff3)    # Plot Difference in betas 
 
> sum(x_stand_resid > 2) 
[1] 13     # 5%? = 13/569 = 0.0228 
> sum(x_lev > (2*k+2)/T)   
[1] 32     # 5%? = 32/569 = 0.0562 
> sum(cooksd > 4/T) 
[1] 38    # 5%? = 38/569 = 0.0668 
 
>ols_plot_resid_stand(fit_ibm_ff3)   # Plot Standardize residuals 

 
 
>ols_plot_cooksd_bar(fit_ibm_ff3)   # Plot Cook’s D measure 



 
>ols_plot_dfbetas(fit_ibm_ff3) 

 
 
 
Conclusion: Using standardized residuals, we get some evidence of outliers.  
 
 
Outliers: What to Do? 
Typical solutions:  
- Use a non-linear formulation or apply a transformation (log, square root, etc.) to the data. 
- Remove suspected observations. (Sometimes, there are theoretical reasons to remove suspect 
observations. Typical procedure in finance: remove public utilities or financial firms from the 
analysis.) 
- Winsorization of the data (cut an α% of the highest and lowest observations of the sample). 
- Use dummy variables.  



- Use LAD (quantile) regressions, which are less sensitive to outliers. 
- Weight observations by size of residuals or variance (robust estimation). 
 
General rule: Present results with or without outliers. 
 
 
Multicollinearity 
The X matrix is singular (perfect collinearity) or near singular  (multicollinearity). 
- Perfect collinearity  
Not much we can do. OLS will not work  X'X cannot be inverted. The model needs to be 
reformulated. 
 
- Multicollinearity.   
OLS will work.  is still unbiased.  The problem is in (X'X)-1; that is, in the Var[b|X]. Let’s see 
the effect on the variance of particular coefficient, bk.  
 
Recall the estimated Var[bk|X] is the kth diagonal element of 2(X’X)-1. 
 
Let define R2

k. as the R2 in the regression of xk on the other regressors, X(-k). Then, we can show 
the estimated Var[bk|X] is 

  Var[bk|X] = 
௦మ

ൣሺଵିோೖ.
మ ሻ∑ ሺ௫ೖି௫ೖ
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. 
 
  the higher R2

k. –i.e., the fit between xk and the rest of the regressors–, the higher Var[bk|X].   
 
 
Multicollinearity: Signs 
Signs of Multicollinearity: 
 - Small changes in X produce wild swings in b. 
 - High R2, but b has low t-stats –i.e., high standard errors 
 - “Wrong signs” or difficult to believe magnitudes in b. 
 
There is no cure for collinearity.  Estimating something else is not helpful (transforming 
regressors, principal components, etc.). 
 
There are “measures” of multicollinearity, such as the  
 - K# = Condition number  = max(singular value)/min(singular value)  
 - Variance inflation factor  = VIFk = 1/(1 - R2

k.).  
 
Rule of thumb for Condition number: If K# > 30 such matrix cannot be inverted reliably. Thus, 
X shows severe multicollinearity. 
 
 
Multicollinearity: VIF and Condition Index 



Belsley (1991) proposes to calculate the VIF and the condition number, using RX, the correlation 
matrix of the standardized regressors: 
 VIFk = diag(RX

-1)k 

 Condition Index = κk = sqrt(λ1/ λk) 
where λ1> λ2 > ... > λp > ... are the ordered eigenvalues of RX. 
 
Belsley’s (1991) rules of thumb for κk: 
 - below 10   ⇒ good 
 - from 10 to 30   ⇒ concern  
 - greater than 30   ⇒ trouble  
 - greater than 100   ⇒ disaster. 
 
Another common rule of thumb: If VIFk > 5, concern.  
 
Best approach: Recognize the problem and understand its implications for estimation. 
 
Note: Unless we are very lucky, some degree of multicollinearity will always exist in the data. 
The issue is: when does it become a problem?  
 
 
Multicollinearity: Example 
Example: Check for multicollinearity for IBM returns 3-factor model 
library(olsrr) 
ols_vif_tol(fit_ibm_ff3) 
ols_eigen_cindex(fit_ibm_ff3) 
 
> ols_vif_tol(fit_ibm_ff3) 
  Variables  Tolerance      VIF 
1   xMkt_RF  0.8901229 1.123440 
2   xSMB  0.9147320 1.093216 
3   xHML  0.9349904 1.069530 
 
> ols_eigen_cindex(fit_ibm_ff3) 
 
  Eigenvalue Condition Index  intercept     xMkt_RF        xSMB   xHML 
1  1.4506645 1.000000 0.01557614 0.24313961 0.212001760 0.1518949 
2  1.0692689     1.164770 0.66799183 0.01432250 0.001789253 0.2129328 
3  0.7967889     1.349310 0.16184731 0.01239755 0.576432492 0.4107435 
4  0.6832777    1.457085 0.15458473 0.73014033 0.209776495 0.2244287 
  
Conclusion: Multicollinearity does not seem to be a problem. ¶ 
  



Lecture 4 – Appendix A: Rules for Vector Derivatives 
 

(1) Linear function 
Consider the linear function:  y = 𝑓ሺ𝒛ሻ = 𝒛’  +  

where 𝒙 and  are 𝑘-dimensional vectors and  is a constant. 

   
We derive the gradient in matrix notation as follows: 

1. Convert to summation notation:   𝑓ሺ𝒛ሻ ൌ  ∑ 𝑧 

  = 𝑧ଵ ଵ + 𝑧ଶ ଶ + … + 𝑧  

2. Take partial derivative w.r.t. element 𝑥: 
డ

డ௭ೕ
ൣ∑ 𝑧 


 ൧ ൌ  

3. Put all the partial derivatives in a vector: 

   𝑓ሺ𝒛ሻ ൌ

⎣
⎢
⎢
⎡
డሺ௭

డ௭భ
⋮

డሺ𝒛ሻ

డ௭ೖ ⎦
⎥
⎥
⎤
 ൌ 

ଵ
⋮

൩ 

4. Convert to matrix notation:  𝑓ሺ𝒛ሻ =   
 
 
(2) Quadratic form 
Consider a quadratic form:   q = 𝑓ሺ𝒙ሻ = 𝒙’ A 𝒙 
 
where 𝒙 is 𝑘x1 vector and A is a 𝑘x𝑘 matrix, with 𝑎 elements. 
 
 Steps: 

1. Convert to summation notation:  

  𝑓ሺ𝒙ሻ ൌ 𝒙’ 
∑ 𝑎ଵ𝑥 



⋮
∑ 𝑎𝑥 



 ൌ ∑ ∑ 𝑥 𝑎 𝑥 




  

(we rewrite ∑ ∑ 𝑥 𝑎𝑥




  ൌ ∑ 𝑎𝑥

ଶ
  ∑ ∑ 𝑥 𝑎𝑥 


ஷ


 ) 

2. Take partial derivative w.r.t. element 𝑥: 

 
డ

డ௫ೕ
ൣ∑ ∑ 𝑥 𝑎𝑥 





 ൧ ൌ 2 𝑎 𝑥  ∑ 𝑥 𝑎


ஷ  ∑ 𝑎  𝑥 


ஷ  

 ൌ ∑ 𝑥 𝑎

  ∑ 𝑎  𝑥 


  

 
 
Appendix B: Expectation of a RV and Rules of Expectations 
 
Let X denote a discrete RV with probability function p(x), then the expected value of X, E[X], is 
defined to be: 



  E[X] = ∑ 𝑥 𝑝ሺ𝑥ሻ 
and if X is continuous with probability density function f(x): 
   E[X] =  𝑥 𝑓ሺ𝑥ሻ𝑑𝑥

ஶ
ିஶ  

• For the continuous case, the expected value of g(X), E[g(X)], is: 
   E[X] =  𝑔ሺ𝑥ሻ𝑓ሺ𝑥ሻ𝑑𝑥

ஶ
ିஶ  

Note: The discrete case is a simple adaptation. 
 
Examples:  𝑔ሺ𝑥ሻ = 𝑥     E[𝑔ሺ𝑥ሻ] = E[𝑥]  
  𝑔ሺ𝑥ሻ = (𝑥 – μ)2  E[𝑔ሺ𝑥ሻ] = E[(𝑥 – μ)2]  
  𝑔ሺ𝑥ሻ = (𝑥 – μ)k  E[𝑔ሺ𝑥ሻ] = E[(𝑥 – μ)k]  
 
• We derive the rules for the continuous case. That is, 
  E[X] =  𝑔ሺ𝑥ሻ𝑓ሺ𝑥ሻ𝑑𝑥

ஶ
ିஶ  

 
- Rule 1. E[𝑐] = 𝑐,  where c is a constant. 
Proof: 𝑔ሺ𝑥ሻ = 𝑐 
Then, E[𝑔ሺ𝑥ሻ] = E[𝑐] =  𝑐 𝑓ሺ𝑥ሻ𝑑𝑥 ൌ 𝑐  𝑓ሺ𝑥ሻ𝑑𝑥 ൌ  

ஶ
ିஶ

ஶ
ିஶ  𝑐 

 
- Rule 2. E[𝑐 + 𝑑 X] = 𝑐 + 𝑑 E[X],  where 𝑐 & 𝑑 are constants. 
Proof: 𝑔ሺ𝑥ሻ = 𝑐 + 𝑑 X  
Then, E[𝑔ሺ𝑥ሻ] = E[𝑐 + 𝑑 X] =  ሺ𝑐  𝑑𝑥ሻ 𝑓ሺ𝑥ሻ𝑑𝑥

ஶ
ିஶ  

 ൌ 𝑐  𝑓ሺ𝑥ሻ𝑑𝑥  𝑑  𝑥 𝑓ሺ𝑥ሻ𝑑𝑥
ஶ
ିஶ  

ஶ
ିஶ  

 =  𝑐 + 𝑑 E[Xሿ 
 
- Rule 3. Var[X] = 𝜇ଶ

 ൌ 𝐸ሾሺ𝑋 െ 𝜇ሻଶሿ = 𝐸ሾ𝑋ଶሿ - ሾ𝐸ሺ𝑋ሻሿଶ = 𝜇ଶ െ 𝜇ଶ 
Proof: 𝑔ሺ𝑥ሻ ൌ ሺ𝑥 െ 𝜇ሻଶ 
 Var[X] = 𝐸ሾሺ𝑋 െ 𝜇ሻଶሿ =  ሺ𝑥 െ 𝜇ሻଶ𝑓ሺ𝑥ሻ𝑑𝑥

ஶ
ିஶ   

 =   ሺ𝑥ଶ െ 2𝑥𝜇  𝜇ଶሻ𝑓ሺ𝑥ሻ𝑑𝑥
ஶ
ିஶ  

 =   𝑥ଶ𝑓ሺ𝑥ሻ𝑑𝑥
ஶ
ିஶ  െ  2𝑥𝜇𝑓ሺ𝑥ሻ𝑑𝑥

ஶ
ିஶ +  𝜇ଶ𝑓ሺ𝑥ሻ𝑑𝑥

ஶ
ିஶ  

 =   𝑥ଶ𝑓ሺ𝑥ሻ𝑑𝑥
ஶ
ିஶ  െ 2𝜇  𝑥𝑓ሺ𝑥ሻ𝑑𝑥

ஶ
ିஶ  +𝜇ଶ  𝑓ሺ𝑥ሻ𝑑𝑥

ஶ
ିஶ    

  = 𝐸ሾ𝑋ଶሿ െ 2 𝜇 𝐸ሺ𝑋ሻ + 𝜇ଶ = 𝜇ଶ െ 𝜇ଶ 
 
Note: If 𝜇 =0, then Var[X] = 𝐸ሾ𝑋ଶሿ 
 
- Rule 4. Var[𝑎 X + b] = 𝑎ଶVarሾ𝑋ሿ 
Proof: Do it yourself. Define 𝑔ሺ𝑥ሻ ൌ ሺ𝑎 X + b െ 𝐸ሾ𝑎 X + bሿሻଶ 
Then, simplify b, apply square and use Rule 2. 
 
• Suppose excess returns for asset i, 𝑟,௧ – 𝑟, are driven by the following linear model (DGP 
behind the CAPM): 
 (𝑟,௧ – 𝑟) = αi + βi (𝑟,௧ – 𝑟) + ,௧,  
where 



𝑟,௧ – 𝑟 = excess return on the market portfolio at time t. 
βi = the sensitivity to market (systematic) risk. 
,௧ = idiosyncratic error term, with mean 0 & unrelated to rm,t. 
 
Then, 
 E[(𝑟,௧ – 𝑟)] = E[αi] + βi E[(𝑟,௧ – 𝑟)] + E[,௧]  (by Rule 2) 
 E[(𝑟,௧ – 𝑟)] = αi + βi E[(𝑟,௧ – 𝑟)] + E[,௧]   (by Rule 1) 
 E[(𝑟,௧ – 𝑟)] = αi + βi E[(𝑟,௧ – 𝑟)]    -by assumption about mean 0 of εi,t 
 
The CAPM implies that αi = 0. 
 
Also, by Rule 4, Var[(𝑟,௧ – 𝑟)] = (βi)2 Var[(𝑟,௧ – 𝑟)] + Var[,௧]  
 

Example: We estimate E[𝑟ୀூெ – 𝑟] & Var[𝑟ୀூெ – 𝑟] for IBM, using OLS estimates for 𝛼 & 𝛽 
& Var[𝜀,௧] and sample estimates for E[𝑟,௧ – 𝑟] & Var[𝑟,௧ – 𝑟].   

Estimates: 

𝑏ଵ (Intercept) = -0.00579,  

𝑏ଶ =  0.89577, 

Estimated Var[𝜀,௧] = 0.003484  

Mean [𝑟,௧ – 𝑟] = 0.0056489 

Estimated Var[𝑟,௧ – 𝑟] = 0.002148 

Then, our estimates for E[𝑟ୀூெ – 𝑟] & Var[𝑟ୀூெ – 𝑟] are: 

E[𝑟 – 𝑟] = 𝑏ଵ + 𝑏ଶE[(𝑟,௧ – 𝑟)]  -0.00579 + 0.89577 * 0.0056489 = -0.000729  (-0.0729%) 

Var[𝑟 – 𝑟] = 𝑏ଶ
ଶ Est. Var[𝑟,௧ – 𝑟] + Var[𝜀,௧] = 0.89577ଶ * 0.002148 + 0.003484 = .0052076 

   SD[𝑟 – 𝑟] = sqrt(.0052076) = 0.07216  (7.22%) 
 
 
 
 

  



Lecture 4 - OLS: Sampling, and Bootstrapping  
 
OLS Estimation - Assumptions 
CLM Assumptions   
(A1) DGP: y  = X  +  is correctly specified.  
(A2) E[|X] = 0   
(A3) Var[|X] = σ2 IT 
(A4) X has full column rank – rank(X)=k-, where T ≥ k. 
 
• From assumptions (A1), (A2), and (A4) 
    b = (X′X)-1X′ y 
 
We define e = y – Xb     X′e = X′ (y - Xb) X′y - X′X(X′X)-1X′y = 0 
 
• Now, we will study the properties of b. 
 
 
Sampling Distribution of b 
Small sample = For all sample sizes –i.e., for all values of  T (or N).  

  b =  +(X′X)
-1

X′   b is a vector of  random variables.  
 
• Properties 
(1) E[b|X] =  
(2) Var[b|X] = E[(b - ) (b - )′|X] = σ2 (X′X)-1  
(3) Gauss-Markov Theorem: b is BLUE (MVLUE). 
(4) If  (A5) |X ~N(0, σ2 IT)  b|X ~ N(, σ2 (X′X)-1) 
      bk| X  ~ N(k, σ2 (X′X)kk -1 
(Note: the last implication is derived from the fact that the marginal distributions of  a multivariate 
normal are also normal.) 
  
Note: Under (A5), b is also the MLE. Thus, it has all the nice MLE properties: efficiency, 
consistency, sufficiency and invariance! 
 
 
Sampling Distribution of b 
Recall that a sample statistic like b is a function of RVs. Then, it has a statistical distribution.  
 
In general, in finance, we observe only one sample mean (actually, our only sample). But, many 
sample means are possible from the DGP. 
  
• A sampling distribution is a distribution of a statistic over all possible samples. 
 
Let’s generate some yi’s using a DGP and, then, some b’s. Using: 
 
 b =  +(X′X)-1X′ =  +Σi vi′i 



 
Set  = .4; then, the DGP is:   
   y  = (.4) X  +  
 (1) Generate X (to be treated as numbers). Say X ~ N(2,4) 
   ⇒ x1 = 3.22, x2 = 2.18, x3 = -0.37, ......, xT = 1.71 
 
 (2) Generate  ~ N(0,1)  
   ⇒ draws 1 = 0.52, 2 = -1.23, 3 = 1.09, ....., T  =-0.09 
 
 (3) Generate y  = .4 X +  
   ⇒ y1 = .4 * 3.22 + 0.52 = 1.808  
   y2 = .4 * 2.18 + (-1.23) = -0.358 
   y3 = .4 * (-0.37) + 1.09 = 0.942 
    ...   
    yT = .4 * 1.71 + (-0.09) = 0.594 
 
 (4) Generate  b = (X′X)-1X′y =  Σi (xi - �̅�) (yi - 𝑦ത)/ Σi (xi - �̅�)2 
 
• We want to generate many b’s. Steps 
 (1) Generate X (to be treated as numbers). Say X ~ N(2,4) 
 (2) Generate  ~ N(0,1)  
 (3) Generate y  = .4 X +  
 (4) Generate  b = (X′X)-1X′y =  Σi (xi - �̄� ) (xi - �̄�)/ Σi (xi - �̄�)2   
 
Conditioning on step (1), we can repeat (2)-(4) B times, say 1,000 times. Then, we are able to 
generate a sampling distribution for b. 
 
We can, obviously, play with T; say T=100; 1,000; 10,000. 
 
We can check:   E[b|X] = (1/B) Σi bi = ? 
 
We can calculate the variance of Var[b|X].   
 
 
Sampling Distribution of b – Code in R 
Steps (1)-(4) in R to generate b, with a sample of size T=100: 
> T <- 100     # sample size 
> x <- rnorm(T,2,2)    # generate x from a N(2, 22).  
> ep <- rnorm(T,0,1)    # generate errors from a N(0, 1). 
> y <- .4*x + ep    # generate y 
> b <-solve(t(x)%*% x)%*% t(x)%*%y # OLS regression 
 
We run these commands B (say, B=1,000) times to get the sampling distribution of b. Then, we 
can calculate means, variances, skewness and kurtosis coefficients, etc. 
 
• Script to generate the sampling distribution for B=1,000 & T=100: 



Allbs=NULL      #Initialize vector that collects the b 
T <- 100 
x <- rnorm(T,2,2)    # generate x 
reps=1000      # number of repetitions (B) 
for (i in seq(1,reps,1)){   # “for” loop starts 
ep <-  rnorm(T,0,1)     # generate errors, ep 
y <-  .4*x+ep     #generate y 
b <- solve(t(x)%*% x)%*% t(x)%*%y  #OLS regression 
Allbs=rbind(Allbs,b)     #accumulate b as rows 
}       # loop ends 
mb <- mean(Allbs) 
varb <- var(Allbs) 
hist(Allbs[,1],main="Histogram for OLS Coefficients",  xlab="b Coefficients") 
 
 
For T=100 
B = 1,000 
Mean[b] =  0.3995132 
SD[b] = 0.02613134 

 
 
For T=1,000 
B = 1,000 
Mean[b] =  0.3999375 
SD[b] = 0.022086 
 



 
 
Bootstrapping (Again!) 
Bootstrapping is the practice of estimating the properties of an estimator -say, its variance- by 
measuring those properties when sampling from an approximating distribution (the bootstrap 
DGP).  
 
Idea: We use the data at hand -the empirical distribution (ED)- to estimate the variation of 
statistics that are themselves computed from the same data. Recall that, for large samples drawn 
from F, the ED approximates the CDF of F very well. 
 
Thus, an easy choice for an approximating distribution is the ED of the observed data. That is, 
the ED becomes a “fake population.” 
 
John Fox (2005, UCLA): “The population is to the sample as the sample is to the bootstrap 
samples.” 
 
 
Bootstrapping: Empirical Bootstrap (Again!) 
Suppose we have a dataset with N i.i.d. observations drawn from F:  
   {x

1
, x

2
, x

3
, ..., x

N
} -“fake population.” 

 
From the ED, F*, we sample with replacement N observations:  
   {xଵ

∗ , xଶ
∗ , 𝑥ଷ

∗, ..., 𝑥ே
∗ } - a bootstrap sample 

 
This is an empirical bootstrap sample, which is a resample of the same size N as the original 
data, drawn from F*. 
 
For any statistic θ computed from the original sample data, we can define a statistic θ* by the 
same formula, but computed instead using the resampled data.  
  



 
 
 
 
 
 
 
 
 
 
• We compute many θ*, by resampling many times from F*. Say, we resample θ* B times: 
    {θଵ

∗
, θଶ

∗
, θଷ

∗
, ..., θ

∗
}. 

From this collection of θ*’s, we learn about statistic θ: we compute moments, C.I.’s, etc. 
 
Bootstrap Steps:  
1. From the original sample, draw random sample with size N. 
2. Compute statistic θ from the resample in 1: θଵ

∗
. 

3. Repeat steps 1 & 2 B times  Get B statistics: {θଵ
∗
, θଶ

∗
, θଷ

∗
, ..., θ

∗
} 

4. Compute moments, draw histograms, etc. for these B statistics. 
 
• Results: 
1. With a large enough B, the LLN allows us to use the θ*’s to estimate the distribution of θ, 
F(θ).   
2. The variation in θ is well approximated by the variation in θ*. 
Result 2 is the one we used in Lecture 2 to estimate the size of a C.I. 
 
 
Bootstrapping: Variations 
If the ED is used for the draws, the method is usually called the nonparametric bootstrap. If a 
distribution is assumed, say a t-distribution, and we draw from this distribution, the method is 
called the parametric bootstrap. 
 
• If the y’s and the x’s are sampled together, this method is sometimes called the paired 
bootstrap –for example, in a regression or to bootstrap a correlation coefficient.  
 
• If blocks of data are sample together, the method is called block bootstrap –for example, in the 
presence of correlated data, typical of time series or spatial data. 
 
 
Bootstrapping: Why? 
Question: Why do we need a bootstrap? 
 - N is “small,” asymptotic assumptions do not apply. 
 - DGP assumptions are violated.  
 - Distributions are complicated. 
 

Bootstrap resampling Sample  
{x

1
, x

2
, x

3
, ..., x

N
} Bootstrap samples (B) 

Compute θ*, ( θ*ሻ 



The main appeal is its simplicity and its consistent results.  
 
 
Bootstrapping in Econometrics 
Bootstrapping provides a very general method to estimate a wide variety of statistics. It is most 
useful when:  
(1) Reliance on “formulas” is problematic because the formula’s assumptions are dubious. 
(2) A formula holds only as T →∞, but our sample is not very big. 
(3) A formula is complicated or it has not even been worked out yet. 
 
The most common econometric applications are situations where you have a consistent estimator 
of a parameter of interest, but it is hard or impossible to calculate its standard error or its C.I. 
 
Technical note: Bootstrapping is easiest to implement if the estimator is “smooth,” √T-consistent, 
and based on an i.i.d. sample. In other situations, it is more complicated. 
 
 
Bootstrapping in Econometrics: Example 
You are interested in the relation between CEO’s education (X) and firm’s long-term 
performance (y). You have 1,500 observations on both variables. You estimate the correlation 
coefficient, ρ, with its sample counterpart, r. You find the correlation to be very low. 
 
Q: How reliable is this result? The distribution of r  is complicated. You decide to use a 
bootstrap to study the distribution of r. Note that to compute r, we need to bootstrap pairs, then, 
we use a paired bootstrap. 
 
 
Randomly construct a sequence of B samples (all with T= 1,500). Say, 
B1 = {(x1,y1), (x3,y3), (x6,y6), (x6,y6), ..., (x1458,y1458)}   ⇒ r1 
B2 = {(x5,y5), (x7,y7), (x11,y11), (x12,y12), ..., (x1486,y1486)} ⇒ r2 
.... 
BB = {(x2,y2), (x2,y2), (x2,y2), (x3,y3), ..., (x1499,y1499)}    ⇒ rB 
 
We rely on the observed data. We take it as our “fake population” and we sample from it B 
times. We have a collection of bootstrap subsamples.  
 
The sample size of each bootstrap subsample is the same (T). Thus, some elements are repeated. 
 
Now, we have a collection of estimators of ρi’s: {r1, r2, r3, ..., rB}. We can do a histogram and 
get an approximation of the probability distribution. We can calculate its mean, variance, 
kurtosis, confidence intervals, etc. 
 
 
Bootstrapping in Econometrics: Estimating the mean & correlation coefficient 
Example: We bootstrap the mean returns of IBM, using monthly data 1973-2020, with B = 
1,000. (You need to install R package boot.) 



sim_size = 1000 
 
library(boot) 
# function to obtain the mean from the data 
mean_p <- function(data, i) { 
 d <-data[i] 
return(mean(d)) 
}  
 
# bootstrapping with sim_size replications 
boot.samps <- boot(data=ibm_x, statistic=mean_p,   R=sim_size) 
 
# view stored bootstrap samples and compute mean 
> boot.samps     # Print original mean, bias and SE of bootstraps 
 
ORDINARY NONPARAMETRIC BOOTSTRAP 
 
Call: 
boot(data = ibm_x, statistic = mean_p, R = sim_size) 
 
Bootstrap Statistics : 
         original        bias     std. error 
t1* -0.0006990633 5.021474e-07 0.002964358 
 
> boot.samps$t[1:10]     # Show first 10 bootstrapped mean 
 [1] -0.0066684274  0.0011648002 -0.0010053505 -0.0024989738 -0.0025442486    
 [6] 0.0007935133 -0.0039867127  0.0030962313 -0.0017929592 -0.0023480292 
 
> mean(boot.samps$t)    # The estimate of the bootstrapped mean 
[1] -0.0006985612 
> sd(boot.samps$t)      #SD of the bootstrapped mean 
[1] 0.002964358 
 
# Elegant histogram 
> hist(boot.samps$t,main="Histogram for Bootstrapped Means",  
+      xlab=“Means", breaks=20) 
 



 
 
 
Example: We bootstrap the correlation between the returns of IBM & the S&P 500, using 
monthly data 1973-2020, with B = 1,000.  
sim_size = 1000 
x_sp <- SFX_da$SP500 
lr_sp <- log(x_sp[-1]/x_sp[-T]) 
dat_spibm <- data.frame(lr_sp, lr_ibm) 
 
library(boot) 
# function to obtain the correlation coefficient from the data 
cor_xy <- function(data, i) { 
 d <-data[i,] 
   return(cor(d$lr_sp,d$lr_ibm)) 
} 
# bootstrapping with sim_size replications 
boot.samps <- boot(data=dat_spibm, statistic=cor_xy,   R=sim_size) 
 
# view stored bootstrap samples and compute mean 
> boot.samps     # Print original ρ, bias and SE of bootstraps 
 
ORDINARY NONPARAMETRIC BOOTSTRAP 
 
Call: 
boot(data = dat_spibm, statistic = cor_xy, R = sim_size) 
 
Bootstrap Statistics : 
     original       bias     std. error 

t1* 0.5894632 -0.001523914  0.03406313 

 

> boot.samps$t[1:10]     #show first 10 bootstrapped correlations coeff  

 [1] 0.5863186 0.5898572 0.6473122 0.6473249 0.5311525 0.5734280 0.6241236 0.5790740 

 [9] 0.5790095 0.5932918  



> mean(boot.samps$t)    #our estimate of the correlation 

[1] 0.5879392  

> sd(boot.samps$t)      #SD of the correlation estimate 

[1] 0.03406313 
 
# Elegant histogram 
> hist(boot.samps$t,main="Histogram for Bootstrapped Correlations",  
+      xlab="Correlations", breaks=20) 
 

 
 
• Simple 95% percentile method C.I.  
new <- sort(boot.samps$t) 
> new[25] 
[1] 0.5151807 
> new[975] 
[1] 0.6495722 
 
Note: You get same results using  
boot.ci(boot.samps, type = "perc") 
 

• Empirical boostrap method C.I. (our preferred method) 

> boot.ci(boot.samps, type=“basic") 

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS 

Based on 1000 bootstrap replicates 

 

CALL :  

boot.ci(boot.out = boot.samps, type = “basic") 

  

Intervals :  

Level     Percentile      

95%   ( 0.5293, 0.6637 )   

Calculations and Intervals on Original Scale. ¶ 
 



 
Bootstrapping: How many bootstraps? 
It is not clear. There are many theorems on asymptotic convergence, but there are no clear rules 
regarding B. There are some suggestions.  
 
Efron and Tibsharani’s (1994) textbook recommends B=200 as enough. (Good results with B as 
low as 25!) 
 
Davidson and Mackinnon’s (2001) textbook suggests steps to select B. In the D&M simulations, 
on average, B  is between 300 and 2,400. 
 
Wilcox’s (2010) textbook recommends “599 [...] for general use.” 
 
Rule of thumb: Start with B=100, then, try B=1,000, and see if your answers have changed by 
much. Increase bootstraps until you get stability in your answers. 
 
Example: We bootstrap the correlation between IBM returns and S&P 500 returns, using B = 
100. 
> # view bootstrap results 
> boot.samps 
ORDINARY NONPARAMETRIC BOOTSTRAP 
 
Call: 
boot(data = dat_spibm, statistic = cor_xy, R = sim_size) 
 
Bootstrap Statistics : 
     original      bias    std. error 
t1* 0.5898636 -0.00115623  0.03449216 
 
> mean(boot.samps$t) 
[1] 0.5887074 
> sd(boot.samps$t) 
[1] 0.02885868. ¶ 

 
 



 
Example: We bootstrap the correlation between IBM returns and S&P 500 returns, using B = 
25. 
> # view bootstrap results 
> boot.samps 
ORDINARY NONPARAMETRIC BOOTSTRAP 
 
Call: 
boot(data = dat_spibm, statistic = cor_xy, R = sim_size) 
 
Bootstrap Statistics : 
     original       bias      std. error 
t1* 0.5898636 -0.00115623  0.03449216 
 
> mean(boot.samps$t) 
[1] 0.5847676 
> sd(boot.samps$t) 
[1] 0.03449216 
 
Conclusion: Results do not change that much. ¶ 
 
 
Bootstrapping: Bias 
You can estimate the bias of the bootstrap of a parameter, say b: 
 Bias(b) = (1/B)r b(r) − b 
 
Note: In the OLS case, b is an unbiased estimator, but as an estimate, the bias can be non-zero. 
This estimate must be analyzed along the SE’s. 
 
Example:  In the previous bootstrapping correlations exercise, R displays the bias: 
Bootstrap Statistics : 
 original  bias  std. error 
t1*  0.5898636  -0.001244376   0.03455582. ¶ 
 
 
Bootstrapping: Linear Model - Var[b] 
Some assumptions in the CLM are not reasonable –for example, (A3) assuming 
homoscedasticity or no serial correlation, or if (A5) assuming normality. If we assuming 
normality (A5), we also assume the sampling distribution of b. But if data is not normal, the 
normality of the sampling distribution of b only apply for large N –i.e., asymptotic results. 
 
We can use a bootstrap to estimate the sampling distribution of b. It can give us a better idea of 
the small sample distribution. Then, we can estimate the Var[b]. 
 
Monte Carlo (MC=repeated sampling) method: 
 1.  Estimate model using full sample (of size T) ⇒ we get b 



 2.  Repeat B times: 
  - Draw T observations from the sample, with replacement 
  - Estimate  with b(r).   
 3.  Estimate variance with  
            Vboot  =  (1/B) [b(r) - b][b(r) - b]’ 
 
• In the case of one parameter, say b1: Estimate variance with  
            Varboot[b1]=  (1/B)r [b1(r) – b1 ]2  
 
You can also estimate Var[b1] as the variance of b1 in the bootstrap 
     Varboot[b1] =  (1/B)r [b1(r) – mean(b1-r) ]2;  

 mean(b1-r) = (1/B)r b1(r) 
 
Note: Obviously, this method for obtaining standard errors of parameters is most useful when no 
formula has been worked out for the standard error (SE), or the formula is complicated –for 
example, in some 2-step estimation procedures–, or the assumptions behind the formula are not 
realistic. 
 
 
Bootstrapping: Linear Model - Estimating Var[b] 
Example: We bootstrap the SE for b for IBM returns using the 3 FF Factor Model. We use the R 
package lmboot, which needs to be installed with the install.packages() function. 
 
library(lmboot)     # need to run before 
install.packages(“lmboot”) 
y <- ibm_x  
x <- cbind(x0, Mkt_RF, SMB, HML) 
dat_yx <- data.frame(y, x)   # lmboot needs an R data frame. We make one. 
ff3_b <- paired.boot(y ~ x-1, data=dat_yx, B = sim_size) 
ff3_b$origEstParam    # print OLS results (“original estimates”) 
> ff3_b$origEstParam 
                [,1] 
x         -0.005088944 
xMkt_RF   0.908298898 
xSMB     -0.212459588 
xHML    -0.171500223 
 
# Mean values for b 
mean(ff3_b$bootEstParam[,1]) # print mean of bootstrap samples for constant 
mean(ff3_b$bootEstParam[,2])  # print mean of bootstrap samples for Mkt_RF 
mean(ff3_b$bootEstParam[,3])  # print mean of bootstrap samples for SMB 
mean(ff3_b$bootEstParam[,4])  # print mean of bootstrap samples for HML 
 
# Statistics for sampling distribution of b 
summary(ff3_b$bootEstParam)  # distribution of b 
 



# SD of parameter vector b 
sd(ff3_b$bootEstParam[,1]) 
sd(ff3_b$bootEstParam[,2]) 
sd(ff3_b$bootEstParam[,3]) 
sd(ff3_b$bootEstParam[,4]) 
 
# bootstrap bias 
ff3_b$origEstParam[1] - mean(ff3_b$bootEstParam[,1]) 
ff3_b$origEstParam[2] - mean(ff3_b$bootEstParam[,2]) 
ff3_b$origEstParam[3] - mean(ff3_b$bootEstParam[,3]) 
ff3_b$origEstParam[4] - mean(ff3_b$bootEstParam[,4]) 
 
> summary(ff3_b$bootEstParam) 
        x                  xMkt_RF            xSMB                xHML         
 Min. :-0.012159 Min.  :0.7115 Min. :-0.5175 Min.   :-0.4699   
 1st Qu. :-0.006731    1st Qu. :0.8669 1st Qu. :-0.2890 1st Qu. :-0.2362   
 Median  :-0.005074 Median :0.9087 Median  :-0.2185 Median :-0.1690   
 Mean    :-0.005008 Mean    :0.9068 Mean    :-0.2125  Mean   :-0.1710   
 3rd Qu. :-0.003273 3rd Qu. :0.9492 3rd Qu. :-0.1415 3rd Qu. :-0.1086   
 Max.    : 0.002293 Max.    :1.0854 Max.    : 0.1909 Max. : 0.2477   
 
> sd(ff3_b$bootEstParam[,1]) 
[1] 0.002493708 
> sd(ff3_b$bootEstParam[,2]) 
[1] 0.06132218 
> sd(ff3_b$bootEstParam[,3]) 
[1] 0.1108 
> sd(ff3_b$bootEstParam[,4]) 
[1] 0.09729972 
 
• Comparing OLS and Bootstrap 
 

 
OLS Bootstrap Bias 

(2)-(1)  
Coeff. (1) S.E. Coeff. (2) S.E. 

x -0.00509  0.00249 -0.00501 0.00249 8.0765e-05 

xMkt_RF 0.90829  0.05672  0.90684 0.06132 -0.0014571 

 xSMB  -0.21246  0.08411 -0.21245  0.11080 1.9914e-06 

xHML -0.17150  0.08468 -0.17099  0.09730 0.0005133 

 
 



Conclusion: Very similar results for the coefficients, a bit different for S.E. Usually, we rely on 
the bigger S.E., in this case, for inferences we’d rely on the Booststrap S.E.  
 
 
> ff3_b$bootEstParam[1:10,]  # print the first 10 of B=1,000 bootstrap samples  
 x    xMkt_RF          xSMB         xHML 
   [1,] -6.109007e-03 0.9186830 -0.1299534100 -0.163421636 
   [2,] -1.757503e-03 0.8333006 -0.2067565390 -0.147604991 
   [3,] -3.907573e-03 0.9746878 -0.2870744815 -0.169189619 
   [4,]  1.596103e-03 0.9185157 -0.2937731120 -0.296972497 
   [5,] -8.409239e-03 0.7309406 -0.0681714313 -0.149883639 
   [6,] -1.998929e-03 0.9133751 -0.3001713380 -0.315913280 
   [7,] -6.289286e-03 0.9441856 -0.2276894034 -0.058924929 
   [8,] -5.533354e-03 0.8210057 -0.2221866298 -0.078512341 
   [9,] -6.152301e-03 1.0389917 -0.2592958758 -0.237930809 
  [10,] -3.778058e-03 0.9544829 -0.1859554067 -0.217702583 
 
 
 
 
 
 
From the B samples, we compute variances and SD as usual. ¶ 
 
 
 
Bootstrapping: Some Remarks 
Question: How reliable is bootstrapping?  
- There is still no consensus on how far it can be applied, but for now nobody is going to dismiss 
your results for using it. 
- There is a general agreement that for normal and close to normal (and symmetric) distributions 
it works well. 
- Bootstrapping is more problematic for skewed distributions. 
- It can be unreliable for situations where there are not a lot of observations. Typical example in 
finance: estimation of quantiles in the tails of returns distributions.  
 
Note: We presented two simple examples. There are many bootstraps variations. We will not 
cover them.  
  



Lecture 5 - Testing in the CLM   
 
Review – OLS Assumptions 
CLM Assumptions   
(A1) DGP: y  = X  +  is correctly specified.  
(A2) E[|X] = 0   
(A3) Var[|X] = σ2 IT 
(A4) X has full column rank –rank(X)=k-, where T ≥ k. 
 
Issues for this lecture: 
Q: What happens when we impose restrictions to the DGP (A1)?  
 
Q: How do we test restrictions in the context of OLS estimation? 
 
 
OLS Subject to Linear Restrictions  
Restrictions: Theory imposes certain restrictions on parameters and provide the foundation of 
several tests. In this Lecture, we only consider linear restrictions, written as R = q. 
The dimension of R is Jxk, where J is the number of restrictions, and k is the number of 
parameters. , as usual, is a kx1 column vector. Then, q is a Jx1 column vector. 
 
Examples:  
(1) Dropping variables from the equation. That is, certain coefficients in b forced to equal 0.  For 
example, in the CAPM, we imposee that variables x3=SMB and x4=HML are not part of the 
model. That is, we impose SMB = 0 and HML = 0.Using the above notation: 

  R = q    ቂ0 0 1 0
0 0 0 1

ቃ ∗

⎣
⎢
⎢
⎢
⎡
ଵ
ெ௧
ௌெ
ுெ⎦

⎥
⎥
⎥
⎤

 = ቈ
ௌெ
ுெ

 =  ቂ0
0
ቃ 

We have two restrictions (J=2): ௌெ = 0 &  ுெ= 0. We have k=4 parameters. 
  R is a 2x4 matrix,  is a 4x1 vector, and q is a 2x1 vector.  
  
Note: The restrcitions make the FF model into the traditional CAPM. 
 
(2)  Adding up conditions:  Sums of certain coefficients must equal fixed values.  Adding up 
conditions in demand systems.  In a CAPM setting, the sum of all cross-sectional i‘s should be 
equal to 1. For example, in the 3 Fama-French factor model, we force ௌெ + ுெ= 1. 

  R = q    ሾ0 0 1 1ሿ ∗

⎣
⎢
⎢
⎢
⎡
ଵ
ெ௧
ௌெ
ுெ⎦

⎥
⎥
⎥
⎤

 = ௌெ   ுெ = 1 

We have one restrictions (J=1): ௌெ + ுெ= 1. We have k=4 parameters. 
  R is a 1x4 matrix (a row vector),  is a 4x1 vector, and q is a scalar.  



 
 
(3) Equality restrictions:  Certain coefficients must equal other coefficients. Using real vs. 
nominal variables in equations. For example, in the 3 Fama-French factor model, we force 𝑺𝑴𝑩 
= 𝑯𝑴𝑳. 
 

  R = q    ሾ0 0 1 െ1ሿ ∗

⎣
⎢
⎢
⎢
⎡
ଵ
ெ௧
ௌெ
ுெ⎦

⎥
⎥
⎥
⎤

 = 0.  

We have one restrictions (J = 1): ௌெ + ுெ= 1. We have k = 4 parameters. 
  R is a 1x4 matrix (a row vector),  is a 4x1 vector, and q is a scalar. ¶ 
 
• Common formulation: We minimize the error sum of squares, subject to the linear restrictions. 
That is,  
 Minb {S(xi, θ) = Σi εi

2 = ε′ε = (y – X)′ (y – X)} s.t. R  = q 
 
In practice, restrictions can usually be imposed by solving them out. Suppose we have a model: 
  𝑦 ൌ βଵ𝑥ଵ  βଶ 𝑥ଶ  βଷ 𝑥ଷ + ε 
 
(1) Dropping variables –i.e., force a coefficient to equal zero, say βଷ.  

Problem:  Minβ  ∑ ൫𝑦 െ βଵ𝑥ଵ െ βଶ𝑥ଶ െ βଷ𝑥ଷ൯
ଶ

ୀଵ  𝑠. 𝑡.   βଷ ൌ 0 

  Minβ  ∑ ൫𝑦 െ βଵ𝑥ଵ െ βଶ𝑥ଶ൯
ଶ

ୀଵ   
 
(2) Adding up.  Suppose we impose: β1 + β2 + β3 = 1. Then, β3 = 1 – β1 – β2.  
Substituting in model: 
  (𝒚 – 𝒙ଵ) = β1(𝒙ଵ– 𝒙ଷ) + β2(𝒙ଶ – 𝒙ଷ) + ε.  

 Problem:    Minβ ∑ ൫ሺ𝑦 െ 𝑥ଷሻ െ βଵሺ𝑥ଵ െ 𝑥ଷሻ െ βଶሺ𝑥ଶ െ 𝑥ଷሻ൯
ଶ

ୀଵ  
 
(3) Equality. Suppose we impose: β2 = β3. 
Substituting in model: 
  𝒚 = β1 𝒙𝟏 + β2 𝒙𝟐 + β2𝒙𝟑 + ε = β1 𝒙𝟏 + β2 (x2 + 𝒙𝟑) + ε 

Problem:    Minβ  ∑ ൫𝑦 െ βଵ𝑥ଵ െ βଶ𝑥ଶ െ βଷ𝑥ଷ൯
ଶ

ୀଵ  𝑠. 𝑡.   βଶ ൌ βଷ 

 Minβ ∑ ൫𝑦 െ βଵ𝑥ଵ െ βଶሺ𝑥ଶ  𝑥ଷሻ൯
ଶ

ୀଵ  
 
 
• Before setting the general restricted LS problem, we look at the simplest case: one explanatory 
variable (x) and one restriction (rβ = q). 
 
Then, we set up the Lagrangean (recall values of Lagrange multiplier’, 𝜆, play no role): 
 Minβ,λ  𝐿ሺβ, 𝜆 ሻ ൌ ∑ ሺ𝑦 െ  𝑥  βሻଶ


ୀଵ  2𝜆 ሺ𝑟 β - qሻ  

  
We take first derivatives of 𝐿ሺβ, 𝜆 ሻ with respect to β, 𝜆:  



 

   
డሺβ, ఒ ሻ

డβ
ൌ െ2∑ ሺ𝑦 െ  𝑥 βሻሻሺെ𝑥ሻ  2𝜆 𝑟 ்

   

  
డሺβ, ఒ ሻ

డఒ
ൌ 2ሺ𝑟 β - qሻ     

 
Then, the f.o.c. are: 
   െ∑ ሺ𝑦 െ  𝑥 b*ሻ ሺ𝑥ሻ  𝜆 𝑟 ்

 ൌ 0  ∑ ሺ𝑦𝑥 െ 𝑥
ଶ b*ሻ ൌ 𝜆 𝑟 ்

  
  𝜆 ሺ𝑟 b* - qሻ ൌ 0     𝑟 b* - q ൌ 0 
 
From the 1st equation: 
 ∑ 𝑦𝑥 

்
 െ 𝑏∗ ∑ 𝑥

ଶ்
  ൌ 𝒙𝒚 െ 𝑏∗ሺ𝒙𝒙ሻ-1 ൌ 𝜆 𝑟  b* =  ሺ𝒙𝒙ሻ-1 x 𝒚 െ ሺ𝒙𝒙ሻ-1 𝜆 𝑟 

  = b െ ሺ𝒙𝒙ሻ-1  𝜆 𝑟   
   
b* = b – r ሺ𝒙𝒙ሻ-1       Restricted OLS = OLS + “correction” 
 
Premultiplying both sides by r and then subtract q: 
     r b* - q  = rb – r2 ሺ𝒙𝒙ሻ-1  – q 
    0 = - r2 ሺ𝒙𝒙ሻ-1  + (rb – q) 
 
Solving for          = [r2 (xx)-1]-1 (rb – q) 
 
Substituting in b*      b* = b – ሺ𝒙𝒙ሻ-1  r [r2 ሺ𝒙𝒙ሻ-1]-1 (rb – q) 
 
This is the Restricted OLS estimator. 
 
• Properties of Restricted OLS.  
 
Property 1. Taking expectations of b*:  
 E[b*|X] = E[b|X] – (xx)-1r [r2 (xx)-1]-1 E[(rb – q)|X]     
 = β – (xx)-1r [r2 (xx)-1]-1 (rβ – q) 
 
Implications: 
 If the restriction is true –i.e., (rβ = q)    E[b*|X] = β 
 If the restriction is not true –i.e., (rβ ≠ q)     E[b*|X] ≠ β 
 
Then, if theory imposes a correct restriction, then, b* is unbiased: 
    E[b*|X] = β   
 
In practice, if restriction is true, the restricted and unrestricted estimators should be similar.  
 
Note: If theory is correct, the expected shadow price is 0! 
 E[|X] = [r2 (xx)-1]-1 E[(rb – q)|X] = 0  
 
That is, you would pay nothing to release the restriction, rβ = q. 
 



Property 2. We compute the Var[b*]. It can be shown that 
 Var[b*|X]  = Var[b|X] – σ2 (xx)-1 r [r2 (xx)-1]-1 r (xx)-1   
   Var[b|X] – Var[b*|X] = σ2 (xx)-1 r [r2 (xx)-1]-1 r (xx)-1 

 > 0. 
 
 The restricted OLS estimator is more efficient! 
 
Remark from Properties 1 and 2: It is common to select an estimator based on the MSE 
(=RSS/T). The one with the lowest MSE is said to be more “precise.”  
 
We can decompose the MSE of an estimator, 𝜃, as: 
  MSE[𝜃] = Variance[𝜃] + Squared biasሾ𝜃] 
 
For an unbiased estimator, like b  MSE [b] = Var[b|X] 
 
• Back to b*. Suppose the theory is incorrect  b* is biased.  
 
There may be situations (small bias, but much lower variance) where b* is more “precise” (lower 
MSE) than b. It is possible that a practitioner may prefer imposing a wrong H0 to get a better 
MSE. 
 
 
• For the general case, with k explanatory variables and J restrictions, which we write as: 
  R = q,  
we have a programming problem:   
 Minimize wrt   L* = (y – X)(y – X)    s.t. R = q 
 
Quadratic programming problem: Minimize a quadratic criterion subject to a set of linear 
restrictions. We solve this minimizations problem using the Lagrange multiplier method. 
 
We form the Lagrangean (the 2 is for convenience, since the value of  is irrelevant for extrema): 
 
 Min b,  L* = (y – X)(y – X) + 2  (R – q) 
f.o.c.:    
 L*/b = -2X(y – Xb*) + 2R = 0  -X(y – Xb*) + R = 0  
 L*/ =  2(Rb* – q) = 0   (Rb* – q) = 0 
where b* is the restricted OLS estimator. 
 
 f.o.c.:    -X(𝒚 – Xb*) + R = 0    (1) 
   (Rb* – q) = 0       (2) 
where b* is the restricted OLS estimator. 
  
Then, from the 1st equation (and assuming full rank for X): 
   –X𝒚 + XXb* + R = 0  b* = (XX)-1X𝒚 – (XX)-1R  
 = b – (XX)-1R  
Premultiply both sides by R and then subtract q 



  Rb* = Rb - R(XX)-1R      
 Rb* – q = Rb - R(XX)-1R – q 
  0  = –R(XX)-1R + (Rb – q) 
 
Solving for         = [R(XX)-1R]-1 (Rb – q) 
 
Substituting in b*     b* = b – (XX)-1R[R(XX)-1R]-1(R b – q) 
 
Note:   Restricted OLS = Unrestricted OLS + “correction” 
 
 
Restricted Least Squares 
Question: How do linear restrictions affect the properties of the least squares estimator? 
 
Restricted LS estimator:   b* = b – (XX)-1R[R(XX)-1R]-1(Rb – q) 
 
• Properties: 
1. Unbiased? Yes, if Theory is correct! 
 E[b*|X] =   - (XX)-1R[R(XX)-1R]-1 E[(Rb – q)|X] =   
 
But, if Theory is incorrect:  E[(Rb – q)|X] ≠ 0   E[b*|X] ≠  . 
 
2. Efficiency? 
  Var[b*|X] = 2(XX)-1 – 2 (XX)-1R[R(XX)-1R]-1 R(XX)-1 

 Var[b*|X] = Var[b|X] – a nonnegative definite matrix <  Var[b|X] 
 
3. b* may be more “precise,” where precision is measured by the MSE (=RSS/T). 
 
We can decompose the MSE of an estimator, 𝜃, as: 
  MSE[𝜃] = Variance[𝜃] + Squared biasሾ𝜃] 
For an unbiased estimator, say b, then, MSE[b] = Var[b|X] 
 
Suppose the theory is incorrect. Then, b* is biased. There may be situations (small bias, but 
much lower variance) where b* is more “precise” (lower MSE) than b. A practitioner may prefer 
imposing a wrong H0 to get a better MSE. 
 
 
Restricted Least Squares - Interpretation 
1. b*  = b – Cm,  m = the “discrepancy vector” Rb – q.   
Note: If m = 0    b*  =  b.   (Q: What does m = 0 mean?) 
 
2.  = [R(XX)-1R]-1(Rb – q) = [R(XX)-1R]-1m   
     When does  = 0? We usually think of  as a “shadow price.” 
 
3. Combining results: b* = b – (XX)-1R 



 
4. We can show that RSS never decreases with restrictions:  
  ee = (𝒚 – Xb)(𝒚 – Xb) ≤ e*e* = (𝒚 – Xb*)(𝒚 – Xb*) 
   Restrictions cannot increase R2   R2 ≥ R2*  

 
• Two cases 
 - Case 1:  Theory is correct: R – q = 0 (restrictions hold). 
        b* is unbiased  &  Var[b*|X] ≤ Var[b|X] 
  
 - Case 2:  Theory is incorrect: R - q  0 (restrictions do not hold). 
        b* is biased  &  Var[b*|X] ≤ Var[b|X]. 
 
• Interpretation 
- The theory gives us information.  
 Bad information produces bias  (away from “the truth.”) 
 Any information, good or bad, makes us more certain of our answer. In this context, any 

information reduces variance. 
 
 
Testing: Parameter vs Diagnostic 
So far, the tests discussed in Lectures 3 & 4, involved parameters. We call these types of testing 
parameter tests.  
 
When we tests the assumptions behind the CLM, for example, (A5), we perform a diagnostic 
tests. 
 
• Parameter testing: We test economic H0’s. 
Example:  Test βk = 0  -say, there is no size effect on the expected return equation. ¶ 
 
• Diagnostic testing: We test assumptions behind the model. In our case, assumptions (A1)-(A5) 
in the CLM. 
Example:  Test E[|X] = 0   -i.e., the residuals are zero-mean, white noise distributed errors. ¶ 
 
 
Review – Significance Testing 
Fisher’s significance testing procedure relies on the p-value: the probability of observing a result 
at least as extreme as the test statistic, under H0. 
 
• Fisher’s Idea  
1) Form H0 & decide on a significance level (α%) to compare your test results.  
2) Find T(X). Know (or derive) the distribution of T(X) under H0. 
3) Collect a sample of data X = {𝑥ଵ, 𝑥ଶ, …, 𝑥்}.  
 Compute the test-statistics T(X) used to test H0  Report its p-value.  
 
4) Rule: If p-value < α (say, 5%) ⟹ test result is significant: Reject H0.  
 If the results are “not significant,” no conclusions are reached (no learning here).  



  ⟹ Go back gather more data or modify model. 
 
 
Review – Testing Only One Parameter   
We are interested in testing a hypothesis about one parameter in our linear model: y = X  +  
 
1. Set H0 and H1 (about only one parameter):  H0:   = 

      

       H1:   ≠ 
  

 
2. Appropriate T(X): t-statistic. To derive the distribution of the test under H0, we will rely on 
assumption (A5) |X ~ N(0, σ2IT)  (otherwise, results are only asymptotic).    
 
Let  b = OLS estimator of βk 
 SE[bk|X] = sqrt{[s2(X’X)-1]kk} = sb,k 

 
From assumption (A5), we know that 
  b |X ~ N(,vk

2)   Under H0: b |X ~ N(
 , sb,k

2). 

    Under H0:   𝑡 ൌ 
ೖ – ೖ

బ

௦್,ೖ
 |X ~ 𝑡்ି. 

 
3. Compute 𝑡, t,̂ using b, 

 , s, and (X’X)-1. Get p-value(t ̂). 
 
4. Rule: Set an α level. If p-value(¤t�) < α   Reject H0:   = 

  

 Alternatively, if | t ̂| > t்ି,ሺଵିሻ/ଶ   Reject H0:   = 
 . 

 
 
Review – Testing Only One Parameter: t-value   
Special case: H0: k = 0 
  H1: k ≠ 0. 
Then, 

  𝑡 =  
ೖ
௦್,ೖ

  ⇒ 𝑡 ~ 𝑡்ି 

 
In this case, we call 𝑡 the t-value or t-ratio.  
 
Usually, α = 5%, then if |tkෝ| > 1.96 ≈ 2, we say the coefficient bk is “significant.” 
 
 
Review – Confidence Intervals 
The goal of the confidence intervals (C.I.) is to set the coverage probability to equal a (1 – α)% 
pre-specified target. 
 
When we know the distribution of point estimate, it is easy to construct a C.I. Under the usual 
assumptions for bk we have: 



Cn= [𝑏 - t்ି,ଵି/ଶ* Estimated SE(𝑏),  𝑏 + t்ି,ሺଵିሻ/ଶ* Estimated SE(𝑏)] 
 
This C.I. is symmetric around bk: length is proportional to SE(bk). 
 
Usual α levels and t்ି,ሺଵିಉ

మ
ሻ –when 𝑇 > 30, (usual case) t்ି,ሺଵିಉ

మ
ሻൎ z(1-- α /2) 

  α = 5%, then z(1-- α /2) = 1.96. 
  α = 2%, then z(1-- α /2) = 2.33. 
  α = 1%, then z(1-- α /2) = 2.58. 
 
R Note: In R, we get α = 5%, then z(1-- α /2) = 1.96, using qnorm(0.975). 
 
Testing: The Expectation Hypothesis (EH)  
Example: EH states that forward/futures prices are good predictors of future spot rates:  
  Et[S௧ା்] = F௧,் 
Implication of EH: S௧ା் – F௧,் = unpredictable.  
 
That is,  Et[S௧ା்  – F௧,்] = Et[ε௧] = 0! 
 
Empirical tests of the EH are based on a regression:  
  (S௧ା் – F௧,்)/S௧ = α + β Z௧ + ε௧,   (where Et[ε௧] = 0) 
 

where Zt represents any economic variable that might have power to explain S௧, for example, 
interest rate differentials, (𝑖ௗ  – 𝑖).  
 
Then, under EH,  H0: α = 0 and β = 0. 
  vs H1: α ≠ 0 and/or β ≠ 0. 
 
• We will informally test EH using exchange rates (USD/GBP), 3-mo forward rates and 3-mo 
interest rates. 
 
SF_da <- read.csv("https://www.bauer.uh.edu/rsusmel/4397/SpFor_prices.csv", head=TRUE, 
sep=",") 
summary(SF_da) 
x_date <- SF_da$Date 
x_S <- SF_da$GBPSP 
x_F3m <- SF_da$GBP3M 
i_us3 <- SF_da$Dep_USD3M 
i_uk3 <- SF_da$Dep_UKP3M 
T <- length(x_S) 
prem <- (x_S[-1] - x_F3m[-T])/x_S[-1] 
int_dif <- (i_us3 - i_uk3)/100 
y <- prem 
x <- int_dif[-T] 
fit_eh <- lm( y ~ x) 
 
• We do two individual t-tests on α & β. 



> summary(fit_eh) 
Call: 
lm(formula = y ~ x) 
 
Residuals: 
 Min        1Q    Median        3Q       Max  
-0.125672 -0.014576 -0.000439  0.017356  0.094283  
 
Coefficients: 
               Estimate  Std. Error  t value Pr(>|t|)    
(Intercept)  -0.0001854 0.0016219 -0.114 0.90906     constant not significant (|t|<2)  
x          -0.2157540 0.0731553 -2.949 0.00339 **  slope is significant (|t|>2): Reject H0 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.02661 on 361 degrees of freedom 
Multiple R-squared:  0.02353,   Adjusted R-squared:  0.02082  
F-statistic: 8.698 on 1 and 361 DF,  p-value: 0.003393 
 
• 95% C.I. for b:  
 Cn = [𝑏 േ 𝑡்ି,ଵିఈ/ଶ * Estimated SE(𝑏)]  
hen, 

 Cn = [-0.215754 – 1.96 * 0.0731553, -0.215754 + 1.96 * 0.0731553] 
  = [-0.3591384, -0.07236961] 
 
Since  = 0 is not in Cn  with 95% confidence    Reject H0: 1 = 0  at 5% level. 
 
Note: The EH is a joint hypothesis, it should be tested with a joint test! ¶ 
 
 
The General Linear Hypothesis:  Wald Statistic 
Most of our test statistics, including joint tests, are Wald statistics. 
 Wald = normalized distance measure.  
 
• One parameter:  

   𝑡 ൌ
ೖ ି ೖ

బ

SE[ೖ]
 = distance/unit 

 
• More than one parameter.  
Let z = (random vector – hypothesized value) be the distance   
   W =  z [Var(z)]-1 z  (a quadratic form) 
 
Example: Let z = Rb – q, which under (A5) & H0: R = q 
   z ~ N(0, Var[z]), where Var[z] = R [Var[𝐛|X]]-1 R 



Then, if H0 is correct, W should be a small number, ideally close to zero. A large value would be 
evidence against H0.  
 
We need the distribution of W to determine how “far” is from zero. 
 
• Distribution of W? We have a quadratic form. 
 – If z is normal and σ2 known, W ~ χሺሾ𝒙ሿሻ

ଶ  

 – If z is normal and σ2 unknown, which we estimate with 𝑠ଶ = ee/(T - 𝑘), then, W ~ F  
 – If z is not normal and we use 𝑠ଶ to estimate the unknown σ2, we rely on asymptotic  

   theory, then, W 
ௗ
→ χሺሾ𝒙ሿሻ

ଶ  

 
 

The General Linear Hypothesis:  H0: R – q = 0 
• Suppose we are interested in testing J joint hypotheses. 
 
Example:  We want to test that in the 3 FF factor model that the SMB and HML factors have the 
same coefficients, SMB = HML = 0. 
 
We can write linear restrictions as H0: R – q = 0, where R is a Jxk matrix and q a Jx1 vector. 
 
In the above example (J=2), we write: 

     ቂ0 0 1 0
0 0 0 1

ቃ ∗

⎣
⎢
⎢
⎢
⎡
ଵ
ெ௧
ௌெ
ுெ⎦

⎥
⎥
⎥
⎤

 =ቈ



 

 
• Question: Is Rb – q close to 0?  
There are two different approaches to this question. Both have in common the property of 
unbiasedness for b. 
 
Approach (1) We base the answer on the discrepancy vector:   
    m = Rb – q.   
Then, we construct a Wald statistic: 
   W = m (Var[m|X])-1 m  
to test if m is different from 0. 
 
Approach (2) We base the answer on a model loss of fit when restrictions are imposed: RSS 
must increase and R2 must go down. Then, we construct an F test to check if the unrestricted 
RSS (𝑅𝑆𝑆) is different from the restricted RSS (𝑅𝑆𝑆ோ). 
 
Approach (1). To test H0, we calculate the discrepancy vector:   
 m = Rb – q (under (A5) & H0: m ~ N(0, Var[m])).   
Then, we compute the Wald statistic: 
   W = m (Var[m|X])-1 m  



 
It can be shown that Var[m|X] = R[2(XX)-1]R. Then, 
  W = (Rb – q) {R[2(XX)-1]R}-1 (Rb – q)   (under (A5) & H0: W ~ χ

ଶ). 

 
Under H0 and assuming (A5) & estimating 2 with s2 = ee/(T-k): 

  W* = = 
ௐ

ሾ
𝐞𝐞
షೖ

ሿ/ఙమ  
ൌ  (Rb – q) {R[s2(XX)-1]R}-1 (Rb – q)  

 

  F = W*/J  ~ 𝐹,்ି 

If (A5) is not assumed, the results are only asymptotic:  J * F 
ௗ
→  χ

ଶ 

 
Technical Note: Why F = W*/J  follows an F distribution? The F-distribution is a ratio of two 
independent χ

ଶand χ்
ଶ  RV divided by their degrees of freedom:  

  F = 
χ
మ ⁄


మ  ்⁄

 ~  𝐹,். 

(1) Numerator:  W = (Rb – q) {R[2(XX)-1]R}-1 (Rb – q) ~ χ
ଶ  

(2) Denominator: ሺ𝑇 െ 𝑘ሻ ∗ 𝑠ଶ/2 = ee/ 2 ~ χ்ି
ଶ  

 

  F = 
χ
మ ⁄


మ  ்⁄

 = 
[(Rb – q) {R[2(XX)-1]R}-1 (Rb – q) ] ⁄

ሾሺ்ିሻ∗௦మ/2ሿ ሺ்ିሻ⁄
 ~  𝐹,்ି. 

 
 
Example: We want to test that in the 3 FF factor model (T=569) 
1. H0: SMB = 0.2 and HML = 0.6. 
 H1: SMB ≠ 0.2 and/or HML ≠ 0.6.    J = 2 
 
We define R (2x4) below and write m = R – q = 0:       

  ቂ0 0 1 0
0 0 0 1

ቃ ∗

⎣
⎢
⎢
⎢
⎡
ଵ
ெ௧
ௌெ
ுெ⎦

⎥
⎥
⎥
⎤

 = ቂ0.2
0.6

ቃ 

 
2. Test-statistic:  F = W*/J = (Rb – q) {R[s2(XX)-1]R}-1 (Rb – q) 

 Distribution under H0: F = W*/2  ~ 𝐹ୀଶ,்ିସ (or asymptotic, 2*F 
ௗ
→ χଶ

ଶ) 
 
3. Get OLS results, compute F, 𝐹. 
 
4. Decision Rule: α ൌ 0.05 level. We reject H0 if  p-value(¤𝐹�) < .05.  
   Or, reject H0, if  𝐹 > FJ=2,T-4,.05. 
 
J <- 2       # number of restriction 
fit_ibm_ff3<- lm(ibm_x ~ Mkt_RF + SMB + HML)  
b <- fit_ibm_ff3$coefficients  # Extract OLS coefficients 



Var_b <- vcov(fit_ibm_ff3)  # Extract Var[b] 
R <- matrix(c(0,0,0,0,1,0,0,1), nrow=2) # matrix of restrictions 
q <- c(.2, .6) # hypothesized values 
m <- R%*%b - q # m = Estimated R*Beta - q 
Var_m <- R %*% Var_b %*% t(R)   # Variance of m 
det(Var_m)      # check for non-singularity 
W <- t(m)%*%solve(Var_m)%*%m 
F_t <- as.numeric(W/J )   # F-test statistic  
 
qf(.95, df1=J, df2=(T - k))     # exact distribution (F-dist) if errors normal 
p_val <- 1 - pf(F_t, df1=J, df2=(T - k))   # p-value(F_t) under errors normal 
p_val 
 
F_t_asym <- J*F     # Asymptotic F test (a Chi-square test) 
 
qchisq(.95, df=J)     # asymptotic distribution (chi-square) 
p_val <- 1 - pchisq(F_t_asym, df=J)   # p-value(F_t) under asymptotic distribution 
p_val 
 
> F_t 
49.217 
> 
> qf(.95, df1=J, df2=(T - k))     # exact distribution (F-dist) if errors normal 
[1] 3.011644     F_t > 3.011644   reject H0 at 5% level 
p_val <- 1 - pf(F_t, df1=J, df2=(T - k))   # p-value(F_t) under errors normal 
> p_val 
[1] < 2.2e-16 `    reject H0 at 5% level.  
 
> F_t_asym 
98.433  
>  
> qchisq(.95, df=J)     # asymptotic distribution (chi-square) 
[1] 5.991465    F_t > 5.991465  reject H0 at 5% level 
> p_val <- 1 - pchisq(F_t_asym, df=J)   # p-value(F_t) under asymptotic distribution 
> p_val 
 [1] < 2.2e-16    so low it is almost zero. Extremely low chance H0 is true. 
 
Conclusion: We reject the restrctions: SMB = 0.2 and HML = 0.6. 
 
R Note: You can use the R package car to test linear restrictions (linear H0). 
install.packages("car") 
library(car) 
linearHypothesis(fit_ibm_ff3, c("SMB = 0.2","HML = 0.6"), test="F")  # Exact F test 
 
Linear hypothesis test 
 



Hypothesis: 
SMB = 0.2 
HML = 0.6 
 
Model 1: restricted model 
Model 2: ibm_x ~ Mkt_RF + SMB + HML 
 
Res.Df    RSS Df Sum of Sq      F    Pr(>F)     
1    567 2.2691                                   
2    565 1.9324  2   0.33667 49.217 < 2.2e-16 **   reject H0 at 5% level 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. ¶ 
 
 
 
Example: Now, we do a joint test of the EH. H0: α = 0 and β = 0.  
Using the previous program but with: 
J <- 2      # number of restriction 
R <- matrix(c(1,0,0,1), nrow=2)  # matrix of restrictions 
q <- c(0,0)     # hypothesized values 
> F_t 
4.1024 
>  
> qf(.95, df1=J, df2=(T - k))    # exact distribution (F-dist) if errors normal 
[1] 3.020661     F_t > 3.020661  reject H0 at 5% level 
p_val <- 1 - pf(F_t, df1=J, df2=(T - k))   # p-value(F_t) under errors normal 
> p_val 
[1] 0.01731 `    reject H0 at 5% level.  
 
> F_t_asym 
8.2047 
>  
> qchisq(.95, df=J)    # asymptotic distribution (chi-square) 
[1] 5.991465    F_t > 5.991465  reject H0 at 5% level 
> p_val <- 1 - pchisq(F_t_asym, df=J)   # p-value(F_t) under asymptotic distribution 
> p_val 
 [1] 0.01653 `    reject H0 at 5% level.  
 
The R package car can do the above too: 
> linearHypothesis(fit_eh, c("(Intercept) = 0","x = 0"), test="F") # “F”: exact test, with F-distr 
 
Linear hypothesis test 
Hypothesis: 
(Intercept) = 0 
x = 0 
 



Model 1: restricted model 
Model 2: y ~ x 
 
  Res.Df     RSS Df Sum of Sq      F  Pr(>F)   
1    363 0.27033                               
2    361 0.26432  2 0.0060075 4.1024 0.01731 * 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
> qf(.95, df1=J, df2=(T - k))    # exact distribution (F-dist) if errors normal 
[1] 3.020661     F_t > 3.020661  reject H0 at 5% level 
 
Conclusion: We reject the joint restrctions: H0: α = 0 and β = 0. ¶ 
 
 

The F Test: H0: R – q = 0 
Approach (2). We know that imposing the restrictions leads to a loss of fit. R2 must go down.  
Does it go down a lot?  –i.e., significantly?  
 
Recall  (i)  e* = y – Xb* = e – X(b*– b) 
 (ii) b* = b – (XX)-1R[R(XX)-1R]-1(Rb – q) 
 
     e*e* = ee + (b* – b) XX (b*– b) 
 
Replacing (b* – b) from (ii) in the above formula, we get: 
 
 e*e* – ee = (Rb – q)[R(XX)-1R]-1(Rb – q)  
 
Note: e*e* – ee is a quadratic form, then we can use a lot of results to derive its asymptotic 
distribution 
 
• Recall, the F-distribution is a ratio of two independent χ

ଶ and χ்
ଶ  RV divided by their degrees of 

freedom 

   F = 
χ
మ ⁄


మ  ்⁄

  ~ 𝐹,் 

 
Then, to get to the F-test, we rely on two results:  
 – W = (Rb – q){R[2(XX)-1]R}-1(Rb – q) ~ χ

ଶ (if 2 is known) 

  – ee/ 2 ~ χ்ି
ଶ .  

     F = 
(e*e* –  ee)/J

[ee/(T – )]
 ~ 𝐹,்ି 

 
• We can write the F-test in terms of 𝑅ଶ’s. Let   
 R2 = unrestricted model = 1 – RSS/TSS 



 R*2 = restricted model fit = 1 – RSS*/TSS 
 
Then, dividing and multiplying F by TSS we get 
 

  F = 
ሺଵ ି ோ∗మሻ ି ሺଵ ି ோమሻ 𝐽⁄

ሺଵ ି ோమሻ ሺ்ିሻ⁄
 ~ 𝐹,்ି 

or 

  F = 
ሺோమି ோ∗మሻ 𝐽⁄

ሺଵ ି ோమሻ ሺ்ିሻ⁄
  ~  𝐹,்ି. 

 
 
The F Test: H0: F-test of Goodness of Fit 
In the linear model, with a constant (X1 = 𝒊): 
 y = X  +  = X1 1 + X2 2 +... + Xk k +   
 
• We want to test if the slopes X2, ... , Xk  are equal to zero. That is, 
 H0: 𝛽ଶ ൌ ⋯ ൌ 𝛽 ൌ 0 
 H1: at least one 𝛽 ്  0    J = k – 1 
 

We can write H0: R – q = 0   
𝟎 𝟏 … 𝟎
… … … …
𝟎 𝟎 𝟎 𝟏

൩ ൦

𝜷𝟏
𝜷𝟐
. . .
𝜷𝒌

൪ ൌ 
𝟎
…
𝟎
൩ 

• We have J = k – 1.  Then, 

 F = 
ሺோమି ோ∗మሻ 𝐽⁄

ሺଵ ି ோమሻ ሺ்ିሻ⁄
  ~ 𝐹ିଵ,்ି. 

 
For the restricted model, R*2 = 0. Then,  

 F = 
ோమ ሺିଵሻ⁄

ሺଵିோమሻ ሺ்ିሻ⁄  
 ~ 𝐹ିଵ,்ି 

 
Recall ESS/TSS is the definition of R2.  RSS/TSS is equal to (1 – R2).  

 F ൌ ோమ ሺିଵሻ⁄

ሺଵିோమሻ ሺ்ିሻ⁄
ൌ

ಶೄೄ
ೄೄ

ሺିଵሻൗ
ೃೄೄ
ೄೄ

ሺ்ିሻൗ
ൌ ாௌௌ ሺିଵሻ⁄

ோௌௌ ሺ்ିሻ⁄
  

 
This test statistic is called the F-test of goodness of fit. It is reported in all regression packages as 
part of the regression output. In R, the lm function reports it as “F-statistic.” 
 
Example: We want to test if all the FF factors (Market, SMB, HML) are jointly significant 
(J=3), using monthly data 1973 – 2020 (T=569).  
y <- ibm_x 
T <- length(x) 
x0 <- matrix(1,T,1) 
x <- cbind(x0,Mkt_RF, SMB, HML) 



k<- ncol(x) 
b <- solve(t(x)%*% x)%*% t(x)%*%y   #OLS regression 
e <- y - x%*%b 
RSS <- as.numeric(t(e)%*%e) 
R2 <- 1 - as.numeric(RSS)/as.numeric(t(y)%*%y) #R-squared 
> R2  
[1] 0.338985 
 
F_goodfit <- (R2/(k-1))/((1-R2)/(T-k))  #F-test of goodness of fit. 
> F_goodfit 
[1] 96.58204     F_goodfit > F3,565,.05 = 2.62067  Reject H0. ¶ 
 
Conclusion: We strongly reject the restrctions: 𝛽ெ௧ ൌ 𝛽ௌெ ൌ 𝛽ுெ ൌ 0. ¶ 
 
 
The F Test: General Case – Example 
In the linear model  
 y = X  +  = 1 + X2 2 + X3 3 + X4 4 +   
  
We want to test if the slopes X3, X4  are equal to zero. That is, 
 H0: 3 = 4 = 0 
 H1: 3 ≠ 0 or 4 ≠ 0 or both 3 and 4 ≠ 0 
 
We can use,  F = (e*e* –  ee)/J / [ee/(T – k)] ~ FJ,T-K. 
 
Define y = X  +  = 1 + X2 2 +  (Restricted RSS = RSSR, with kR parameters) 
  y = 1 + X2 2 + X3 3 + X4 4 +   (Unrestricted RSS = RSSU, with kU 

parameters) 
 

Then,  F = 

ೃೄೄೃ ష ೃೄೄೆ
ሺೖೆ ష ೖೃሻ
ೃೄೄೆ
ሺష ೖೆሻ

 ~ 𝐹,்ି, where J = ሺ𝑘 െ  𝑘ோሻ, and T – 𝑘 = 𝑇 െ  𝑘 .  

 
The F Test: Are SMB and HML Priced Factors? 
Example: We want to test if the additional FF factors (SMB, HML) are significant, using 
monthly data 1973 – 2020 (T=569). That is, we test H0: 𝛽ௌெ ൌ 𝛽ுெ ൌ 0. 
 
Unrestricted Model (Fama-French 3-factor model):  
(U)  (𝑟ூெ,௧ – 𝑟) = 0 + 1 (𝑟,௧ – 𝑟) + 2 𝑆𝑀𝐵௧ + 3  𝐻𝑀𝐿௧ +  ௧  
 
Hypothesis: H0: 2 = 3 = 0    
  H1: 2 ≠ 0 and/or 3 ≠ 0 
 
Then, the Restricted Model (CAPM): 
(R)  (𝑟ூெ,௧ – 𝑟) = 0 + 1 (𝑟,௧ – 𝑟) +  



 

Test: F = 
ሺோௌௌೃିோௌௌೆሻ/

ோௌௌೆ/ሺ்ିೠሻ
 ~ 𝐹,்ି,  where J = ሺ𝑘 െ  𝑘ோሻ = 4 - 2 = 2 

 
• The unrestricted model was already estimated in Lecture 3. For the restricted model: 
 
y <- ibm_x 
x0 <- matrix(1,T,1) 
x_r <- cbind(x0,Mkt_RF)    # Restricted X vector 
k <- ncol(x) 
T <- nrow(x) 
k2 <- ncol(x) 
 
b2 <- solve(t(x_r)%*% x_r)%*% t(x_r)%*%y  # Restricted OLS regression 
e2 <- y – x_r%*%b2 
RSS2 <- as.numeric(t(e2)%*%e2) 
 
> RSS = 1.932442     # RSSU   
> RSS2 = 1.964844      # RSSR   
> J <- k - k2      # J = degrees of freedom of numerator  
> F_test <- ((RSS2 - RSS)/J)/(RSS/(T-k)) 
> F_test 
[1] 4.736834 
> qf(.95, df1=J, df2=(T-k))    # F2,565,.05 value (≈ 3) 
[1] 3.011672      Reject H0. 
> p_val <- 1 - pf(F_test, df1=J, df2=(T-k))    # p-value of F_test  
> p_val 
[1] 0.009117494      p-value is small  Reject H0. 
 
Conclusion: We strongly reject the restrctions: 𝛽ௌெ ൌ 𝛽ுெ ൌ 0. ¶ 
    
R Note: There is package in R, lmtest, that performs this test, waldtest, (and many others, used in 
this class). You need to install it first: install.packages(“lmtest”). For the waldtest, the default 
reports the F-test with the F distribution.  
 
Remark: The models need to be nested.  
 
Example: We test if the additional FF factors (SMB, HML) are significant, using monthly data 
1973 – 2020 (T=569).  
 
library(lmtest) 
fit_ibm_ff3 <- lm (y ~ Mkt_RF + SMB + HML)  # Unrestricted Model 
fit_ibm_capm <- lm (y ~ Mkt_RF)    # Restricted Model 
waldtest(fit_ibm_ff3, fit_ibm_capm) 
Wald test 
 



Model 1: y ~ Mkt_RF + SMB + HML 
Model 2: y ~ Mkt_RF 
  Res.Df Df      F   Pr(>F)    
1    565                       
2    567 -2 4.7368 0.009117 **    p-value is small: Reject H0. ¶ 
 
 
Trilogy of Asymptotic Tests: LR, Wald, and LM 
In practice, so far, to test joint hypothesis H0: R = q, we have relied on the asymptotic 
distribution of the Wald test. We constructed the Wald test based on the unrestricted estimation 
(OLS), which in the produces b and 𝑠ଶ. 
 
Then, the Wald test:  

 𝑊* = (Rb – q) {R[𝑠ଶ(XX)-1]R}-1 (Rb – q) 
ௗ
→ 𝜒

ଶ. 
 
In more general terms, we construct the Wald test based on the unrestricted estimation, which 
produces 𝜃. 
 
There are two other popular tests that are asymptotically equivalent –i.e., they have the same 
asymptotic distribution: the Likelihood Ratio (LR) and the Lagrange Multiplier (LM) tests. 
 
• The LR test is based on the (log) Likelihood. It needs two ML estimations: the unrestricted 
estimation, producing 𝜃ெ, and the restricted estimation, producing 𝜃ோ. Below we define the LR 
test: 

𝐿𝑅 ൌ 2ሾlogሺ 𝐿ሺ𝜃ெሻሻ െ logሺ 𝐿ሺ𝜃ோሻሻሿ 
 ୢ 
ሱ⎯⎯ሮ  𝜒

ଶ 
 
Note: MLE requires assuming a distribution, usually, a normal. 
 
Technical note: The LR test  is a consistent test. An asymptotic test which rejects H0 with 
probability one when the H1 is true is called a consistent test. That is, a consistent test has 
asymptotic power of 1.  The LR test  is a consistent test.  
 
Example: We use a likelihood ratio test to check if the additional FF factors (SMB, HML) are 
significant, using monthly data 1973 – 2020 (T=569).  
 
library(lmtest) 
fit_ibm_ff3 <- lm (ibm_x ~ Mkt_RF + SMB + HML) 
fit_ibm_capm <- lm (ibm_x ~ Mkt_RF) 

lrtest(fit_ibm_ff3, fit_ibm_capm) 
Likelihood ratio test 
Model 1: ibm_x ~ Mkt_RF + SMB + HML 
Model 2: ibm_x ~ Mkt_RF 
  #Df LogLik Df  Chisq Pr(>Chisq)    



1   5 810.03                         
2   3 805.30 -2 9.4616   0.008819 **    p-value is small: Reject H0. ¶ 
 
• The LM test needs only one estimation: the restricted estimation, producing 𝜃ோ. If the 
restriction is true, then the slope of the objective function (say, the Likelihood) at 𝜃ோshould be 
zero. The slope is called the Score, S(𝜃ோ). The LM test is based on a Wald test on S(𝜃ோ) = 0.  

   𝐿𝑀 ൌ 𝑆൫𝜃ோ൯
ᇱ
ሾ𝑉𝑎𝑟ሺ𝑆൫𝜃ோ൯ሿିଵ𝑆൫𝜃ோ൯  

 ୢ 
ሱ⎯ሮ   𝜒

ଶ 
 
It turns out that there is a much simpler formulation for the LM test, based on the residuals of the 
restricted model. We will present this version of the test in Lecture 6.  
 

 
 
If the likelihood function were quadratic then LR = LM = W. In general, however, W > LR > 
LM. 
 
 
Testing Remarks: Pre-testing 
A special case of omitted variables. 
 - First, a researcher starts with an unrestricted model (U): 
 y = X + .     (U) 
- Then, based on (“preliminary”) tests –say, an F-test- a researcher decides to use restricted 
estimator, b*. That is,  
 y = X + .   s.t.  R = q  (R) 
 
- We can think of the estimator we get from estimating R as: 
 bPT = I{0, c}(F) b* + I{c, ∞}(F) b, 
where I{0,c} is an indicator function:  
 I{c, ∞}(F) =0,  if F-stat  in R (rejection region) –say, F > c,  
 I{0, c}(F) =1  if F-stat  in RC –say, F < c. 
c : critical value chosen for testing H0: R = q , using the F-stat. 
 



• The pre-test estimator is a rule, which chooses between the restricted estimator, b*, or the OLS 
estimator, b: 
 bPT = I{0, c}(F) b* + I{c, ∞}(F) b, 
where b*  =  b –  (XX)-1R[R(XX)-1R]-1(Rb – q) 
 
• Two “negative” situations:  
(1) H0: R = q is true. The F-test will incorrectly reject H0 α% of the time. That is, in α% of the 
repeated samples, we have “irrelevant variables”   
   OLS b: No bias, but inefficient estimator. 
 
(2) H0: R = q is false. The F-test will correctly reject H0 a % of times equal to the power π of 
the test. That is, (100 – π)% of the time, R=q will be incorrectly imposed, we have “omitted 
variables:”  
   OLS b*: bias, but small variance!   
 
The failure of the OLS estimator to have the properties under correct specification is called pre-
test bias. 
 
Pre-testing (also called sequential estimation, data mining) is common in practice. In general, it 
is ignored –and not even acknowledged. 
 
Main argument to ignore pre-testing: We need some assumptions to decide which variables are 
included in a model. Is the probability that pre-testing yields an incorrect set of X  greater than 
the probability of selecting the “correct” assumption? 
 
David Hendry, a well known thinker of these methodological issues, does not see pre-testing in 
the discovery stage as a problem. For him, pre-testing at that stage is part of the process of 
discovery.   
 
Practical advise: Be aware of the problem. Do not rely solely on stats to select a model –use 
economic theory as well. 
 
• Do not use same sample evidence to generate an H0 and to test it! 
 
Example: The Fama-French factors have been “discovered” using the CRSP/Compustast 
database for a long, long time. Thus, testing the Fama-French factors using the CRSP/Compustat 
is not advisable! 
 
(You can test them with another dataset, for example, get international data.) ¶ 
 
 
Testing Remarks: Significance level, α 
So far, we have assumed that the distribution of the test statistic –say the F-statistic– under H0 is 
known exactly, so that we have what is called an exact test.   
 



Technically, the size of a test is the supremum of the rejection probability over all DGPs that 
satisfy H0. For an exact test, the size equals the nominal level, α –i.e., the Prob[Type I error] = α.  
 
Usually, the distribution of a test is known only approximately (asymptotically). In this case, we 
need to draw a distinction between the nominal level, α (nominal size), of the test & the actual 
rejection probability (empirical size), which may differ greatly from the nominal level.  
 
Simulations are needed to gauge the empirical size of tests. 
 
 
Testing Remarks: A word about α 
Ronald Fisher, before computers, tabulated distributions. He used a .10, .05, and .01 percentiles. 
These tables were easy to use and, thus, those percentile became the de-facto standard α for 
testing H0. 
 
“It is usual and convenient for experimenters to take 5% as a standard level of significance.” –
Fisher (1934).  
 
Given that computers are powerful and common, why is p = 0.051   unacceptable, but p = 0.049 
is great? There is no published work that provides a theoretical basis for the standard thresholds.  
 
Rosnow and Rosenthal (1989): “ ... surely God loves .06 nearly as much as .05.” 
 
Practical advise: In the usual Fisher’s null hypothesis (significance) testing, significance levels, 
α, are arbitrary.  Make sure you pick one, say 5%, and stick to it throughout your analysis or 
paper. 
 
• Report p-values, along with CI’s. Search for economic significance. 
 
Questions: .10, .05, or .01 significance? 
Many tables will show *, **, and *** to show .10, .05, and .01 significance levels –for example, 
lm() in R. Throughout the paper, the authors will point out the different significance levels. In 
these papers, it is not clear what α is the paper using for inference. 
 
We can think of these stars (or p-values) as ways of giving weights to H0 relative to H1. 
 
 
Testing Remarks: A word about H0 
In applied work, we only learn when we reject H0; say, when the p-value < α.  But, rejections are 
of two types:  
- Correct ones, driven by the power of the test  
- Incorrect ones, driven by Type I Error (“statistical accident,” luck). 
 
It is important to realize that, however small the p-value, there is always a finite chance that the 
result is a pure accident. At the 5% level, there is 1 in 20 chances that the rejection of H0 is just 
luck. 



 
Since negative results are difficult to publish (publication bias), there is  an unknown but 
possibly large number of false claims taken as truths. 
 
Example: If α ൌ 0.05, proportion of false H0=10%, and π = .50, 47.4% of rejections are true H0  
-i.e., “false positives.” ¶ 
 
 
Testing Remarks: Mass significance 
We have a model. We perform k different tests, say k t-tests, each with a nominal significance 
level of α: 
 α = Prob (Rejecting for a given test |H0 for this test is true) 
 
The overall significance of the test procedure is, however, given by 
 α* = Prob (Rejecting at least one test | all H0 are true). 
 
The probability of rejecting at least one H0 is obviously greater than of rejecting a specific test. 
This is the problem of mass significance. 
 
 
• Two cases 
(1) Independent tests α* = 1 − (1 − α)k   &    α = 1 − (1 − α*)1/k 

 
(2) Dependent tests: α* ≤ kα  &    α ≥ α*/k 
 close to the “independent” values for small α, but can differ for large α. 
 
Example: α =0.05 and k=5  ⇒ α*(Indep) =.23   &  α*(Dep)=.25  
  α =0.05 and k=20  ⇒ α*(Indep) =.64   &  α*(Dep) = 1  
  α* =0.05 and k=5  ⇒ α(Indep) =.0102  &  α(Dep) =.01  
  α* =0.20 and k=5  ⇒ α(Indep) =.044   &  α(Dep) =.04 
  α* =0.20 and k=20  ⇒ α(Indep) =.011   &  α(Dep) =.01. ¶ 
 
• David Hendry’s suggestions: 
In repeated parametric testing (overall level 5%): 
- Only accept variables as important when their p-values are less than 0.001, preferably smaller 
- Maybe look for other ways of choosing variables, say AIC. 
 
In repeated diagnostic testing (overall level 20%), we should only accept there is no 
misspecification if 
- All p-values are greater than 0.05, or 
- Most p-values are greater than 0.10 with a few in the range  0.02 to 0.10 
 
 
Non-nested Models and Tests 
So far, all our tests (t-, F- & Wald tests) have been based on nested models, where the R model is 
a restricted version of the U model. 



 
Example:   
 Model U  𝒚 = Xβ + Wδ + ε  (Unrestricted) 
 Model R  𝒚 = Xβ +  ξ   (Restricted) 
 
Model U becomes Model R under H0: δ = 0. We know how to select a model, based on a 
statistical test, for example, using a Wald test. ¶ 
 
• Sometimes, we have two rival models to choose between, where neither can be nested within 
the other -i.e., neither is a restricted version of the other. In this situation, we call the models 
non-nested. 
 
Example:   
 Model 1 𝒚 = Xβ + Wδ + ε 
 Model 2 𝒚= Xβ + Zγ + ξ. ¶ 
 
If the dependent variable is the same in both models (as is the case here), we can simply use 
Adjusted-R2 to rank the models and select the one with the largest Adjusted-R2. 
 
We can also use AIC and/or BIC. 
 
But, we can also use more sophisticated testing-based methods: Encompassing test and J-test. 
 
 
Non-nested Models: Encompassing Test 
Alternative approach: Encompassing 
(1) Form a composite or encompassing model that nests both rival models −say, Model 1 and 
Model 2. This is the unrestricted Model (ME). 
(2) Test the relevant restrictions of each rival model against ME. We do two F-tests, where the 
restricted models are Model 1 and Model 2. 
 
If we reject the restrictions against one Model, say Model 1, and we cannot reject the restrictions 
against the other, Model 2, we are done: We select the Model that the F test do not reject 
restrictions (Model 2). 
 
Assuming the restrictions cannot be rejected, we prefer the model with the lower F statistic for 
the test of restrictions.  
 
Note: We test a hybrid model. Also, multicollinearity may appear. 
 
Example: We have: 
 Model 1  Y = Xβ + Wδ + ε 
 Model 2  Y = Xβ + Zγ + ξ 
Then, the Encompassing Model (ME) is: 
 ME:  Y = Xβ + Wδ + Zγ + ε 
 



Now test, separately, the hypotheses (1) δ = 0 and (2) γ = 0. That is,  
 
F-test for H0: γ = 0: ME (U Model) vs Model 1 (R Model). 
F-test for H0: δ = 0: ME (U Model) vs Model 2 (R Model).  
 
If we reject H0: γ = 0 ⇒ Evidence against Model 1 (statistically different from ME).  
If we reject H0: δ = 0 ⇒ Evidence against Model 2 (statistically different from ME).  ¶ 
 
 
Non-nested Models and Tests: IFE or PPP? 
Two of the main theories to explain the behaviour of exchange rates, St, are the International 
Fisher Effect (IFE) and the Purchasing Power Parity (PPP). We use the direct notation for St, 
that is, units of domestic currency (DC) per 1 unit of foreign currency (FC). 
 
IFE states that, in equilibrium, changes in exchange rates (e) are driven by the interest rates 
differential between the domestic currency, id, and the foreign currency, if:. A DGP consistent 
with IFE is: 
   e = α1 + β1 (id – if) + ε1 
 
PPP, in its Relative version, states that that, in equilibrium, e are driven by the inflation rates 
differential between the domestic Inflation rate, Id, and the foreign Inflation rate, If. A GDP 
consistent with IFE is: 
   e = α2 + β2 (Id – If) + ε2 
 
Both theories are non-nested, thus, we need a non-nested method to select a model.   
 
Example: What drives log changes in exchange rates for the USD/GBP (e): (id – if) or (Id – If)? 
The USD is the DC; the GBP is the FC. Both non-nested models are: 
  IFE Model:  e = α1 + β1 (id – if) + ε1 
  PPP Model:  e = α2 + β2 (Id – If) + ε2 
 
SF_da <- read.csv("https://www.bauer.uh.edu/rsusmel/4397/SpFor_prices.csv", head=TRUE, 
sep=",") 
x_date <- SF_da$Date 
x_S <- SF_da$GBPSP 
x_F3m <- SF_da$GBP3M 
i_us3 <- SF_da$Dep_USD3M 
i_uk3 <- SF_da$Dep_UKP3M 
cpi_uk <- SF_da$UK_CPI 
cpi_us <- SF_da$US_CPI 
T <- length(x_S) 
int_dif <- (i_us3[-1] - i_uk3[-1])/100 
lr_usdgbp <- log(x_S[-1]/x_S[-T]) 
I_us <- log(cpi_us[-1]/cpi_us[-T]) 
I_uk <- log(cpi_uk[-1]/cpi_uk[-T]) 
inf_dif <- (I_us - I_uk) 



 
Encompassing Model (ME or “Unrestricted Model”) 
 e = α + β1 (id – if) + β2 (Id – If) + ε1 
 
# Encompassing Model and Test 
fit_me <- lm(lr_usdgbp ~ int_dif + inf_dif)   # ME estimation 
> summary(fit_me) 
 
Coefficients: 
               Estimate Std. Error  t value Pr(>|t|)   
(Intercept) -0.0009633 0.0016210 -0.594 0.5527   
int_dif    -0.0278510 0.0741189 -0.376 0.7073    ⇒ cannot reject H0: β1 = 0. 
inf_dif     0.7444711 0.3429106 2.171 0.0306 *  ⇒ reject H0: β2 = 0.  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
Residual standard error: 0.02662 on 360 degrees of freedom 
Multiple R-squared:  0.01316,   Adjusted R-squared:  0.007673  
F-statistic: 2.399 on 2 and 360 DF,  p-value: 0.09221 
 
Conclusion: The encompasing test favors the PPP Model. 
 
Note: Two F-tests are needed, but for the one variable case, the t-tests are equivalent. 
 
R Note: The package in R, lmtest, performs this test, encomptest. Recall you need to install it 
first: install.packages(“lmtest”). The test reported is an F-test ~ 𝐹ଵ,்ି, which, in this case with 
only one variable in each Model, is equal to (𝑡்ି)2

. 
 
library(lmtest) 
fit_m1 <- lm(lr_usdgbp ~ int_dif)   # Restricted Model 1 
fit_m2 <- lm(lr_usdgbp ~ inf_dif)    # Restricted Model 2 
> encomptest(fit_m1, fit_m2) 
 
 1: lr_usdgbp ~ int_dif 
Model 2: lr_usdgbp ~ inf_dif 
Model E: lr_usdgbp ~ int_dif + inf_dif 
 
          Res.Df Df      F  Pr(>F)   
M1 vs. ME    360 -1 4.7134 0.03058 * ⇒ reject H0: β2 ൌ 0. Check: ሺ2.171ሻ2 = 4.713 
M2 vs. ME    360 -1 0.1412 0.70732.  ¶  
 
 
Non-nested Models: J-test 
We present the most popular test for non-nested models, the Davidson-MacKinnon (1981)’s J-
test. 
 
We start with two non-nested models. Say, 
 Model 1:  Y = Xβ + ε 
 Model 2:  Y = Zγ + ξ 
 



Idea: If Model 2 is true, then the fitted values from the Model 1, when added to the 2nd equation, 
should be insignificant.  
 
• Steps: 
(1) Estimate Model 1    obtain fitted values: Xb.  
(2) Add Xb to the list of regressors in Model 2  
  Y = Zγ + λXb + ξ 
(3) Do a t-test on λ. A significant t-value would be evidence against Model 2, favoring Model 1.  
(4) Repeat the procedure for the models the other way round. 
 (4.1) Estimate Model 2    obtain fitted values: Zc.  
 (4.2) Add Zc to the list of regressors in Model 1:  
    Y = Xβ + λ Zc + ε 
 (4.3) Do a t-test on λ. A significant t-value would be evidence against Model 1 and in  
  favor of Model 2.  
  
(5) Rank the models on the basis of this test. 
 
• The “best situation” is when we reject only one H0: λ = 0. In this case, it is very clear which 
model to select. But, tt is possible that we cannot reject both models. This is possible in small 
samples, even if one model, say Model 2, is true. 
 
It is also possible that both t-tests reject H0 (λ ≠ 0 & λ ≠ 0). This is not unusual. McAleer’s 
(1995), in a survey, reports that out of 120 applications all models were rejected 43 times.  
 
Technical Note: As some of the regressors in step (3) are stochastic, Davidson and MacKinnon 
(1981) show that the t-test is asymptotically valid. 
 
• One would also want to examine the diagnostic test results when choosing between two 
models.  
 
 
Non-nested Models: J-test – IFE or PPP? 
Example: Now, we test IFE Model vs PPP Model 2, for changes in the USD/GBP exchange rate 
using the J-test. 
 Model 1 (IFE):  e = α1 + β1 (id – if) + ε1 
 Model 2 (PPP):  e = α2 + β2 (Id – If) + ε2 
 
y <- lr_usdgbp 
fit_m1 <- lm( y ~ int_dif) 
summary(fit_m1) 
y_hat1  <- fitted(fit_m1) 
fit_J1 <- lm( y ~ inf_dif + y_hat1) 
summary(fit_J1) 
 
fit_m2 <- lm( y ~ inf_dif) 
summary(fit_m2) 
y_hat2  <- fitted(fit_m2) 
fit_J2 <- lm( y ~ int_dif + y_hat2) 



summary(fit_J2) 
 
fit_m1 <- lm( y ~ int_dif) 
y_hat1  <- fitted(fit_m1) 
fit_J1 <- lm(formula = y ~ inf_dif + y_hat1) 
> summary(fit_J1) 
 
Residuals: 
      Min        1Q    Median        3Q       Max  
-0.136310 -0.014168  0.000351  0.017227  0.092421  
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)   
(Intercept) 0.0001497 0.0025556   0.059  0.9533   
inf_dif     0.7444711 0.3429106   2.171  0.0306 * 
y_hat1     1.2853298 3.4206106   0.376  0.7073   ⇒ cannot reject H

0
: λ=0. (Good for 

      Model 2) 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.02662 on 360 degrees of freedom 
Multiple R-squared:  0.01316,   Adjusted R-squared:  0.007673  
F-statistic: 2.399 on 2 and 360 DF,  p-value: 0.09221 
 
 
it_m2 <- lm( y ~ inf_dif) 
y_hat2  <- fitted(fit_m2) 
fit_J2 <- lm(formula = y ~ int_dif + y_hat2) 
> summary(fit_J2) 
Residuals: 
      Min        1Q    Median        3Q       Max  
-0.136310 -0.014168  0.000351  0.017227  0.092421  
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)   
(Intercept) -0.000304 0.0016409 -0.186 0.8529   
int_dif   -0.027851 0.0741189 -0.376 0.7073   
y_hat2    1.0066945 0.4636932 2.171  0.0306 *  ⇒ Reject H

0
: λ=0. (Again, good for 

         Model 2) 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.02662 on 360 degrees of freedom 
Multiple R-squared:  0.01316,   Adjusted R-squared:  0.007673  
F-statistic: 2.399 on 2 and 360 DF,  p-value: 0.09221 
 
Conclusion: We only rejected one H0:  λ = 0. Then, the J-test selects the PPP Model (Model 2). 
 
 
R Note: The lmtest package also performs this test, with the function jtest. Recall that you need 
to install it first: install.packages(“lmtest”). 



 
library(lmtest) 
fit_m1 <- lm(lr_usdgbp ~ int_dif) 
fit_m2 <- lm(lr_usdgbp ~ inf_dif) 
 
> jtest(fit_m1, fit_m2) 
J test 
 
Model 1: lr_usdgbp ~ int_dif 
Model 2: lr_usdgbp ~ inf_dif 
                 Estimate Std. Error t value Pr(>|t|)   
M1 + fitted(M2) 1.0067 0.4637 2.1710 0.03058 *  ⇒ Reject H

0
: λ=0. (Model 2 selected) 

M2 + fitted(M1) 1.2853  3.4206 0.3758 0.70732.  ¶ 
 
 
Non-nested Models: J-test – Application  
We want to test 
 H0: y = Xβ + ε0  (additive) vs  
 H1: ln y = (ln X) γ + ε

1
 (multiplicative) 

 
We look at the J-test 
- Step 1: OLS on H1:  get γො  
 OLS y = Xβ + λ1  exp{ln(X) γො} + ε   t-test on λ1 
- Step 2: OLS on H0:  get b  
 OLS ln y = (ln X) γ + λ0  Xb + ε   t-test on λ0 
 
Situations: 
(1) Both OK:   λ1 

 
= 0 and λ0 = 0   get more data 

(2) Only 1 is OK:  λ1 
 
≠ 0 and λ0 

 
= 0  (multiplicative is OK);  

      λ0 ≠ 0 and λ1 
 
= 0   (additive is OK) 

(3) Both rejected:  λ1 
 
≠ 0 and λ0 ≠ 0 `  new model is needed. 

 
 
Non-nested Models: J-test – Remarks  
The J-test was designed to test non-nested models (one model is the true model, the other is the 
false model), not for choosing competing models –the usual use of the test.   
 
The J-test is likely to over reject the true (model) hypothesis when one or more of the following 
features is present:  
i) A poor fit of the true model 
ii) A low/moderate correlation between the regressors of the 2 models 
iii) The false model includes more regressors than the correct model.  
 
Davidson and MacKinnon (2004) state that the J-test will over-reject, often quite severely in 
finite samples when the sample size is small or where conditions (i) or (iii) above are obtained. 
  



Lecture 6 – Specification, Forecasting & Model Selection 
 
OLS Estimation - Assumptions 
Brief Review of CLM Assumptions   
(A1) DGP: y = X  +  is correctly specified.  
(A2) E[|X] = 0   
(A3) Var[|X] = σ2 IT 
(A4) X has full column rank –rank(X)=k-, where T ≥ k. 
 
Question: What happens when (A1) is not correctly specified?  
 
First, we look at (A1), in the context of linearity. Are we omitting a relevant regressor? Are we 
including an irrelevant variable? What happens when we impose restrictions in the DGP?  
 
Second, in (A1), we allow some non-linearities in its functional form. 
 
 
Specification Errors: Omitted Variables 
Omitting relevant variables:  Suppose the correct model (DGP) is  
        y = X11 + X22 +   –the “long regression,” with X1 & X2.   
 
But, we compute OLS omitting X2. That is, 
 y = X11 +     –the “short regression.”  
 
We have two nested models: one model becomes the other, once a restriction is imposed. In the 
above case, the true model becomes “the short regression” by imposing the restriction 2 = 0. 
 
Question: What are the implications of using the wrong model, with omitted variables? 
We already know the answer, we are imposing a wrong restriction: the restricted estimator, b*, is 
biased, but it is more efficient. 
 
 
Specification Errors: Omitted Variables 
Some easily proved results: 
E[b1|X] = E [(X1X1)-1X1 y] = E [(X1X1)-1X1 (X11 + X22 + )]  
 = 1 + (X1X1)-1X1X22  1.   
 
Thus, unless X1X2 =0, b1 is biased.  The bias can be huge.  It can reverse the sign of a price 
coefficient in a “demand equation.” 
 
(2) Var[b1|X] ≤ Var[b1.2|X], where b1.2 is the OLS estimator of 1 in the long regression (the true 
model).  
 
Thus, we get a smaller variance when we omit X2.   
 



Interpretation: Omitting X2 amounts to using extra information –i.e., 2 = 0. Even if the 
information is wrong, it reduces the variance.   
 
(3) Mean Squared Error (MSE = RSS/T) 
 
 If we use MSE as precision criteria for selecting an estimator, b1 may be more “precise.”   
     Precision = Mean squared error (MSE)  
                    = Variance + Squared bias. 
 
Smaller variance but positive bias.  If bias is small, a practitioner may still favor the short 
regression. 
 
Note: Suppose X1X2 = 0.  Then the bias goes away.  Interpretation, the information is not 
“right,” it is irrelevant: b1 is the same as b1.2. 
 
Example: We fit an ad-hoc model for U.S. short-term interest rates (iUS,t)  that includes inflation 
rate (IUS,t), changes in the USD/EUR (et), money growth rate (mUS,t), and unemployment (uUS,t), 
using monthly data from 1975:Jan-2020: Jul. That is, 
  iUS,t = β0 + β1 IUS,t + β2 et + β3 mUS,t + β4 uUS,t + εi 
 
Fger_da <- read.csv("https://www.bauer.uh.edu/rsusmel/4397/FX_USA_GER.csv", 
head=TRUE, sep=",") 
us_CPI <- Fger_da$US_CPI 
us_M1 <- Fger_da$US_M1 
us_i <- Fger_da$US_I3M 
us_GDP <- Fger_da$US_GDP 
ger_CPI <- Fger_da$GER_CPI 
us_u <- Fger_da$US_UN 
S_ger <- Fger_da$USD_EUR 
 
T <- length(us_CPI) 
us_I <- log(us_CPI[-1]/us_CPI[-T]) # US Inflation: (Log) Changes in CPI  
us_mg <- log(us_M1[-1]/us_M1[-T])  # US Money Growth: (Log) Changes in M1 
e_ger <- log(S_ger[-1]/S_ger[-T])   #  (Log) Changes in USD/EUR 
us_i_1 <- us_i[-1]    # Adjust sample size of untransformed data  
us_u_1 <- us_u[-1]    # Adjust sample size of untransformed data  
us_i_0 <- us_i[-T]    # lagged interest rates, by removing T observation 
xx_i <- cbind(us_I ,e_ger, us_mg, us_u_1) # X matrix 
fit_i <- lm(us_i_1 ~ xx_i) 
>  summary(fit_i) 
 
Coefficients: 
                 Estimate  Std. Error t value Pr(>|t|)     
(Intercept)  2.12516  0.52177 4.073 5.34e-05 *** 
xx_i_us_I  410.03733 37.17344 11.030 < 2e-16 *** 
xx_i_e_ger  8.90564  4.59915  1.936 0.053343 .   



xx_i_us_mg -50.07811 15.04907 -3.328 0.000935 ***  significant. 
xx_i_us_u_1 0.22673  0.08346  2.717 0.006805 **   significant. 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 3.113 on 542 degrees of freedom 
Multiple R-squared:  0.2276,    Adjusted R-squared:  0.2219  
F-statistic: 39.93 on 4 and 542 DF,  p-value: < 2.2e-16 
 
• Now, we include lagged interest rates 
xx_i <- cbind(us_I ,e_ger, us_mg, us_u_1, us_i_0) # X matrix with lagged interest rates 
 
fit_i_1<- lm(us_i_1 ~ xx_i) 
summary(fit_i_1) 
 
Coefficients: 
                 Estimate Std. Error t value Pr(>|t|)     
(Intercept)  0.101007 0.079458  1.271 0.20420  
xx_ius_I    16.367138 6.144709  2.664 0.00796 **  
xx_ie_ger  3.112901    0.691673  4.501 8.3e-06 *** 
xx_ius_mg   1.231633    2.284528  0.539 0.59003      now, not significant. 
xx_ius_u_1 -0.015444   0.012632 -1.223 0.22199  now, not significant. 
xx_i_us_i_0 0.22673 0.08346   2.717 0.00681 **   significant effect on other coeff. 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 3.113 on 542 degrees of freedom 
Multiple R-squared:  0.2276,    Adjusted R-squared:  0.2219  
 
Note: Lagged iUS (iUS, t-1) is very significant & changes significance of other variables. It may 
point out to a general misspecification in (A1). ¶ 
 
 
Omitted Variables Example: Gasoline Demand 
We have a linear model for the demand for gasoline (G) as function of price (PG) and income 
(Y):  
  G = PG 1 + Y 2 + ,  
 
Q: What happens when you wrongly exclude Income (Y)?  
  
          E[b1|X]  = 1 +                                2 

 
In time series data,  1  <  0,  2  >  0  (usually) 
   Cov[Price, Income]  >  0 in time series data. 
 The short regression will overestimate the price coefficient. 
 



In a simple regression of G (demand) on a constant and PG, the Price Coefficient (1) should be 
negative. 
 
Example: Estimation of a ‘Demand’ Equation: Shouldn’t the Price Coefficient be Negative? 
Taken from Green’s graduate Econometrics textbook 
 

 
 
• If a multiple regression is done, incorporating income, Y, theory works! 
 
Ordinary     least squares regression ............ 
LHS=G        Mean                 =      226.09444 
             Standard deviation   =       50.59182 
             Number of observs.   =             36 
Model size   Parameters           =              3 
             Degrees of freedom   =             33 
Residuals    Sum of squares       =     1472.79834 
             Standard error of e  =        6.68059 
Fit          R-squared            =         .98356 
             Adjusted R-squared   =         .98256 
Model test   F[  2,    33] (prob) =   987.1(.0000) 
--------+------------------------------------------------------ 
Variable| Coefficient    Standard Error  t-ratio  P[|T|>t]  
--------+------------------------------------------------------ 
Constant|   -79.7535***      8.67255       -9.196   .0000 
       Y|     .03692***       .00132       28.022   .0000  
      PG|   -15.1224***      1.88034       -8.042   .0000 
--------+------------------------------------------------------ 
 
Note: Income is helping us to identify a demand equation –i.e., with a negative slope for the 
price variable. ¶ 
 
 
Specification Errors: Irrelevant Variables 
Irrelevant variables. Suppose the correct model is   
 𝒚 = X11 +  –the “short regression,” with X1 



But, we estimate   
 𝒚 = X11 + X22 +  –the “long regression.” 
 
Some easily proved results: Including irrelevant variables just reverse the omitted variables 
results:  It increases variance -the cost of not using information-; but does not create biases. 
 
 Since the variables in X2 are truly irrelevant, then 2 = 0,  
 so E[b1.2|X] = 1.  
 
• A simple example   
Suppose the correct model is:  𝒚 = 1 + 2 X2 +   
But, we estimate:  𝒚 = 1 + 2 X2 + 3 X3 +  
 
• Results: 
- Unbiased: Given that 3 = 0    E[b2|X] = 2  
- Efficiency: 

𝑉𝑎𝑟ሾ𝑏ଶ|𝑋ሿ ൌ
𝜎ଶ

∑ሺ𝑋ଶ െ 𝑋ሜଶሻଶ
ൈ

1
1 െ 𝑟మ,య

ଶ    
𝜎ଶ

∑ሺ𝑋ଶ െ 𝑋ሜଶሻଶ
 

where 𝑟మ,యis the correlation coefficient between X2 and X3. 
 
Note: These are the results in general. Note that if X2 and X3 are uncorrelated, there will be no 
loss of efficiency after all. 
 
 
Testing Model Specification: Nested Models 
In both previous cases, we have two nested models, one is the restricted version of the other. For 
example, in the case of omitted variables: 
 
(U) 𝒚 = X 1 + Z 2 +   –the “long regression,”  
(R) 𝒚 = X 1 +     –the “short regression.”  
 
To test H0 (No omitted variables): 2 = 0, we can use the F-test:  

  F = 
ሺோௌௌೃ ି ோௌௌೆሻ/

ோௌௌೆ/ሺ்ିሻ
 ~ FJ,T-K. 

 
Example: In the previous Lecture, we performed this F-test to test if in the 3-factor FF model for 
IBM returns, SMB and HML were significant, which they were. That is, we showed that the 
usual CAPM formulation for IBM returns had omitted variables: SMB and HML. 
 
 
Testing Model Specification with an LM Test 
Note that we can tests for omitted variables with Wald tests and LR tests. The F-test and the LR 
test of H0: 2 = 0 require two estimations: the Unrestricted model and the Restricted model. 
 



There is another test of H0: 2 = 0, that only uses the restricted model as the basis for testing: The 
Lagrange Multiplier (LM) test, which we introduced in Lecture 5.  
 

In this section, we present the simpler formulation of the LM test, which is based on the residuals 
of the restricted model, eR.  
 
Simple intuition. Everything that is omitted from (& belongs to!) a model should appear in the 
residuals (eR). Suppose we consider a model driven by X1 and Z: 
  𝒚 = X1 1 + Z2 +  
But, we use a simpler model, which omits the J variables, Z:  
  𝒚 = X11 +  
The LM test checks if the restricted residuals, eR, can be explained by the J omitted variables Z. 
We use a simple regression of eR against Z to check for misspecification in the estimated model. 
 
• LM test steps: 
(1) Run restricted model (y = X 1 + ). Get restricted residuals, eR. 
 
(2) (Auxiliary Regression). Run the regression of eR

 on all the J omitted m variables, Z, and the k 
included variables, X. In our case:   
 eR,i = α0 + α1 xi,1 + ...+ αk xi,k + γ1 zi,1 + .... + γJ  zi,J + vi 
 Keep the R2 from this regression, 𝑅ோ

ଶ .  
 
(3) Compute LM-statistic: 

  LM = T * 𝑅ோ
ଶ   

ௗ
→  χ

ଶ. 

 
Technical Note: We include the original variables in (2), X, in the auxiliary regression to get the 
convenient form for the LM-test, as shown by Engle (1982). 
 
The LM Test is very general. It can be used in many settings, for example, to test for 
nonlinearities, interactions among variables, autocorrelation or heteroscedasticity (discussed 
later). 
 
Asymptotically speaking, the LM Test, the LR Test and the Wald Test are equivalent –i.e, they 
have the same limiting distribution,  χ

ଶ. In small T, they can have different conclusions. In 

general, however, we find: W > LR > LM. That is, the LM test is more conservative (cannot 
reject more often) and the Wald test is more aggressive. 
 
Example: We use an LM test to check if the standard CAPM for IBM returns omits SMB and 
HML. 
fit_r <- lm (ibm_x ~ Mkt_RF) 
resid_r <- fit_r$residuals  # get residuals from R model 
fit_lm <- lm (resid_r ~ Mkt_RF + SMB + HML) # auxiliary regression 
> summary(fit_lm) 
 
Coefficients: 



               Estimate Std. Error t value Pr(>|t|)   
(Intercept) 0.0007021 0.0024875   0.282   0.7779   
Mkt_RF   0.0125253 0.0567221   0.221   0.8253   
SMB       -0.2124596 0.0841119  -2.526   0.0118 * 
HML      -0.1715002 0.0846817  -2.025   0.0433 * 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
Residual standard error: 0.05848 on 565 degrees of freedom 
Multiple R-squared:  0.01649,   Adjusted R-squared:  0.01127  
F-statistic: 3.158 on 3 and 565 DF,  p-value: 0.02438 
 
R2_r <- summary(fit_lm)$r.squared  # extracting  R2 from fit_lm  
> R2_r 
[1] 0.01649104 
 
LM_test <- R2_r * T 
> LM_test 
[1] 9.383402  LM_test > qchisq (.95,df=2)  Reject H0. 
 
qchisq(.95, df = 2)   # chi-squared (df=2) value at 5% level 
p_val <- 1 - pchisq(LM_test, df = 2)   # p-value of LM_test  
> p_val 
[1] 0.009171071   p-value is small  Reject H0: SMB & HML not in model.  
 
Conclusion: We strongly reject the CAPM (one factor model), since the LM tests strongly 
suggests that SMB and HML should be in the model. ¶ 
 
Note: In Lecture 5 we performed the same test with the Wald test (using the F distribution), the 
p-value was 0.0091175. (This almost exact coincidence is not always the case.) 
 
 
Functional Form: Linearity in Parameters 
Linear in variables and parameters: 
 𝒚 ൌ 𝛽ଵ  𝛽ଶ𝑿ଶ  𝛽ଷ𝑿ଷ  𝛽ସ𝑋ସ  𝜺. 
So far, this is the linear model we have used. OLS estimates all parameters: 𝛽ଵ,  𝛽ଶ,𝛽ଷ,  & 𝛽ସ. 
 
Non-linear in variables, but linear in parameters –i.e., intrinsic linear: 
 𝒚 ൌ 𝛽ଵ  𝛽ଶ𝑿ଶ

ଶ  𝛽ଷඥ𝑿ଷ  𝛽ସ log𝑿ସ  𝜺 
 
Define: 𝒁ଶ ൌ 𝑿ଶ

ଶ,  𝒁ଷ ൌ ඥ𝑿ଷ,  & 𝒁ସ ൌ log𝑿ସ 
 
Then, the non-linear model becomes a linear model: 
 𝒚 ൌ 𝛽ଵ  𝛽ଶ𝒁ଶ  𝛽ଷ𝒁ଷ  𝛽ସ𝑍ସ  𝜺 
 
Again, OLS can be used to estimate all 𝛽ଵ,  𝛽ଶ,𝛽ଷ,  & 𝛽ସ. 
 



Suppose we have: 
 𝒚 ൌ 𝛽ଵ  𝛽ଶ𝑿ଶ  𝛽ଷ𝑿ଶ

ଶ  𝜺 
 
 The model allows for a quadratic relation between y and X2: 
 
 
 
   y 
 
 
 
 
    X2 
Let 𝑿ଷ= 𝑿ଶ

ଶ, then, the model is intrinsic linear: 
  𝒚 ൌ 𝛽ଵ  𝛽ଶ𝑿ଶ  𝛽ଷ𝑿ଷ  𝜀 
 
Example: We want to test if a measure of market risk (MktRet – rf)2 enters as an additional 
explanatory variable in the 3- factor FF model for IBM returns.  
 
The model is non-linear in (MktRet – rf), but still intrinsic linear: 
 IBMRet – rf = 0 + 1 (MktRet – rf) + 2 SMB + 3 HML + 4 (MktRet – rf)2 +   
 
We can do OLS, by redefining the variables: Let 𝑿ଵ= (MktRet – rf); 𝑿ଶ = SMB; 𝑿ଷ = HML; 𝑿ସ = 
𝑿ଵ
ଶ. Then, 

𝒚 ൌ 𝛽  𝛽ଵ𝑿ଵ  𝛽ଶ𝑿ଶ  𝛽ଷ𝑿ଷ  𝛽ସ𝑿ସ  𝜺 
 
Mkt_RF2 <- Mkt_RF^2  
fit_ibm_ff_2 <- lm (ibm_x ~ Mkt_RF + SMB + HML + Mkt_RF2) 
summary(fit_ibm_ff_2) 
 
Coefficients: 
          Estimate Std. Error t value Pr(>|t|)     
(Intercept)  -0.004765 0.002854 -1.670 0.0955 .   
Mkt_RF 0.906527 0.057281 15.826 <2e-16 *** 
SMB  -0.215128 0.084965 -2.532 0.0116 *   
HML  -0.173160 0.085054 -2.036 0.0422 *   
Mkt_RF2 -0.143191 0.617314 -0.232 0.8167    Not significant! 
 
Conclusion: A t-test cannot reject H0: 𝛽ସ=0. That is, there is no evidence that (MktRet – rf)2 is an 
explanatory variable for IBM excess returns.  
 
• Now, we can also check with an LM test if all variables squares ((MktRet – rf)2, SMB2, and 
HML2) are omitted from the 3-factor FF model for IBM returns.  
 
Mkt_RF2 <- Mkt_RF^2  
SMB2 <- SMB^2 
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HML2 <- HML^2 
fit_r <- lm (ibm_x ~ Mkt_RF + SMB + HML) 
resid_r <- fit_r$residuals 
fit_lm <- lm (resid_r ~ Mkt_RF + SMB + HML + Mkt_RF2 + SMB2 + HML2) 
R2_r <- summary(fit_lm)$r.squared 
LM_test <- R2_r * T 
> LM_test 
[1] 2.453822 
p_val <- 1 - pchisq(LM_test, df = 3)  # p-value of LM_test  
> p_val 
[1] 0.4836944   p-value is higher than standard levels  Cannot Reject H0. ¶ 
 
Conclusion: The LM test cannot reject the 3-factor F-F model, since all squared terms are not 
jointly significant. ¶ 
 
 
• Nonlinear in parameters: 
 𝒚 ൌ 𝛽ଵ  𝛽ଶ𝑿ଶ  𝛽ଷ𝑋ଷ  𝛽ଶ𝛽ଷ𝑿ସ  𝜺 
This model is nonlinear in parameters since the coefficient of X4 is the product of the coefficients 
of X2 and X3. OLS cannot be used to estimate all parameters.  
 
Some nonlinearities in parameters can be linearized by appropriate transformations, but not this 
one. This is not an intrinsic linear model. Different estimation techniques should be used in these 
cases. 
 
Intrinsic linear models can be estimated using OLS. Sometimes, transformations are needed. 
Suppose we start with a power function:    
  𝒚 ൌ 𝛽ଵ𝑿ఉమ𝜺 
 
• The errors enter in multiplicative form. Then, using logs: 
 log𝒚 ൌ log𝛽ଵ 𝑿ఉమ𝜺 ൌ log𝛽ଵ  𝛽ଶ log𝑿  log 𝜺, 
or 
 𝒚′ ൌ 𝛽ଵ

ᇱ  𝛽ଶ𝑿′  𝜺′,  
 
where  𝒚′ ൌ log𝒚 ,𝑿′ ൌ log𝑿,𝛽ଵ

ᇱ ൌ log𝛽ଵ , 𝜺′ ൌ log 𝜺 
 
Now, we have an intrinsic linear model: OLS can be used to estimate all the parameters.  
 
Similar intrinsic model can be obtained if 𝒚 ൌ 𝒆ఉభା ఉమ 𝑿 ା 𝜺 
 
Note: Recall that we can only use logs when 𝒚 has positive values. In general, we use logs when 
we believe the independent variable has an exponential or power formulation, typical behavior 
for nominal variables, like sales, revenue or prices. 
 
• Not all models are intrinsic linear. For example:  
  𝒚 ൌ 𝛽ଵ𝑿ఉమ  𝜺 



  log𝒚 ൌ logሺ 𝛽ଵ𝑿ఉమ  𝜺ሻ 
 
We cannot linearize the model by taking logarithms. There is no way of simplifying log(𝛽ଵ𝑋ఉమ + 
ε).   
 
We will have to use some nonlinear estimation technique for these situations. (ML can estimate 
this model.) 
 
 
Functional Form: Linear vs Log specifications 
Two popular models, especially in Corporate Finance: linear or log? 
 Model 1 - Linear model: 𝒚 ൌ 𝛽ଵ  𝛽ଶ𝑿  𝜀 
  Model 2 - (Semi-) Log model: log𝒚 ൌ 𝛽ଵ  𝛽ଶ𝑿  𝜀 
 

Box–Cox transformation: 
ഊିଵ

ఒ
ൌ 𝛽ଵ  𝛽ଶ𝑿  𝜀 

    
ഊିଵ

ఒ
ൌ 𝑌 െ 1  when  =1 

    
ഊିଵ

ఒ
ൌ logሺ 𝑌ሻ when  → 0 

 
Putting  = 0 gives the (semi–)log model (think about the limit of   tends to zero.). The Box-
Cox transformation is flexible. We can estimate  to test if  is equal to 0 or 1. It is possible that 
it is neither! 
 
 
Functional Form: Ramsey’s RESET Test  
To test the specification of the functional form, Ramsey designed a simple test. We start with the 
fitted values from our (A1) model: 
  ŷ = Xb. 
 
 Then, we add ŷ2 to the regression specification:  
  𝒚 = X  + ŷ2 γ + ε  
 
If ŷ2 is added to the regression specification, it should pick up quadratic and interactive 
nonlinearity, if present, without necessarily being highly correlated with any of the X variables. 
 
We test  H0 (linear functional form): γ = 0  
   H1 (non linear functional form): γ ≠ 0 
     t-test on the OLS estimator of γ. 
 
If the t-statistic for ŷ2 is significant    evidence of nonlinearity.  
 
The RESET test is intended to detect nonlinearity, but not be specific about the most appropriate 
nonlinear model (no specific functional form is specified in H1).  
 



Example: We want to test the functional form of the 3 FF Factor Model for IBM returns, using 
monthly data 1973-2020.  
fit_ibm_ff3 <- lm(ibm_x ~ Mkt_RF + SMB + HML) 
y_hat <- fitted(fit_ibm_ff3) 
y_hat2 <- y_hat^2  
fit_ramsey <- lm(ibm_x ~ Mkt_RF + SMB + HML + y_hat2) 
> summary(fit_ramsey) 
 
Coefficients: 
              Estimate  Std. Error  t value  Pr(>|t|)     
(Intercept)  -0.004547 0.002871 -1.584   0.1137     
Mkt_RF        0.903783 0.058003 15.582   <2e-16 *** 
SMB          -0.217268 0.085128 -2.552   0.0110 *   
HML          -0.173276 0.084875 -2.042   0.0417 *   
y_hat2      -0.289197 0.763526 -0.379   0.7050   Not significant! 
 
R Note: The lmtest package performs this test, resettest, (and many others, used in this class, 
encompassing, jtest, waldtest, etc). You need to install it first: install.packages(“lmtest”), then 
call the library(lmtest). 
 
Note: The test reported is an F-test ~ F1,T-k, which is equal to (tT-k)2. The p-values should be the 
same. 
 
library(lmtest) 
> resettest(fit_ibm_ff3, power=2, type="fitted") 
        RESET test 
data:  y ~ Mkt_RF + SMB + HML  
RESET = 0.14346, df1 = 1, df2 = 564, p-value = 0.705  
 ⇒ cannot reject H0. Check: (-0.379)2 = 0.1434.  
 
Conclusion: The RESET test does not find evidence of non-linearities (or, in general, of 
misspecification) in the 3-factor F-F model, since the squared fitted values are not significant at 
the 5% level. ¶ 
 
 
Qualitative Variables and Functional Form 
Suppose that you want to model CEO compensation as a function of education. You have data 
on annual total CEO compensation (Comp), annual returns, annual sales, CEO’s age, CEO’s 
previous experience, and the CEO’s last degree (education). We have qualitative data.  
 
One approach to see the impact of education on the CEO compensation model is to run 
individual regressions for each last degree –i.e., BA/BS; MS/MA/MBA; Doctoral:  
Undergrad degree   Compi = β0-u + β1-u′zi + εu,i 
Masters degree   Compi = β0-m + β1-m′zi + εm,i 
Doctoral degree   Compi = β0-d + β1-d′zi + εd,i 

 



where the zi is a vector of the CEO i’s  age and previous experience and his/her firm’s annual 
returns and annual sales. We observe the impact of education through the different coefficients in 
each regression. A potential problem with this approach is that we may end up with three small 
samples (and imprecise estimations). 
 
 
An alternative approach that uses the whole sample in the estimation is to combine the three 
regressions in one. To do this, we use a “dummy variable” –also called, indicator variable–, 
which is a variable that points whether an observation belongs to a category or class or not. For 
example: 
 𝐷,  = 1 if observation i belongs to category C (say, male.) 
  = 0 otherwise. 
 
Simple process: First, we define dummy/indicator variables for Masters & doctoral degrees:  
 𝐷, = 1 if at least Masters degree 
   = 0 otherwise. 
 𝐷ௗ,  = 1 if doctoral degree 
   = 0 otherwise. 
 
Then, we introduce the dummy/indicator variables in the compensation model: 
   𝐶𝑜𝑚𝑝 = β0 + β1′zi + β2 𝐷,+ β3 𝐷ௗ,  + γ1′zi 𝐷, + γ2′zi 𝐷ௗ, + 𝜀 
 
Not, this model uses all the sample to estimate the parameters. It is flexible:  
- Model for undergrads only (𝐷, = 0 & 𝐷ௗ, = 0): 
  𝐶𝑜𝑚𝑝 = β0 + β1′zi + 𝜀  
- Model for Masters degree only (𝐷, = 1 & 𝐷ௗ, = 0): 
   𝐶𝑜𝑚𝑝= (β0 + β2) + (β1 + γ1)′zi + 𝜀  
- Model for Doctoral degree only (𝐷, = 1 & 𝐷ௗ, = 2): 
   𝐶𝑜𝑚𝑝= (β0 + β2 + β3) + (β1 + γ1 + γ2)′zi  + 𝜀  
 
The parameters for the different categories are: 
- Constant: 
 Constant for undergrad degree: β0   
 Constant for Masters degree: β0 + β2 
 Constant for Doctoral degree: β0 + β2+ β3 
- Slopes: 
 Slopes for undergrad degree: β1 
 Slopes for Masters degree: β1 + γ1  
 Slopes for Doctoral degree: β1 + γ1 + γ2 
 
We can test the effect of education on CEO compensation:   
 (1) H0: No effect of grad degree: β3 = β2 = 0 & γ1 = γ2 = 0   F-test. 
 (2) H0: No effect of Masters degree on constant: β2 = 0    t-test. 
 (3) H0: No effect of doctoral degree: β3 = 0 & γ2 = 0    F-test. 
 (4) H0: No effect of Dr degree on marginal effect: γ2 = 0   F-test.  
 



• We may have more than one qualitative category (last degree above) in our data that we may 
want to introduce in our model. 
 
Example: Suppose we also have data for CEO graduate school. Now, we can create another 
qualitative category, “quality of school”, defined as Top 20 school, to test if a Top 20 school 
provides “more value.” To do this, we use  𝐷்ை to define if any schooling is in the Top 20.  
   𝐷்ை, = 1 if CEO 𝑖’s school is a Top 20 school 
   = 0 otherwise. 
 
The model becomes: 
  𝐶𝑜𝑚𝑝 = β0 + β1′zi + β2 𝐷, + β3 𝐷ௗ, + β4 𝐷்ை, + γ1 ′zi 𝐷,  γ2′zi 𝐷ௗ, + γ3′zi  𝐷்ை, + 𝜀  
 
In this setting, we can test the effect of a Top20 education on CEO compensation: 
  (1) H0: No effect of Top20 degree: β4 = 0 and γ3 = 0   F-test. ¶ 
 
• The omitted category is the reference or control category.  
- In our first example, with only educational degrees, the reference category is undergraduate 
degree. - In the second example, with educational degrees and quality of school (Top20 dummy), 
the reference category is undergraduate degree with no Top 20 education. 
 
• Dummy trap. If there is a constant, the numbers of dummy variables per qualitative variable 
should be equal to the number of categories minus 1. If you put the number of dummies variables 
equals the number of categories, you will create perfect multicollinearity. 
 
 
Dummy Variables as Seasonal Factors 
A popular use of dummy variables is in estimating seasonal effects. We may be interested in 
studying the January effect in stock returns or if the returns of oil companies (say, Exxon or BP) 
are affected by the seasons, since during the winter people drive less and during the summer. 
 
In this case, we define dummy/indicator variables for Summer, Fall and Winter (the base case is, 
thus, Spring):   
 𝐷ௌ௨, = 1   if observation i occurs in Summer     
  = 0  otherwise. 
 𝐷ி,  = 1   if observation i occurs in Fall       
  = 0  otherwise. 
 𝐷ௐ,  = 1   if observation i occurs in Winter      
  = 0  otherwise. 
 
Then, letting Z be the vector of the three FF factors ((𝑟,௧ – 𝑟), 𝑆𝑀𝐵௧ ,𝐻𝑀𝐿௧), and assuming the 
seasons only affect the constant, we have: 
  (𝑟 – 𝑟) = β0 + β1′zi + β2 𝐷ௌ௨, + β3 𝐷ி, + β4 𝐷ௐ, +  
 
Example: In the context of the 3-factor FF model, we test if Exxon’s excess returns (XOM) are 
affected by seasonal (quarters) factors: 



  (𝑟ைெ, – 𝑟) = β0 + β1′zi + β2 𝐷ௌ௨, + β3 𝐷ி, + β4 𝐷ௐ, +  
x_xom <- SFX_da$XOM     # Extract XOM prices 
T <- length(x_xom) 
lr_xom <- log(x_xom[-1]/x_xom[-T]) 
xom_x <- lr_xom – RF 
 
T <- length(xom_x)  
Summ <- rep(c(0,0,0,0,0,0,1,1,1,0,0,0), round(T/12)+1)  # Create Summer dummy 
Fall <- rep(c(0,0,0,0,0,0,0,0,0,1,1,1), round(T/12)+1) # Create Fall dummy 
Wint <- rep(c(1,1,1,0,0,0,0,0,0,0,0,0), round(T/12)+1)  # Create Winter dummy 
T1 <- T+1 
Fall_1 <- Fall[2:T1]      # Adjusting sample (starts in Feb) 
Wint_1 <- Wint[2:T1] 
Summ_1 <- Summ[2:T1] 
fit_xom_s <- lm(xom_x ~ Mkt_RF + SMB + HML + Fall_1 + Wint_1 + Summ_1) 
summary(fit_xom_s) 
> summary(fit_xom_s) 
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept) 0.002445 0.003485  0.702   0.4832    constant for reference category (Spring)≈0. 
Mkt_RF  0.761816 0.040602 18.763  < 2e-16 *** 
SMB     -0.261925 0.060575 -4.324 1.81e-05 *** 
HML      0.370623 0.060049  6.172 1.29e-09 *** 
Fall_1    -0.006609 0.004947 -1.336   0.1822     
Wint_1    -0.011283 0.004928 -2.290   0.0224 *    significant. Reject H0: No Winter effect. 
Summ_1  -0.007100 0.004944 -1.436   0.1515 
 
Interpretation: In the Winter quarter, Exxon excess returns decrease, relative to the Spring, by 
1.13%. But since Spring’s (& Fall’s & Winter’s) effect is non-significant, the decrease is in 
absolute terms. 
 
Conclusion: The t-value for the Winter dummy (Wint_1) is significant at the 5% level. That is, 
we reject H0: No seasonal effect on XOM excess returns. 
 
• We can test if all quarters jointly matter. That is, H0: β2 = β3 = β4 = 0. 
We do an F-test: 
 
fit_u <- lm (xom_x ~ Mkt_RF + SMB + HML + Fall_1 + Wint_1 + Summ_1) 
fit_r <- lm (xom_x ~ Mkt_RF + SMB + HML) 
resid_u <- fit_u$residuals 
RSS_u <- sum((resid_u)^2) 
resid_r <- fit_r$residuals 
RSS_r <- sum((resid_r)^2) 
f_test <- ((RSS_r - RSS_u)/2)/(RSS_u/(T-4)) 
> f_test  



[1] 2.706574 
>  
p_val <- 1 - pf(f_test,df1=3, df2=T-3)  # p-value of F-test  
>  p_val 
[1] 0.05504357  p-value is “marginal.” Cannot reject H0: No joint seasonal effect.  
 
Conclusion: We cannot reject, at the 5% level, H0: No joint seasonal effect.  
 
 
• Suppose we are also interested in checking if the slopes –i.e., the marginal effects- are affected 
by the Winter quarter. Then, we fit: 
 (𝑟ைெ, – 𝑟)  = β0 + β1′zi + β2DSum,i + β3DFall,i + β4 DWin,i + γ1′zi DWin,i +  
Mkt_W <- Mkt_RF*Wint_1 
SMB_W <- SMB*Wint_1 
HML_W <- HML*Wint_1  
fit_xom_s2 <- lm(xom_x ~ Mkt_RF + SMB + HML + Mkt_W + SMB_W + HML_W + Fall_1 
+ Wint_1 + Summ_1) 
> summary(fit_xom_s2) 
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  0.003127 0.003478  0.899 0.368962     
Mkt_RF     0.695762  0.048202 14.434 < 2e-16 *** 
SMB       -0.291199 0.075197 -3.872 0.000120 *** 
HML        0.270262  0.077416  3.491 0.000519 *** 
Mkt_W      0.208912  0.091972 2.271 0.023497 *    significant effect on Mkt’s slope  
SMB_W    0.064753 0.126138   0.513 0.607911     
HML_W   0.198753  0.124261   1.599 0.110278     
Fall_1    -0.006795 0.004934 -1.377 0.169038     
Wint_1  -0.013747 0.005000 -2.750 0.006159 **   significant effect on constant.  
Summ_1   -0.007492 0.004928 -1.520 0.129012 
 
Interpretation: The only factor interacting significantly with Winter is the Market factor. Then, 
we have two significantly different slopes: 
 - In the Winter, the Market slope is: 0.695762 + 0.208912 = 0.903674 
 - In all other quarters, the Market is: 0.695762  
 
It looks like in the Winter, XOM behaves closer to the Market, while in all other quarters, it is 
significantly less risky than the market. 
 
• Now, we perform a joint test for interacting Winter effects in the model:: 
> f_test 
[1] 6.505231 
p_val <- 1 - pf(f_test, df`1= 3, df2=T-7)   # p-value of F-test  
>  p_val 
[1] 0.0007923967  p-value < .05, then, we reject H0 

(joint Winter interactive effect): γ1 = 0.  



 
Conclusion: We strongly reject, at the 5% level, H0: No joint Winter interactive effect. ¶ 
 
 
Dummy Variables: Is There a January Effect? 
The January Effect is a hypothesis that states that the stock market has an unusually high return 
during the first month of the year. This result can be traced to an observation made in 1942 U.S. 
investment banker Sidney Wachtel. Wachtel noticed higher returns for small stocks than for 
large stock in January, a result later examined by Kiem (1983), who found that the January return 
premium was evident for small stocks. In one of the earlier studies, Rozeff and Kinney (1976) 
found seasonal patterns in an equal-weighted index of NYSE prices over the period 1904-74. 
Specifically, the average monthly return in January was 3.5%, while other months averaged 
0.5% percent. A very strong result that shows a clearly predictable pattern, which goes against 
the Efficient Markets Hypothesis. Since then, a lot of work has been done: The evidence 
suggests that, in recent years, the January effect has dissipated.  
 
Example: We want to test the January effect on IBM stock returns, where because of tax 
reasons/window dressing, stocks go down in December and recover in January. The test can be 
done by adding a dummy variable to the 3-factor FF model: 
 𝐷,௧ = 1  if observation 𝑡 occurs in January    
  = 0  otherwise. 
 
Then, we estimate the expanded 3-factor FF model: 
 (𝑟௧ – 𝑟) = β0 + 1 (𝑟,௧ – 𝑟) + 2 𝑆𝑀𝐵௧ + 3 𝐻𝑀𝐿௧ + 4 𝐷,௧ + ௧ 
 
We test H0(No January effect): β4 = 0    t-test. 
 
Alternatively, we can estimate do an LM test on the residuals of the 3-factor FF model and check 
if 𝐷,௧ is significant.  
 
T <- length(ibm_x) 
Jan <- rep(c(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), (round(T)/12+1)) # Create January dummy 
T2 <- T+1 
Jan_1 <- Jan[2:T2] # Adjust sample 
fit_ibm_ff3 <- lm (ibm_x ~ Mkt_RF + SMB +  HML) # Restricted Regression 
resid_r <- fit_ibm_ff3$residuals # Keep residuals (e

R
)  

fit_Jan <- lm (resid_r ~ Mkt_RF + SMB + HML + Jan_1) # Auxiliary Regression 
> summary(fit_Jan) 
 
Coefficients: 
              Estimate  Std. Error t value Pr(>|t|)    
(Intercept) -0.002111  0.002561 -0.824  0.41027    
Mkt_RF      -0.005198 0.056405 -0.092  0.92661    
SMB        -0.026306  0.084063 -0.313  0.75445    
HML        -0.014914  0.083606 -0.178  0.85848    
Jan_1         0.026966  0.008906 3.028  0.00258 ** 



--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
Residual standard error: 0.058 on 565 degrees of freedom 
Multiple R-squared:  0.01597,   Adjusted R-squared:  0.009  
F-statistic: 2.292 on 4 and 565 DF,  p-value: 0.05841 
 
R2_r  <-  summary(fit_Jan)$r.squared   # Keep R^2 from Auxiliary Regression 
> R2_r 
[1] 0.01596528 
LM_test <- R2_r * T 
> LM_test 
[1] 9.084247 
 
p_val <- 1 - pchisq(LM_test, df = 1)   # p-value of LM_test  
> p_val 
[1] 0.002578207   p-value is small  Reject H0. 
 
Given this result, we modify the 3-factor FF and add the January Dummy to the FF model: 
 
fit_ibm_ff3_Jan <- lm (ibm_x ~ Mkt_RF + SMB + HML + Jan_1) 
> summary(fit_ibm_ff3_Jan) 
 
Coefficients: 
   Estimate Std. Error t value Pr(>|t|)     
(Intercept)  -0.007302  0.002561  -2.851  0.00452 **  
Mkt_RF    0.905182  0.056405 16.048  < 2e-16 *** 
SMB      -0.247691  0.084063 -2.946  0.00335 **  
HML      -0.154093  0.083606 -1.843  0.06584 .   
Jan_1         0.026966  0.008906 3.028  0.00258 **  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
Residual standard error: 0.058 on 565 degrees of freedom 
Multiple R-squared:  0.3499,    Adjusted R-squared:  0.3453  
F-statistic: 76.01 on 4 and 565 DF,  p-value: < 2.2e-16 
 
Interpretation: We have two constants (excess return, Jensen’s alpha): 
Feb - Dec: -0.7302% (significant). 
January: -0.7302% + 2.6966% = 1.9664% (significant).  
 
When the January dummy was not in the model, we had: -0.005191, which is close to an average 
of the constants (= -0.007302 *11 + 0.019664)/12 = -0.00505). 
 
Interpretation: During January IBM has an additional 2.6966% excess returns. This is a big 
number. Today, the evidence for the January effect is much weaker than in this case. ¶ 
 



Note: In the FF model we expect the constant to be very small (≈0). In this case, it is not zero. 
Like in the case of the CAPM, a significant constant is evidence against the 3-factor model of 
Fama-French. Maybe we have a misspecified (A1). 
 
 
Dummy Variable for One Observation 
We can use a dummy variable to isolate a single observation.  
  𝐷  = 1 for observation 𝑗.  
   = 0 otherwise. 
 
Define d to be the dummy variable in question.   
   Z = all other regressors.  X = [Z, 𝑫𝑱] 
 
Multiple regression of y on X.  We know that  
 X'𝒆 = 0  where 𝒆 = the column vector of residuals.   
   𝑫𝑱'𝒆 = 0   𝑒 = 0 (perfect fit for observation 𝑗).   
 
This approach can be used to deal with (eliminate) outliers.  
 
Example: In Dec 1992, IBM reported record losses and gave a very bleak picture of its future. 
The stock tumbled -30.64% that month. We check the effect of that extreme observation, a 
potential outlier, on the 3-factor FF model + January dummy: 
 
dec_1992 <- rep(0,T)     # Define Dec 1992 dummy 
dec_1992[239] <- 1     # Define Dec 1992 dummy (=1 if Dec 1992) 
fit_d92 <- lm (ibm_x ~ Mkt_RF + SMB + HML + Jan_1 + dec_1992) 
> summary(fit_d92) 
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept) -0.006772 0.002502 -2.707 0.00699 **  
Mkt_RF    0.908775 0.055054 16.507 < 2e-16 *** 
SMB       -0.239213 0.082059  -2.915 0.00370 **  
HML      -0.138629 0.081647 -1.698 0.09008 .   
Jan_1      0.026163 0.008694 3.009 0.00273 **  
dec_1992 -0.306202 0.056710 -5.399 9.86e-08 *** (same value of observation) 
 
Conclusion: Potential “Outlier” has no major effect on coefficients. ¶ 
 
 
Chow Test: Testing the effect of Categories on a Model  
It is common to have a qualitative variable with two categories, say education (MS/MBA or not). 
Before modelling the data, we can check if only one regression (“pooling”) model applies to both 
categories.  
 
We use the Chow Test (an F-test)    –Chow (1960, Econometrica). 



 
Steps:  
(1) Run OLS with all the data, with no distinction between schools (Pooled regression or 
Restricted regression). Keep RSSR. 
 
(2) Run two separate OLS, one for each school (Unrestricted regression). Keep RSS1 and RSS2   
 RSSU = RSS1 + RSS2.  
(Alternative, we can run just one regression with the dummy variable). 
 
(3) Run a standard F-test (testing Restricted vs. Unrestricted models): 
 

𝐹 ൌ
ሺ𝑅𝑆𝑆ோ െ 𝑅𝑆𝑆ሻ/ሺ𝑘 െ 𝑘ோሻ

ሺ𝑅𝑆𝑆ሻ/ሺ𝑇 െ 𝑘ሻ
ൌ
ሺ𝑅𝑆𝑆ோ െ ሾ𝑅𝑆𝑆ଵ  𝑅𝑆𝑆ଶሿሻ/𝑘
ሺ𝑅𝑆𝑆ଵ  𝑅𝑆𝑆ଶሻ/ሺ𝑇 െ 2𝑘ሻ

 

 
Recall that under normality –i.e., under (A5) – the distribution of the F test is: 
   𝐹  ~ 𝐹,்ି,  where J = ሺ𝑘 െ  𝑘ோሻ.  
 
Remark: If (A5) is not assumed and it we have a large number of observations in both categories, 

it is common to approximate the asymptotic distribution of the Chow test with J * F 
ௗ
→ χ

ଶ/ J. 

Note, that there are many papers arguing that the approximation is not very accurate. 
 
Example: Who visits doctors more: Men or Women? 
Data: German Health Care Usage Data, with 7,293 Individuals.  
Time Periods: Varying Number. 
Variables in the file are: 
 
Data downloaded from Journal of Applied Econometrics Archive. This is an unbalanced panel 
with 7,293 individuals. There are altogether 27,326 observations.  The number of observations 
ranges from 1 to 7 per family.  (Frequencies are: 1=1525, 2=2158, 3=825, 4=926, 5=1051, 
6=1000, 7=987).   
 
The dependent variable of interest is: 
DOCVIS  =  number of visits to the doctor in the observation period 
 
The explanatory variables are: 
HHNINC =  household nominal monthly net income in German marks / 10000. 
                     (4 observations with income=0 were dropped) 
GENDER_F = gender (1 = female) 
HHKIDS = children under age 16 in the household = 1; otherwise = 0 
EDUC     =  years of schooling  
AGE        = age in years 
MARRIED= marital status (1 = if married) 
WHITEC = 1 if has “white collar” job 
 



Health_Da <- read.csv("https://www.bauer.uh.edu/rsusmel/4397/german_health.csv", 
head=TRUE, sep=",") 
 
x_fem <- Health_Da$Gender_F 
 x_age <- Health_Da$age 
 x_edu <- Health_Da$educ 
 x_hhinc <- Health_Da$hhninc/100 
 x_hhkids <- Health_Da$hhkids 
 x_married <- Health_Da$married 
 x_white_col <- Health_Da$whitecollar 
 x_docvis <- Health_Da$docvis 
 
fit_doc_vis <- lm (x_docvis ~  x_age +  x_edu + x_married + x_white_col + x_hhkids + 
x_hhinc) 
 summary(fit_doc_vis) 
 
• OLS Estimation for ALL. Keep RSSALL = 858,435 (=5.606^2 * 27,315) 
 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept)  2.683700   0.249282  10.766  < 2e-16 *** 
x_age        0.061810   0.003444  17.947  < 2e-16 *** 
x_edu       -0.118858   0.015573  -7.632 2.38e-14 *** 
x_married   -0.090716   0.089056  -1.019    0.308     
x_white_col -0.115412   0.076540  -1.508    0.132     
x_hhkids    -0.492028   0.080014  -6.149 7.89e-10 *** 
x_hhinc     -0.015429   0.002046  -7.539 4.87e-14 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
Residual standard error: 5.606 on 27,315  degrees of freedom 
Multiple R-squared:  0.02949, Adjusted R-squared:  0.02928  
F-statistic: 138.3 on 6 and 27315 DF,  p-value: < 2.2e-16 

 
• OLS Estimation for Women only. Keep RSSW = 478,894.2 (= 6.052^2 * 13,075) 
 
## Run a regression with only Women data. Use Allgen to collect relevant data for women 
only.We will do a for loop and keep data if x_fem is greater than 0. 
 
xx <- cbind(x_fem, x_docvis, x_age,  x_edu, x_married, x_white_col, x_hhkids, x_hhinc)    
 
Allgen = NULL   # Initialize empty (to collect variables by one sex (f/m) only) 
i <- 1    
T <- length(x_fem) 
k <- ncol(xx) 
 



for (i in 1:T) { 
  if (xx[i,1] > 0) { 
    Allgen = rbind(Allgen, xx[i,2:k]) 
  } 
}   
 
y_g <- Allgen[,1]  # Dependent variable: doctor’s visits by women only 
x_g <- Allgen[,2:(k-1)] 
T_f <-length(y_g) 
 
fit_doc_vis_f <- lm (y_g ~  x_g) 
summary(fit_doc_vis_f) 
 
Coefficients: 
                Estimate Std. Error t value Pr(>|t|)     
(Intercept)     2.999559   0.453506   6.614 3.88e-11 *** 
x_gx_age        0.049366   0.005719   8.632  < 2e-16 *** 
x_gx_edu       -0.048141   0.027011  -1.782   0.0747 .   
x_gx_married   -0.119853   0.133846  -0.895   0.3706     
x_gx_white_col -0.006734   0.124768  -0.054   0.9570     
x_gx_hhkids    -0.636619   0.128844  -4.941 7.87e-07 *** 
x_gx_hhinc     -0.015651   0.003174  -4.932 8.25e-07 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
Residual standard error: 6.052 on 13075 degrees of freedom 
Multiple R-squared:  0.01984, Adjusted R-squared:  0.01939  
F-statistic: 44.11 on 6 and 13075 DF,  p-value: < 2.2e-16 
 
 
• OLS Estimation for Men only. Keep RSSM = 372,818.1 
# Use above code, but  change for loop (now, keep data if x_fem less than 1) 
 
for (i in 1:T) { 
  if (xx[i,1] < 1) { 
    Allgen = rbind(Allgen, xx[i,2:k]) 
  } 
}   
 
Coefficients: 
                Estimate Std. Error t value Pr(>|t|)     
(Intercept)     1.801539   0.290792   6.195 5.98e-10 *** 
x_gx_age        0.067656   0.004421  15.302  < 2e-16 *** 
x_gx_edu       -0.105462   0.018814  -5.605 2.12e-08 *** 
x_gx_married    0.022278   0.121467   0.183 0.854480     
x_gx_white_col -0.367075   0.096300  -3.812 0.000139 *** 
x_gx_hhkids    -0.428916   0.102070  -4.202 2.66e-05 *** 
x_gx_hhinc     -0.015438   0.002629  -5.872 4.40e-09 *** 



--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
Residual standard error: 5.118 on 14233 degrees of freedom 
Multiple R-squared:  0.03602, Adjusted R-squared:  0.03561  
F-statistic: 88.63 on 6 and 14233 DF,  p-value: < 2.2e-16 
 
 
• Chow Test: 

𝐹 ൌ
ሺ𝑅𝑆𝑆ோ െ ሾ𝑅𝑆𝑆ଵ  𝑅𝑆𝑆ଶሿሻ/𝑘
ሺ𝑅𝑆𝑆ଵ  𝑅𝑆𝑆ଶሻ/ሺ𝑇 െ 2𝑘ሻ
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 = 31.1178  
 
F(7, 27309) = 2.009925    reject H0 at 5% level.  
 
Conclusion: There is strong evidence that men and women do not have the same behavior. ¶ 
 
 
Functional Form: Structural Change 
Suppose there is an event that we think had a big effect on the behaviour of our model. Suppose 
the event occurred at time TSB. We think that the before and after behaviour of the model is 
significantly different. For example, the parameters are different before and after TSB. That is, 
  
 𝑦 = 

ଵ + ଵ
ଵ Xଵ, + ଶ

ଵ Xଶ, + ଷ
ଵ Xଷ, +   for 𝑖 ≤ TSB 

 𝑦 = 
ଶ + ଵ

ଶ Xଵ, + ଶ
ଶ Xଶ, + ଷ

ଶ Xଷ, +   for 𝑖 > TSB 
 
The event caused structural change in the model. TSB separates the behaviour of the model in 
two regimes/categories (“before” & “after”.)  
 
A Chow test can be used to check if one model applies to both regimes: 
 𝑦 = 0 + 1 Xଵ, + 2 Xଶ, + 3 Xଷ, +    for all i  
 
Under H0 (No structural change), the parameters are the same for all i. 
 
• We test H0 (No structural change): 

ଵ = 
ଶ = 0  

     ଵ
ଵ = ଵ

ଶ = 1 

     ଶ
ଵ = ଶ

ଶ = 2  

     ଷ
ଵ = ଷ

ଶ = 3  

 H1 (structural change): For at least 𝑘 (= 0, 1, 2, 3): 
ଵ  ≠ 

ଶ  
 
 
What events may have this effect on a model? A financial crisis, a big recession, an oil shock, 
Covid-19, new taxes and regulations, etc.  
 
Testing for structural change is the more popular use of the Chow test. 



 
Chow tests have many interpretations: tests for structural breaks, pooling groups, parameter 
stability, predictive power, etc.  
 
One important consideration: T may not be large enough. For example, we may think that Covid-
19 had a structural effect on the behaviour of tech companies. We may not have enough data to 
run an F-test. 
 
We structure the Chow test to test H0 (No structural change) as usual.   
 
• Steps for Chow (Structural Change) Test:  
(1) Run OLS with all the data, with no distinction between regimes (Restricted or pooled model): 
Keep RSSR. 
 
(2) Run two separate OLS, one for each regime (Unrestricted model): 
Before Date TSB..  Keep RSS1.  
After Date TSB..  Keep RSS2.   RSSU = RSS1 + RSS2.  
 
(3) Run a standard F-test (testing Restricted vs. Unrestricted models): 

𝐹 ൌ
ሺ𝑅𝑆𝑆ோ െ 𝑅𝑆𝑆ሻ/ሺ𝑘 െ 𝑘ோሻ

ሺ𝑅𝑆𝑆ሻ/ሺ𝑇 െ 𝑘ሻ
ൌ
ሺ𝑅𝑆𝑆ோ െ ሾ𝑅𝑆𝑆ଵ  𝑅𝑆𝑆ଶሿሻ/𝑘
ሺ𝑅𝑆𝑆ଵ  𝑅𝑆𝑆ଶሻ/ሺ𝑇 െ 2𝑘ሻ

 

 
Example: We test if the Oct 1973 oil shock in quarterly GDP growth rates had an structural 
change on the GDP growth rate model. We use Federal Reserve data (FRED) from 1947:I to 
2023:II (T = 304). 
 
We model the GDP growth rate, 𝑦௧, with an AR(1) model, that is, GDP growth rate depends 
only on its own lagged growth rate: 
  𝑦௧ = β0 + β1 𝑦௧ିଵ + ௧ 
GDP_da <- read.csv("https://www.bauer.uh.edu/rsusmel/4397/GDP_q.csv", head=TRUE, 
sep=",") 
x_date <- GDP_da$DATE 
x_gdp <- GDP_da$GDP 
x_dummy <- GDP_da$D73 
T <- length(x_gdp) 
t_s <- 108     # TSB = Oct 1973  
 
lr_gdp <- log(x_gdp[-1]/x_gdp[-T]) 
T <- length(lr_gdp) 
lr_gdp0 <- lr_gdp[-1] 
lr_gdp1 <- lr_gdp[-T] 
t_s <- t_s -1     # Adjust t_s (we lost the first observation) 
 
y <- lr_gdp0  
x1 <-  lr_gdp1 
T <- length(y) 



x0 <- matrix(1,T,1) 
x <- cbind(x0,x1) 
k <- ncol(x) 
 
# Restricted Model (Pooling all data) 
fit_ar1 <- lm(lr_gdp0 ~ lr_gdp1)  # AR(1) Model 
summary(fit_ar1)    # Restricted Regression 
e_R <- fit_ar1 $residuals   # regression residuals, e 
RSS_R <- sum(e_R^2)   # RSS Restricted 
 
# Unrestricted Model (Two regimes) 
 
y_1 <- y[1:t_s] 
x_u1 <- x[1:t_s,] 
fit_ar1_1 <- lm(y_1 ~ x_u1 - 1)  # AR(1) Regime 1 
e1 <- fit_ar1_1$residuals   # Regime 1 regression residuals, e 
RSS1 <- sum(e1^2)    # RSS Regime 1 
 
kk = t_s+1     # Starting date for Regime 2 
y_2 <- y[kk:T] 
x_u2 <- x[kk:T,] 
fit_ar1_2 <- lm(y_2 ~ x_u2 - 1)   # AR(1) Regime 2 
e2 <- fit_ar1_2$residuals   # Regime 2 regression residuals, e 
RSS2 <- sum(e2^2)    #  RSS Regime 2 
 
F <- ((RSS_R - (RSS1+RSS2))/k)/((RSS1+RSS2)/(T - 2*k)) 
> F 
[1] 4.391997 
p_val <- 1 - pf(F, df1 = 2, df2 = T - 2*k)   # p-value of F_test  
> p_val 
[1] 0.0131817    small p-values: Reject H0 (No structural change). ¶ 
 
Example: 3 Factor Fama-French Model for IBM (continuation) 
Q: Did the dot.com bubble (end of 2001) affect the structure of the FF Model? Sample: Jan 1973 
– June 2020 (T = 569). 
Pooled RSS = 1.9324 
Jan 1973 – Dec 2001 RSS = RSS1 = 1.3307 (T = 342)  
Jan 2002 – June 2020 RSS = RSS2 = 0.5791 (T = 227) 
 

 Constant Mkt – rf SMB HML RSS T 

1973-2020 -0.0051 0.9083 -0.2125 -0.1715 1.9324 569 

1973-2001 -0.0038 0.8092 -0.2230 -0.1970 1.3307 342 

2002 – 2020 -0.0073 1.0874 -0.1955 -0.3329 0.5791 227 



 
 

 F ൌ ሾோௌௌೃିሺோௌௌభାோௌௌమሻሿ/ 

ሺோௌௌభାோௌௌమሻ/ሺ்ିሻ
 = 

[1.9324 ି ሺ1.3307 + 0.5792)]/4

(1.3307 + .05791)/(569 - 2*4)
 = 1.6627  

    Since F4,565,.95 = 2.39, we cannot reject H0.  
 
Conclusion: We do not find evidence that the 3-factor F-F model IBM excess returns suffered a 
structural break in January 2002.  
 
R Note: The R package sctrucchange estimates the Chow test. (As usual, you need to install 
package first.) 
 
>library(sctrucchange) 
> t_s <- 342 
> sctest(ibm_x ~ Mkt_RF + SMB + HML, type = "Chow", point = t_s) 
 
 Chow test 
 
data:  ibm_x ~ Mkt_RF + SMB + HML 
F = 1.6627, p-value = 0.2787. ¶ 
 
 
Functional Form: Structural Change – Modeling with Dummy Variables 
Under the H0 (No structural change), we can pool the data into one model. That is, the 
parameters are the same under both regimes. We fit the same model for all i, for example, with 
vector 𝒙𝒊 of explanatory variables: 
  𝑦 = β0 + β1′𝒙𝒊 +  
 
If the Chow test rejects H0, we need to reformulate the model. A typical reformulation includes a 
dummy variable (DSB,i). For example: 
  𝑦 = β0 + β1′𝒙𝒊 + β2 𝐷ௌ, + γ1′𝒙𝒊 𝐷ௌ, +  
where 
 𝐷ௌ, = 1  if observation i occurred after  TSB    
    = 0  otherwise. 
. 
Example: Given the Chow Test, we want to incorporate the effect of the October 1973 oil shock 
in GDP growth rates. We include a dummy variable in the model, say 𝐷ଷ: 
 𝐷ଷ,= 1 if observation i occurred after October 1973 
  = 0 otherwise. 
Then, 
  𝑦 = β0 + β1′𝒙𝒊+ β2 𝐷ଷ,+  γ1′𝒙𝒊 𝐷ଷ, +  
 
In the model, the oil shock affects the constant and the slopes. 
- Constant: 
 Before oil shock (𝐷ଷ: = 0):  β0  
 After oil shock (𝐷ଷ: = 1): β0 + β2  



- Slopes: 
 Before oil shock (𝐷ଷ: = 0):  β1 
 After oil shock (𝐷ଷ: = 1): β1+ γ1  
 
We can estimate the above model and do an F-test to test if H0 (No structural change): β2 = 0 & 
γ1 = 0.  
 
Example: We introduce an Oct 1973 dummy in the AR(1) GDP growth rate model. 
T1 <- T - t_s    # Number of  Observations after SB 
D73_0 <- rep(0,t_s)   # Dummy_t = 0 if  t <= t_s 
D73_1 <- rep(1,T1)   # Dummy_t = 1 of  t > t_s 
D73 <- c(D73_0,D73_1)  # SB Dummy variable t_s <- 108 
lr_gdp1_D73 <- lr_gdp1 * D73 # interactive dummy (effect on slope) 
fit_ar1_d_2 <- lm(lr_gdp0 ~ lr_gdp1 + D73 + lr_gdp1_D73) 
summary(fit_ar1_d_2) 
 
Coefficients: 
              Estimate  Std. Error t value  Pr(>|t|)     
(Intercept) 0.009139   0.001939 4.712 3.75e-06 *** 
lr_gdp1   0.457011   0.090716 5.038 8.15e-07 *** 
D73       0.003499   0.002362 1.482 0.13947   no significant effect on constant 
lr_gdp1_D73 -0.316005 0.114197 -2.767 0.00601 **   significant effect on slope 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.01234 on 300 degrees of freedom 
Multiple R-squared:  0.09523, Adjusted R-squared:  0.08618  
F-statistic: 10.53 on 3 and 300 DF,  p-value: 1.333e-06 
 
Conclusion: After the oil shock, the slope significantly changed from 0.457011 to 0.141006 (= 
0.457011 + (-0.316005)). ¶ 
 
 
Chow Test: Structural Change – Asymptotics and Wald Test  
Before, when we presented the Chow test, we used the F-distribution, which will be appropriate 
under (A5). In general, we rely on the asymptotic distribution –i.e., we do not rely on (A5).  

It is common to approximated the distribution of the Chow test, under H0, (& if the number of 
observations pre- and post-break are large), with  

   J * 𝐹 
ௗ
→ χ

ଶ  (sometimes written as 𝐹 
ௗ
→ χ

ଶ/J). 

• It is also possible to do a Wald test to test H0, using only the unrestricted estimators. Steps: 

1) Run two separate OLS, one for each regime (Unrestricted model): 



Before Date TSB.  Keep b1 & Var[b1] 

After Date TSB.   Keep b2 & Var[b2] 

2) Compute the Wald test: 

  𝑊 = (b1 – b2) { 
T

TSB
 * Var[b1] + 

T

(T−TSB)
 * Var[b2]}-1 (b1 – b2) 

where T is the sample size and TSB  the observation of tested date. 

Under H0 (& if the number of observations pre- and post-break are large), the Wald test follows:   

  𝑊 
ௗ
→ χ

ଶ 

 
 
Chow Test: Structural Change – Unknown Break  
The previous example, computes the Chow test assuming that we know exactly when the break 
occurred –say, October 73, Dec 2001 or January 2009. 
 
That is, the results are conditional on the assumed breaking point.  
  
In general, breaking points are unknown, we need to estimate them. 
 
One quick approach is to do a rolling Chow test –that is we run the Chow test for all dates in the 
sample– and pick the date that maximizes the F-test. However, technically speaking, we cannot 
run the Chow test for all observations in our sample. We do not have enough observations to 
estimate reliable parameters on both sides of the potential breaking points. 
 
A solution to this problem is to “trim” the data, we start to check for a breaking point at date 
𝜏, and we finish to check at  date 𝜏௫. Usually, we set 𝜏 and 𝜏௫ by leaving a 
percentage, π, of the initial of observations and final observations. We call π the “trimming 
parameter,” usually set to equal 10% or 15% of the observations. 
 
This rolling Chow test was proposed by Quandt (1958): 
  𝑄𝐿𝑅் ൌ 𝑚𝑎𝑥

ఛఢሼఛ,   …, ఛೌೣሽ
𝐹்ሺ𝜏ሻ 

    
The max (supremum) is taken over all potential breaks in (τmin, τmax). For example, τmin= T*.15; 
τmax = T*.85; then we trim 30% of the observations (π0 = 15% in each side) to run the test. That 
is, we are looking for the structural break on the middle 70% of the sample. 
 
It is also possible to run the Wald test version of the Chow test for all  possible dates, again, 
selecting the date that maximizes 
  𝑄𝐿𝑅் ൌ 𝑚𝑎𝑥

ఛఢሼఛ,   …, ఛೌೣሽ
𝑊்ሺ𝜏ሻ 

• The first 𝑄𝐿𝑅் is called the SupF test, the second the SupW.  
 



The problem with testing over all potential breaks is that the technical conditions under which 
the asymptotic distribution is derived are not met in this setting (the F-test are correlated, they 
are not independent).  
 
Andrews (1993) showed that under appropriate conditions, the QLR statistic, also known as Sup-
test (W, F, LR) statistic, has a non-standard limiting distribution (“non-standard” = no existing 
table; needs a new one).  
 
The distribution depends on the number of parameters of the model, 𝑘, which we are tested for 
stability, trimming values, π0, which only affect the distribution through  λ = (1-π0)2/π0

2.  
 
• Andrews (1993) tabulated the non-standard distribution of the SupW for different 𝑘, α, and 
trimming values (π0).  
 
For example, for k=4, π0 = τmin/T = (1-τ max/T) = .15, & α=.05, the critical value is = 16.45. For 
the k=2 and same trimming and α values, the critical value is = 11.79. 
 
Critical values of the QLR test Distribution, taken from Andrews (1993). Note: p = # of 
parameters (k), π0 = trimming value. (Ignore λ.) Andrews (2003) issued a slightly corrected 
Table. 
 
Note: It is usual to test the SupF,  using the critical values of SupW, by dividing the SupW 
critical values by 𝑘. Then, for the critical value for the SupF test for k=2, π0 = .15 and α = .05, the 
critical value is  5.89 (= 11.79/2). 
 



 
 
 
Example (continuation): We search for breaking points for GDP growth rate in AR(1) model.  
We use package desk. (You can also use library strucchange, but it runs the SupW (F= SupW/2), you 
need to use Andrews (1993) Table.) 
 
library(desk) 
pie <- .15 
T0 <- round(T * pie) 
T1 <- round(T *(1-pie)) 
my.qlr <- qlr.test(lr_gdp0 ~ lr_gdp1, from = T0, to = T1, sig.level = 0.05, details = TRUE) 
 
> my.qlr   # Print test results 
 
QLR-Test for structural breaks at unknown date  
----------------------------------------------- 
 
Hypotheses:  
                       H0:                         H1: 
  No break in t = 46...262  Some break in t = 46...262 
 



Test results:  
  f.value  lower.cv  upper.cv  p.value  sig.level    H0 
  21.1441      5.86     6.085  < 1e-04       0.05  rej. 
 

my.qlr$breakpoint   # Extract breakpoint observation 
x_date[my.qlr$breakpoint]  # Print date  

 
Below, we plot all F-tests starting at T*15 (observation 46): 
 

 
 
Maximum F is 21.1441 occurs in Jan 2009 (observation #250). Then, using Andrews’ tabulated 
SupWcritical value of 11.79 and dividing by k=2, to obtain 5.89, we have 
 𝑄𝐿𝑅 = 21.1441 > 5.89 (=11.79/2)   Reject H0 at 5% level. 
 
R Note: The function qlr.test (package desk) also computes the p-value, using Hansen’s (1997) 
approximation. You can use the p-value, as usual, to evaluate (in this case, reject) H0. 
 
Conclusion: We find strong evidence that the AR(1) GDP growth model suffered a structural 
break during the sample. The QLR tests points toward January 2009 as the date of the structural 
break, not October 1973!.  ¶ 
 
Example: We search for breaking points for IBM returns in the 3-factor FF model.  
 
> my.qlr <- qlr.test(ibm_x ~ Mkt_RF + SMB + HML, from = T0, to = T1, sig.leve
l = 0.05, details = TRUE) 
> my.qlr # Print test results 
 
QLR-Test for structural breaks at unknown date  
----------------------------------------------- 
 
Hypotheses:  



                       H0:                         H1: 
  No break in t = 92...519  Some break in t = 92...519 
 
Test results:  
  f.value  lower.cv  upper.cv  p.value  sig.level    H0 
   4.5302      3.96      4.09   0.0243       0.05  rej. 

 
Below, we plot all starting at T*15: 

 

Maximum F is 4.5302 occurs in September 2012 (observation #477), the p-value is given as  
0.0243. That means, we reject H .  Using Andrews’ tabulated critical value for SupW to get  
4.11, we have 
  𝑄𝐿𝑅 = 4.5302 > 4.11 (=16.45/4)     reject H0 at 5% level. 
 
Conclusion: We do find evidence that the 3-factor F-F model IBM excess returns suffered a 
structural break during the sample. ¶ 
 
 
Chow Test: Structural Change – Script in R  
Chow Test for different breaking points, starting at T1. 
y <- ibm_x;  
x1 <-  Mkt_RF 
x2 <-  SMB 
x3 <- HML 
T <- length(x1) 
x0 <- matrix(1,T,1) 
x <- cbind(x0,x1,x2,x3) 
k <- ncol(x) 
b <- solve(t(x)%*% x)%*% t(x)%*%y   # b = (X'X)-1 X' y  (OLS regression) 



e <- y - x%*%b     # regression residuals, e 
RSS_R <- as.numeric(t(e)%*%e)   # RSS for Restricted (no structural change) 
 
T1 <- round(T * 1/5)     # Trim  .20 of data 
t <- T1        # t will be the counter for loop. Starts at T1. 
T2 <- round(T * 4/5)     # Trim  .20 of data 
T_sam <- T2 - T1 
All_F <- matrix(0,T_sam,1)    # Matrix to accumulate the (T2-T1) F-tests 
while (t <= T2) {     # Start while loop with counter t 
y_1 <- y[1:t] 
x_u1 <- x[1:t,] 
 
b_1 <- solve(t(x_u1)%*% x_u1)%*% t(x_u1)%*%y_1  # b = (X'X)-1 X' y  (OLS regression) 
e1 <- y_1 - x_u1%*%b_1     # regression residuals, e 
RSS1 <- as.numeric(t(e1)%*%e1)    # RSS for regime 1 
kk = t+1 
y_2 <- y[kk:T] 
x_u2 <- x[kk:T,] 
b_2 <- solve(t(x_u2)%*% x_u2)%*% t(x_u2)%*%y_2  # b = (X'X)-1 X' y  (OLS regression) 
e2 <- y_2 - x_u2%*%b_2     # regression residuals, e 
RSS2 <- as.numeric(t(e2)%*%e2)    # RSS for regime 2 
F <- ((RSS_R - (RSS1+RSS2))/k)/((RSS1+RSS2)/(T - 2*k)) 
kt <- t - T1 +1       # kt is an index that start at 1 
All_F[kt] <- F       # add F-test to All_F according to kt 
t = t+1 
} 
 
plot(All_F, col="red",ylab ="F-test", xlab ="Break Point") 
title("F-test at different Break Points") 
F_max <- max(All_F)       # Find the maximum F-test (QLR) 
 
 
Chow Test: Structural Change – Remarks 
The results are conditional on the breaking point –say, October 73 or Dec 2001. 
 
The breaking point is usually unknown. It needs to be estimated. 
 
It can deal only with one structural break –i.e., two categories! 
 
The number of breaks is also unknown.  
 
Characteristics of the data (heteroscedasticity –for example, regimes in the variance- and unit 
roots (high persistence) complicate the test. 
 
In general, only asymptotic (consistent) results are available. 
 



Related to the next section, missing structural breaks in deterministic parameters (intercepts, 
trends, etc.) can be a cause of forecast failure –see simulations by Clements and Hendry (1999). 
 
There are many modern tests that take care of these issues, but usually also with non-standard 
distributions. 
 
 
Forecasting and Prediction 
Objective: Forecast 
Distinction:  Ex post vs. Ex ante forecasting 
   – Ex post: RHS data are observed 
   – Ex ante (true forecasting): RHS data must be forecasted 
 
Prediction and Forecast 
- Prediction: Explaining an outcome, which could be a future outcome.    
- Forecast: A particular prediction, focusing in a future outcome. 
 
Example:  Prediction:  Given x0   predict 𝒚0. 
  Forecast:  Given x0

t+1   predict 𝒚t+1. ¶ 
 
• Two types of predictions: 
- In sample (prediction): The expected value of y (in-sample), given the estimates of the 
parameters. In sample prediction produces fitted values, 𝑦ො. 
- Out of sample (forecasting): The value of a future y that is not observed by the sample. 
 
Notation:  Let T be the forecast origin and l is the forecast horizon. 
 - Prediction for T made at T: 𝑌் . 
 - Forecast for T+l made at T: 𝑌் ା, 𝑌் ା|், 𝑌் ሺ𝑙ሻ. 
 - 𝑌் ሺ𝑙ሻ: l-step ahead forecast = Forecasted value YT+l  at time T. 
 
• Any prediction or forecast needs an information set, IT. This includes data, models and/or 
assumptions available at time T. The predictions and forecasts will be conditional on IT. 
 
For example, in-sample, IT = {x0} to predict y0.  
 
Or in a time series context, IT = {x0

T-1, x0
T-2, ..., x0

T-q} to predict yt+l. 
 
Then, the forecast is just the conditional expectation of YT+l, given the observed sample: 
   𝑌் ା ൌ 𝐸ሾ𝑌 ା |𝑋் ,𝑋்ିଵ,  … ,𝑋ଵሿ 
 
Example: If 𝑋் ൌ 𝑌 , then, the one-step ahead forecast is: 
    𝑌் ାଵ ൌ 𝐸ሾ𝑌 ାଵ|𝑌 ,𝑌 ିଵ,  … ,𝑌ଵሿ. ¶ 
 
• The conditional expectation of YT+l is, in general, based on a model,  the experience of the 
forecaster or a combination of both. 
 



Example: We base the conditional expectation for excess returns on the 3 FF factor model: 
   𝑌் ା ൌ E[(0 + 1 (𝑟,௧ା – 𝑟) + 2 𝑆𝑀𝐵௧ା + 3 𝐻𝑀𝐿௧ା |IT 
 
Note: The forecast of 𝑌 ା also needs a forecast for the driving variables in the model. We need a 
forecast for E[(𝑟,௧ା – 𝑟)| IT], E[ 𝑆𝑀𝐵௧ା | IT], and E[𝐻𝑀𝐿௧ା |IT ]. ¶ 
 
In general, we will need a model for 𝑋்ା. Things can get complicated very quickly. 
 
Keep in mind that the forecasts are a random variable. Technically speaking, they can be fully 
characterized by a pdf.  
 
In general, it is difficult to get the pdf for the forecast. In practice, we get a point estimate (the 
forecast) and a C.I.  
 
• Q: What is a good forecast? We need metrics to evaluate the forecasting performance of 
different models. In general, the evaluation of forecasts relies on MSE.   
 
Later in this class, when we cover time series (Brooks Chapter 6), we go deeper into forecasting. 
 
 
Forecasting and Prediction: Variance-bias Trade-off 
We start with general model (DGP): 
(A1) DGP:  𝑦 = f(X, θ) + . 
 
Given x0, we predict 𝑦0, using the expectation: E[𝑦|X, x0] = f(x0, θ);  which we estimate with 
  𝑦ො0 = f(x0, θ).  
 
The realization 𝑦0 is just: 
  𝑦0 = f(x0, θ) + 0   
 
With 𝑦0 observed, we compute the prediction error: 𝑦ො0 – 𝑦0

  and its associated expected squared 
error, which can be written as: 
 E[ሺ𝑦ො0 – 𝑦0ሻ2 ] = E[ሺ𝑦ො0 – ሺf(x0, θ) + 0 ሻሻ2] 
  = E[ሺf(x0, θ) – f(x0, θ)ሻ – 0ሻ2] 
   = Var[𝑦ො0 ] + [Bias(𝑦ො0 )]2 + Var[] 
 
We want to minimize this squared error. Note that there is nothing a forecaster can do regarding 
the last term, called the irreducible error. All efforts are devoted to minimize the sum of a 
variance and a squared bias (the MSE). This creates the variance-bias trade-off in forecasting. 
 
It is possible that biased forecast can produce a lower MSE than an unbiased one. In this lecture, 
we based our forecasts on OLS estimates, which under the CLM assumptions, produce unbiased 
forecast. 
 



Note: The variance-bias trade-off is always present in forecasting.  In general, more flexible 
models have less bias and more variance. The key is to pick an “optimal” mix of both. 
 
 
Forecasting and Prediction: Point Estimate 
Prediction: Given x0  predict 𝒚0. 
 
Given the CLM, we have:   
      Expectation:  E[y|X, x0] = x0;  
 Predictor:    𝑦ො0  = bx0  
       Realization:   𝑦0 = x0 + 0   
 
Note: The predictor includes an estimate of 0:   
     𝑦ො0 = b’x0 + estimate of 0.  (Estimate of 0=0, but with variance.) 
 
• Associated with the prediction (a point estimate), there is a forecast error: 
 𝑦ො0 – 𝑦0 = bx0 –  x0 –  0 = (b – )x0 –  0   
and a variance: 
 Var[(𝑦ො0 – 𝑦0)|x0] = E[(𝑦ො0 – 𝑦0) (𝑦ො0 – 𝑦0)|x0]  
  = x0 Var[(b – )|x0] x0 + 2 
 
Example: We have already estimated the 3 Factor Fama-French Model for IBM returns:  
> summary(fit_ibm_ff3) 
 
  Estimate  Std. Error  t value Pr(>|t|)     
(Intercept)  -0.005089  0.002488   -2.046   0.0412 *  
Mkt_RF        0.908299  0.056722  16.013   <2e-16 *** 
SMB          -0.212460  0.084112  -2.526   0.0118 *  
HML          -0.171500   0.084682  -2.025   0.0433 *  
 
Suppose we are given x0 = [1.0000 -0.0189 -0.0142 -0.0027] 
Then,       
 𝑦ො0 = -0.005089 + 0.908299 * (-0.0189) -0.212460 * -0.0142 - 0.171500 * (-0.0027) =  
  = -0.01877582 
 
Suppose we observe y0 = 0.1555214.  Then, the forecast error is 
 𝑦ො0 – 𝑦0 = -0.01877582 - 0.1555214 = -0.1742973 
 
• Computations in R: 
x_0 <- rbind(1.0000, -0.0189, -0.0142, -0.0027) 
y_0 <- 0.1555214 
y_f0 <-  t(b)%*% x_00 
> y_f0 
            [,1] 
[1,] -0.01877582 
ef_0 <- y_f0 - y_0 



> ef_0 
           [,1] 
[1,] -0.1742973. ¶ 
 
 
Forecasting and Prediction: Confidence Intervals 
How do we estimate the uncertainty behind the forecast?  Form a confidence interval.   
 
Two cases: 
(1) If x0 is given –i.e., constants. Then, 
  Var[𝑦ො0 – 𝑦0 |x0] = x0 Var[b|x0] x0 + 2 

    Form confidence interval as usual. 
 
Note: In out-of-sample forecasting, x0 is unknown, it has to be estimated. 
 
(2) If x0 has to be estimated, then we use a random variable.  What is the variance of the product?   
One possibility:  Use bootstrapping.  
 
• Assuming x0 is known, the variance of the forecast error is   
           2 + x0’ Var[b|x0]x0  = 2 + 2[x0’ (X’X)-1x0] 
 
If the model contains a constant term, this is 
 

Varሾ𝑒ሿ  ൌ  𝜎ଶ 1   
1
𝑁
  ሺ𝑥

  െ  �̄�ሻሺ𝑥
  െ  �̄�ሻሺ𝑍ᇱ𝑀𝑍ሻ

ିଵ

ୀଵ

ିଵ

ୀଵ

 

(where Z is X without x1=ί). In terms squares and cross products of deviations from means.   
 
Note: Large 2, small N, and large deviations from the means, decrease the precision of the 
forecasting error. 
 
Interpretation:  Forecast variance is smallest in the middle of our “experience” and increases as 
we move outside it.  
 
Then, the (1 െ α)% C.I. is given by:  [ŷ0 ± tT-k,α/2 * sqrt(Varሾ𝑒ሿሻሿ 
 
As x0 moves away from its mean, the C.I increases, this is known as the “butterfly effect.” 
 



 
 
 
Example (continuation): We want to calculate the variance of the forecast error: for thee given 
x0 = [1.0000 -0.0189 -0.0142 -0.0027] 
Recall we got  ŷ0 = b’x0 = -0.01877587 
 
Then, 
 Estimated Var[ŷ0 – y0|x0] = x0 Var[b|x0] x0 + s2 = 0.003429632 
 

var_ef_0 <- t(x_0)%*% Var_b%*% x_0 + Sigma2 
> var_ef_0 
            [,1] 
[1,] 0.003429632 
> sqrt(var_ef_0) 
           [,1] 
[1,] 0.05856306 
 
Check: What is the forecast error if x0 = colMeans(x)? 
 
# (1-alpha)% C.I. for prediction (alpha = .05) 
CI_lb <- y_f0 – 1.96 * sqrt(var_ef_0)  
> CI_lb 
>[1] -0.1335594 
 
CI_ub <- y_f0 + 1.96 * sqrt(var_ef_0) 
> CI_ub 
>[1] 0.09600778 
 
That is, CI for prediction: [-0.13356; 0.09601]  with 95% confidence. A wide interval, 
which makes clear the uncertainty surrounding the point forecast: ŷ0 = -0.01877587. ¶ 
 
 



Forecasting and Prediction – Model Validation 
Model validation refers to establishing the statistical adequacy of the assumptions behind the 
model –i.e., (A1)-(A5) in this lecture. Predictive power can be used to do model validation.  
 
In the context of prediction and forecasting, model validation is done by fitting a model in-
sample, but keeping a small part of the sample, the hold-out-sample, to check the accuracy of 
OOS forecasts.  
 
Hold out sample: We estimate the model using only a part of the sample (say, up to time T1). The 
rest of the observations, the hold out sample, (T - T1 observations) are used to check the 
predictive power of the model –i.e., the accuracy of predictions, by comparing 𝒚ෝ0 with actual 𝒚0. 
 

 
 
 
Steps to measure forecast accuracy: 
Step 1. Select a (long) part of the sample (say, first T1 observations) to estimate the parameters 
of the model. (Get in-sample forecasts, 𝑦ො.) We call this sample, the estimation period. 
 
Step 2. Keep a (short) part of the sample (say, (T - T1) observations) to check the model’s 
forecasting skills, This is the validation step. (Get OSS ŷ0, but y0 is known.) Since y0 is known 
calculate true MSE or MAE. For example: 
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Step 3. If happy with Step 2, proceed to do out-of-sample forecasts. 
 
Note: In the Machine Learning literature, the terminology used for model validation is slightly 
different. 
 



Step 1 is called “training,” the data used (first T1 observations) are called training data/set. In 
this step, we estimate the parameters of the model, subject to the assumptions, for example, 
(A1)-(A4).  
 
Step 2 has the same name, validation (or “single-split” validation). This step can be used to 
“tune (hyper-)parameters.” In our CLM, we can “tune” the model for departures of (A1)-(A4), 
for example, by including more or different variables (A1) and re-estimating the model 
accordingly using “training data” alone. We choose the model with lower MSE or MAE. 
 
Remark: The idea of this step is to simulate out-of-sample accuracy. But, the “tuned” parameters 
selected in Step 2 are fed back to Step 1. 
 
Step 3 tests the true out-of-sample forecast accuracy of model selected by Step 1 & Step 2. This 
last part of the sample is called “testing sample.” 
 
 
Forecasting and Prediction – Cross Validation 
Step 2 is used as a testing ground of the model before performing OOS forecasting. There are 
many ways to approach the validation step. 
 
Instead of a single split, split the data in 𝐾 parts. This is called 𝐾-fold cross-validation. For 𝑗 = 1, 
2, …, 𝐾, use all folds but fold 𝑗 to estimate model; use fold 𝑗 to check model’s forecasting skills 
by computing MSE, 𝑀𝑆𝐸. The 𝐾-fold CV estimate is an average of each fold MSE’s: 
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Usual choices for 𝐾 are 5 & 10. This is an arbitrary choice. 
 
Random and non-random splits of data can be used. The non-random splits are used for some 
special cases, such as qualitative data, to make sure the splits are “representative.” 
 
• Use a single observation for validation. This is called leave-one-out cross-validation 
(LOOCV), which is a special case of 𝐾-fold cross-validation with 𝐾 = T. That is, use (T - 1) 
observations for estimation, and, then, use the observation left out, 𝑖 = 1, …, T, to compute  
𝑀𝑆𝐸ሺିሻ, which is just ሺ𝑦ොሺିሻ െ 𝑦ሻଶ, where 𝑦ොሺିሻ  is the prediction for observation 𝑖 based on the 
full sample but observation 𝑖. Then, compute: 
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Instead of just one, it is possible to leave p observations for validation. This is called leave-p-out 
cross-validation (LpOCV). 
 
Remark: In time series, since the order of the data matters, cross validation is more complicated. 
In general, rolling windows are used. 
 



Example: We do cross-validation on the 3-factor Fama-French Model for IBM returns with 
𝐾=5:  
y <- ibm_x 
ff_cv_data <- data.frame(Mkt_RF, SMB, HML) 
 
###### CV: Cross-Validation K-fold Code Function ###### 
CV <- function(dats, n.folds){ 
  folds <- list() # flexible object for storing folds 
  fold.size <- nrow(dats)/n.folds 
  remain <- 1:nrow(dats)  # all obs are in 
   
  for (i in 1:n.folds){ 
    select <- sample(remain, fold.size, replace = FALSE) #randomly sample fold_size from 
remaining obs) 
    folds[[i]] <- select   # store indices ( write a special statement for last fold if ‘leftover 
points’) 
        if (i == n.folds){ 
      folds[[i]] <- remain 
    } 
     
remain <- setdiff(remain, select)  # update remaining indices to reflect what was taken out 
remain 
  } 
 
  results <- matrix(0,1,n.folds)  # Vector to accumulate accuracy measures (MSE) 
   
  for (i in 1:n.folds){ 
    # fold i 
    indis <- folds[[i]]     # unpack into a vector 
    estim <- dats[-indis, ]    # split into estimation (train) & validation (test) sets 
    test <- dats[indis, ] 
     
    lm.model <- lm(y[-indis] ~ ., data = estim) # OLS with estimation data 
    pred <- predict(lm.model, newdata = test)  # predicted values for fold not used 
    MSE <- mean((y[indis] - pred)^2)  # MSE (any other evaluation measure can be used) 
    results[[i]]<- MSE    # Accumulate MSE in vector 
  } 
  return(results) 
} 
 
CV_ff_5 <- CV(ff_cv_data, 5) 
> CV_ff_5  
            [,1]       [,2]        [,3]        [,4]        [,5] 
[1,] 0.003578998 0.00329871 0.002058409 0.004202831 0.004524011 
 
> mean(CV_ff_5) 



[1] 0.00346262 
K_T <- length(y) 
 
LOOCV_ff_5 <- CV(ff_cv_data, K_T) 
> mean(LOOCV_ff_5) 
 [1] 0.003516136. ¶ 
 
 
Evaluation of Forecasts: Measures of Accuracy 
Summary measures of out-of-sample forecast accuracy, after 𝑚 forecasts:  
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Theil’s U statistics has the interpretation of an R2. But, it is not restricted to be smaller than 1. 
 
The lower the above criteria, say MSE, the better the forecasting ability of our model. 
 
• An OOS R2 can be computed as:  

  𝑅ைைௌ
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where 𝜏 is the forecasting horizon. (See Goyal and Welch (2008) for a well-known finance 
application.) 
 
• Again, cross-validation measures can be used to evaluate forecasting performance.  
 
Example: We want to check the forecast accuracy of the 3 FF Factor Model for IBM returns. We 
estimate the model using only 1973 to 2017 data (T=539), leaving 2018-2020 (m=30 
observations) for validation of predictions. 
T0 <- 1 
T1 <- 539     # End of Estimation Period 
T2 <- T1+1     # Start of Validation Period 
y1 <- y[T0:T1] 
x1 <- x[T0:T1, ] 
 
 fit2 <- lm(y1~ x1 - 1)    # Estimation Period Regression from T0 to T1 



 b1 <- fit2$coefficients   # Extract OLS coefficients from regression 
> summary(fit2) 
 
 Estimate Std. Error t value Pr(>|t|)     
x1        -0.003848  0.002571 -1.497  0.13510     
x1Mkt_RF 0.865579   0.059386 14.575  < 2e-16 *** 
x1SMB    -0.224914 0.085505 -2.630  0.00877 **  
x1HML   -0.230838  0.090251 -2.558  0.01081 * 
 
We condition on the observed data (no model to predict FF factors used) from 2018: Jan to 2020: 
Jun. 
x_0 <- x[T2:T,]     # Validation data 
 y_0 <- y[T2:T]     # Validation data 
 y_f0 <-  x_0%*% b1     # Forecast  
 ef_0 <- y_f0 - y_0     # Forecasat error 
 
 mse_ef_0 <- sum(ef_0^2)/nrow(x_0)  # MSE 
> mse_ef_0 
[1] 0.003703207 
 
mae_ef_0 <- sum(abs(ef_0))/nrow(x_0) # MAE 
> mae_ef_0 
[1] 0.04518326 
That is,MSE = 0.003703207 
 MAE = 0.04518326 
 
• Plot of actual IBM returns and forecasts. 
plot(y_f0, type="l", col="red", main = "IBM: Actual vs. Forecast (2018-2020)", xlab = "Obs",  
ylab = "Forecast") 
lines(y_0, type = "l", col = "blue") 
legend("topleft",  legend = c("Actual", "Forecast"),  col = c("blue", "red"),  lty = 1) 

 
From the plot, some forecasts are very good, some are very bad. ¶ 
 



 
Evaluation of forecasts: Testing Accuracy 
Above, we have competing forecasting models and we computed measures of accuracy for each 
model. So far we have implicitly judged the model with the best (usually, the lower) measure of 
accuracy as the best forecasting model. But, measures of accuracy are RV, thus, in order to say 
one model forecasts better than other, we  need a test. 
 
Suppose two competing forecasting procedures produce a vector of errors: 𝑒ሺଵሻ & 𝑒ሺଶሻ. We decide 
to use the expected MSE as the criterion to judge the forecasting accuracy of a model.  
 
• We want to test  H0: MSE(1) = MSE(2)  
   H1: MSE(1) ≠ MSE(2).  
Assumptions: forecast errors are unbiased, normal, and uncorrelated.  If forecasts are unbiased, 
then MSE = Variance. 
 
Consider, the pair of RVs: (𝑒ሺଵሻ  𝑒ሺଶሻ) & (𝑒ሺଵሻ െ 𝑒ሺଶሻ). Now, 

𝐸ሾሺ𝑒ሺଵሻ  𝑒ሺଶሻሻሺ𝑒ሺଵሻ െ 𝑒ሺଶሻሻሿ ൌ 𝜎ଵ
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That is, we test H0 by testing that the two RVs are not correlated!  Under H0,  
   𝐸ሾሺ𝑒ሺଵሻ  𝑒ሺଶሻሻሺ𝑒ሺଵሻ െ 𝑒ሺଶሻሻሿ ൌ  0. 
This idea is due to Morgan, Granger and Newbold (MGN, 1977). 
 
• There is a simpler way to do the MGN test. Let, 
 𝑧௧ = 𝑒ሺଵሻ  𝑒ሺଶሻ 
 𝑥௧ = 𝑒ሺଵሻ െ 𝑒ሺଶሻ 
(1) Do a regression: 𝑧௧ = β 𝑥௧  + 𝜀௧ 
(2) Test H0: β = 0   a simple t-test.  
  
The MGN test statistic is exactly the same as that for testing the null hypothesis that β = 0 in this 
regression (recall: b = (X′X)-1X′y).  This is the approach taken by Harvey, Leybourne and Newbold 
(1997). 
 
If the assumptions are violated, these tests have problems. 
 
A non-parametric HLN variation: Spearman’s rank test for zero correlation between xt and zt. 
 
Example: We produce IBM returns one-step-ahead forecasts for 2018-2020 using the 3 FF Factor 
Model for IBM returns: 
 ሺ𝑟 െ 𝑟ሻ௧ = 0 + 1 ሺ𝑟 െ 𝑟ሻ௧ + 2 𝑆𝑀𝐵௧  ଷ𝐻𝑀𝐿௧ + ௧ 
 
Taking expectations at time t+1, conditioning on time t information set, It ={(MktRet – rf)t, SMBt, 
HMLt} 
 E[ሺ𝑟 െ 𝑟ሻ௧ାଵ|𝐼௧] = 0 + 1 E[ሺ𝑟 െ 𝑟ሻ௧ାଵ|𝐼௧  ] + 2 E[𝑆𝑀𝐵௧ାଵ|𝐼௧  ] + 3 E[𝐻𝑀𝐿௧ାଵ|𝐼௧  ]  
 



In order to produce forecast, we will make a naive assumption: The best forecast for the FF factors 
is the previous observation. Then, 
 E[ሺ𝑟 െ 𝑟ሻ௧ାଵ|𝐼௧] = 0 + 1 ሺ𝑟 െ 𝑟ሻ௧+ 2 𝑆𝑀𝐵௧ + 3 𝐻𝑀𝐿௧. 
 
Now, replacing the  by the estimated b, we have our one-step-ahead forecasts. We produce one 
forecast at a time. 
 
We compare the forecast accuracy relative to a random walk model for IBM returns. That is,   
  E[ሺ𝑟 െ 𝑟ሻ௧ାଵ|𝐼௧  ] = ሺ𝑟 െ 𝑟ሻ௧ 
 
Using R, we create the forecasting errors for both models and MSE: 
x_01 <- x[T1:(T-1),]     # By assumption on the X, it starts at T1. 
y_0 <- y[T2:T] 
y_f0 <-  x_01%*% b1    # b1 coefficients from previous regresssion 
ef_0 <- y_f0 - y_0    # 𝑒ሺଶሻ 
mse_ef_0 <- sum(ef_0^2)/nrow(x_0) 
> mse_ef_0     # MSE(2) 
[1] 0.01106811 
 
ef_rw_0 <- y[T1:(T-1)] - y_0   # 𝑒ሺଵሻ 
mse_ef_rw_0 <- sum(ef_rw_0^2)/nrow(x_0) 
> mse_ef_rw_0    # MSE(1) <= (1) is the higher MSE. 
[1] 0.02031009 
 
• Now, we create  
 𝑧௧ = 𝑒ሺଵሻ  𝑒ሺଶሻ, &  𝑥௧ = 𝑒ሺଵሻ െ 𝑒ሺଶሻ.  
Then, regress:    
 𝑧௧ = β 𝑥௧  + 𝜀௧ and test H0: β = 0.  
 
z_mgn <- ef_rw_0 + ef_0 
x_mgn <- ef_rw_0 - ef_0 
fit_mgn <- lm(z_mgn ~ x_mgn) 
> summary(fit_mgn) 
 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept)  0.05688    0.03512   1.619    0.117     
x_mgn        2.77770    0.58332   4.762 5.32e-05 *** 
 
Conclusion: We reject that both MSE are equal    MSE of RW is higher. ¶ 
 
 
Evaluation of forecasts: MSE/MAE? 
MSE and MAE are very popular criteria to judge the forecasting power of a model. However, it 
may not be the best measure for everybody.  
 



Richard Levich’s textbook compares forecasting services to the freely available forward rate. He 
finds that forecasting services may have some ability to predict direction (appreciation or 
depreciation). 
 
For some investors, the direction is what really matters, since direction determines potential 
profits, not the error. 
 

Example: Two forecasts: Forward Rate (Ft,T) and Forecasting Service (FS) 

St = .7330 USD/CAD   (Today’s market spot rate.) 

Ft,T=1-month = .7335 USD/CAD  (Today’s market forward rate.) 

EFS,t [St+1-month ]= .7342 USD/CAD.   Today, FS forecasts an appreciation of CAD. 

Investor’s strategy: Buy CAD forward if FS forecasts CAD appreciation, greater than the implied 
by the forward rate. 

 

Based on the FS forecast, Ms. Sternin decides to buy CAD forward at Ft,1-month.  

(A) Suppose that the CAD appreciates to St+1 = .7390 USD/CAD.  

MAEFS = .7390 - .7342 = .0052 USD/CAD. 

Investor makes a profit of .7390 - .7335 = USD .055 USD. 

(B) Suppose that the CAD depreciates to St+1 = .7315 USD/CAD.  

MAEFS = .7315 - .7342 = .0027 USD/CAD.    smaller MAE! 

Investor takes a loss of .7315 - .7335 = USD -.0020.  

Conclusion: A small forecast error is not that relevant for investor, the direction of the error matter 
much more. ¶ 
 
 
Forecasting Application: Fundamental Approach  
There are two pure approaches to forecasting. Based on how we select the “driving” variables 𝑋௧, 
we have: 
 - Fundamental (based on data considered fundamental) 
 - Technical analysis (based on data that incorporates only past prices) 
 
• Fundamental Approach to Forecast Exchange Rates, 𝑆௧  (USD/JPY) 
Suppose we have an built an economic model, 𝑆௧ = 𝑓ሺ𝑋௧ሻ, where 𝑋௧ is a dataset regarded as 
fundamental economic variables:  
 - GNP growth rate,  
 - Current Account,  
 - Interest rates,  
 - Inflation rates, etc.  
 
The economic model usually incorporates: 



 - Statistical characteristics of data (seasonality, autocorrelation, etc.) 
 - Experience of the forecaster (what information to use, lags, etc.) 
   Mixture of art and science. 
 
Then, based on the economic model, we generate at time 𝑡 a forecast for the exchange rate next 
period, 𝑆௧ାଵ: 
  Et[𝑆௧ାଵ] = Et[𝑓ሺ𝑋௧ାଵሻ] = gሺ𝑋௧ሻ. 
 
 
• Steps for building a forecast: 
(1) The economic model (also called structural model) provides the structure for the forecasts. 
The economic model is the starting point of the fundamental approach.  
 
(2) Once we selected the economic model, we proceed to estimate the parameter on the model. We 
need to collect data and decide on how to estimate the model (OLS, MLE, etc.).  
 
(3) Then, we test the model. We have to make sure that we have a good model. If the model 
survives the tests, then we use the model to forecast. 
 
(4) We evaluate the forecasts by comparing the economic model’s performance with the 
performance of other models, for example, in our case, a simpler model, the Random Walk model 
(RWM). The RMW is found to be very good model for forecasting 𝑆௧ in the short-run. The 
forecasts for the RWM are given by: 
     Et[𝑆௧ାଵ] = 𝑆௧ 
 
  



FIGURE 6.2  - Steps for building a forecast 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
• Fundamental Forecasting: Steps (example: 𝑆௧ = USD/JPY) 
 

(1) Select a Model: Based on Theory (IFE, & Asset Approach) we model percentage changes in 
FX rates,  𝑒,௧  

 = log(𝑆௧) - log(𝑆௧ିଵ):  
 𝑒,௧  = β0 + β1 (iUS,t – iJAP,t) + β2 (yUS,t – yJAP,t) + β3 (mUS,t – mJAP,t) + εt 
 Et[𝑒,௧ାଵ] = β0 + β1 Et[iUS,t+1 – iJAP,t+1] + β2 E[yUS,t+1 – yJAP,t+1] + β3 E[mUS,t+1 – mJAP,t+1] 
    Et[𝑆௧ାଵ] = 𝑆௧ାଵ

ி  =  𝑆௧  * (1 + Et[𝑒,௧ାଵ]) 
 
(2) Collect data: 𝑆௧, 𝑿௧ (Interest rates (i), GDP growth rates (y) and money growth (m) data 
needed.)  
 
(3) Estimation of Model (using estimation period): OLS   get 𝐛. 
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(4) Generate forecasts. Assumptions about 𝑿௧ are needed.  

  Et[𝑿௧ାଵ] = δ1 + δ2 (𝑿௧)   -an AR(1) model. 

    Et[𝑒,௧ାଵ] = Et[𝑿𝒕ା𝟏]' 𝐛 

     Et[𝑆௧ାଵ] = 𝑆௧* (1 + Et[𝑒,௧ାଵ]) 

 
(5) Evaluation of Forecasts: MSE (& compare with RW’s MSE). 

 Model’s Forecast Errort+1 = Et[𝑆௧ାଵ] - 𝑆௧ାଵ 

 RW’s Forecast Errort+1 = 𝑆௧ - 𝑆௧ାଵ 

 
Example: (1) & (2) Based on above model, I collect quarterly data (FX_USA_JAP.csv) from 
1978:II – 2020:II. I read the data and transform it to estimate model: 
 
# Step (2) – Read Data  
FX_da <- read.csv("https://www.bauer.uh.edu/rsusmel/4397/FX_USA_JAP.csv", head=TRUE, 
sep=",") 
us_I <- FX_da$US_INF   # Extract US Money growth (mUS) data from FX_da 
us_i <- FX_da$US_I3M   # Extract US 3-mo Interest rate (iUS) data 
us_y <- FX_da$US_GDP_g   # Extract US GDP growth (yUS) data  
us_tb <- FX_da$US_CA_c   # Extract US Current account change (tbUS) data 
jp_I <- FX_da$JAP_INF   # Extract Japan Inflation (IUS) data  
jp_mg <- FX_da$JAP_MI_c   # Extract Japan Money growth (mJP) data  
jp_i <- FX_da$JAP_I3M   # Read Japan 3-mo Interest rate (iJP) data  
jp_y <- FX_da$JAP_GDP_g   # Extract Japan GDP growth yJP) data 
jp_tb <- FX_da$JAP_CA_c   # Extract Japan Current account change (tbJP) data  
e_f <- FX_da$JPY.USD_c   # Extract changes in JPY/USD (𝑒,௧) 
 
# Step (2) – Transform variables (create differentials) 
inf_dif <- us_I - jp_I    # Define inflation rate differential (inf_dif)  
int_dif <- us_i - jp_i    # Define interest rate differential (int_dif) 
mg_dif <- us_mg - jp_mg   # Define money growth rate differential (mg_dif) 
y_dif <- us_y - jp_y    # Define income growth rate differential (y_dif) 
tb_dif <- us_tb - jp_tb    # Define Trade balance differential (tb_dif) 
 
xx <- cbind(int_dif, mg_dif, y_dif) 
T <- length(e_f) 
T_est <- 161    # Define final observation for estimation period.  
e_f1 <- e_f[1:T_est]   # Adjust sample size to T_est 
xx_1 <- xx[1:T_est,]   # Adjust sample size to T_est 
 
# Step (3) – Estimation of model(using only estimation period (T=161): Get b. 
fit_ef <- lm(e_f1 ~ xx_1) 
> summary(fit_ef) 



Call: 
lm(formula = e_f1 ~ xx_1) 
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)   
(Intercept)    1.7246     0.6971   2.474   0.0144 * 
xx_1int_dif -0.5281   0.2478  -2.131   0.0346 * 
xx_1mg_dif 0.1104    0.1912   0.577   0.5647  
xx_1y_dif   -0.2034   0.4538  -0.448   0.6546   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 6.293 on 157 degrees of freedom 
Multiple R-squared:  0.04673,   Adjusted R-squared:  0.02851  
F-statistic: 2.565 on 3 and 157 DF,  p-value: 0.05661 
 
# Step (4) – Generate Forecasts. Need first to estimate model for X variables. (using estimation 
period data only) 
 
• AR(1) for (iUS,t – iJAP,t)  
 
int_dif_lag1 <- int_dif[1:T_est-1]   # Lag ሺiUS,t – iJAP,t)  
int_dif_lag0 <- int_dif[2:T_est]   # Adjust sample size (lost one observation 
above) 
fit_int <- lm(int_dif_lag0 ~ int_dif_lag1)  # Fit AR(1) model   
> summary(fit_int) 
 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept)   0.22774    0.11074   2.057   0.0414 *   
int_dif_lag1  0.87537    0.03772  23.210   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 1.045 on 158 degrees of freedom 
Multiple R-squared:  0.7732,    Adjusted R-squared:  0.7718  
F-statistic: 538.7 on 1 and 158 DF,  p-value: < 2.2e-16 
 
• AR(1) for (mUS,t – mJAP,t)  
 
mg_dif_lag1 <- mg_dif[1:T_est-1]   # Lag ሺmUS,t – mJAP,t)  
mg_dif_lag0 <- mg_dif[2:T_est]   # Adjust sample size (lost one observation) 
fit_mg <- lm(mg_dif_lag0 ~ mg_dif_lag1)  # Fit AR(1) model   
> summary(fit_mg) 
 
Coefficients: 



 Estimate Std. Error t value Pr(>|t|)     
(Intercept) -0.008708   0.216621  -0.040 0.967986     
mg_dif_lag1  0.296597   0.076124   3.896 0.000144 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 2.74 on 158 degrees of freedom 
Multiple R-squared:  0.08766,   Adjusted R-squared:  0.08188  
F-statistic: 15.18 on 1 and 158 DF,  p-value: 0.000144 
 
• AR(1) for (yUS,t – yJAP,t)  
 
y_dif_lag1 <- y_dif[1:T_est-1]   # Lag ሺyUS,t – yJAP,t)  
y_dif_lag0 <- y_dif[2:T_est]   # Adjust sample size (lost one observation above) 
fit_y <- lm(y_dif_lag0 ~ y_dif_lag1)  # Fit AR(1) model   
> summary(fit_y) 
 
Coefficients: 
 Estimate Std. Error t value Pr(>|t|)   
(Intercept)  0.166258   0.086575   1.920   0.0566 . 
y_dif_lag1  -0.008828   0.077255  -0.114   0.9092   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 1.08 on 158 degrees of freedom 
Multiple R-squared:  8.263e-05, Adjusted R-squared:  -0.006246  
F-statistic: 0.01306 on 1 and 158 DF,  p-value: 0.9092 
 
• Now, we can do one-step-ahead forecast for the X variables: 
T_val <- T_est+1      
 # start of Validation period 
xx_cons <- rep(1,T-T_val+1)     
 # create the constant vector 
int_dif_0 <- cbind(xx_cons,xx[T_val:T,1]) %*% fit_int$coeff # 8 forecasts for (iUS,t – iJAP,t)  
mg_dif_0 <- cbind(xx_cons,xx[T_val:T,2]) %*% fit_mg$coeff # 8 forecasts for (mUS,t – mJAP,t)  
y_dif_0 <- cbind(xx_cons,xx[T_val:T,3]) %*% fit_y$coeff # 8 forecasts for (yUS,t – yJAP,t)  
 
• Finally, we compute the one-step-ahead forecast for e and MSE: 
e_Mod_0 <- cbind(xx_cons,int_dif_0,mg_dif_0,y_dif_0)%*%fit_ef$coeff # Model’s forecast 
f_e_Mod <- e_f[T_val:T] - e_Mod_0  # Model’s forecast error  
mse_e_f <- sum(f_e_Mod^2)/(T-T_val+1) # Model’s MSE 
> mse_e_f  
[1] 3.974203 
 
 
• Compute the one-step-ahead forecast for RW Model and MSE e: 



e_f_RW_0 <- rep(0,T-T_val+1)   # RW forecast = 0 (always 0, for all t+T!) 
f_e_RW <- e_f[T_val:T] - e_f_RW_0    # RW’s forecast error  
mse_e_RW <- sum(f_e_RW^2)/(T-T_val+1)  # RW’s MSE 
> mse_e_RW 
[1] 3.381597   Lower MSE than Model. Not good for Model. 
 
• Compare MSEs:  The RW model has a better MSE (usual finding). 
  
• A MGN test is usually done. But, we have only m=8 observations, we can do the test, but the 
results are very likely not to be taken seriously.  
 
# Step (5) – Evaluation of Forecasts 
• MGN/HLN test: 
z_mgn <- e_Mod + e_RW  
x_mgn <- e_Mod - e_RW 
fit_mgn <- lm(z_mgn ~ x_mgn) 
> summary(fit_mgn) 
 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|) 
(Intercept)    1.355      2.680   0.506    0.631 
x_mgn          1.798      2.759   0.651    0.539  not significant, but unreliable (small sample). 
  
Residual standard error: 3.026 on 6 degrees of freedom  very small df to make inferences. 
Multiple R-squared:  0.05322,   Adjusted R-squared:  -0.1046  
F-statistic: 0.3373 on 1 and 6 DF,  p-value: 0.5826 
 
• Suppose you are happy with the Model, you believe the difference in MSEs is not significant), 
now you generate out-of-sample forecasts. 
 
 # Step (6) –  Out-of-sample one-step-ahead forward forecast for 𝑆௧: 
 Et=2020:II[𝑆௧ାଵୀଶଶ:୍୍୍] = 𝑆௧ୀଶଶ:୍୍ * ( 1 + Et=2020:II[𝑒,௧ାଵୀଶଶ:୍୍୍]) 
 
We observe 𝑆௧ today (2020:II): 𝑆௧ୀଶଶ:୍୍= 100.77 JPY/USD, which we invert since we work with 
direct quotes: 𝑆௧ୀଶଶ:୍୍ = 0.009279 USD/JPY. 
 
We need to forecast the independent variables, based on AR(1) results, 
 Xt ={(iUS,t – iJAP,t), (yUS,t – yJAP,t), (mUS,t – mJAP,t)} 
 
• Forecasting (iUS,t+1 – iJAP,t+1): Et=2020:II[(iUS,t – iJAP)t+1=2020:III]  
int_dif_p1 <- cbind(1,int_dif[T]) %*% fit_int$coeff # int_dif_p1 = Et=2020:II[(iUS,t – iJAP)t+1=2020:III]  
> int_dif_p1 
          [,1] 
[1,] 0.4684645 
 
• Forecasting (mUS,t – mJAP,t): Et=2020:II[(mUS,t – mJAP)t+1=2020:III]  



mg_dif_p1 <- cbind(1,m_dif[T]) %*% fit_m$coeff  #mg_dif_p1=Et=2020:II[(mUS – mJAP)t+1=2020:III]  
> mg_dif_p1 
         [,1] 
[1,] 4.921977  
 
• Forecasting (yUS,t – yJAP,t): Et=2020:II[(yUS,t – yJAP)t+1=2020:III]  
y_dif_p1 <- cbind(1,y_dif[T]) %*% fit_y$coeff  # y_dif_p1 = Et=2020:II[(yUS,t – yJAP)t+1=2020:III]  
> y_dif_p1 
         [,1] 
[1,] 0.176617  
 
• Forecasting Et=2020:II[St+1=2020:III]  
S <- 0.009279      # Today’s value of 𝑆௧ୀଶଶ:୍୍ 
e_f_p1 <- cbind(1,int_dif_p1,mg_dif_p1,y_dif_p1)%*%fit_ef$coeff # Today’s forecast: et=2020:III 
> e_f_p1      # Print forecast for 𝑒,௧ାଵୀଶଶ:୍୍୍ 
          [,1] 
[1,] 1.984401     2% depreciation of USD against JPY in 3rd Quarter. 
 
S_p1 <- S*(1+e_f_p1/100)    # Today’s forecast for 𝑆௧ାଵୀଶଶ:୍୍୍ 
 
> S_p1 <- S*(1+e_f_p1/100)   # e is in %, we divide by 100 to put it decimal from 
> S_p1      # Print forecast for 𝑆௧ାଵୀଶଶ:୍୍୍ 
         [,1] 
[1,] 0.009463133     Model’s forecast for 𝑆௧ାଵୀଶଶ:୍୍୍  
 
 Model’s forecast for St+1=2020:III = Et=2020:II[𝑆௧ାଵୀଶଶ:୍୍୍] = 0.009463133  USD/JPY. 
(using the indirect quote, Et=2020:II[𝑆௧ାଵୀଶଶ:୍୍୍] = 105.6732 JPY/USD). 
 
 
• We can use the one-step-ahead forecasts to generate two-step-ahead forecasts. That is, we 
forecast Et=2020:II[𝑆௧ାଵୀଶଶ:୍] (=S_p2 below) 
S1 <- S_p1        # Today’s forecast for St+1=2020:III 
int_dif_p2 <- cbind(1,int_dif_p1)%*%fit_int$coeff  # Today’s forecast for (iUS – iJP)t+2 
mg_dif_p2 <- cbind(1,mg_dif_p1)%*%fit_mg$coeff # Today’s forecast for (mUS – mJP)t+2 
y_dif_p2 <- cbind(1,y_dif_p1)%*%fit_y$coeff  # Today’s forecast for (yUS – yJP)t+2 
e_f_p2 <- cbind(1,int_dif_p2,mg_dif_p2,y_dif_p2)%*%fit_ef$coeff     # forecast for et=2020:IV 
> e_f_p2 
         [,1] 
[1,] 1.514363   1.11% depreciation of USD against JPY in 4th Quarter. 
 
S_p2 <- S1*(1+e_f_p2/100) 
> S_p2 
            [,1] 
[1,] 0.009606439    
  



 Et=2020:II[𝑆௧ାଵୀଶଶ:୍୍୍] = 0.009606439 USD/JPY.  
 
Note: We can use the two-step-ahead forecast to generate three-step-ahead forecasts. Obviously, 
we can continue this process to generate l-step-ahead forecasts for St (a simple do loop will do it). 
 
Eventually, we will collect m of out-of-sample forecasts (m one-step-ahead forecasts, m two-step-
ahead forecasts, m three-step-ahead forecasts, etc.) to get an MSE and run a MGN/HLN test on 
them. ¶ 
 
It is possible that one model is the best in the short-term (say, up to 3 steps ahead); other is better 
in the medium-term (say, from 4 to 6 steps ahead); and another is best for longer-term. For 
example, the RW model is very good (“unbeatable”) up to 3 months ahead. Then, other models 
start to produce better forecasts, especially after 6 months. 
 
 
Forecasting Application: Fundamental Approach  
Practical Issues in Fundamental Forecasting 
 - Are we using the "right model?"  
 - Estimation of the model (OLS, MLE, other methods).  
 - Some explanatory variables (Xt+T) are contemporaneous.  
    We also need a model to forecast the Xt+T variables.  
 
• Does Forecasting Work? 
For many financial assets (stock prices, exchange rates), we expect forecasting to be difficult. The 
Efficient Markets Hypothesis posits that financial asset returns closely follows a “Random Walk” 
process, therefore forecasting asset returns is fruitless. Burton Malkiel in his book “A Random 
Walk Down Wall Street,” first published in 1973, popularized this point. 
 
Example: For exchange rates, in the short-run, the Random Walk consistently models beat 
structural (and other) models, like PPP, IFE, Monetary Approach: Lower MSE, MAE. That is bad 
news for the beaten models, since the RW forecast uses today’s price to forecast any future price. 
No model or estimation is needed. 
 
Note: Many argue that the structural models used to forecast exchange rates are not the “right 
model.” ¶ 
 
 
Model Selection Strategies 
Specifying the DGP in (A1) is the most important step in applied work. We have assumed “correct 
specification,” which, in practice, is an unrealistic assumption, since we do not really observed the 
true DGP.  
 
A bad model can create a lot of problems: biases, wrong inferences, bad forecasts, etc.   
 
So far, we have implicitly used a simple strategy: 
(1) We started with a DGP, which we assumed to be true. 



(2) We tested some H0 (from economic theory). 
(3) We used the model (restricted, if needed) for prediction & forecasting. 
 
Question: How do we propose and select a model (a DGP)?  
Potentially, we have a huge number of possible models. We can have models with different 
functional form: f(.), g(.), , or h(.), and/or different explanatory variables: X, Z, W and dummy 
variables, D. For example, we may have four different formulations to choose from: 
  Model 1  Y = Xβ + ε 
 Model 2  Y = Zγ + ξ 
 Model 3  Y = (Wγ)λ + η 
 Model 4  Y = exp(Z D δ) + 𝛜 
 
We want to select the best model, the one that is closest to the true and unobserved DGP. In 
practice, we aim for a “good” model, a model that passes a barrage of specification tests and has 
good forecasting power.  
 
 
Model Selection Strategies: Views 
A model is a simplification. There are many approaches to specify a model: 
 
- “Pre-eminence of theory.” Economic theory should drive a model. Data is only used to quantify 
theory. Econometric methods offer sophisticated ways ‘to bring data into line’ with a particular 
theory.  
 
- Purely data driven models. Success of ARIMA models (late 60s – early 70s), discussed in Lecture 
6: No theory, only exploiting the time-series characteristics of the data to build models.  
 
- Modern (LSE) view.  A compromise: theory and the characteristics of the data are used to build 
a model.  
 
• Theory and practice play a role in deriving a good model. David Hendry (2009) emphasizes: 
 
“This implication is not a tract for mindless modeling of data in the absence of economic analysis, 
but instead suggests formulating more general initial models that embed the available economic 
theory as a special case, consistent with our knowledge of the institutional framework, historical 
record, and the data properties.”   
 
“Applied econometrics cannot be conducted without an economic theoretical framework to guide 
its endeavours and help interpret its findings. Nevertheless, since economic theory is not complete, 
correct, and immutable, and never will be, one also cannot justify an insistence on deriving 
empirical models from theory alone.” 
 
 
Model Selection Strategies: A Good Model 
According to David Hendry, a good model should be: 
- Data admissible  -i.e., modeled and observed y should have the same properties. 



- Theory consistent  -our model should “make sense” 
- Predictive valid -we should expect out-of-sample validation 
- Data coherent -all information should be in the model. Nothing left in the errors (white noise 
  errors). 
- Encompassing -our model should explain earlier models. 
 
That is, we are searching for a statistical model that can generate the observed data (y, X), this is 
usually referred as statistical adequacy, makes theoretical sense and can explain other findings. 
 
 
Model Selection Strategies: FAQ 
FAQ in practice: 
 - Should I include all the variables in the database in my model? 
 - How many explanatory variables do I need in my model? 
 - How many models do I need to estimate? 
 - What functional form should I be using? 
 - Should the model allow for structural breaks? 
 - Should I include dummies & interactive dummies? 
 - Which regression model will work best and how do I arrive at it? 
 
 
Model Selection Strategies: Important Concepts 
Diagnostic testing: We test assumptions behind the model. In our case, assumptions (A1)-(A5) in 
the CLM. 
Example:  Test E[|X] = 0   -i.e., the residuals are zero-mean, uncorrelated with anything (that 
is, white noise distributed errors). 
 
In selecting a model, this is a very important step. We run a lot of test to check the residuals are 
acceptable or the model is not misspecified: Ramsey’s reset test, tests for autocorrelation, etc. 
 
Parameter testing: We test economic H0’s. 
Example:  Test βk = 0  -say, there is no size effect on the expected return equation. 
 
 
Model Selection Strategies: Two Methods 
There are several model-selection methods. We will consider two:  
 - Specific to General 
 - General to Specific 
 
- Specific to General. Start with a small “restricted model,” do some testing and make model bigger 
model in the direction indicated by the tests (for example, add  variable xk when test reject H0: 
βk=0). 
 
- General to Specific. Start with a big “general unrestricted model,” do some testing and reduce 
model in the direction indicated by the tests (for example, eliminate variable xk when test cannot 
reject H0: βk=0). 



 
 
Model Selection Strategies: Specific to General 
Steps: 
(1) Begin with a small theoretical model  – for example, the CAPM 

 y = X + .   
(2) Estimate the model   – say, using OLS. 
(3) Do some diagnostic testing  – are residuals white noise (uncorrelated)? 
 If the assumptions do not hold, then use: 
 - More advanced econometrics  – GLS instead of OLS? 
 - A more general model  – More regressors? Lags? 
(4) Test economic H0 on the parameters     – Is SMB and HML significant? 
(5) Modify model in (1) in the direction of rejections of H0. 
 
• This strategy is known as specific to general. In the machine learning literature, this strategy is 
also called forwards selection. 
 
Example: Specific-to-general strategy to model IBM returns: 
(1) We start with the 3-factor FF model for IBM: 
 ሺ𝑟ୀூெ െ 𝑟ሻ௧ = 0 + 1 ሺ𝑟 െ 𝑟ሻ௧ + 2 𝑆𝑀𝐵௧  ଷ𝐻𝑀𝐿௧ + ௧ 
 
(2) Estimate the 3-factor FF model for IBM: 
fit_ibm_ff3 <- lm (ibm_x ~ Mkt_RF + SMB + HML) 
> summary(fit_ibm_ff3) 
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept) -0.005191 0.002482  -2.091   0.0369 *   
Mkt_RF      0.910379  0.056784  16.032   <2e-16 *** 
SMB        -0.221386 0.084214  -2.629   0.0088 **  
HML      -0.139179  0.084060  -1.656   0.0983 .   
--- 
 
Residual standard error: 0.05842 on 566 degrees of freedom 
Multiple R-squared:  0.3393,    Adjusted R-squared:  0.3358  
F-statistic:  96.9 on 3 and 566 DF,  p-value: < 2.2e-16 
 
(3) Diagnostic tests: Check t-values & R2, F-test goodness of fit, etc. 
  
(4) LM Test to test if there is a January Effect (H0: No January effect):  
> LM_test 

[1] 9.084247   LM_test > 3.84  Reject H0. 
 



(5) Given this result, we modify the 3-factor FF and add the January Dummy to the FF model: 
fit_ibm_new <- lm (ibm_x ~ Mkt_RF + SMB + HML + Jan_1) 
> summary(fit_ibm_new) 
Coefficients: 
   Estimate Std. Error t value  Pr(>|t|)     
(Intercept)  -0.007302 0.002561  -2.851  0.00452 **  
Mkt_RF    0.905182 0.056405  16.048  < 2e-16 *** 
SMB      -0.247691 0.084063  -2.946  0.00335 **  
HML      -0.154093 0.083606  -1.843  0.06584 .   
Jan_1         0.026966  0.008906   3.028  0.00258 **  
 
Note: We can continue our search to see if an expansion of the specific model is needed. For 
example, we could have tested for a 2008 Financial crisis dummy or Dot.com dummy. ¶ 
 
• Some remarks based on the previous example: 
 
• The specific-to-general method makes assumptions along the way. 
(1) Very likely the starting model is based on theory and experience (HML is not significant at 
the usual 5% level). Not clear how to proceed from there to a more general model. 
 
(2) We tested for a January effect and then added to the model. However, we could have tested 
for a Dot.com effect or for an interactive Dot.com/January effect with the 3 FF factors. Not clear 
when to stop the search. 
 
(3) Selection step uses a p-value to add variables to the model. In this case, we use the standard 
5% for the tests.  
 
 
Model Selection Strategies: Specific to General – Stepwise Regression 
Note that in the previous example, we started with a model. What happens if we are skeptical 
regarding models? 
 
• A popular implementation of the specific-to-general model selection is the stepwise regression, 
where we start with only a set of potential explanatory variables and let the data determine, 
starting from all potential one-variable models, which variables to add. 
 
Overall structure of Stepwise Regression: 
- The method begins with a 𝑘 potential regressors.  
- Do 𝑘 one-variable regressions. Pick the one that shows the biggest t-stat or maximizes a 
goodness of fit measure, say, Adjusted-R2, 𝑅2. Suppose 𝑥 is selected. 
- Then, do ሺ𝑘 െ 1ሻ-variable regressions all with 𝑥. Select the regressor (in addition to 𝑥) that 

has the highest t-stat or that maximizes 𝑅2. 
- Continue. But, when we start adding regressors, we usually check if the added regressor(s) 
change the significance of previous steps. (Note: at each step, we remove or add a regressor(s) 
based on t- or F-tests.)  



- Stop: Additional regressors do not have significant t-stats/increase 𝑅2.  
• Decisions: We nned to select the 𝑘 initial variables, the α level for tests (α = 5%, 10%, 30%?) 
and/or the goodness of fit statistic.  
 
Remark: Always keep in mind that the selected (final) model is not necessarily better than others. 
Type I and Type II errors are likely to occur, thus the final model may have irrelevant and/or 
omitted variables. 
 
Example: Stepwise regression strategy to model IBM returns. We start with the 5 FF factors as 
candidates for IBM. We use the function ols_step_forward_p in the olsrr package, which uses p-
values to select variables. (You can also use other criteria to select the model, for example, 
ols_step_forward_aic uses aic to select variables.) The final output is long (details = TRUE), 
below we present the last two results:  
 
library(olsrr) 
ff_step_data <- data.frame(Mkt_RF, SMB, HML, RMW, CMA)  
ibm_ff_model <- lm(ibm_x ~ ., data = ff_step_data) 
ols_step_forward_p(ibm_ff_model , details = TRUE) # default p-value (penter) is 0.3  
 
 Parameter Estimates                                     
---------------------------------------------------------------------------------------- 
      model      Beta    Std. Error    Std. Beta      t        Sig      lower     upper  
---------------------------------------------------------------------------------------- 
(Intercept)  -0.005 0.002       -1.999    0.046    -0.010     0.000  
     Mkt_RF   0.887  0.055        0.574 16.227    0.000     0.780     0.995  
        SMB -0.261 0.088       -0.111 -2.960    0.003    -0.435    -0.088  
        RMW -0.128 0.114       -0.042 -1.122    0.262    -0.351     0.096  
---------------------------------------------------------------------------------------- 
                            Selection Summary                               
-------------------------------------------------------------------------------------- 
        Variable                  Adj.                                         
Step  Entered     R-Square R-Square     C(p)        AIC       RMSE      
-------------------------------------------------------------------------------------- 
   1    Mkt_RF  0.3087      0.3075  7.7108  -1665.5551 0.0594     
   2    SMB       0.3174      0.3151  2.2117  -1671.0548 0.0590     
   3    RMW      0.3188      0.3154  2.9552   -1670.3207 0.0590     
-------------------------------------------------------------------------------------- 
 
Conclusion: The Stepwise Regression method selects Market excess returns, SMB & RMW as 
the drivers of IBM excess returns. If we change the p-value to 0.1, RMW will be drop from final 
model. ¶ 
 
Technical Note: In general, the selection of variables based on p-values is not advised, since the 
distribution of the OLS coefficients is affected. We mentioned this above, when we discussed  
pre-testing. 
 



 
Model Selection Strategies: General to Specific 
Begin with a general unrestricted model (GUM), which nests restricted models and, thus, allows 
any restrictions to be tested. Say: 
  y = X + Zγ + Wλδ + (X * W)ζ + (Z * D)ψ + .  
 
Then, reduction of the GUM starts. Mainly using t-tests, and F-tests, we move from the GUM to 
a smaller, more parsimonious, specific model. If competing models are selected, encompassing 
tests or information criteria (AIC, BIC) can be used to select a final model. This is the discovery 
stage. After this reduction, we keep a final (restricted GUM) model: 
  y = X + .  
  
Creativity is needed for the specification of a GUM. Theory and empirical evidence play a role 
in designing a GUM.  
 
• Steps: 
Step 1 - First ensure that the GUM does not suffer from any diagnostic problems. Check 
residuals in the GUM to ensure that they possess acceptable properties. (For example, test for 
white noise in residuals, incorrect functional form, autocorrelation, etc.). 
 
Step 2 - Test the restrictions implied by the specific model against the general model – either by 
exclusion tests or other tests of linear restrictions. 
 
Step 3 - If the restricted model is accepted, test its residuals to ensure that this more specific 
model is still acceptable on diagnostic grounds. 
 
• This strategy is called general to specifics (“gets”), LSE, TTT (Test, test, test). It was pioneered 
by Sargan (1964). The properties of gets are discussed in Hendy and Krolzig (2005, Economic 
Journal). 
 
• The role of diagnostic testing is two-fold.  
- In the discovery steps (Steps 1 & 2), the tests are being used as design criteria.  Testing plays 
the role of checking that the original GUM was a good starting point after the GUM has been 
simplified.  
 
- In the context of model evaluation (Step 3), the role of testing is clear cut. Suppose you use the 
model to produce forecasts.  These forecasts can be evaluated with a test. This is the critical 
evaluation of the model. 
 
Example: General-to-specific strategy to model IBM returns: 
Step 1 - Start with a GUM: the 3-factor FF model for IBM + January Dummy + Dot.com 
Dummy + non-linear & interactive effects: 
ሺ𝑟ୀூெ െ 𝑟ሻ௧ = 0 + 1 ሺ𝑟 െ 𝑟ሻ௧ + 2 𝑆𝑀𝐵௧+ 3 𝐻𝑀𝐿௧ + 4 Januaryt + 5 ሺ𝑟 െ 𝑟ሻ௧2  
  + 6 𝑆𝑀𝐵௧2 + 7 𝐻𝑀𝐿௧2 + 8 ሺ𝑟 െ 𝑟ሻ௧* 𝑆𝑀𝐵௧ + 9 ሺ𝑟 െ 𝑟ሻ௧  * 𝐻𝑀𝐿௧ +  
  + 10  Dot.comt + 11 ሺ𝑟 െ 𝑟ሻ௧ * Januaryt + 12 𝐻𝑀𝐿௧ * Januaryt  



  + 13 ሺ𝑟 െ 𝑟ሻ௧  * Dot.comt + 14 𝐻𝑀𝐿௧ * Dot.com +  15 𝑆𝑀𝐵௧ * Dot.com + t  
 
Estimate GUM: 
t_sb <- 342     # Structural break date (End of 1st-regime) 
T_s_1 <- T - t_sb 
d_0 <- matrix(0, t_sb, 1)   # Dot.com dummy = 0 before t_sb 
d_1 <- matrix(1, T_s_1, 1)   # Dot.com dummy = 1 after t_sb 
Dot_com <- rbind(d_0,d_1)   # Dot.com dummy (join rows d_0 & d_1) 
Mkt_Jan <- Mkt_RF * Jan_1 
HML_Jan <- HML * Jan_1 
Mkt_Dot <- Mkt_RF * Dot_com 
HML_Dot <- HML * Dot_com 
SMB_Dot <- SMB * Dot_com 
 
fit_ibm_gum <- lm (ibm_x ~ Mkt_RF + SMB + HML + Jan_1 + Mkt_RF_2 + SMB_2 + 
HML_2 + Mkt_HML + Mkt_SMB + SMB_HML + Mkt_Jan + HML_Jan + Mkt_Dot + 
HML_Dot + SMB_Dot) 
> summary(fit_ibm_gum) 
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept) -0.007836 0.003063  -2.559 0.010772 *   
Mkt_RF  0.791866  0.090474   8.752  < 2e-16 *** 
SMB        -0.295790 0.110655  -2.673 0.007738 **  
HML      -0.233942 0.135146  -1.731 0.084004   practice says “keep it.” Judgement call. 
Jan_1       0.031769  0.009349   3.398 0.000727 *** 
Mkt_RF_2 -0.433762 0.850899  -0.510 0.610417     
SMB_2     -0.927271 1.470645  -0.631 0.528615     
HML_2     2.707992 1.670366   1.621 0.105545  almost 10%, I keep it. Judgement call. 
Mkt_HML 0.628721 1.557090   0.404 0.686531     
Mkt_SMB 0.791625  1.746939   0.453 0.650618     
SMB_HML -1.044806 2.029091  -0.515 0.606819     
Mkt_Jan -0.069413  0.189309  -0.367 0.714008     
HML_Jan -0.259697 0.255484  -1.016 0.309841     
Mkt_Dot    0.323382  0.130645   2.475 0.013612 *   
HML_Dot  0.059742  0.208277   0.287 0.774342     
SMB_Dot   0.076998  0.198964   0.387 0.698910  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.05788 on 553 degrees of freedom 
Multiple R-squared:  0.3663, Adjusted R-squared:  0.3491  
F-statistic: 21.31 on 15 and 553 DF,  p-value: < 2.2e-16 
 
Step 1 – Check GUM residuals for departures of (A2)-(A3). A Ramsey’s reset test can be done 
(using the resettest in the lmtest library). 



 
> resettest(fit_ibm_gum, type="fitted") 
        RESET test 
data:  fit_gumHomework 1 Review <br> 
RESET = 1.2645, df1 = 2, df2 = 552, p-value = 0.2832 
 
Step 2 – Reduce Model with t-test and F-tests. Say, we keep all the variables with a p-value 
close to 10% (we still keep HML, using previous experience). We estimate a restricted GUM:  
 
fit_ibm_gum_r <- lm (ibm_x ~ Mkt_RF + SMB + HML + Jan_1 + HML_2 + Mkt_Dot) 
> summary(fit_ibm_gum_r) 
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept) -0.008696   0.002788 -3.119  0.00191 **  
Mkt_RF      0.779336   0.072453  10.756  < 2e-16 *** 
SMB       -0.280018   0.083891  -3.338  0.00090 *** 
HML      -0.250480   0.088504 -2.830  0.00482 **  
Jan_1     0.028499   0.008937  3.189  0.00151 **  
HML_2     1.676011   1.331161  1.259  0.20853     
Mkt_Dot   0.344030   0.116685  2.948  0.00333 **  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.05761 on 562 degrees of freedom 
Multiple R-squared:  0.3618, Adjusted R-squared:  0.355  
F-statistic: 53.11 on 6 and 562 DF,  p-value: < 2.2e-16 
 
Step 2 – Test the restrictions implied by the specific model against the general model. Using an 
F-test, we test J=9 restrictions:  
 H0: 5= 6 = 8 = 9 = 10 = 11 = 12 = 14= 15.  
 
e_u <- fit_ibm_gum$residuals      # GUM residuals 
RSS_u <- t(e_u)%*%e_u 
e_r <- fit_ibm_gum_r$residuals     # Restricted GUM residuals 
RSS_r <- t(e_r)%*%e_r 
f_test_gum <- ((RSS_r - RSS_u)/9)/(RSS_u/(T-16))  # F-test 
> f_test_gum 
        [,1] 
[1,] 0.4299497             we cannot reject H0 (f_test_gum < qchisq(.95,9, 553) = 1.896801) 
> qf(.95, df1=9, df2=T-16) 
[1] 1.896801  
p_val <- 1 - pf(f_test_gum, df = 9 , df2=T-16)   # p-value of F-test  
>  p_val 
[1,] 0.919105    p-value is very high. No evidence for H0. 
 



Step 2 – Further specification checks of Restricted GUM, for example, perform a Ramsey’s reset 
test (using the resettest in the lmtest library). 
> resettest(fit_gum_r, type="fitted") 
 
        RESET test 
 
data:  fit_ibm_gum_r 
RESET = 1.1361, df1 = 2, df2 = 561, p-value = 0.3218 
 
Step 3 - Test if Restricted GUM residuals are acceptable –i.e., do diagnostic tests (mainly, make 
sure they are white noise). If Restricted GUM passes all the diagnostic tests, it becomes the 
“final model.” 
 
Note: With the final model, we use it to justify/explain financial theory and features, and do 
forecasting. ¶ 
 
• Some remarks based on the previous example: 
 
The general-to-specific method makes assumptions along the way. 

(1) Select a p-value for the tests of significance in the discovery stage (we use 10%). Given that 
we performed 15 t-tests, we should not be surprised we rejected the GUM, since we had an 
overall significance, α* = .79 [= 1 – (1 - .10)^15]. Mass significance is an issue.   
 
(2) Judgement calls are also made. 
 
(3) The reduction of the GUM involves “pre-testing” –i.e., data mining. We are likely rejecting a 
true H0 (false positives) and not rejecting a true H1, (false negatives) along the way. This 
increases the probability that the final model is not a good approximation. It is  common to 
ignore (or not even acknowledge) pre-testing issues.  
 
Note: Similar to stepwise regression, we can remove use p-values to remove one step at a time 
variables from the GUM. R can do this using the function ols_step_backward_p in the olsrr 
package.  
 
 
Model Selection Strategies: Best Subset 
Begin with a big model, with 𝑘 regressors: 
  y = X + . 
The idea is to select the “best” subset of the 𝑘 regressors in X, where “best” is defined by the 
researcher, say MSE, Adjusted-R2, etc.  
 
In theory, it requires 2regressions. It can take a while if 𝑘 is big (𝑘 < 40 is no problem). There 
are many tricks are used to reduce the number of regressions. 
 



In practice, we use best subset to reduce the number of models to consider. For example, from 
the regressions with one-variable, keep the best one-variable model, from the regression with 
two-variables, keep the best two-variable model, etc. 
 
Example: We want to select a model for IBM excess returns, using the 𝑘=3 Fama-French 
factors: Market excess returns (Mkt_RF), SMB, & HML. We have 8 (=23) models and, thus, 
regressions:  
1) Constant;  
2) Mkt_RF (CAPM) 
3) SMB 
4) HML 
5) Mkt_RF  & SMB  
6) Mkt_Rf  & HML 
7) SMB & HML 
8) Mkt_RF, SMB, & HML (the 3-factor F-F Model).  
 
We select the model with the lower MSE. Or, we can carry two or three models of the best 
models to do cross-validation and, then, pick the best model.  
 
Suppose we selected three model: CAPM (M1); Mkt_RF  & SMB (M2); and the 3-factor F-F 
Model (M3). 
Now, we use 𝐾-fold cross-validation, with 𝐾 = 5. 
CV5 M1: 0.003542756 
CV5 M2: 0.003505873 
CV5 M3: 0.003556918 
 
Note: Models look very similar. Practitioners compute a SE for 𝐶𝑉 and use a one SE rule. If 
within one SE, keep simplest model (M1).¶ 
 
 
Model Selection Strategies: Properties 
A modeling strategy is consistent if its probability of finding the true model tends to 1 as T -the 
sample size- increases. 
 
• Properties for strategies 
(1) Specific to General  
 - It is not consistent if the original model is incorrect. 
 - It need not be predictive valid, data coherent, & encompassing. 
 - No clear stopping point for an unordered search. 
 
(2) General to Specific  
 - It is consistent under some circumstances. But, it needs a large T. 
 - It uses data mining, which can lead to incorrect models for small T. 
 - The significance levels are incorrect. This is the problem of mass significance. 
  



Model Selection Strategies: Using Machine Learning 
So far, we have emphasized finding a DGP, that gives us a (linear) model for the conditional 
expectation of 𝒚.  Then, using this model, we estimate its parameters to get 𝒚ෝ. For example, a 𝑘-
factor model: 
 E[𝑦 | 𝑥] = α + 1 𝑥ଵ,+ 2 𝑥ଶ, + … +  𝑥, ⟹ 𝑦ො 
 
Machine Learning (ML) methods can be used to select a model and covariates, especially when 
the goal is to generate predictions, 𝑦ො. ML models are very efficient in settings with many 
(hundreds or thousands) explanatory variables or covariates –i.e., large 𝑘.  
 
Note: We have relied on linear models, but ML methods can allow for almost any functional 
form for E[𝑦 | 𝑥]. Moreover, in general, ML does not care about the interpretation of its 
parameters, though work is being done to derive the properties of parameters and predictions.  
 
We start with an ML method that preserve linearity for the conditional expectation, E[𝑦 | 𝑥], 
with 𝑘 covariates:  
 E[𝑦 | 𝑥] = ଵ 𝑥ଵ,+ ଶ 𝑥ଶ, + ଷ 𝑥ଷ, + …+  𝑥, = ' 𝒙 
 
OLS estimates this model by     

  min

∑ ሺ𝑦 െ  ' 𝒙ሻ
ே
ୀଵ

ଶ
 

 
Question: We can do OLS, which has nice properties, why do we need ML?  
When 𝑘 is very large, possible exceeding 𝑁, the OLS estimator may have inferior predictive 
properties, in terms of MSE, to those of other estimators that impose some restrictions or 
“penalties” on the size of the parameters in the minimization problem. These restrictions are 
called “regularizations.” 
 
In general, the bigger the size of the vector of parameter (the “complexity”) the bigger the 
penalty. For example, 

  min


 ∑ ሺ𝑦 െ  ' 𝒙ሻ
ே
ୀଵ

ଶ
 + 𝝀 Penalty(size())  (𝝀 > 0) 

where 𝝀 > 0. Different penalties for complexity give different models. 
 
The parameter controls the strength of the penalty. 
- when 𝝀 = 0, we have OLS  
- when 𝝀 = ∞, we have  = 0. 
- when 𝝀 ∈ (0, ∞), we have a combination (or trade-of) between OLS and reducing complexity 
(setting coefficients to zero) and/or reducing the weights of covariates (“shrinking the 
coefficients” in the model. 
 
 
Model Selection Strategies: Machine Learning – LASSO & Ridge Regression 
LASSO or Least Absolute Shrinkage and Selection Operator, proposed by Tibshirani (1996), 
sets Penalty(size()) = ∑ | |


ୀଵ . That is: 



 min


 ∑ ሺ𝑦 െ  ' 𝒙ሻ
ே
ୀଵ

ଶ
+ 𝝀 ∑ | |


ୀଵ  

 
Lasso, given its penalty structure, “shrinks” the ’s toward zero, some ’s will be set to exactly 
zero.  
 
Unlike OLS, there is no closed form solution to Lasso minimization. but we can numerically 
compute the solution, ௦௦,to the above problem. (It is a quadratic programming from convex 
optimization.) 
 
 
Ridge regression of Hoerl and Kennard (1970) sets Penalty(size()) = ∑ 

ଶ
ୀଵ . That is: 

 min


 ሼ∑ ሺ𝑦 െ  ' 𝒙ሻ
ே
ୀଵ

ଶ
+ 𝝀 ∑ 

ଶ
ୀଵ  = (𝒚 – X)′(𝒚 – X) + 𝝀 ′ } 

 
Using linear algebra, we get a closed form solution for this problem: 
  ோௗ= (X′X + 𝝀I)-1 X′𝒚 

 
Ridge regression, given its penalty structure, tends to reduce all the ’s. 
 
Remark: Ridge regression shrinks –i.e., reduce- all coefficients towards zero, but lasso can 
remove predictors from model by shrinking (setting) the coefficients completely to zero.  Thus, 
we can think of Lasso as a mechanism to select covariates –i.e., model selection. 
 
Technical note: We can generalize the above estimation problem by defining the penalty using 
the 𝐿-norm notation:  

 min


 ∑ ሺ𝑦 െ  ' 𝒙ሻ
ே


ଶ
+ 𝝀 ሺ∥  ∥ሻଵ/ 

where ∥  ∥ = ∑ | |

ୀଵ


. 

 
For q = 1, we have Lasso. 
For q = 2, we have Ridge regression.  
As q → 0, we get closer to best subset regression.  
 
• It is also possible to combine (weight) the restrictions (LASSO & Ridge), this combination is 
called Elastic net: 

 min


 ∑ ሺ𝑦 െ  ' 𝒙ሻ
ே
ୀଵ

ଶ
+ 𝝀 ሼ𝛼 ∑ | |


ୀଵ  + ሺ1 െ 𝛼ሻ∑ 

ଶ
ୀଵ ሽ   

where 𝛼 ∈ ሾ0,1ሿ. 
 
• The parameter controls the strength of the penalty. How do we compute it? 
 
The parameter 𝝀 is estimated (“tuned”) through out-of-sample 𝐾-fold cross-validation. That is, 
for each λ, we split the data in 𝐾 parts. For 𝑗 = 1, 2, …, 𝐾, use all folds but fold 𝑗 to estimate 
model; use fold 𝑗 to check model’s forecasting skills by computing MSE, 𝑀𝑆𝐸. The 𝐾-fold CV 
estimate is an average of each fold MSE’s: 



  𝐶𝑉 ൌ
ଵ


∑ 𝑀𝑆𝐸

ୀଵ  

Pick λ that has the smallest 𝐶𝑉.  
 
It is desirable to select the 𝐾-folds randomly, easier to do in cross section than in time series, 
where dependence creates problems. 
 
• Both Lasso and Ridge regression estimates are not scale invariant, unlike OLS. Suppose we 
move  𝒙 from percentage points to decimal. That is, 𝒙𝒌

∗ ൌ  𝒙𝒌/100.  
 
The 𝒙

∗ ’ coefficient will be scaled as  
∗ ൌ 100 * . Then, the impact of 𝒙 on 𝒚 does not 

change (′𝒙 = 
∗ ′ 𝒙

∗ ). Given the nature of the penalty –i.e., large coefficients are penalized –, 
we have that  
 ௦௦, 

∗
്  100 ∗  ௦௦, &  ோௗ, 

∗
്  100 ∗ ோௗ, 

 
To avoid these issue, it is common to standardize all covariates, 𝒙:  

 𝒛 = 
𝒙ೖ ି 𝒙ഥೖ
𝒔ೖ

  (𝒔: sample SD of 𝒙) 

 
Note: Now, all predictors have zero mean and unit variance. 
 
We know OLS b is unbiased. Thus, the regularized (restricted) estimators   ௦௦ & ோௗ are 

biased; their appeal is lower variance. 
 
In particular, for ோௗ, the variance is much smaller than OLS b when the data shows 

multicollinearity, something common in large cross-section models. (  ௦௦ does not do as well.) 
 
As pointed out above, the big appeal of   ௦௦ is its sparcity (a smaller dimension than  b & 

ோௗ). We can use lasso as a model selection tool. 

 
Example: In the general-to-specific example, we estimated with OLS a model with 16 
parameters. Now, we estimate the model with LASSO, using the R package glmmet (for LASSO 
set alpha=1, for Ridge set alpha=0). This package uses the Matrix package and the vector of 
covariates need to be formatted as a matrix, using data.matrix. It selects lambda, 𝝀, based on 𝑘-
fold (sets 𝑘=10) cross-validation. 
 
library(glmmet) 
library(Matrix) 
x_vec <- data.frame(Mkt_RF, SMB, HML, Jan_1, Mkt_RF_2, SMB_2, HML_2, Mkt_HML, 
Mkt_SMB, SMB_HML, Mkt_Jan, HML_Jan, Mkt_Dot, HML_Dot, SMB_Dot) 
x_la <- data.matrix(x_vec1) 
cv_mod <- cv.glmnet(x_la, ibm_x, alpha = 1) # run LASSO using CV to select (“tune”) 𝝀 
plot(cv_model)      # plot the MSE for each 𝝀 
tuned_lambda <- cv_model$lambda.min  # get the lambda that minimizes function 
tuned_lambda 



opt_model <- glmnet(x_la, ibm_x, alpha = 1, lambda = tuned_lambda) 
coef(opt_model)    # print coefficients 
 
> coef(opt_model)   # print coefficients 
16 x 1 sparse Matrix of class "dgCMatrix" 
                      s0 
(Intercept) -0.005835974 
Mkt_RF       0.791803084 
SMB         -0.079653804 
HML          .           
Jan_1        0.008697714 
Mkt_RF_2     .           
SMB_2        .           
HML_2        .           
Mkt_HML      .           
Mkt_SMB      .           
SMB_HML      .           
Mkt_Jan      .           
HML_Jan     -0.004928686 
Mkt_Dot      0.004006239 
HML_Dot      .           
SMB_Dot      .  
 
Note: As expected many coefficients are completely “shrunk” to 0. 
The model with the non-zero coefficients is the one that we use to predict out-of-sample –we 
need new data for the covariates to do this.  
 
It is possible to compute R2 for the estimated LASSO model: 
> y_predicted <- predict(best_model, s = tuned_lambda, newx = x_la) 
>  
> sst <- sum((y - mean(y))^2) 
> sse <- sum((y_predicted - y)^2) 
>  
> R2 <- 1 - sse/sst 
> R2 
[1] 0.3197774   (unrestricted OLS R2 = 0.3484) 
If we have new data, say x_new, we set i newx=x_new, above in predict function. 
 
 
 
 
 
 
 
 
 



 
 

  



Lecture 7 - Departures from CLM Assumptions & the Generalized 
Regression Model 
 
Review of CLM Results 
Recall the CLM Assumptions   
(A1) DGP: y  = X  +  is correctly specified.  
(A2) E[|X] = 0   
(A3) Var[|X] = σ2 IT 
(A4) X has full column rank –rank(X) = k–, where T ≥ k. 
 
• OLS estimation: 
 b = (X′X)-1X′ y 
 Var[b|X] = σ2 (X′X)-1 
   b unbiased and efficient (MVUE) 
 
• If (A5) |X ~ N(0, σ2IT)  b|X ~N(, σ2(X’ X)-1) 
Under (A5), b is also the MLE (consistency, efficiency, invariance, etc). (A5) gives us finite 
sample results for b (and for tests: t-test, F-test, Wald tests). 
 
 
CLM: Departures from the Assumptions 
So far, we have discussed some violations of CLM Assumptions:  
(1) (A1) – OLS can easily deal with some non-linearities in the DGP.  
   as long as we have intrinsic linearity, b keeps its nice properties.  
 – Wald, F, & LM tests to check for misspecification 
   
(2) (A4) – Perfect multicollinearity means the model needs to be changed. Multicollinearity is a 
potential problem. In general, exogenous to the researcher. We need to be aware of this problem. 
 
• In this lecture, we examine assumptions (A2), (A3) and (A5). That is, we check 
 (i) X is stochastic. That is, it has a distribution. 
 (ii) Var[|X] ≠ σ2 IT. 
 (iii) |X  is not N(0, σ2IT). 
 
 
CLM: Departures from (A2) 
The traditional derivation of the CLM assumes X as non-stochastic. In our derivation, however, 
we allowed X to be stochastic, but we conditioned on observing its realizations (an elegant trick, 
but not very realistic). 
 
With stochastic X we need additional assumptions to get unbiasedness and consistency for the 
OLS b.  
– We need independence between X & : {xi, εi}  i=1, 2, ...., T   is a sequence of independent 
observations.  



– We require that X have finite means and variances. Similar requirement for , but we also 
require E[] = 0. 
 
Then, 
 E[b] =   + E[(X′X)-1X′ ] =   + E[(X′X)-1X′] E[] =  
 
Technical Note: To get consistency (& asymptotic normality) for b, we need an additional 
(asymptotic) assumption regarding X: 

  XX/T  
  
ሱ⎯⎯ሮ  Q  (Q a pd (kxk) matrix of finite elements) 

or plim (XX/T) =  Q   
 
Question: Why do we need this assumption in terms of a ratio divided by T?  
Each element of XX matrix is a sum of T numbers.  
 

𝑿ᇱ𝑿 ൌ
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As T  , these sums will become large. We divide by T so that the sums will not be too large.  
 
Note: This assumption is not a difficult one to make since the LLN suggests that the each 
component of XX/T goes to the mean values of XX. We require that these values are finite.  
 – Implicitly, we assume that there is not too much dependence in X.  
 
 
CLM: Departures from (A2) – Endogeneity 
If there is dependence between X & , OLS b is no longer unbiased or consistent. Easy to see the 
biased result: we cannot longer separate E[(X′X)-1X′ ] into a product of two expectations: 
  E[(X′X)-1X′ ] ≠ E[(X′X)-1X′] E[] 
Then, 
 E[b] =   + E[(X′X)-1X′ ] ≠    
 
Dependence between X &  occurs when X is also an endogenous variable, like y. This is 
common, especially in Corporate Finance. For example, we study CEO compensation as 
function of size of firm, and Board composition. Board Composition and size of firm are 
endogenous –i.e., determined by the firm, dependent on CEO’s decisions. 
 
Inconsistency is a fatal flaw in an estimator. In these situations, we use different estimation 
methods. The most popular is Instrumental Variable (IV) estimation. 
 
 
 
CLM: Departures from (A2) – Asymptotics 
Now, we have a new set of assumptions in the CLM:  



(A1) DGP:  y = X  + .  
(A2’) X stochastic, but E[X �] = 0 and E[] = 0. 
(A3) Var[|X] = σ2 IT 
(A4’) plim (XX/T) = Q         (p.d. matrix with finite elements, rank= k) 
 
With these new assumptions and using properties of plims and the CLT, we can show the 
following asymptotic results: 
1.  b and s2 are consistent. 

2. T (b – β) 
 ௗ 
ሱ⎯⎯ሮ  N(0, σ2Q-1)   b 

  
ሱ⎯⎯ሮ N(β, (σ2/T)Q-1) 

3. test-t 
 ௗ 
ሱ⎯⎯ሮ  N(0,1)  

  F-tests & Wald tests 
 ௗ 
ሱ⎯⎯ሮ 2

J  
 
 
CLM: Departures from (A5) 
Notice that asymptotic results 2 and 3 state the asymptotic distribution of b and the t-, F- and 
Wald test. All derived from the new set of assumptions and the CLT. (A5) was not used.  
 
That is, we relax (A5), but, now, we require large samples (T → ∞). 
 
Note: In practice, we use the asymptotic distribution as an approximation to the finite sample –

i.e., for any T– distribution. This is why we used the 
  
ሱ⎯⎯ሮ notation in: 

  b 
  
ሱ⎯⎯ሮ N(β, (σ2/T)Q-1) 

 
We should be aware that this approximation may not be accurate in many situations. 
 
• Two observations regarding relaxing (A5)  |X ~ i.i.d. N(0, σ2IT): 
  
– Throwing away the normality for |X is not bad. In many econometric situations, normality is 
not a realistic assumption (daily, weekly, or monthly stock returns do not follow a normal).  
 
– Removing the i.i.d. assumption for |X is also not bad. In many econometric situations, 
identical distributions are not realistic, since different means and variances are common. 
 
Questions:  
- Do we need to throw away normality for |X?  
Not necessarily. We can test for normality on the residuals using a Jarque-Bera test, though, for 
financial assets we usually reject normality is rejected, especially at the monthly, weekly, daily, 
and intra-daily frequencies. 
 
- Why are we interested in large sample properties, like consistency, when in practice we have 
finite samples? 
As a first approximation, the answer is that if we can show that an estimator has good large 
sample properties, then we may be optimistic about its finite sample properties. For example, if 
an estimator is inconsistent, we know that for finite samples it will definitely be biased. 



 
 
CLM: Departures from (A3) 
Now, we relax (A3).  The CLM assumes that errors are uncorrelated and all are drawn from a 
distribution with the same variance, σ2.  
(A3) Var[|X] = 2IT 
 
Instead, we will assume: 
(A3’) Var[|X] = Σ  (sometimes written= 2, where  ≠ IT) 
 

   Σ = 

⎣
⎢
⎢
⎡
𝜎ଵ
ଶ ଵଶ ⋯ ଵ்

ଶଵ 𝜎ଶ
ଶ ⋯ ଶ்

⋮ ⋮ ⋮ ⋮
்ଵ ்ଶ ⋯ 𝜎்

ଶ ⎦
⎥
⎥
⎤
 

 
• Two Leading Cases: 
 - Pure heteroscedasticity: We model only the diagonal elements.  
 - Pure cross/auto-correlation: We model only the off-diagonal elements.   
 
 
CLM: Departures from (A3) – Heteroscedasticity 
Pure heteroscedasticity:     E[  |X]  =   = 

ଶ  if 𝑖 = 𝑗  
      = 0    if 𝑖 ≠ 𝑗 
     Var[i|X]  =  

ଶ 
 

   Σ = 

⎣
⎢
⎢
⎡
𝜎ଵ
ଶ 0 ⋯ 0

0 𝜎ଶ
ଶ ⋯ 0

⋮ ⋮ ⋮ ⋮
0 0 ⋯ 𝜎்

ଶ⎦
⎥
⎥
⎤
 

 
This type of variance-covariance structure is common in time series, where we observe the 
variance of the errors changing over time or subject to different regimes (say, bear and bull 
regimes). 
 
Relative to pure heteroscedasticity, LS gives each observation a weight of 1/T.  But, if the 
variances are not equal, then some observations (low variance ones) are more informative than 
others. 
 



 
 
 
CLM: Departures from (A3) – Cross-correlation 
Pure cross/auto-correlation:   E[  |X]  =         if 𝑖 ≠ 𝑗 
 = 2 if 𝑖 = 𝑗 
 

   Σ = 

⎣
⎢
⎢
⎡
𝜎ଶ ଵଶ ⋯ ଵ்
ଶଵ 𝜎ଶ ⋯ ଶ்
⋮ ⋮ ⋮ ⋮

்ଵ ்ଶ ⋯ 𝜎ଶ ⎦
⎥
⎥
⎤
 

 
This type of variance-covariance structure is common in cross sections, where errors can show 
strong correlations, for example, when we model returns, the errors of two firms in the same 
industry can be subject to common (industry) shocks. Also common in time series, where we 
observe clustering of shocks over time. 
 
Relative to pure cross/auto-correlation, LS is based on simple sums, so the information that one 
observation (today’s) might provide about another (tomorrow’s) is never used. 
 
Note: Heteroscedasticity and autocorrelation are different problems and generally occur with 
different types of data. But, the implications for OLS are the same. 
 
 
CLM: Departures from (A3) – Implications 
OLS b is still unbiased and consistent.  (Proofs do not rely on (A3). 
 
OLS b still follows an asymptotic normal distribution. It is  
 – Easy to show this result for the pure heteroscedasticity case using a version of the CLT that 
assumes only independence    ;  
– More complicated derivation –i.e., with new assumptions- for the cross/auto-correlation case. 
 
But, OLS b is no longer BLUE. There are more efficient estimators; estimators that take into 
account the heteroscedasticity in the data.  



 
Note: We used (A3) to derive our test statistics. A revision is needed!  
 
 
Finding Heteroscedasticity 
There are several theoretical reasons why the ଶ may be related to some variables 𝑧ଵ,  . . . , 𝑧 
and/or 𝑧ଵ2,…, 𝑧2. 
1. Following the error-learning models, as people learn, their errors of behavior become smaller 
over time. Then, 

ଶ is expected to decrease. 
2. As data collecting techniques improve, 

ଶ is likely to decrease. Companies with sophisticated 
data processing techniques are likely to commit fewer errors in forecasting customer’s orders.  
3. As incomes grow, people have more discretionary income and, thus, more choice about how 
to spend their income. Hence, 

ଶ is likely to increase with income.  
4. Similarly, companies with larger profits are expected to show greater variability in their 
dividend/buyback policies than companies with lower profits.  
 
 Heteroscedasticity can also be the result of outliers (either very small or very large). The 
inclusion/exclusion of an outlier, especially if T is small, can affect the results of regressions. 
 
Violations of  (A1) –model is correctly specified–, can produce heteroscedasticity,  due to 
omitted variables from the model or incorrect functional form (e.g., linear vs log–linear models). 
 
Skewness in the distribution of one or more regressors included in the model can induce 
heteroscedasticity. Examples are economic variables such as income, wealth, and education.  
 
Heteroscedasticity is usually modeled using one the following specifications:  
– H1 : ௧ଶ is a function of past ε௧

ଶ and past ௧ଶ (ARCH models). 
– H2 : ௧ଶ 

 increases monotonically with one (or several) exogenous variable(s) (𝑧ଵ,,  . . . , 𝑧). 
– H3 : ௧ଶ increases monotonically with E(yt). 
– H4 : ௧ଶ is the same within p subsets of the data but differs across the subsets (grouped 
heteroscedasticity). This specification allows for structural breaks. 
 
These are the usual alternatives hypothesis (H1) in the heteroscedasticity tests. 
 
• Visual test  
In a plot of residuals against dependent variable or other variable will often produce a fan shape. 
 



 
 
 
Testing for Heteroscedasticity 
Question: Why do we want to test for heteroscedasticity if b is unbiased? 
OLS is no longer efficient. There is an estimator with lower asymptotic variance (the GLS/FGLS 
estimator).  
 
We want to test: H0: E(ε2|𝑥ଵ, 𝑥ଶ, 𝑥ଷ, … , 𝑥) = E(ε2) = 2 

 

H1 and the structure of the test depend on what we consider the drivers of ଶ – i.e., in the 
previous examples: H1, H2, H3, H4, etc. 
 
The key is whether E[2] = 

ଶ is related to X and/or X2. Suppose we suspect a particular 
independent variable, say 𝒙, is driving 

ଶ.  
 
Then, a simple test: Check the RSS for large values of 𝒙, and the RSS for small values of 𝒙. 
This is the Goldfeld-Quandt (GQ) test. 
 
 
Testing for Heteroscedasticity: GQ Test 
GQ tests H0: 

ଶ = s2 

 H1: 
ଶ = f(Xj) 

• Easy to compute:  

– Step 1. Arrange the data from small to large values of the independent variable suspected of 
causing heteroscedasticity, 𝒙. 

– Step 2. Run two separate regressions, one for small values of 𝒙 and one for large values of 𝒙, 
omitting d middle observations (≈ 20%). Get the RSS for each regression: RSS1 for small values 
of 𝒙 and RSS2 for large 𝒙’s. 

– Step 3. Calculate the F ratio 
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 GQ = 
RSS2

RSS1
, ~ 𝐹ௗ,ௗ, with 𝑑𝑓= [(T – d) – 2(𝑘 +1)]/2   (A5 holds).  

 
If (A5) does not hold, the F distribution becomes an approximation. Other tests may be preferred. 
 
Note: When we suspect more than one variable is driving 

ଶ, the GQ test is not very useful.  
 
• But, the GQ test is a popular test for structural breaks (two regimes) in variance. For these tests, 
we rewrite step 3 to allow for a different sample size in the sub-samples 1 and 2, since the 
breaking point does not have to be in the middle of the sample. 
 
– Step 3. Calculate the F-test ratio 
GQ = [RSS2/ (T2 – k)]/[RSS1/ (T1 – k)] 
 
Note: The package lmtest computes this test using function gqtest. It splits the sample in the 
middle. You need to specify the d of middle observations not included in test. Recall, you need 
to install the package before using it: install.packages(“lmtest”). 
 
Example: We test if the 3-factor FF model for IBM and GE returns shows heteroscedasticity 
with a GQ test, using gqtest in package lmtest. 
 
• IBM returns 
library(lmtest) 
> gqtest(ibm_x ~ Mkt_RF + SMB + HML, fraction = .20) 
        Goldfeld-Quandt test 
 
data:  ibm_x ~ Mkt_RF + SMB + HML 
GQ = 1.1006, df1 = 224, df2 = 223, p-value = 0.2371  cannot reject H0 at 5% level. 
alternative hypothesis: variance increases from segment 1 to 2 
 
• GE returns 
 gqtest(ge_x ~ Mkt_RF + SMB + HML, fraction = .20) 
        Goldfeld-Quandt test 
 
data:  ge_x ~ Mkt_RF + SMB + HML 
GQ = 2.744, df1 = 281, df2 = 281, p-value < 2.2e-16   reject H0 at 5% level. 
alternative hypothesis: variance increases from segment 1 to 2. ¶ 
 
 
Testing for Heteroscedasticity: LM Tests 
Popular heteroscedasticity LM tests: 
- Breusch and Pagan (1979)’s LM test (BP).   
- White (1980)’s general test.   
 
Both tests are based on OLS residuals, e, and calculated under H0 (No heteroscedasticity): 2. 
The squared residuals are used to estimate 

ଶ. 



 
• The BP test is an LM test, derived under normality –i.e., (A5). It is a general tests designed to 
detect any linear forms of heteroscedasticity, driven by some variables, z. That is, the BP tests:  
 H0: 

ଶ = 2 
 H1: 

ଶ =  f(zi) 
 
• The White test is an asymptotic Wald-type test, where normality is not needed. It allows for 
nonlinearities by using squares and cross-products of all the x’s in the auxiliary regression –i.e., 
as the drivers of 

ଶ. That is, the White tests:  
 H0: 

ଶ = 2 
 H1: 

ଶ =  f(xଵ
ଶ, xଶ

ଶ, ..., x
ଶ, 𝑥ଵ𝑥ଶ, 𝑥ଵ𝑥ଷ, 𝑥ଶ𝑥ଷ,...) 

 
 
Testing for Heteroscedasticity: BP Test 
The derivation of the BP test is complicated, it relies on the likelihood function, which is 
constructed under normality, and its first derivative, the score. However, the implementation of 
the BP test is simple, based on the squared OLS residuals, 𝑒

ଶ.   
 
• Calculation of the Breusch-Pagan test 
- Step 1. Run OLS on DGP: 
   𝒚 = X  + .     –Keep 𝑒 and compute ோଶ  = RSS/T 
 
- Step 2. (Auxiliary Regression). Run the regression of 𝑒

ଶ/ோଶ  on the m explanatory variables, z. 
In our example,  
  𝑒

ଶ/ோଶ  = α + αଵ 𝑧ଵ, + .... + α 𝑧, + 𝑣  –Keep RSS (𝑅𝑆𝑆) 
 

 - Step 3. With the RSS (𝑅𝑆𝑆) from Step 2 regression and the Total Sum of Squares (TSS)  also 
from Step 2, compute: 

  LM = (TSS - 𝑅𝑆𝑆ሻ/2  
ௗ
→  χ

ଶ . 

 
• There is version of the BP, which is robust to departures from normality. It is the “studentized” 
version of Koenker (1981). The BP test is asymptotically equivalent to a T*R2 test, where R2 is 

calculated from a regression of 𝑒
ଶ/ோଶ  on the variables Z. (Omitting  ோଶ  from the denominator is 

OK.)  
 
•  We have different Steps 2 & 3:  

- Step 2. (Auxiliary Regression). Run the regression of 𝑒
ଶ on the m explanatory variables, z. In 

our example,  

 𝑒
ଶ = α + αଵ 𝑧ଵ, + .... + α 𝑧, + 𝑣   –Keep R2 ( 𝑅ଶ

ଶ ) 

 
 - Step 3. Using the R2 from Step 2. Let’s call it 𝑅ଶ

ଶ . Compute 

 LM = T 𝑅ଶ
ଶ  

  ௗ  
ሱሮ χ

ଶ . 



 
Example: We suspect that squared Mkt_RF (x1) –a measure of the overall market’s variance- 
drives heteroscedasticity. We do a studentized LM-BP test for IBM in the 3-factor FF model: 
fit_ibm_ff3 <- lm (ibm_x ~ Mkt_RF + SMB + HML)  # Step 1 – OLS in DGP 
e <- fit_ibm_ff3$residuals     # Step 1 – keep residuals 
e2 <- e^2       # Step 1 – squared residuals 
Mkt_RF_2 <- Mkt_RF^2 
fit_BP <- lm(e2 ~ Mkt_RF_2)    # Step 2 – Auxiliary regression 
Re_2 <- summary(fit_BP)$r.squared    # Step 2 – keep R^2 
LM_BP_test <- Re2 * T 
> LM_BP_test      # Step 3 – Compute LM-BP test: R2 * T 
[1] 0.25038 
p_val <- 1 - pchisq(LM_BP_test, df = 1)     # p-value of LM_test  
>  p_val 
[1] 0.6168019 
 
LM-BP Test: 0.25028   cannot reject H

0
 at 5% level (χ2

[1],.05 ≈ 3.84); with a p-value= .6168.  

 
R Note: The bptest in the lmtest package performs a studentized LM-BP test for the same 
variables used in the model (Mkt, SMB and HML). For IBM in the 3-factor FF model: 
 

> bptest(ibm_x ~ Mkt_RF + SMB + HML) #bptest only allows to test H1:
ଶ= f(xi=model 

variables 
        studentized Breusch-Pagan test 
 
data:  ibm_x ~ Mkt_RF + SMB + HML 
BP = 4.1385, df = 3, p-value = 0.2469 
 

LM-BP Test: 4.1385   cannot reject H0 at 5% level (χ2
[3],.05 ≈ 7.815); with a p-value = 0.2469.  

 

Conclusion: Using the Breusch-Pagan test with Mkt_RF^2 as the driver of heteroscedasticity, we 
cannot reject H0. That is, we cannot reject homocedasticity for the residuals of the 3-factor FF 
model for IBM excess returns. ¶ 
 
Note: Heteroscedasticity in financial time series is very common. In general, it is driven by 
squared market returns or squared past errors, thus the default setup of R’s bptest is not very 
useful. 
 



Example: We suspect that squared Market returns drive heteroscedasticity. We do an LM-BP 
(studentized) test for Disney: 
 
lr_dis <- log(x_dis[-1]/x_dis[-T])  # Log returns for DIS 
dis_x <- lr_dis – RF  # Disney excess returns 

fit_dis_ff3 <- lm (dis_x ~ Mkt_RF + SMB + HML) # Step 1 – OLS in DGP (3-factor FF model) 

e_dis <- fit_dis_ff3$residuals    # Step 1 – keep residuals 

e2 <- e_dis^2      # Step 2 – squared residuals 

fit_dis_BP <- lm (e2 ~ Mkt_RF_2)   # Step 2 – Auxiliary regression  

Re_2 <- summary(fit_dis_BP)$r.squared  # Step 2 – Keep R^2 from Auxiliary reg 

LM_BP_test <- Re_2 * T    # Step 3 – Compute LM Test: R^2 * T 

> LM_BP_test  

[1] 14.15224 

>  p_val <- 1 - pchisq(LM_BP_test, df = 1)    # p-value of LM_test  

>  p_val 

[1] 0.0001685967 
 

LM-BP Test: 14.15  reject H0 at 5% level (χ2
[1],.05 ≈ 3.84); with a p-value = .0001.  

 
• We do the same test but with SMB squared for Disney: 
 
SMB_2 <- SMB^2 
fit_dis_BP_2 <- lm (e2 ~ SMB_2) 
Re_2 <- summary(fit_dis_BP_2)$r.squared 
LM_BP_test_2 <- Re_2 * T 
> LM_BP_test 
[1] 7.564692 
p_val <- 1 - pchisq(LM_BP_test_2, df = 1)  # p-value of LM_test  
>  p_val 
[1] 0.005952284 
 

LM-BP Test: 7.56  reject H0 at 5% level (χ2
[1],.05 ≈ 3.84); with a p-value= .006.  

 
Conclusion: Using the Breusch-Pagan test, we reject homocedasticity for the residuals of the 3-
factor FF model for Disney excess returns. 
 
• If we do use the lmtest package, we get: 
 
> bptest(dis_x ~ Mkt_RF + SMB + HML) 



 
        studentized Breusch-Pagan test 
 
data:  dis_x ~ Mkt_RF + SMB + HML 
BP = 6.9935, df = 3, p-value = 0.07211 
 

LM-BP Test: 6.99  cannot reject H0 at 5% level (χ2
[3],.05 ≈ 7.815); with a p-value = .07211. 

 
Note: Again, in general, you need squared values when model heteroscedasticity in financial 
assets. ¶ 
 
Example: We suspect that squared interest rate differentials drive heteroscedasticity for 
residuals in the encompassing (IFE + PPP) model for changes in the USD/GBP. We do an LM-
BP (studentized) test, considering the squares of interest differentials as drivers of 
heteroscedasaticity: 
 
y <- lr_usdgbp 
fit_gbp <- lm (y ~ inf_dif + int_dif) 
e_gbp <- fit_gbp$residuals 
e_gbp2 <- e_gbp^2 
int_dif_2 <- int_dif^2 
fit_BP <- lm (e_gbp2 ~ int_dif_2) 
Re_2 <- summary(fit_BP)$r.squared 
LM_BP_test <- Re_2 * T 
> LM_BP_test 
[1] 21.11134 
p_val <- 1 - pchisq(LM_BP_test, df = 1)    # p-value of LM_test  
>  p_val 
[1] 4.333567e-06 
 

LM-BP Test: 21.11134  reject H0 at 5% level (p-value < .00001). 
 
Conclusion: Using the BP LM test, we have a strong rejection of homocedasticity for the 
residuals of the encompassing (PPP + IFE) model for changes in the USD/GBP. ¶ 
 
 
Testing for Heteroscedasticity: White Test 
The White test derivation is also complicated, but, the usual calculation of the White test is a 
known one for us: 
– Step 1. (Same as BP’s Step 1). Run OLS on DGP: 
   y = X  + .  Keep residuals, ei. 



 
– Step 2. (Auxiliary Regression). Regress 𝑒2 on all the explanatory variables (𝑥), their squares 
(𝑥2), & all their cross products ሺ𝑥  ∗ 𝑥ሻ. 
 
For example, when the model contains k = 2 explanatory variables, the test is based on:  
 𝑒

ଶ = β0 + β1 𝑥ଵ, + β2 𝑥ଶ,  + β3 𝑥ଵ,
ଶ  + β4 𝑥ଶ,

ଶ  + β5 𝑥ଵ,𝑥ଶ,  + 𝑣 
Let m be the number of regressors in auxiliary regression (in the above example, m = 5). Keep 
R2, say 𝑅ଶ

ଶ . 

– Step 3. Compute the statistic: LM = T 𝑅ଶ
ଶ  

ௗ
→ χ

ଶ . 
 
Example: White Test for the 3-factor F-F model for IBM excess returns (T=569). We also run 
the White Test for DIS and GE excess returns. In the case of IBM excess returns we have:   

 IBMRet - rf = 0 + 1 (MktRet - rf) + 2 SMB + 3 HML +    
 
e <- fit_ibm_ff3$residuals  
e_ibm2 <- e_ibm^2 
Mkt_HML <- Mkt_RF*HML 
Mkt_SMB <- Mkt_RF*SMB 
SMB_HML <- SMB*HML 
xx2 <- cbind(Mkt_RF_2, SMB_2, HML_2, Mkt_HML,Mkt_SMB, SMB_HML)  
fit_ibm_2 <- lm(e_ibm2 ~ Mkt_RF + SMB + HML + xx2) # Not including original variables in  
       Aux Reg (Mkt_RF,SMB & HML) is OK 
r2_e2 <- summary(fit_ibm_2)$r.squared  # Keep R^2 from Auxiliary regression 
> r2_e2 
[1] 0.0166492 
lm_t <- T*r2_e2      # Compute LM test: R^2 * sample size (T) 
> lm_t 
[1] 10.93483 
df_lm <-  ncol(xx2) 
>df_lm 
[1] 6 
> qchisq(.95, df = df_lm)  
[1] 12.59159 
 
Conclusion: The White Test (LM-White Test: 10.93) cannot reject H0 at 5% level for the 
residuals of the 3-factor F-F model. (LM-White Test < χ2

[6],.05 ≈ 12.59).  
 
• Now, we do a White Test for the 3 factor F-F model for DIS and GE excess returns (T=569).   
 
- For DIS, we get:   
e_dis <- fit_dis_ff3$residuals 



e_dis2 <- e_dis^2 
fit_dis_W <- lm (e_dis2 ~ Mkt_RF + SMB + HML + xx2) 
Re_2W <- summary(fit_dis_W)$r.squared 
LM_W_test <- Re_2W * T 
> LM_W_test 

[1] 25.00148      reject H0 at 5% level (χ2
[6],05≈12.59). 

p_val <- 1 - pchisq(LM_W_test, df = 6)    # p-value of LM_test  
>  p_val 
[1] 0.0003412389 
 
- For GE, we get: 
LM-White Test: 20.15 (p-value = 0.0026)  reject H0 at 5% level.  
 
Conclusion: Using the White test, we strongly reject homoscedasticity for the errors of the 3-
factor FF model for DIS returns and GE returns. ¶ 
 
Example: We do a White Test for the residuals in the encompassing (IFE + PPP) model for 
changes in the USD/GBP (T=363):  
 
e_gbp <- fit_gbp$residuals  
e_gbp2 <- e_gbp^2   
int_dif2 <- int_dif^2;  inf_dif2 <- inf_dif^2;  int_inf_dif <- int_dif*inf_dif 
fit_gbp_W <- lm (e_gbp2 ~ int_dif + inf_dif + int_dif2 + inf_dif2+ int_inf_dif) 
Re_2W <- summary(fit_gbp_W)$r.squared 
LM_W_test <- Re_2W * T 
> LM_W_test 
[1] 15.46692  
p_val <- 1 - pchisq(LM_W_test, df = 3)     # p-value of LM_test  
> p_val 
[1] 0.001458139      reject H0 at 5% level 
 
Conclusion: Using the White test, we strongly reject homoscedasticity for the residuals of the 
encompassing (PPP + IFE) for changes in the USD/GBP. ¶ 
 
 
Testing for Heteroscedasticity: LR Test 
We define the likelihood function, assuming normality –i.e. (A5)–, for a general case, where we 
have g different variances: 
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We have two models:  
(R) Restricted under H0: i

2 = 2. From this model, we calculate ln L 
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(U) Unrestricted. From this model, we calculate the log likelihood. 
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• Now, we can estimate the Likelihood Ratio (LR) test: 
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Under the usual regularity conditions, LR is approximated by a χିଵ

ଶ . 

 
 
Testing for Heteroscedasticity: Remarks 
Drawbacks of the Breusch-Pagan test:  
- It is sensitive to violations of the normality assumption. The studentized version of Koenker is 
more robust and, then, more used. 
 
Drawbacks of the White test 
- If a model has several regressors, the test can consume a lot of df’s.  
 
- In cases where the White test statistic is statistically significant, heteroscedasticity may not 
necessarily be the cause, but model specification errors. 
 
- It is general. It does not give us a clue about how to model heteroscedasticity to do FGLS. The 
BP test points us in a direction. 
 
- In simulations, it does not perform well relative to others, especially, for time-varying 
heteroscedasticity, typical of financial time series.  
  
 
Finding Auto-correlation 
There are several reasons why the 𝜀 may be related to 𝜀. In general, we find autocorrelation (or 
serial correlation) in time series, where 𝜀ୀ௧ is correlated to 𝜀ୀ௧ି. Typical situation: it takes time 
to absorb a shock, then, shocks show persistence over time. 
 
The shocks can also be correlated over the cross-section, causing cross-correlation. For example, 
if an unexpected new tax is imposed on the technology sector, all the companies in the sector are 
going to share this shock. 
 



Usually, we model autocorrelation using two models: autoregressive (AR) and moving averages 
(MA): 
- In an AR model, the errors, εt, show a correlation over time.  
- In an MA model, the errors, ε t, are a function (similar to a weighted average) of previous 
errors, now denoted ut’s. 
 
Examples:  
- First-order autoregressive autocorrelation: AR(1) 
  𝜀௧ = 𝜌ଵ 𝜀௧ିଵ  𝑢௧ 
- pth-order autoregressive autocorrelation: AR(p) 
  𝜀௧ = 𝜌ଵ  𝜀௧ିଵ  𝜌2  𝜀 ௧ିଶ  ⋯ 𝜌p  𝜀௧ି  𝑢௧ 
- Third-order moving average autocorrelation: MA(3) 
  𝜀௧ = 𝑢௧ + λ1  𝑢௧ିଵ  λ2 𝑢௧ିଶ  λ3 𝑢௧ିଷ 
 
Note: The last example is described as third-order moving average autocorrelation, denoted 
MA(3), because it depends on the three previous innovations as well as the current one. 
 
 
Finding Auto-correlation – Visual Check 
Plot data, usually residuals from a regression, to see if there is a pattern: 
 
- Positive autocorrelation: A positive (negative) observation tends to be followed by a positive 
(negative) observation. We tend to see continuation in the series. 
 
- Negative autocorrelation: A positive (negative) observation tends to be followed by a 
negative (positive) observation. We tend to see reversals. 
 
- No autocorrelation: A positive (negative) observation has the same probability of being 
followed by a negative or positive (positive or negative) observation. We tend to see no pattern. 
 
Simulated Example: I simulate a 𝑦௧ series, with N(0,1) 𝑢௧ errors: 
  𝑦௧ = 𝑦௧ିଵ  𝑢௧ 
Three cases: 
(1) Positive autocorrelation:  
(2) Negative autocorrelation:  
(3) No correlation:  
 
• R code for simulation: 
T_sim <- 200 
u <- rnorm(200)  # Draw T_sim normally distributed errors 
y_sim <- matrix(0,T_sim,1) 
rho <- .7   # Change to create different correlation 
patterns 
a <- 2    # Time index for observations 
while (a <= T_sim) { 
   y_sim[a] = rho * y_sim[a-1] + u[a] # y_sim simulated autocorrelated values   



a <- a + 1 
}  
plot(y_sim, type="l", col="blue", ylab ="Simulated Series", xlab ="Time") 
title("Visual Test: Autocorrelation?") 
 
(1) Positive autocorrelation:  = .70 

 
 
(2) Negative autocorrelation:  = -.70 

 
 
(3) No autocorrelation:  = 0 

 
 
 
Example: Residual plot for the 3 factor F-F model for IBM returns and GE returns: 



 
 

 
 
Conclusion: It looks like a small , but not very clear pattern from the graphs. ¶ 
 
 
Testing for Autocorrelation: LM Test  
There are several autocorrelation tests. All autocorrelations tests described in this lecture have an 
AR(𝑝) structure, as an alternative hypothesis: 
  𝜀௧ = ଵ 𝜀௧ିଵ  ଶ 𝜀௧ିଶ  ⋯  𝜀௧ି  𝑢௧ 
 
In this section, we describe a popular LM test, the Breusch–Godfrey (BG, 1978) LM test. BG use 
the AR(𝑝) model as the basis of H1 and, thus, the test:  
 H0p = 0. 
 H1: at least one i ≠ 0, for i = 1, 2, …, p  
 
Under H0, BG use OLS residuals, 𝑒௧, to construct an LM test (BG test), similar to the BP test. 
 
• Steps for the Breusch–Godfrey (1978): 
– Step 1. (Same as BP’s Step 1). Run OLS on DGP: 
    y = X  + .   - Keep residuals, 𝑒௧. 
 
- Step 2. (Auxiliary Regression). Run the regression of 𝑒௧ on all the explanatory variables, X, 
and 𝑝 lags of residuals, 𝑒௧: 
  𝑒௧ = 𝒙௧’ γ  + α1 𝑒௧ିଵ + .... + αp 𝑒௧ି + 𝑣௧ - Keep R2 (𝑅ଶ)  
 



- Step 3. Keep the R2 from this regression. Let’s call it 𝑅ଶ. Then, calculate: 

 LM = (T- 𝑝) 𝑅ଶ 
ௗ
→  χ

ଶ .  - (T- p) = we lost p observation by taking lags of e. 

 
Note: In general, in Step 2, if we do not include 𝒙௧, the LM test is not that different. 
 
Example: LM-AR Test for the 3 factor F-F model for IBM excess returns (p=12 lags): 
 
e_ibm <- fit_ibm_ff3$residuals   # OLS residuals 
p_lag <- 12     # Select # of lags for test (set p) 
e_lag <- matrix(0,T-p_lag,p_lag)  # Matrix to collect lagged residuals 
a <- 1 
while (a<=p_lag) {    # Do loop creates matrix (e_lag) with lagged e 
  za <- e_ibm[a:(T-p_lag+a-1)] 
   e_lag[,a] <- za  
a <- a+1 
} 
 
Mkt_RF_p <- Mkt_RF[(p_lag+1):T]   # Adjust for new sample size: T – p_lag 
SMB_p <- SMB[(p_lag+1):T] 
HML_p <- HML[(p_lag+1):T] 
fit_lm1 <- lm(e_ibm[(p_lag+1):T] ~ e_lag + Mkt_RF_p + SMB_p + HML_p)  # Auxiliary Reg 
r2_e1 <- summary(fit_lm1)$r.squared  # get R^2 from Auxiliary Regression 
> r2_e1 
[1] 0.0303721  
> (T-p_lag) 
[1] 557 
lm_t <- (T-p_lag )* r2_e1    # LM-test wih p lags 
> lm_t 
[1] 16.91726  
df <- ncol(e_lag)     # degrees of freedom for the LM Test 
> 1 - pchisq(lm_t,df) 
[1] 0.1560063 
 
LM-AR(12) Test: 16.91726     cannot reject H0 at 5% level (p-value > .05). 
 
• If I run the test with p = 4 lags, I get 
LM-AR(4) Test: 2.9747 (p-value = 0.56)  cannot reject H0 at 5% level (p-value > .05). 
 
Conclusion: No evidence of autocorrelation for the residuals of the 3-factor FF model for IBM 
excess returns at the 5% level. ¶ 
 
R Note: The package lmtest, performs this test, bgtest, (and many others, used in this class, 
encompassing, jtest, waldtest, etc). Recall that you need to install it first: 
install.packages(“lmtest”), then call the library(lmtest). 
 



library(lmtest) 
> bgtest(ibm_x ~ Mkt_RF + SMB + HML, order=12) 
 
        Breusch-Godfrey test for serial correlation of order up to 12 
 
data:  lr_ibm ~ Mkt_RF + SMB + HML 
LM test = 16.259, df = 12, p-value = 0.1797 (minor difference with the previous test, likely due 
       to multiplication by T. Results do not change much) 
 
Note: If you do not include in the Auxiliary Regression the original regressors (Mkt_RF, SMB, 
HML) the test do not change much. You get  
LM-AR(12) Test: 16.83253   very similar. Not entirely correct, but it works well. ¶ 
 
Example: Autocorrelation is very common. If I run the test for Disney, CNP, or GE, instead, we 
get significant test results.  
 
- For DIS:  
lr_dis <- log(x_dis[-1]/x_dis[-T]) 
dis_x <- lr_dis – RF 
 
> bgtest(dis_x ~ Mkt_RF + SMB + HML, order=4) 
        Breusch-Godfrey test for serial correlation of order up to  4 
 
data:  dis_x ~ Mkt_RF + SMB + HML 
LM test = 8.6382, df = 4, p-value = 0.07081  cannot reject H0 at 5% level (p-value >.05) 
 
> bgtest(dis_x ~ Mkt_RF + SMB + HML, order=12) 
        Breusch-Godfrey test for serial correlation of order up to 12 
 
data:  dis_x ~ Mkt_RF + SMB + HML 
LM test = 30.068, df = 12, p-value = 0.002728   reject H0 at 5% level (p-value < .05) 
 
- For GE (with 12 lags):   
lr_ge <- log(x_ge[-1]/x_ge[-T]);  
ge_x <- lr_ge – RF 
> bgtest(ge_x ~ Mkt_RF + SMB + HML, order=4) 
        Breusch-Godfrey test for serial correlation of order up to 4 
 
data:  ge_x ~ Mkt_RF + SMB + HML 
LM test = 28.257, df = 4, p-value = 0.005073  cannot reject H0 at 5% level (p-value >.05) 
 
 
- For CNP (with 12 lags):   
lr_cnp <- log(x_cnp[-1]/x_cnp[-T]);  
cnp_x <- lr_cnp – RF 
> bgtest(cnp_x ~ Mkt_RF + SMB + HML, order=12) 



        Breusch-Godfrey test for serial correlation of order up to 12 
 
data:  cnp_x ~ Mkt_RF + SMB + HML 
LM test = 31.718, df = 12, p-value = 0.00153   reject H0 at 5% level (p-value < .05) 
 
Conclusion: Significant evidence of autocorrelation for the residuals of the 3-factor F-F model 
for DIS, GE & CNP excess returns. ¶ 
 
 
• Question: How many lags are needed in the test?  
Enough to make sure there is no auto-correlation left in the residuals. There are some popular 
rule of thumbs: for daily data, 5 or 20 lags; for weekly, 4 or 12 lags; for monthly data, 12 lags; 
for quarterly data, 4 lags. 
 
 
Testing for Autocorrelation: Durbin-Watson 

The Durbin-Watson (1950) (DW) test for AR(1) autocorrelation:  H00 against H1≠0. 
Based on simple correlations of 𝒆. 

   𝑑 =  
∑ ሺ ି షభሻమ

సమ

∑ 
మ

సభ
 

It is easy to show that when T  → ∞, 𝑑    2(1 - ଵ).   
 
It is estimated using the sample correlation r. 
 
Under H0, = 0. Then, d should be distributed randomly around 2. 
 
Small values (close to 0) or Big values (close to 4) of 𝑑  lead to rejection of H0. The distribution 
depends on X. Durbin-Watson derived bounds for the test. Since there are better tests, in 
practice, the DW is used “visually:” Is 𝑑 close to 2?.  
 
R Note: The function dwtest from the lmtest package computes 𝑑 (DW test) and produces also a 
p-value. 
 
Example: DW Test for the 3 factor F-F model for IBM returns 
 

fit_ibm_ff3 <- lm(ibm_x ~ Mkt_RF + SMB + HML) # OLS regression 
e_ibm <- fit_ibm_ff3$residuals    # OLS residuals 
RSS <- sum(e_ibm^2)      # RSS 
DW <- sum((e[1:(T-1)]-e[2:T])^2)/RSS   # DW stat 
> DW 
[1] 2.042728    DW statistic ≈2   No evidence for autocorrelation of order 1. 
> 2*(1-cor(e[1:(T-1)],e[2:T]))    # approximate DW stat 
[1] 2.048281 
 
• Similar finding for Disney returns: 



> DW 
         [,1] 
[1,] 2.1609      DW statistic ≈2    But, DIS suffers from autocorrelation! 
 
 This is why DW are not that informative. They only test for AR(1) in residuals. 
 
R Note: The package lmtest performs this test too, using dwtest: 
 

> dwtest(y ~ Mkt_RF + SMB + HML) 
DW = 2.0427, p-value = 0.7087 
 
Conclusion: No evidence of first order autocorrelation in the residuals of the 3-factor F-F model 
for IBM excess returns. ¶ 
 
 
Example: DW Test for the residuals of the encompassing model (IFE + PPP) for changes in 
USD/GBP: 
e_gbp <- fit_gbp$residuals 
> dwtest(fit_gbp) 
 
        Durbin-Watson test 
 
data:  fit_gbp 
DW = 1.8588, p-value = 0.08037    not significant at 5% level. 
alternative hypothesis: true autocorrelation is greater than 0 
 
Conclusion: No evidence of first order autocorrelation in the residuals of the encompassing 
model (IFE + PPP) for changes in USD/GBP. ¶ 
 
 
Testing for Autocorrelation: Portmanteu tests 
Portmanteu tests are tests with a well-defined H0, but not specific, or loosely defined, H1. We 
present two Portmanteu test for autocorrelation: the Box-Pierce (1970) test and its modification, 
the Ljung-Box (1978) test. 
 
- Box-Pierce (1970) test (Q test). 
For a series 𝑦௧, it tests H0p = 0 using the sample correlation:  

 𝑟 = 
ఊෝೕ
ఊෝబ

 

where, using time series notation, we have: 

γො୨  = sample covariance between 𝑦௧ and 𝑦௧ି = 
∑ ሺ௬ି ௬തሻሺ௬షೕି ௬തሻ
సೕశభ

்ି
 

 γො = sample variance. 
 
In the case of analyzing residuals of a regression, 𝑒௧, we compute rj  as: 
 



  𝑟  = 
∑  షೕ
షೕ
సೕశభ

∑ 
మ

సభ
 

Then, under H0:  Q = T ∑ 𝑟
ଶ

ୀଵ

ௗ
→  χ

ଶ . 

 
- Ljung-Box (1978) test (LB test).  
A variation of the Box-Pierce test. It has a small sample correction, which improves the 
performance of the test: 

   LB = T * (T + 2) * ∑
ೕ
మ

்ି

ୀଵ  

  ௗ  
ሱሮ  χ

ଶ . 

 
Both statistics test whether a group of autocorrelations are different from zero. Both are general 
tests, not testing zero-autocorrelation at each lag.  
 
Technical note: The asymptotic distribution is based on the fact that, under the null hypothesis of 

independent data, √𝑇 𝒓 
  ௗ  
ሱሮ N(0, I).  

 
Both tests are widely used, especially the LB test. But, the Breusch–Godfrey (1978) LM tests 
conditions on X. Thus, LM tests are more powerful.  
  
Example: Q and LB tests with p = 12 lags for the residuals in the 3-factor FF model for IBM 
excess returns: 
RSS <- sum(e_ibm^2) 
r_sum <- 0 
lb_sum <- 0 
p_lag <- 12 
a <- 1 
while (a <= p_lag) { 
   za <- as.numeric(t(e_ibm[(p_lag+1):T]) %*% e_ibm[a:(T-p_lag+a-1)])   
  r_sum <- r_sum + (za/RSS)^2   # sum cor(e[(p_lag+1):T], e[a:(T-p_lag+a-1)])^2 
  lb_sum <- lb_sum + (za/RSS)^2/(T-a)  # sum with LB correction 
a <- a + 1 
}  
 
Q <- T*r_sum 
> Q 

[1] 16.39559 (p-value = 0.1737815)    cannot reject H0 at 5% level.  
 
LB <- T*(T-2)*lb_sum 
> LB 

[1] 16.46854  (p-value = 0.1707059)    cannot reject H0 at 5% level.  
 



R Note: The Box.test function computes Q & LB: 
- Q  test 
e_ibm <- fit_ibm_ff3$residuals 
> Box.test(e_ibm, lag = 12, type="Box-Pierce") 
 
        Box-Pierce test 
 
data:  e_ibm 
X-squared = 16.304, df = 12, p-value = 0.1777 
 
- LB test 
> Box.test(e_ibm, lag = 12, type="Ljung-Box") 
 
        Box-Ljung test 
 
data:  e_ibm 
X-squared = 16.61, df = 12, p-value = 0.1649 
 
Note: There is a minor difference between the previous code and the code in Box.test. They are 
based on how the correlations of e are computed (centered around the mean, or assumed zero 
mean). 
 
Conclusion: Using the Q and LB tests, with different lags, we find no evidence of autocorrelation 
in the residuals of the 3-factor F-F model for IBM excess returns. 
 
 
• Same tests (p = 12 lags) & same model: for Disney & GE. 
- For DIS (e_dis), we get: 
fit_dis_ff3 <- lm(ge_x ~ Mkt_RF + SMB + HML) # OLS regression 
e_ge <- fit_dis_ff3$residuals    # OLS residuals 
 
> Q 
[1] 25.563 (p-value = 0.01237)    reject H0 at 5% level.  
> LB 
[1] 25.879 (p-value = 0.01117)    reject H0 at 5% level.  
 
- For GE (e_ge), we get 
fit_ge_ff3 <- lm(ge_x ~ Mkt_RF + SMB + HML) # OLS regression 
e_ge <- fit_ge_ff3$residuals    # OLS residuals 
 
> Q 
[1] 27.087 (p-value = 0.007507)     reject H0 at 5% level.  
> LB 
[1] 27.523 (p-value = 0.006493)     reject H0 at 5% level.  
 



Conclusion: Using the Q and LB test, we find evidence of autocorrelation in the residuals of the 
3-factor F-F model for DIS & GE excess returns. ¶ 
 
• Autocorrelation in financial asset returns is a usual finding in monthly, weekly and daily data.   
 
Example: Same Q and LB tests (p=12 lags) for the USD/GBP residuals in the encompassing 
(PPP + IFE) model: 
e_gbp <- fit_gbp$residuals 
>  Box.test(e_gbp, lag = 12, type="Box-Pierce") 
 
        Box-Pierce test 
 
data:  e_gbp 
X-squared = 19.587, df = 12, p-value = 0.0753  cannot reject H0 at 5% level, but close.  
 
>  Box.test(e_gbp, lag = 12, type="Ljung-Box") 
 
        Box-Ljung test 
 
data:  e_gbp 
X-squared = 20.032, df = 12, p-value = 0.06649  cannot reject H0 at 5% level, but close.  
 
Conclusion: Using the Q and LB tests, with different lags, we find no evidence of autocorrelation 
in the residuals of the encompassing (PPP + IFE) model for changes in the USD/GBP. ¶ 
 

Above, we mentioned that the Q & LB tests are widely used. But, they present two main 
limitations:  

(1) The test was developed under the independence assumption.  

If there is dependence in the data, such as heteroscedasticity, the asymptotic variance of √𝑇 𝒓 is 
no longer I, but a non-diagonal matrix.  

There are several proposals to “robustify” both Q & LB tests, see Diebold (1986), Robinson 
(1991), Lobato et al. (2001). The “robustified” Portmanteau statistic uses 𝑟ఫ instead of 𝑟: 

 𝑟ఫ = 
ఊෝೕ
మ

ఛೕ  
 = 

∑ ሺ௬ି ௬തሻሺ௬షೕି ௬തሻ
సೕశభ

∑ ሺ௬ି ௬തሻమ ሺ௬షೕି ௬തሻమ
సೕశభ

 

Thus, for Q we have: 

 Q* = T  ∑ �̃�
ଶ

ୀଵ

ௗ
→  χ

ଶ . 

(2) The selection of the number of autocorrelations 𝑝 is arbitrary. 

The traditional approach is to try different 𝑝 values, say 3, 6 & 12. Another popular approach is 
to let the data “select” 𝑝, for example, using AIC or BIC, an approach sometimes referred as 
“automatic selection.”  



Escanciano and Lobato (2009) propose combining BIC’s and AIC’s penalties to select 𝑝 in Q* 
(BIC for small r and AIC for bigger r). The Auto.Q function in the R package vrtest computes 
Q* with this automatic selection of 𝑝. 

 

It is possible to reach very different conclusion from Q and Q*.  
 
Example: Q* tests with automatic selection of p for the residuals in the 3-factor FF model for 
IBM, DIS and GE excess returns: 
 
- For IBM (e_ibm), we get: 
> library(vrtest) 
> Auto.Q(e_ibm, 12)   #Maximum potential lag = 12 
$Stat 
[1] 0.2781782 
 
$Pvalue 
[1] 0.5978978 
 
- For DIS (e_dis), we get: 
> Auto.Q(e_dis, 12) 
$Stat 
[1] 2.649553 
 
$Pvalue 
[1] 0.103579 
 
- For GE (e_ge), we get: 
> Auto.Q(e_ge, 12) 
$Stat 
[1] 0.6437697 
 
$Pvalue 
[1] 0.422349 
 
Conclusion: Using the Q* test, with automatic lag selection, we find no evidence of 
autocorrelation in the residuals of the 3-factor F-F model for IBM excess returns. Same 
conclusion we reached with the Q & LB tests above. But, for DIS residuals and GE residuals we 
get a different conclusion. Now, once we take into consideration heteroscedasticity, we cannot 
reject at the 5% level the null hypothesis of no autocorrelation, ¶ 
 
Time-varying volatility is very common in financial time series. We can use the Q and LB tests 
for autocorrelation to check for autocorrelation in squared errors, 𝑒

ଶ, which based on White’s 
idea, we use to estimate 

ଶ.  
 



 
 
Testing for Autocorrelation: Heteroscedasticity 
We use the Q and LB Portmanteu tests on the squared residuals to check for a particular kind of 
heteroscedasticity: the variance, 

ଶ, is driven by lagged squared errors.  
 H0: 

ଶ = s2 
 H1: 

ଶ = f(𝜀ିଵ
ଶ , 𝜀ିଶ

ଶ , ...., 𝜀ି
ଶ ) 

 
• Of course, an LM-BP test can also be used, using lagged squared residuals as the drivers of 
heteroscedasticity (more on this topic in Lecture 10).  
 
Example: Q and LB tests with p=12 lags for the squared residuals in the 3-factor FF model for 
IBM returns: 
e_ibm <- fit_ibm_ff3$residuals 
e_ibm2 <- e_ibm^2 
 
• Q test 
> Box.test(e_ibm2, lag = 12, type="Box-Pierce") 
 
        Box-Pierce test 
 
data:  e_ibm2 
X-squared = 37.741, df = 12, p-value = 0.0001693 
 
• LB test 
> Box.test(e_ibm2, lag = 12, type="Ljung-Box") 
 
        Box-Ljung test 
 
data:  e_ibm2 
X-squared = 38.435, df = 12, p-value = 0.0001304 
 
• Q and LB tests with p=12 lags for the squared residuals in the 3-factor FF model for DIS & GE 
returns: 
 
- For DIS (dis_x), we get 
> Box.test(e_dis2, lag = 12, type="Ljung-Box") 
 
        Box-Ljung test 
 
data:  e_dis2 
X-squared = 73.798, df = 12, p-value = 6.195e-11 
 
- For GE (ge_x), we get 
> Box.test(e_ge2, lag = 12, type="Ljung-Box") 
 



        Box-Ljung test 
 
data:  e_ge2 
X-squared = 115.9, df = 12, p-value < 2.2e-16 
 
Conclusion: Using Q and LB tests for squared residuals, we find strong evidence for time-
varying heteroscedasticity in the residuals of the 3-factor F-F model for IBM & DIS excess 
returns. ¶ 
 
 
Generalized Regression Model (GRM) 
Now, we go back to the CLM Assumptions:   
(A1) DGP: y  = X  +  is correctly specified.  
(A2) or (A2’)    
(A3’) Var[|X] = Σ   (sometimes written Var[|X] = 2) 

  Σ = 

⎣
⎢
⎢
⎡
𝜎ଵ
ଶ ଵଶ ⋯ ଵ்

ଶଵ 𝜎ଶ
ଶ ⋯ ଶ்

⋮ ⋮ ⋮ ⋮
்ଵ ்ଶ ⋯ 𝜎்

ଶ ⎦
⎥
⎥
⎤
  -a (TxT) symmetric matrix 

(A4) or (A4’) 
 
 
This is the generalized regression model (GRM), which allows the variances to differ across 
observations and allows correlation across observations.  
 
OLS is still unbiased. Can we still use OLS? 
 
 
GR Model: True Variance for b 
From (A3) Var[|X] = σ2 IT     Var[b|X] = σ2 (XX)-1. 
 
Now, we have (A3’) Var[|X] = Σ 
 
The true variance of b under (A3’) should be: 
 VarT[b|X]  = E[(b – )(b – )’|X] 
       = (X’X)-1 E[X’εε’X|X] (X’X)-1  
       = (X’X)-1 XΣX (X’X)-1  
  
Example: We compute the true variance for the simplest case, a regression with only one 
explanatory variable and uncorrelated error term:   
   y  = X  +   
Then,    

 VarT[b|X] = ൬
ଵ

∑ ሺ௫ି௫̅ሻమ



൰
ଶ
∑ 𝜎

ଶሺ𝑥 െ �̅�ሻଶ்
 . 

 



If we compute the OLS variance, we see how both estimators differ: 

 Var[b|X] = 
ఙమ

∑ ሺ௫ି௫̅ሻమ



 ≠ VarT[b|X]   

 
Note: In the special case that 𝜎

ଶis independent of (uncorrelated with) of ሺ𝑥 െ �̅�ሻଶ, then both 
variances are (asymptotically) the same since 

  ∑ 𝜎
ଶሺ𝑥 െ �̅�ሻଶ  


→்

  𝜎ଶ ∑ ሺ𝑥 െ �̅�ሻଶ்
 .  ¶ 

 
 
Under (A3’), the usual OLS estimator of Var[b|X] –i.e., s2 (XX)-1– is biased. If we want to use 
OLS for inferences (say, with t-test or F-test),, we need to estimate VarT[b|X]. That is, we need 
to estimate the unknown Σ. But, it has T*(T+1)/2 parameters. Too many parameters to estimate 
with only T observations!  
 
 
GR Model: Robust Covariance Matrix 
We will not be estimating Σ.  Impossible with T data points.  
 
We will estimate XΣX = ∑ ∑   𝒙 𝒙்

ୀଵ
்
ୀଵ , a (𝑘x𝑘) matrix. That is, we are estimating 

[𝑘*(𝑘+1)]/2 elements. 
 
This distinction is very important in modern applied econometrics:  
 – The White estimator 
 – The Newey-West estimator 
 
Both estimators produce a consistent estimator of VarT[b|X].  
 
Since b consistently estimates , the OLS residuals, e, are also consistent estimators of . We use 
e to consistently estimate XΣX.  
 
 
Covariance Matrix: The White Estimator 
The White estimator simplifies the estimation since it only assumes heteroscedasticity. Then, Σ 
is a diagonal matrix, with elements i

2.  

  Σ = 

⎣
⎢
⎢
⎡
𝜎ଵ
ଶ 0 ⋯ 0

0 𝜎ଶ
ଶ ⋯ 0

⋮ ⋮ ⋮ ⋮
0 0 ⋯ 𝜎்

ଶ⎦
⎥
⎥
⎤
 

 
Thus, we need to estimate:  
  Q* = (1/T) XΣX   
where 

  X’ Σ X ൌ 
∑ 𝒙𝟏𝒊

𝟐𝑻
𝒊ୀ𝟏 𝜎

ଶ ⋯ ∑ 𝒙𝟏𝒊𝒙𝒌𝒊𝜎
ଶ𝑻

𝒊ୀ𝟏
⋮ ⋱ ⋮

∑ 𝒙𝒌𝒊𝒙𝟏𝒊
𝑻
𝒊ୀ𝟏 𝜎

ଶ ⋯ ∑ 𝒙𝒌𝒊
𝟐 𝜎

ଶ𝑻
𝒊ୀ𝟏

  =  ∑ 𝜎
ଶ 𝒙

்
ୀଵ 𝒙 



 
Question: How do we estimate 𝜎

ଶ?  
 
We need to estimate:  Q* = (1/T) XΣX = (1/T) ∑ 𝜎

ଶ 𝒙
்
ୀଵ 𝒙 

 
The OLS residuals, 𝑒, are consistent estimators of . This suggests using 𝑒

ଶ to estimate 𝜎
ଶ. That 

is,  
we estimate   Q* = (1/T) ∑ 𝜎

ଶ 𝒙
்
ୀଵ 𝒙 

with     S0 = (1/T) ∑ 𝑒
ଶ𝒙

்
ୀଵ 𝒙 

 
Example: Back to the simplest case, a regression with only one explanatory variable, but now 
with a heteroscedastic error term, we have that the variance of b is given by:    

 VarT[b|X] = ൬
ଵ

∑ ሺ௫ି௫̅ሻమ



൰
ଶ
∑ 𝜎

ଶሺ𝑥 െ �̅�ሻଶ்
ୀଵ  

which we estimate using OLS residuals, 𝑒: 

 Est VarT[b|X] = ൬
ଵ

∑ ሺ௫ି௫̅ሻమ



൰
ଶ
∑ 𝑒

ଶሺ𝑥 െ �̅�ሻଶ்
ୀଵ . ¶ 

 
White (1980) shows that a consistent estimator of VarT[b|X] is obtained if 𝑒

ଶ is used as an 
estimator of 𝜎

ଶ. Taking the square root, we get a heteroscedasticity-consistent (HC) standard 
errors. 
 
(A3’) was not specified. That is, the White estimator is robust to a potential misspecifications of 
heteroscedasticity in (A3’).  
 
The White estimator allows us to make inferences using the OLS estimator b in situations where 
heteroscedasticity is suspected, but we do not know enough to identify its nature.   
 
Note: The estimator is also called the sandwich estimator or the White estimator (also known as 
Eiker-Huber-White estimator). 
 
• Remarks: 
(1) Since there are many refinements of the White estimator, the White estimator is usually 
referred as HC0 (or just “HC”): 
 HC0 =  (X’X)-1 X’ Diag[ei

2] X (X’X)-1  
(2) In large samples, SEs, t-tests and F-tests are asymptotically valid. 
(3) The OLS estimator remains inefficient. But inferences are asymptotically correct.  
(4) The HC standard errors can be larger or smaller than the OLS ones. It can make a difference 
to the tests. 
(5) It is used, along the Newey-West estimator, in almost all finance papers. Included in all the 
packaged software programs 
(6) White SEs are easy to program: 
 
# White SE in R 



White_f <- function(y,X,b) { 
T <- length(y); k <- length(b); 
yhat <- X%*%b     # fitted values 
e <- y-yhat     # residuals 
hhat <- t(X)*as.vector(t(e))   # xi ei 
G <- matrix(0,k,k)    # Create kxk matrix to fill with X’ Diag[ei

2] X 
 za <- hhat[,1:k]%*%t(hhat[,1:k])  # X’ diag[ei] X 
 G <- G + za      # X’ diag[ei] X 
 F <- t(X)%*%X    # X’X 
 V <- solve(F)%*%G%*%solve(F)  # S0 
 white_se <- sqrt(diag(V))   # White SE 
 ols_se <- sqrt(diag(solve(F)*drop((t(e)%*%e))/(T-k))) 
l_se = list(white_se,olse_se) 
return(l_se)  
} 
 
R Note: The library “sandwich” calculates White SEs. Remember to install it first and, then, call 
the library before you use it.  
 
Example 1: We estimate t-values using OLS and White SE, for the 3 factor F-F model for IBM 
returns:  
  (𝑟ୀூெ,௧ – 𝑟) = 0 + 1 (𝑟,௧ – 𝑟) + 2 𝑆𝑀𝐵௧ + 3 𝐻𝑀𝐿௧+ t 
 
fit_ibm_ff3 <- lm(ibm_x ~ Mkt_RF + SMB + HML) # OLS Regression with lm 
b_ibm <-fit_ibm_ff3$coefficients    # Extract OLS coefficients 
SE_OLS <- sqrt(diag(vcov(fit_ibm_ff3)))   # Extract OLS SE from fit_ibm_ff3 
t_OLS <- b_ibm/SE_OLS     # Calculate  OLS t-values 
 
> b_ibm 
 (Intercept)       Mkt_RF          SMB          HML  
-0.005191356  0.910379487 -0.221385575 -0.139179020  
> SE_OLS 
(Intercept)      Mkt_RF         SMB         HML  
0.002482305 0.056784474 0.084213761 0.084060299  
> t_OLS 
(Intercept)      Mkt_RF         SMB         HML  
  -2.091345   16.032190   -2.628853   -1.655705 ⟹ HML significant at 10% level 
 
> library(sandwich) 
White <- vcovHC(fit_ibm_ff3, type = "HC0")  # White Variance-covariance Matrix   
SE_White <- sqrt(diag(White))    # White SE HC0 
t_White <- b_ibm/SE_White 
 
> SE_White 
(Intercept)      Mkt_RF         SMB         HML  



0.002505978 0.062481080 0.105645459 0.096087035  
> t_White 
(Intercept)      Mkt_RF         SMB         HML  
  -2.071589   14.570482   -2.095552   -1.448468 
 
White <- vcovHC(fit_ibm_ff3, type = "HC3")  # White SE HC3 (refinement) 
SE_White <- sqrt(diag(White))# White SE HC0 
t_White <- b_ibm /SE_White 
> SE_White 
(Intercept)      Mkt_RF         SMB         HML  
0.002533461 0.063818378 0.108316056 0.098800721  
> t_White 
(Intercept)      Mkt_RF         SMB         HML  
  -2.049116   14.265162   -2.043885   -1.408684 ⟹ similar results with HC3 refinement 
 
Conclusion: White SEs make a difference in the test results. HML is not longer significant at the 
10% level, once we adjust the SEs for heteroscedasticity. ¶ 
 
Example 2: We estimate Mexican interest rates (iMX) with a linear model including US interest 
rates, changes in exchange rates (MXN/USD), Mexican inflation and Mexican GDP growth, 
using quarterly data 1978:II – 2020:II (T=166):  
  iMX,t = 0 + 1 iUS,t + 2 et + 3 mx_It + 4 mx_yt + t  
 
FMX_da <- read.csv("https://www.bauer.uh.edu/rsusmel/4397/FX_USA_MX.csv", 
head=TRUE, sep=",") 
 
us_i <- FMX_da$US_int    # US short-term interest rates (iUS) 
mx_CPI <- FMX_da$MX_CPI   # Mexican CPI 
mx_M1 <- FMX_da$MX_M1   # Mexican Money Supply (M1) 
mx_i <- FMX_da$MX_int    # Mexican short-term int rates (iMX) 
mx_GDP <- FMX_da$MX_GDP   # Mexican GDP 
S_mx <- FMX_da$MXN_USD   # St = exchange rates (MXN/USD)  
T <- length(mx_CPI) 
mx_I <- log(mx_CPI[-1]/mx_CPI[-T])   # Mexican Inflation: Log  changes in CPI 
mx_y <- log(mx_GDP[-1]/mx_GDP[-T])   # Mexican growth: Log changes in GDP 
mx_mg <- log(mx_M1[-1]/mx_M1[-T])   # Money growth: Log  changes in M1 
e_mx <- log(S_mx[-1]/S_mx[-T])   # Log changes in St. 
us_i_1 <- us_i[-1]/100    # Adjust sample size. 
mx_i_1 <- mx_i[-1]/100 
mx_i_0 <- mx_i[-T]/100 
 
fit_i <- lm(mx_i_1 ~ us_i_1 + e_mx + mx_I + mx_y) 
> summary(fit_i) 
 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     



(Intercept) 0.04022  0.01506   2.671  0.00834 **  
us_i_1     0.85886  0.31211   2.752  0.00661 **  
e_mx      -0.01064 0.02130  -0.499  0.61812     
mx_I      3.34581  0.19439  17.212  < 2e-16 *** 
mx_y     -0.49851 0.73717  -0.676  0.49985     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
b_i <- fit_i$coefficients    # Extract OLS coefficients 
 
White <- vcovHC(fit_i, type = "HC0")  # White Variance-covariance Matrix HC0 
SE_White <- sqrt(diag(White))   # White SE HC0 
t_White <- b_i/SE_White 
 
> SE_White 
(Intercept)      us_i_1        e_mx        mx_I        mx_y  
0.009665759 0.480130221 0.026362820 0.523925226 1.217901733  
> t_White 
(Intercept)      us_i_1        e_mx        mx_I        mx_y  
  4.1613603   1.7888018  -0.4035554   6.3860367  -0.4093221 ⟹ iUS,t not significant at 5%. 
 
White3 <- vcovHC(fit_i, type = "HC3") # Using popular refinement HC3 
SE_White3 <- sqrt(diag(White3)) # White SE HC3 
t_White <- b_i/SE_White3 
> t_White3 
(Intercept)      us_i_1        e_mx        mx_I        mx_y  
  3.6338983   1.5589936  -0.2117600   5.4554986  -0.3519886  ⟹ iUS,t not longer significant  
   at 10% level. 
 
Conclusion: Again, White SEs make a difference in the test results. U.S. interest rates are not a 
significant driver (& big drop in t-value!), once we adjust the SE for heteroscedasticity. ¶ 
 
 
Newey-West Estimator 
Now, we also have autocorrelation. We need to estimate  

 Q* =  
ଵ

்
   XΣX  = (1/T) ∑ ∑  𝒙 𝒙்

ୀଵ
்
ୀଵ  

 = 
ଵ

்
 ∑ ሼଵ 𝒙 𝒙ଵ′   ଶ 𝒙 𝒙ଶ′  ଷ 𝒙 𝒙ଷ′  ⋯ ் 𝒙 𝒙்′ሽ

்
ୀଵ  

 
Newey and West (1987) follow White (1980) to produce a HAC (Heteroscedasticity and 
Autocorrelation Consistent) estimator of Q*, also referred as long-run variance (LRV): Use 𝑒𝑒 
to estimate . 
 
The natural estimator of Q* becomes:  

   ST = 
ଵ

்
  ∑ ∑  𝑒 𝑒  𝒙 𝒙்

ୀଵ
்
ୀଵ  



Or using time series notation, estimator of Q*:  

  ST = 
ଵ

்
 ∑ ∑ 𝒙௧𝑒௧ 𝑒௦𝒙௦்

௦ୀଵ
்
௧ୀଵ  

 
Example: Back to the simplest case, a regression with only one explanatory variable, but now 
with a heteroscedastic and autocorrelated error term. We estimate the variance of b with:    

 VarT[b|X] = ൬
ଵ

∑ ሺ௫ି௫̅ሻమ
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ଶ
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்
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We add the sum of the autocovariances of 𝑤 (= 𝑥  𝑒ሻ to the White estimator of XΣX. If (auto-) 
covar(𝑤, 𝑤) are mainly positive, the NW estimator will be bigger than the White estimator. A 
common situation in finance. ¶ 
 
There are some restrictions that need to be imposed:  
- Q* needs to be a pd matrix     use a quadratic form.  
- The double sum cannot explode   use decaying weights to cut the sum short, after lag L,  
  weights are zero. 
 
• Two components for the NW HAC estimator: 
 
(1) Start with Heteroscedasticity Component: 

 S0 = 
ଵ

்
 ∑ 𝒆𝒕𝟐 𝒙௧𝒙௧𝑻

𝒕ୀ𝟏    – the White estimator. 

 
(2) Add the Autocorrelation Component 

 ST = S0 + 
ଵ

்
  ∑ 𝑘ሺ𝑙ሻ ∑ (𝒙𝒕ି𝒍𝑒௧ି𝑒௧ 𝒙𝒕 + 𝒙𝒕𝑒௧𝑒௧ି𝒙𝒕ି𝒍்

𝒕ୀ𝒍ା𝟏
𝑳
𝒍ୀ𝟏 ) 

 where 

 𝑘ሺ 

ሺ்ሻ
ሻ ൌ ାଵ ି||

ାଵ
   –decaying weights (Bartlett kernel) 

       
L is the cut-off lag, which is a function of T. (More data, longer L). 
 
The weights are linearly decaying, suppose L=30. Then,  
k(1) = 30/31 = 0.9677419 
k(2) = 29/31 = 0.9354839 
k(3) = 28/31 = 0.9032258 
 
Example: Back to the simplest case, a regression with only one explanatory variable, but with a 
heteroscedastic and autocorrelated error term. Suppose we set 𝐿 =12, then:  

  VarT[b|X] = ൬
ଵ

∑ ሺ௫ି௫̅ሻమ
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௧ୀାଵ
ୀଵଶ
ୀଵ } 

To compute ST, we only add 12 autocovariances of  𝑤௧ (= 𝑥௧ 𝑒௧ሻ to the White estimator, S0. ¶ 
 
Technical detail: Under suitable conditions, as L, T → ∞, and L/T→ 0, ST → Q*. The condition 
L/T→ 0 implies that when we have more data, we need to use a longer L. 



 
Once we compute ST, we compute the true Var[b|X]:  
   Est. VarT[b|X] = (1/T) (X’X/T)-1 ST (X’X/T)-1    –NW’s HAC Var. 
 
Asymptotic inferences can be based on OLS b, with t-tests and Wald tests using N(0,1) and χ2 

critical values, respectively.  
 
There are many refinements of the NW estimators. Today, all HAC estimators are usually 
referred as NW estimators, regardless of the weights (kernel) used if they produce a positive 
(semi-) definite covariance matrix. 
 
• All econometric packages (SAS, SPSS, Eviews, etc.) calculate NW SE.  
 
R Note: You can use the library “sandwich,” to calculate NW SEs: 
library(sandwich) 
> NeweyWest(x, lag = NULL, order.by = NULL, prewhite = TRUE, adjust = FALSE, 
diagnostics = FALSE, sandwich = TRUE, ar.method = "ols", data = list(), verbose = FALSE) 
 
You need to install the package sandwich and then call the library(sandwich). 
 
Example: 
# fit the 3 factor Fama French Model for IBM returns:  
fit_ibm_ff3 <- lm(ibm_x ~ Mkt_RF + SMB + HML)  
 
# NeweyWest computes the NW SEs. It requires lags=L & suppression of prewhitening  
NeweyWest(fit_ibm_ff3, lag = 4, prewhite = FALSE) 
 
Note: It is usually found that the NW SEs are downward biased. 
 
 
• You can also program the NW SEs yourself. In R: 
NW_f <- function(y, X, b, lag) 
{ 
T <- length(y);  
k <- length(b); 
yhat <- X%*%b  
e <- y - yhat 
hhat <- t(X)*as.vector(t(e)) 
G <- matrix(0,k,k) 
a <- 0 
w <- numeric(T) 
 
while (a <= lag) { 
  Ta <- T - a 
  ga <- matrix(0,k,k) 
  w[lag+1+a] <- (lag+1-a)/(lag+1) 



  za <- hhat[,(a+1):T] %*% t(hhat[,1:Ta]) 
  ga <- ga + za  
  G <- G + w[lag+1+a]*ga 
a <- a+1} 
 
F <- t(X)%*%X 
V <- solve(F)%*%G%*%solve(F) 
 nw_se <- sqrt(diag(V)) 
 ols_se <- sqrt(diag(solve(F)*drop((t(e)%*%e))/(T-k))) 
l_se = list(nw_se,ols_se) 
return(l_se)  
} 
 
NW_f(y,X,b,lag=4) 
 
Example 1: We estimate the 3 factor F-F model for IBM returns with NW SE with 4 lags: 
> t_OLS   
(Intercept)      Mkt_RF         SMB         HML  
  -2.091345   16.032190   -2.628853   -1.655705   ⟹ SMB significant at 1% level 
 
NW <- NeweyWest(fit_ibm_ff3, lag = 4, prewhite = FALSE) # NW Var Matrix with 4 lags 
SE_NW <- diag(sqrt(abs(NW)))     # NW SE with 4 lags 
t_NW <- b_ibm/SE_NW 
> SE_NW 
(Intercept)      Mkt_RF         SMB         HML  
0.002527425 0.069918706 0.114355320 0.104112705  
> t_NW 
(Intercept)      Mkt_RF         SMB         HML  
  -2.054010   13.020543   -1.935945   -1.336811  ⟹ SMB close to significant at 5% level 
 
• If we add more lags in the NW function (lag = 8)  
NW <- NeweyWest(fit_ibm_ff3, lag = 8, prewhite = FALSE) 
SE_NW <- diag(sqrt(abs(NW))) 
t_NW <- b_ibm/SE_NW 
> t_NW 
(Intercept)      Mkt_RF         SMB         HML  
  -2.033648   12.779060   -1.895993   -1.312649 ⟹ not very different results.  
 
Conclusion: Newey-West SEs make a difference in the test results. Now, SMB is not longer 
significant at the 5% level, though borderline, once we adjust the SEs not only for 
heteroscedasticity and autocorrelation. ¶ 
 
Example 2: Mexican short-term interest rates with NW SE with 4 lags & 8 lags.. For 
comparison we reproduced the regression (with OLS t-varlues and the White t-values): 
fit_i <- lm(mx_i_1 ~ us_i_1 + e_mx + mx_I + mx_y) 
> summary(fit_i) 



 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept) 0.04022  0.01506   2.671  0.00834 **  
us_i_1     0.85886  0.31211   2.752  0.00661 **  
e_mx      -0.01064 0.02130  -0.499  0.61812     
mx_I      3.34581  0.19439  17.212  < 2e-16 *** 
mx_y     -0.49851 0.73717  -0.676  0.49985     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
> t_White3 
(Intercept)      us_i_1      e_mx     mx_I  mx_y  
  3.6338983   1.5589936  -0.2117600   5.4554986  -0.3519886 ⟹ iUS,t not significant at 10%. 
 
NW <- NeweyWest(fit_i, lag = 4, prewhite = FALSE) 
SE_NW <- diag(sqrt(abs(NW))) 
t_NW <- b_i/SE_NW 
> SE_NW 
(Intercept)      us_i_1      e_mx     mx_I  mx_y 
 0.01107069  0.55810758  0.01472961  0.51675771  0.93960295  
> t_NW 
(Intercept)      us_i_1      e_mx     mx_I  mx_y 
  3.6332593   1.5388750  -0.7222770   6.4746121  -0.5305582  ⟹ iUS,t not significant at 10%. 
 
• If we add more lags in the text (lag = 8)  
NW <- NeweyWest(fit_i, lag = 8, prewhite = FALSE) 
SE_NW <- diag(sqrt(abs(NW))) 
t_NW <- b_i/SE_NW 
> t_NW 
(Intercept)      us_i_1      e_mx     mx_I  mx_y 
  3.0174983   1.4318654  -0.8279016   6.5897816  -0.5825521 ⟹ similar results. 
 
Conclusion: Newey-West SEs make a difference in the test results, but in this case, the results 
are not that different from the White SEs. ¶ 
 
• There are many estimators of Q* based on a specific parametric model for Σ. Thus, they are not 
robust to misspecification of (A3’). This is the appeal of White & NW. 
 
NW SEs are used almost universally in academia. However: 
- NW SEs perform poorly in Monte Carlo simulations:  
- NW SEs tend to be downward biased.  



- The finite-sample performance of tests using NW SE is not well approximated by the 
asymptotic theory.  
- Tests have size distortions. 
 
Question: What happens if we know the specific form of (A3’)?  
We can do much better than using OLS with NW SEs. In this case, we can do Generalized LS 
(GLS), a method that delivers the most efficient estimators. 
 
 
Generalized Least Squares (GLS) 
GRM: Assumptions (A1), (A2), (A3’) & (A4) hold. That is, 
(A1) DGP: y = X  +   is correctly specified.  
(A2) E[|X] = 0   
(A3’) Var[|X] = Σ = σ2   ( is symmetric  T’T = ) 
(A4) X has full column rank –i.e., rank(X) = 𝑘–, where T ≥ 𝑘. 
 
Question: What happens if we know the specific form of (A3’)?  
We can use this information to gain efficiency. 
 
When we know (A3’), we transform the y and X in such a way, that we can do again OLS with 
the transformed data. 
 
To do this transformation, we exploit a property of symmetric matrices, like the variance-
covariance matrix, :  
   is symmetric  exists T ∋   TT =    T-1  T-1= I 
 
Note: Think of T as 1/2  
 
• We transform the linear model in (A1) using 𝑷 = -1/2 (= T-1). 
 𝑷  =  -1/2    𝑷𝑷 = -1     
 𝑷𝒚 = 𝑷X + 𝑷  or   
  𝒚* = 𝑿∗ + *. 
 
       E[**|𝑿∗] = E[𝑷 𝑷|𝑿∗] = 𝑷 E[|X] 𝑷 = σ2 𝑷  𝑷  
  = σ2 -1/2  -1/2 =  σ2 IT      back to (A3) 
 
The transformed model is homoscedastic: We have the CLM framework back. Now, we can use 
OLS!  
   bGLS = b* = (𝑿∗𝑿∗)-1𝑿∗ 𝒚*  
  = (XP P X)-1 XP P𝒚    (P𝑷 = -1)     
  = (XΩ-1X)-1 XΩ-1𝒚  
 

Remarks:  
 – The transformed model is homoscedastic: 



          Var[*|𝑿∗] = E[**|𝑿∗] = σ2 IT 
 
– We have the CLM framework back: We do OLS with the  transformed model, we call this OLS 
estimator, the GLS estimator: 
  bGLS = b* = (𝑿∗𝑿∗)-1𝑿∗ 𝒚* 
  = (XΩ-1X)-1 XΩ-1𝒚  
 
– Key assumption:  is known, and, thus, P is also known; otherwise we cannot transformed the 
model. 
 
Big Question: Is  known? 
 
 
GLS: Properties 
 (1) Unbiased. 
 bGLS  = (XΩ-1X)-1 XΩ-1𝒚 = (XΩ-1X)-1 XΩ-1 (X  + ) 
  =  + = (XΩ-1X)-1 XΩ-1  
  E[bGLS |X] =    (Yes, GLS is unbiased!) 
 
(2) Efficient.  
bGLS is BLUE. The “best” variance can be derived  from  
 Var[bGLS|X] = σ2 (X*X*)-1 = σ2 (XΩ-1X)-1 
 
Then, the usual OLS variance for b is biased and inefficient! 
 
Note I:  bGLS ≠ b.  bGLS is BLUE by construction, b is not. 
 
Note II: Both unbiased and consistent. In practice, both estimators will be different, but not that 
different. If they are very different, something is not kosher. 
 
 
• Steps for GLS: 
Step 1. Find transformation matrix P = -1/2 (in the case of heteroscedasticity, P is a diagonal 
matrix). 
 
Step 2. Transform the model: 𝑿∗ = PX  &  𝒚* = P𝒚. 
 
Step 3. Do GLS; that is, OLS with the transformed variables. 
 
Key step to do GLS: Step 1, getting the transformation matrix:  
  P = -1/2. 
 
Technical detail: If we relax the CLM assumptions (A2) and (A4), as we did in Lecture 7-a, we 
only have asymptotic properties for GLS: 
  – Consistency - “well behaved data.” 
  – Asymptotic distribution under usual assumptions.  



  (easy for heteroscedasticity, complicated for autocorrelation.) 
  – Wald tests and F-tests with usual asymptotic χ2 distributions.  
 
 
(Weighted) GLS: Pure Heteroscedasticity  
Step 1. Find the transformation matrix P = -1/2 for: 
 

(A3’)  𝑉𝑎𝑟ሾ𝜀ሿ ൌ 𝚺 ൌ 𝜎ଶ𝛀 ൌ 𝜎ଶ ൦

𝜔ଵ 0 . . . 0
0 𝜔ଶ . . . 0
0 0 0
0 0 . . . 𝜔்

൪ 

 

                𝛀-1/2 ൌ 𝐏 ൌ

⎣
⎢
⎢
⎡
1/√𝜔ଵ 0 . . . 0

0 1/√𝜔ଶ . . . 0
0 0 . . . 0
0 0 . . . 1/√𝜔்⎦

⎥
⎥
⎤
 

 
Step 2.  Now, transform y & X: 

𝒚∗ ൌ 𝐏𝐲 ൌ

⎣
⎢
⎢
⎡
1/√ωଵ 0 . . . 0

0 1/√ωଶ . . . 0
0 0 . . . 0
0 0 . . . 1/√ω⎦

⎥
⎥
⎤
∗ ൦

yଵ
yଶ
⋮

y

൪ =൦

yଵ/√னభ
yଶ/√னమ

⋮
y/√ω

൪ 

 
• Each observation of 𝒚, 𝑦, is divided by ඥ𝜔. Similar transformation occurs with X: 

𝑿∗ ൌ 𝐏𝐗 ൌ

⎣
⎢
⎢
⎡
1/√𝜔ଵ 0 . . . 0

0 1/√𝜔ଶ . . . 0
0 0 . . . 0
0 0 . . . 1/√𝜔்⎦

⎥
⎥
⎤
∗ ൦

1 𝑥ଶଵ ⋯ 𝑥ଵ
1 𝑥ଶଶ ⋯ 𝑥ଶ
⋮ ⋮ ⋯ ⋮
1 𝑥ଶ் ⋯ 𝑥்

൪ = 

 ൌ

⎣
⎢
⎢
⎡
1/√𝜔ଵ 𝑥ଶଵ/√𝜔ଵ . . . 𝑥ଵ/√𝜔ଵ
1/√𝜔ଶ 𝑥ଶଶ/√𝜔ଶ . . . 𝑥ଶ/√𝜔ଶ

⋮ ⋮ . . . ⋮
1/√𝜔் 𝑥ଶ்/√𝜔் . . . 𝑥்/√𝜔்⎦

⎥
⎥
⎤
  

 
Step 3. Do GLS (OLS with the transformed variables): 
 bGLS = b* = (𝑿∗𝑿∗)-1𝑿∗ 𝒚* = (XΩ-1X)-1 XΩ-1𝒚 
 
 
• In the case of heteroscedasticity, GLS is also called Weighted Least Squares (WLS): Think of 
1/ඥ𝜔. as weights. The GLS estimator is: 

 𝐛ୋୗ ൌ ሺ𝐗′𝛀ିଵ𝐗ሻିଵሺ𝐗′𝛀ିଵ𝒚ሻ ൌ ቀ∑ ଵ

ఠ
𝑥𝑥

ᇱ்
ୀଵ ቁ

ିଵ
ቀ∑ ଵ

ఠ
𝑥y

்
ୀଵ ቁ  

Observations with lower (bigger) variances –i.e., lower (bigger) ωi– are given higher (lower) 
weights in the sums: More precise observations, more weight! 
 



The GLS variance is given by: 

   𝜎ොீௌ
ଶ ൌ

∑ ቆ
షೣ

ᇲ 𝐛ృై
ഘ

ቇ
సభ

మ

்ି
 

 
Example: Last Lecture, we found that squared market returns ሺ𝑟,௧ െ 𝑟ሻ2 influence the 
heteroscedasticity in DIS returns. Suppose we assume:  
(A3’)  ௧ଶ = ሺ𝑟,௧ െ 𝑟ሻ2. 
 
Steps for GLS: 

Step 1. Find transformation matrix, P, with ith diagonal element: 1/ට
ଶ  

Step 2. Transform model: Each yi and xi is divided (“weighted”) by  
 ௧ ൌ  sqrt[ሺ𝑟,௧ െ 𝑟ሻ2].  
Step 3. Do GLS, that is, OLS with transformed variables. 
 
T <- length(dis_x) 
Mkt_RF_2 <- Mkt_RF^2     # (A3’) 
y_w <- dis_x/sqrt(Mkt_RF_2)    # transformed y = y* 
x0 <- matrix(1,T,1) 
xx_w <- cbind(x0, Mkt_RF, SMB, HML)/sqrt(Mkt_RF2) # transformed X = X* 
fit_dis_wls <- lm(y_w ~ xx_w)    # GLS 
> summary(fit_dis_wls) 
Call: 
lm(formula = y_w ~ xx_w) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-59.399  -0.891   0.316   1.503  77.434  
 
Coefficients: 
  Estimate Std. Error t value Pr(>|t|)     
xx_w       -0.006607 0.001586  -4.165 3.59e-05 *** 
xx_wMkt_RF 1.588057 0.334771   4.744 2.66e-06 ***   OLS b: 1.26056  
xx_wSMB   -0.200423 0.067498  -2.969  0.00311 **    OLS b:  -0.028993  
xx_wHML  -0.042032 0.072821  -0.577  0.56404    OLS b:  0.174545  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
Residual standard error: 7.984 on 566 degrees of freedom 
Multiple R-squared:  0.09078,   Adjusted R-squared:  0.08435  
F-statistic: 14.13 on 4 and 566 DF,  p-value: 5.366e-11 
 
Conclusion: Quite different results, including a change in sign in HML, from positive & 
significant at the 10% level (OLS) to negative & not significant (GLS) and change in 
significance in SMB, from not significant (OLS) to very significant (GLS). ¶ 
 



 
GLS: First-order Autocorrelation Case 
We assume an AR(1) process for the t: 
 t  =  t-1  +  𝑢௧, 𝑢௧: non-autocorrelated error ~ D(0, ௨ଶ) 
 
We need to find the transformation matrix P = -1/2 for: 
 

 (A3’)  𝑉𝑎𝑟ሾ𝜺ሿ ൌ 𝚺 ൌ

⎣
⎢
⎢
⎡
𝜎ଶ ଵଶ ⋯ ଵ்
ଶଵ 𝜎ଶ ⋯ ଶ்
⋮ ⋮ ⋮ ⋮

்ଵ ்ଶ ⋯ 𝜎ଶ ⎦
⎥
⎥
⎤
, 

 
which we will decompose into 𝚺 ൌ σଶ𝛀 (our goal: get P = -1/2) 
 
Notation: We use 𝛾 to denote a (auto-) covariance between two observations separated by 
𝑙 periods. For example, 
when 𝑙 = 1:  𝛾ଵ = ଶଵ = ଷଶ= … = ்ሺ்ିଵሻ = Cov[𝜀௧, 𝜀௧ିଵ] = E[𝜀௧ 𝜀௧ିଵ] 
when 𝑙 = 2: 𝛾ଶ = ଷଵ = ସଶ= … = ்ሺ்ିଶሻ = Cov[𝜀௧, 𝜀௧ିଶ] = E[𝜀௧ 𝜀௧ିଶ] 
 
𝛾 measures how two errors separated in time by 𝑙 periods covary. 
 
When 𝑙 = 0, we get the variance. That is,  
 𝛾 = ఌଶ = E[𝜀௧ 𝜀௧]. 
 
•  Then, we can write (A3’) as: 
 

  𝚺 ൌ

⎣
⎢
⎢
⎡
𝜎ଶ ଵଶ ⋯ ଵ்
ଶଵ 𝜎ଶ ⋯ ଶ்
⋮ ⋮ ⋮ ⋮

்ଵ ்ଶ ⋯ 𝜎ଶ ⎦
⎥
⎥
⎤
ൌ ൦

𝛾 𝛾ଵ ⋯ 𝛾்ିଵ
𝛾ଵ 𝛾 ⋯ 𝛾்ିଶ
⋮ ⋮ ⋮ ⋮

𝛾்ିଵ 𝛾்ିଶ ⋯ 𝛾

൪. 

 
Remark: Eventually decompose 𝚺 ൌ σଶ𝛀, since we need P = -1/2) 
  
 
• Steps for GLS: 
 
Step 1. To find the transformation matrix P, we need to derive the implied (A3’) based on the 
AR(1) process for t: 
 
(1) Find diagonal elements of : 𝛾 𝛾 = Var[𝜀௧] = ఌଶ 
Given the AR(1) process: 
         𝜀௧  = 𝜌 𝜀௧ିଵ  𝑢௧   
We take the variance on both sides of the AR(1) equation (recall that 𝑢௧ is uncorrelated with 
anything). Then, 
 Var[𝜀௧] =  2 Var[𝜀௧ିଵ] + Var[𝑢௧]  (Var[𝜀௧] = Var[𝜀௧ିଵ] = ఌଶ) 



   ఌଶ = 
ఙೠమ

ሺଵିఘమሻ
    –we need to assume  | |< 1.  

 
Using the above 𝛾 notation, we have  

 𝛾 =  ௧ଶ = E[𝜀௧ 𝜀௧] = Var[𝜀௧] =  ఌଶ ൌ 
ఙೠమ

ሺଵିఘమሻ
  

 

Now, we have all the diagonal elements of 𝜮: 𝛾 = 
ఙೠమ

ሺଵିఘమሻ
 

 
(2) Find off-diagonal elements of : 𝛾 = E[𝜀 𝜀],  where 𝑙 = 𝑖 - 𝑗: 
Using the definition of covariance, we compute all 𝛾  
  = 𝛾 = Cov[𝜀, 𝜀] = E[𝜀 𝜀],   where 𝑙 = 𝑖 - 𝑗  
 
𝛾ଵ= 𝐶𝑜𝑣ሾ𝜀௧ , 𝜀௧ିଵሿ = 𝐸ሾሺ𝜌𝜀௧ିଵ  𝑢௧ሻ 𝜀௧ିଵሿ 
 = 𝜌 𝐸ሾ𝜀௧ିଵ 𝜀௧ିଵሿ  𝐸ሾ𝑢௧ 𝜀௧ିଵሿ 
 ൌ 𝜌 Varሾ𝜀௧ିଵሿ + 0 
 ൌ 𝜌 ఌଶ   
 =𝜌 𝛾 
 
𝛾ଶ= 𝐶𝑜𝑣ሾ𝜀௧ , 𝜀௧ିଶሿ = 𝐸ሾሺ𝜌𝜀௧ିଵ  𝑢௧ሻ 𝜀௧ିଶሿ 
 = 𝜌 𝐸ሾ𝜀௧ିଵ 𝜀௧ିଶሿ  𝐸ሾ𝑢௧ 𝜀௧ିଶሿ 
 ൌ  𝜌 𝐶𝑜𝑣ሾ𝜀௧ , 𝜀௧ିଵሿ  
 = 𝜌 𝛾ଵ 
 = 𝜌ଶ 𝛾 
 
𝛾ଷ= 𝐶𝑜𝑣ሾ𝜀௧ , 𝜀௧ିଷሿ = 𝐸ሾሺ𝜌𝜀௧ିଵ  𝑢௧ሻ 𝜀௧ିଷሿ 
 = 𝜌 𝐸ሾ𝜀௧ିଵ 𝜀௧ିଷሿ  𝐸ሾ𝑢௧ 𝜀௧ିଷሿ 
 ൌ  𝜌 𝐶𝑜𝑣ሾ𝜀௧ ,  𝜀௧ିଶሿ = 𝜌 𝛾ଶ 
 = 𝜌ଶ 𝛾ଵ 
 = 𝜌ଷ 𝛾 
 ⋮ 
𝛾 = 𝐶𝑜𝑣ሾ𝜀௧ , 𝜀௧ିሿ = 𝜌 𝛾 
 
Then, 

 𝚺 ൌ

⎣
⎢
⎢
⎡

𝛾 𝜌𝛾 ⋯  𝜌்ିଵ 𝛾
𝜌𝛾 𝛾 ⋯  𝜌்ିଶ 𝛾
⋮ ⋮ ⋮ ⋮

 𝜌்ିଵ 𝛾  𝜌்ିଶ 𝛾 ⋯ 𝛾 ⎦
⎥
⎥
⎤
. 

 
Note: We take 𝛾 out of the matrix. It becomes σ2 in the decomposition of Σ into σ2 . 
 

Recall we defined 𝛾 = ఌଶ = 
ఙೠమ

ሺଵିఘమሻ
. Then, we decompose Σ into 𝛾 

 : 

 



 (A3’) 𝚺 = σଶ𝛀 ൌ ቀ ఙೠమ

ଵିఘమ
ቁ

⎣
⎢
⎢
⎢
⎡

1 𝜌 𝜌ଶ ⋯ 𝜌்ିଵ

𝜌 1 𝜌 ⋯ 𝜌்ିଶ

𝜌ଶ 𝜌 1 ⋯ 𝜌்ିଷ

⋮ ⋮ ⋮ ⋱ ⋮
𝜌்ିଵ 𝜌்ିଶ 𝜌்ିଷ ⋯ 1 ⎦

⎥
⎥
⎥
⎤

 

 
• Now, we get the transformation matrix P = -1/2: 
 c 

𝐏 ൌ  𝛀ି𝟏/𝟐 ൌ

⎣
⎢
⎢
⎢
⎡ඥ1 െ 𝜌ଶ 0 0 . . . 0

െ𝜌 1 0 . . . 0
0 െ𝜌 1 . . . 0
. . . . . . . . . . . . . . .
0 0 0 െ𝜌 0 ⎦

⎥
⎥
⎥
⎤

 

 
 
Step 2. With P = -1/2, we transform the data (𝒚 & X) to do GLS: 

𝐏 𝒚 ൌ

⎣
⎢
⎢
⎢
⎡ඥ1 െ 𝜌ଶ 0 0 . . . 0

െ𝜌 1 0 . . . 0
0 െ𝜌 1 . . . 0
. . . . . . . . . . . . . . .
0 0 0 െ𝜌 0 ⎦

⎥
⎥
⎥
⎤

∗

⎣
⎢
⎢
⎢
⎡
𝑦ଵ
𝑦ଶ
𝑦ଷ
⋮
𝑦⎦
⎥
⎥
⎥
⎤

 

 

𝒚*= 𝐏 𝒚 ൌ

⎝

⎜
⎛

൫ඥ1 െ 𝜌ଶ൯𝑦ଵ
𝑦ଶ െ 𝜌𝑦ଵ
𝑦ଷ െ 𝜌𝑦ଶ

. . .
𝑦் െ 𝜌்ିଵ ⎠

⎟
⎞

 

𝐏 𝒙𝒌 ൌ

⎣
⎢
⎢
⎢
⎡ඥ1 െ 𝜌ଶ 0 0 . . . 0

െ𝜌 1 0 . . . 0
0 െ𝜌 1 . . . 0
. . . . . . . . . . . . . . .
0 0 0 െ𝜌 0 ⎦

⎥
⎥
⎥
⎤

∗

⎣
⎢
⎢
⎢
⎡
 𝑥ଵ
 𝑥ଶ
 𝑥ଷ
⋮

 𝑥்⎦
⎥
⎥
⎥
⎤

 

 
 

𝒙
∗  = 𝐏 𝒙 ൌ

⎝

⎜⎜
⎛

൫ඥ1 െ 𝜌ଶ൯ 𝑥ଵ
𝑥ଶ െ 𝜌 𝑥ଵ
𝑥ଷ െ 𝜌 𝑥ଶ

. . .
𝑥் െ 𝜌 𝑥்ିଵ ⎠

⎟⎟
⎞

 

 
 
Step 3. Do GLS: OLS with transformed data. In (A3’) we assume 𝜌 known. In practice, we need 
to estimate it. 
 



 
GLS: The Autoregressive Transformation 
With AR models, sometimes it is easier to transform the data by taking pseudo differences.  
 
• For the AR(1) model, we multiply the DGP by ρ and subtract it from it. That is,  
   𝑦௧ ൌ   𝒙௧′𝛃   𝜀௧,    𝜀୲ ൌ 𝜌𝜀௧ିଵ  𝑢௧ 
  𝜌𝑦௧ିଵ ൌ 𝜌𝒙௧ିଵ′𝛃  𝜌𝜀௧ିଵ 
 െെെെെെെെെെെെെെെെെെെെ   
 𝑦௧ െ 𝜌𝑦௧ିଵ ൌ ሺ𝒙௧ െ 𝜌𝒙௧ିଵሻ′𝛃 + ሺ𝜀௧ െ 𝜌𝜀௧ିଵሻ 
    𝑦௧∗ ൌ 𝒙௧∗′𝛃 + 𝑢௧ 
  
Now, we have the errors, 𝑢௧, which are uncorrelated. We can do OLS with pseudo differences. 
 
Note: 𝑦௧∗ ൌ 𝑦௧ െ 𝜌𝑦௧ିଵ  &  𝒙௧∗ ൌ 𝒙௧ െ 𝜌𝒙௧ିଵ are pseudo differences. 
 
 

FGLS: Unknown  
The problem with GLS is that  is unknown. For example, in the AR(1) case,  is unknown.   
 
Solution: Estimate .    Feasible GLS (FGLS). 
 
 In general, there are two approaches for GLS 
(1) Two-step, or Feasible estimation: - First, estimate  first.  
     - Second, do GLS.  
Similar logic to HAC procedures: We do not need to estimate , difficult with T observations. 
We estimate (1/T)X-1X. 

–Nice asymptotic properties for FGLS estimator. Not longer BLUE 
 
(2) ML estimation of , 2, and  at the same time (joint estimation of all parameters). With 
some exceptions, rare in practice. 
 
 

FGLS: Specification of  
•  must be specified first. 
•  is generally specified (modeled) in terms of a few parameters. Thus,  = () for some 
small parameter vector . Then, we need to estimate . 
 
Examples:  
 (1) Var[𝜀 |X]  =  2 f(𝒛𝒊). Variance a function of  and some variable 𝒛𝒊 (say, market 
volatility, firm size, country dummy, etc). In general, f is an exponential to make sure the 
variance is positive. 
 
 (2) 𝜀 with AR(1) process. We have already derived 2  as a function of . 
 



Technical note: To achieve full efficiency, we do not need an efficient estimate of the parameters 
in , only a consistent one.   
 
 
FGLS: Estimation – Steps 
Steps for FGLS: 
Step 1. Estimate the model proposed in (A3’). Get ෝ

ଶ & ෝ . 

Step 2. Find transformation matrix, P, using the estimated ෝ
ଶ & ෝ . 

3. Using P from Step 2, transform model: 𝑿∗= PX  
       𝒚∗= P𝒚. 
4. Do FGLS, that is, OLS with 𝑿∗ &  𝒚∗. 
 
Example: In the pure heteroscedasticity case (P is diagonal): 
1. Estimate the model proposed in (A3’). Get ෝ

ଶ. 

2. Find transformation matrix, P, with 𝑖th diagonal element: 1/𝜎ො 
3. Transform model (each 𝑦 and 𝑥 is divided (“weighted”) by 𝜎ො): 
    𝒚𝒊

∗ = 𝑦/𝜎ො 
    𝒙𝒌,𝒊

∗  = 𝑥,/𝜎ො 
4. Do FGLS, that is, OLS with transformed variables. 
 
 
FGLS Estimation: Heteroscesdasticity 
Example: Last lecture, we found that ሺ𝑟,௧ െ 𝑟ሻ2 & (𝑆𝑀𝐵௧)2  are drivers of the 
heteroscedasticity in DIS returns: Suppose we assume:  
(A3’)  ௧ଶ = γ0 + γ1 ሺ𝑟,௧ െ 𝑟ሻ2 + γ3 (𝑆𝑀𝐵௧)2  
 
• Steps for FGLS: 
1. Use OLS squared residuals to estimate (A3’): 
fit_dis_ff3 <- lm(dis_x ~ Mkt_RF + SMB + HML) 
e_dis <- fit_dis_ff3$residuals 
e_dis2 <- e_dis^2 
fit_dis2 <- lm(e_dis2 ~ Mkt_RF2 + SMB2) 
summary(fit_dis2) 
var_dis2 <- fit_dis2$fitted    # Estimated variance vector, with elements ෝ

ଶ. 
 
2. Find transformation matrix, P, with ith diagonal element: 1/𝜎ො 
w_fgls <- sqrt(var_dis2)     # 1/𝜎ො 
 
3. Transform model: Each yi and xi is divided (“weighted”) by 𝜎ො. 
y_fw <- dis_x/w_fgls      # transformed 𝒚 
xx_fw <- cbind(x0, Mkt_RF, SMB, HML)/w_fgls  # transformed X 
 
4. Do GLS, that is, OLS with transformed variables. 
fit_dis_fgls <- lm(y_fw ~ xx_fw - 1) 



> summary(fit_dis_fgls) 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
xx_fw    -0.003097 0.002696  -1.149    0.251     
xx_fwMkt_RF 1.208067 0.073344  16.471   <2e-16 *** 
xx_fwSMB  -0.043761 0.105280  -0.416    0.678     
xx_fwHML 0.125125  0.100853   1.241    0.215   not longer significant at 10%. 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
Residual standard error: 0.9998 on 566 degrees of freedom 
Multiple R-squared:  0.3413,    Adjusted R-squared:  0.3366  
F-statistic: 73.31 on 4 and 566 DF,  p-value: < 2.2e-16 
 
 
• Comparing OLS, GLS & FGLS results: 
 

 
bOLS SE bGLS SE bFGLS SE 

Intercept 0.00417 0.00279 -0.00661 0.00159 -0.00310 0.00270  

Mkt_RF 1.26056 0.06380 1.58806 0.33477 1.20807 0.07334 

SMB  -0.02899 0.09461 -0.20042 0.06750 -0.04376 0.10528  

HML 0.17455 0.09444 -0.04203 0.07282 0.12513 0.10085 

 
• Comments: 
- The GLS estimates are quite different than OLS estimates (remember OLS is unbiased and 

consistent). Very likely the assumed functional form in (A3’) was not a good one. 
- The FGLS results are similar to the OLS, as expected, if model is OK. FGLS is likely a more 

precise estimator (HML is not longer significant at 10%).  ¶ 
 
 
FGLS Estimation: AR(1) Case – Cochrane-Orcutt 
In the AR(1) case, it is easier to estimate the model in pseudo differences:  
  𝑦௧∗ = X௧

∗  + 𝑢௧ 
  𝑦௧ – 𝑦௧ିଵ = (X௧ – X௧ିଵ)’  + ௧ -  ௧ିଵ 
   𝑦௧ = 𝑦௧ିଵ + X௧

ᇱ   – X௧ିଵ
ᇱ   + 𝑢௧ 

 
We have a linear model, but it is nonlinear in parameters. OLS is not possible, but non-linear 
estimation is possible.  
 
Note: We can do a regression: 
 𝑦௧ = 𝛿ଵ 𝑦௧ିଵ+ X௧′ 𝜹𝟐 – X௧ିଵ′ 𝜹𝟑 + 𝑢௧ 



OLS will estimate 𝛿ଵ,  𝛿ଶ, &  𝛿ଷ. To get  & , we need a  restriction: 
   𝛿ଵ ∗ 𝜹𝟐 = െ 𝜹𝟑  
 
Before today’s computer power, Cochrane–Orcutt’s (1949) iterative procedure was an ingenious 
way to do this estimation.   
 
• Steps for Cochrane-Orcutt: 
(1) Do OLS in (A1) model: 𝒚 = X  + .    Get residuals, 𝒆, & RSS.  
(2) Estimate  with a regression of 𝒆௧ against 𝒆௧ିଵ  Get ො  (the estimator of ).   
(3) FGLS Step. Use ො to transform the model to get 𝒚∗ and 𝑿∗. 
 Do OLS with 𝒚∗ and 𝑿∗  get b to estimate .  
 Get residuals, 𝒆* = 𝒚 – X b, and new RSS. Go back to (1). 
 (4) Iterate until convergence, usually achieved when the difference in RSS of two consecutive 
iterations is lower than some tolerance level, say .0001. Then, stop when RSSi – RSSi-1 < .0001. 
 
Example: Cochrane-Orcutt in R 
# C.O. function requires Y, X (with constant), OLS b. 
c.o.proc <- function(Y,X,b_0,tol) 
{ 
  T <- length(Y) 
  e <- Y - X%*%b_0     # OLS residuals 
rss <- sum(e^2)    # Initial RSS of model, RSS9    
rss_1 <- rss     # RSS_1 will be used to reset RSS after each 
iteration 
d_rss = rss       # initialize d_rss: difference between RSSi & RSSi-1 
  e2 <- e[-1]     # adjust sample size for et     
 e3 <- e[-T]    # adjust sample size for et-1   
  ols_e0 <- lm(e2 ~ e3 - 1)    # OLS to estimate rho  
  rho <- ols_e0$coeff[1]   # initial value for rho, 0 
 i<-1 
 
while (d_rss > tol) {    # tolerance of do loop. Stop when diff in RSS < tol 
rss <- rss_1 # RSS at iter (i-1) 
   YY <- Y[2:T] - rho * Y[1:(T-1)]  # pseudo-diff Y 
   XX <- X[2:T, ] - rho * X[1:(T-1), ]  # pseudo-diff X 
ols_yx <- lm(YY ~ XX - 1)   # adjust if constant included in X 
b <- ols_yx$coef    # updated OLS b at iteration i 
#  b[1] <- b[1]/(1-rho)    # If constant not pseudo-differenced remove tag # 
e1 <- Y - X%*%b    # updated residuals at iteration i 
  e2 <- e1[-1]    # adjust sample size for updated et   
    e3 <- e1[-T]     # adjust sample size for updated e_t-1 (lagged et) 
    ols_e1 <- lm(e2~e3-1)   # updated regression to value for rho at iteration i 
    rho <- ols_e1$coeff[1]   # updated value of rho at iteration i, i 
 rss_1 <- sum(e1^2)    # updated value of RSS at iteration i, RSSi 
 d_rss <- abs(rss_1 - rss)   # diff in RSS (RSSi - RSSi-1) 
i <- i+1 



    } 
 result <-list() 
 result$Cochrane-Orc.Proc <- summary(ols_yx) 
 result$rho.regression <- summary(ols_e1) 
 #  result$Corrected.b_1 <- b[1] 
 result$Iterations < -i-1 
 return(result) 
} 
 
 
Example: In the model for Mexican interest rates (iMX), we suspect an AR(1) in the residuals:  
  iMX,t = 0 + 1 iUS,t + 2 et + 3 mx_It + 4 mx_yt + t  
  𝜀୲ ൌ 𝜌𝜀௧ିଵ  𝑢௧ 
 
• Cochrane-Orcutt estimation.  
y <- mx_i_1 
T_mx <- length(mx_i_1) 
xx_i <- cbind(us_i_1, e_mx, mx_I, mx_y)   
x0 <- matrix(1,T_mx,1) 
X <- cbind(x0,xx_i)      # X matrix 
fit_i <- lm(mx_i_1 ~ us_i_1 + e_mx + mx_I + mx_y) 
b_i <-fit_i$coefficients     # extract coefficients from lm  
> summary(fit_i) 
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) 0.04022    0.01506 2.671  0.00834 **  
us_i_1   0.85886   0.31211 2.752  0.00661 **  
e_mx    -0.01064    0.02130 -0.499  0.61812     
mx_I     3.34581   0.19439 17.212  < 2e-16 *** 
mx_y    -0.49851 0.73717 -0.676  0.49985 
 
 
> c.o.proc(y,X,b,.0001) 
$Cochrane.Orcutt.Proc 
Call: 
lm(formula = YY ~ XX - 1) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.69251 -0.02118 -0.01099  0.00538  0.49403  
 
Coefficients: 
         Estimate  Std. Error t value Pr(>|t|)   
XX      0.16639  0.07289 2.283   0.0238 * 
XXus_i_1 1.23038  0.76520 1.608   0.1098     not longer significant at 5% level. 



XXe_mx  -0.00535  0.01073 -0.499   0.6187   
XXmx_I  0.41608   0.27260 1.526   0.1289     not longer significant at 5% level. 
XXmx_y  -0.44990  0.53096 -0.847   0.3981   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
Residual standard error: 0.09678 on 160 degrees of freedom 
Multiple R-squared:  0.1082,    Adjusted R-squared:  0.08038  
F-statistic: 3.884 on 5 and 160 DF,  p-value: 0.002381 
 
$rho 
       e3  
0.8830857      very high autocorrelation.   
 
$Corrected.b_1 
       XX  
0.1663884      Constant corrected if X does not include a constant 
 
$Number.Iteractions   
[1] 10      algorithm converged in 10 iterations.  
 
Conclusion: Quite high the autocorrelation in the residuals (ρ =0.8830857), which has a big 
effect on the results. Once we account for the autocorrelation in the residuals, U.S. interest rates 
and Mexican Inflation rates are not longer significant drivers of Mexican interest rates. The 
model needs to be reformulated. ¶ 
 
 
GLS: General Remarks 
GLS is great (BLUE) if we know . Very rare situation. 
 
It needs the specification of   –i.e., the functional form of autocorrelation and 
heteroscedasticity. 
 
If the specification is bad   estimates are biased. 
 
In general,  GLS is used for larger samples, because more parameters need to be estimated. 
 
Feasible GLS is not BLUE (unlike GLS); but, it is consistent and asymptotically more efficient 
than OLS. 
 
We use GLS for inference and/or efficiency.  OLS is still unbiased and consistent. 
 
OLS and GLS estimates will be different due to sampling error. But, if they are very different, 
then it is likely that some other CLM assumption is violated.  



Lecture 8 - Time Series  
 
Time Series: Introduction 
A time series 𝑦௧ is a (stochastic) process observed in sequence over time,   
t = 1, ...., T   Yt = {𝑦ଵ, 𝑦ଶ , 𝑦ଷ, ..., 𝑦௧}. 
 
Examples: IBM monthly stock prices from 1973:January to 2020:September (plot below); or 
USD/GBP daily exchange rates from February 15, 1923 to March 19, 1938. 
 

 
 
R Note: There are different ways to do the above plot in R: 
- Using plot.ts, creating a timeseries object in R: 
ts_ibm <- ts(x_ibm,start=c(1973,1),frequency=12)  
# the function ts creates a timeseries object, start = starting year, 
 
plot.ts(ts_ibm,xlab="Time",ylab="IBM price", main="Time Series: IBM Stock Price") 
 
- Using R package ggplot2 
library(ggplot2) 
ggplot(data= SFX_da, aes(x = x_date1, y = x_ibm)) + 
  geom_line() + 
  labs(x = "Date", 
    y = "IBM price", 
    title = "Time Series: IBM ", 
    subtitle = "Monthly: 1973-2020") 
 
 
Time Series: Introduction – Types 
Usually, time series models are separated into two categories:    
 – Univariate (𝑦௧ ∊ R, it is a scalar) 
Example: We are interested in the behavior of IBM stock prices as function of its past. 
    Primary model: Autoregressions (ARs). 
 



 – Multivariate (𝑦௧ ∊ Rm, it is a vector-valued) 
Example: We are interested in the joint behavior of IBM stock and bond prices as function of 
their joint past. 
    Primary model: Vector autoregressions (VARs). ¶ 
 
 
 
Time Series: Introduction – Dependence 
Given the sequential nature of 𝑦௧, we expect 𝑦௧ and 𝑦௧ିଵ to be dependent. This is the main 
feature of time series: dependence. It creates statistical problems. 
 
In classical statistics, we usually assume we observe several i.i.d. realizations of 𝑦௧. We use 𝑦ത to 
estimate the mean.  
 
With several independent realizations we are able to sample over the entire probability space and 
obtain a “good” –i.e., consistent or close to the population mean– estimator of the mean.  
 
But, if the samples are highly dependent, then it is likely that Yt is concentrated over a small part 
of the probability space. Then, the sample mean will not converge to the mean as the sample size 
grows.  
 
Technical note: With dependent observations, the classical results (based on LLN & CLT) are 
not to valid. New assumptions and tools are needed: stationarity, ergodicity, CLT for martingale 
difference sequences (MDS CLT). 
 
Roughly speaking, stationarity requires constant moments for 𝑦௧; ergodicity requires that the 
dependence is short-lived, eventually 𝑦௧ has only a small influence on 𝑦௧ା, when 𝑘 is relatively 
large. 
 
Ergodicity describes a situation where the expectation of a random variable can be replaced by 
the time series expectation. 
 
An MDS is a discrete-time martingale with mean zero. In particular, its increments, 𝜀௧’s, are 
uncorrelated with any function of the available dataset at time 𝑡. To these 𝜀௧’s we will apply a 
CLT. 
 
The amount of dependence in Yt determines the ‘quality’ of the estimator. There are several 
ways to measure the dependence. The most common measure: Covariance. 
  Covሺ𝑌௧,𝑌௧ାሻ ൌ  𝐸ሾሺ𝑌௧ െ 𝜇ሻሺ𝑌௧ା െ  𝜇ሻሿ 
 
Note: When 𝜇 =0, then Covሺ𝑌𝑡,𝑌௧ାሻ ൌ  𝐸ሾ𝑌௧ 𝑌௧ାሿ 
 
 
Time Series: Introduction – Forecasting 
In a time series model, we describe how 𝑦௧ depends on past 𝑦௧’s. That is, the information set is It 
= {𝑦௧ିଵ, 𝑦௧ିଶ, 𝑦௧ିଷ, ....} 



 
The purpose of building a time series model: Forecasting. 
 
We estimate time series models to forecast out-of-sample. For example, the l-step ahead 
forecast: 
   yොା୪ൌ Et[𝑦௧ା |𝐼௧ିଵ]  
 
In the 1970s it was found that very simple time series models out-forecasted very sophisticated 
(big) economic models. This finding represented a big shock to the big multivariate models that 
were very popular then. It forced a re-evaluation of these big models. 
 
 
Time Series: Introduction – White Noise 
In general, we assume the error term, εt, is uncorrelated with everything, with mean 0 and 
constant variance, σ2. We call a process like this a white noise (WN) process.  
 
We denote a WN process as 
    ε௧ ~ WN(0, σ2) 
 
The WN is a very simple example of a stochastic process. We think of a white noise process as 
the basic building block of all time series. It can be written as: 
  z௧ = σ  u௧,   u௧   ~ i.i.d (0, 1)     z௧ ~ WN(0, σ2) 
 
The  z௧’s are random shocks, with no dependence over time, representing unpredictable events. It 
represents a model of news. 
 
Technical note: There may be dependence in the higher order moments of  ε௧. For example, 
𝐸ሾε௦ଶ ε௧ଶ] = 𝐸ሾε௦ଶ] * 𝐸ሾε௧ଶ]. If we assume  ε௧ is i.i.d., this dependence is excluded. 
 
 
Time Series: Introduction – Conditionality  
We make a key distinction: Conditional vs Unconditional moments. In time series we model the 
conditional mean as a function of its past, for example in an AR(1) process, we have:  
   𝑦௧ = α + β 𝑦௧ିଵ + ε௧. 
 
Then, the conditional mean forecast at time t, conditioning on information at time It-1, is: 
 
  Et[𝑦௧|𝐼௧ିଵ] = Et[𝑦௧] = α + β 𝑦௧ିଵ 
 
Notice that the unconditional mean is given by:  
  E[𝑦௧] = 𝛼 + 𝛽 E[𝑦௧ିଵ] = 

ఈ

1 - ఉ
 =  𝜇 = constant  (𝛽 ≠ 1) 

 
The conditional mean is time varying; the unconditional mean is not! 
 
Key distinction: Conditional vs. Unconditional moments. 



 
 
Time Series: Introduction – AR and MA models 
Two popular models for Et[𝑦௧|𝐼௧ିଵ]: 
 
– Autoregressive (AR): An AR process models Et[𝑦௧|𝐼௧ିଵ] with lagged dependent variables: 
   Et[𝑦௧|𝐼௧ିଵ] = f(𝑦௧ିଵ, 𝑦௧ିଶ, 𝑦௧ିଷ, ....) 
Example: AR(1) process, 𝑦௧ = α + β 𝑦௧ିଵ+ ε௧..  ¶ 
 
– Moving Average (MA): An MA process models Et[𝑦௧|𝐼௧ିଵ]:with lagged errors, εt: 
   Et[𝑦௧|𝐼௧ିଵ] = f(ε௧ିଵ, ε௧ିଶ, ε௧ିଷ, ....) 
Example: MA(1) process, 𝑦௧ = μ + θ1 ε௧ିଵ + ε௧.  ¶ 
 
– There is a third model, ARMA, that combines lagged dependent variables and lagged errors. 
 
• We want to select an appropriate time series model to forecast yt. In this class, we will use 
linear model, with choices: AR(p), MA(q) or ARMA(p, q).  
 
• Steps for forecasting: 
(1) Identify the appropriate model. That is, determine p, q. 
(2) Estimate the model. 
(3) Test the model. 
(4) Forecast. 
 
 
Time Series: CLM Revisited & New Assumptions 
With autocorrelated data, we get dependent observations. For example, with autocorrelated 
errors:   
  ε௧ =   ε௧ିଵ+  u௧,   with u௧ ~ WN(0, σ2), 
the independence assumption (A2) is violated. The LLN and the CLT cannot be easily applied in 
this context. We need new tools. 
 
We introduce the concepts of stationarity and ergodicity. The ergodic theorem will give us a 
counterpart to the LLN. 
 
To get asymptotic distributions, we also need a CLT for dependent variables, using new 
technical concepts: mixing and stationarity. Or we can rely on a new CLT: The martingale 
difference sequence CLT.  
 
• We will not cover these technical points in detail. 
 
 
Time Series – Stationarity  
Consider the joint probability distribution of the collection of RVs: 

𝐹൫𝑦௧భ ,  𝑦௧మ , … ,𝑦௧൯ ൌ 𝐹൫𝑌௧భ  𝑦௧భ ,𝑌௧మ  𝑦௧మ , … ,𝑌௧  𝑦௧൯ 
 



To do statistical analysis with dependent observations, we need some extra assumptions. We 
need some form of invariance on the structure of the time series.  
 
If the distribution F is changing with every observation, estimation and inference become very 
difficult.  
 
Stationarity is an invariant property: the statistical characteristics of the time series do not change 
over time.  
 
There different definitions of stationarity, they differ in how strong is the invariance of the 
distribution over time. 
 
We say that a process is stationary of    
1st order  if  𝐹൫𝑦௧భ൯ ൌ 𝐹൫𝑦௧భశೖ൯   for any 𝑡ଵ, k 

2nd order if 𝐹൫𝑦௧భ ,𝑦௧మ൯ ൌ 𝐹൫𝑦௧భశೖ ,𝑦௧మశೖ൯  for any 𝑡ଵ, 𝑡ଶ, k 

Nth-order if 𝐹൫𝑦௧భ , … ,𝑦௧൯ ൌ 𝐹൫𝑦௧భశೖ , … , 𝑦௧శೖ൯ for any 𝑡ଵ, ..., 𝑡், k 
 
Nth-order stationarity is a strong assumption (& difficult to verify in practice). 2nd order 
stationarity is weaker: only consider mean and covariance (easier to verify in practice). 2nd order 
stationarity is also called Weak stationarity or Covariance stationarity. 
 
Moments describe a distribution. We calculate moments as usual:   
 Eሾ𝑌௧ሿ ൌ 𝜇 
 Varሺ𝑌௧ሻ ൌ 𝜎ଶ ൌ 𝐸ሾሺ𝑌௧ െ 𝜇ሻଶሿ 
 Cov൫𝑌௧భ ,𝑌௧మ൯ ൌ  𝐸ሾሺ𝑌௧భ െ 𝜇ሻሺ𝑌௧మ െ 𝜇ሻሿ = 𝛾ሺ𝑡1 -𝑡2ሻ 
 
 
Time Series – Stationarity, Autocovariances & Autocorrelations 
Cov൫𝑌௧భ ,𝑌௧మ൯ = 𝛾ሺ𝑡1 -𝑡2ሻ is called the auto-covariance function. It measures how y୲, measured at 
time 𝑡ଵ, and 𝑦௧, measured at time 𝑡ଶ, covary.  
 
Notes:  𝛾ሺ𝑡ଵ  െ  𝑡ଶ ሻ is a function of k = 𝑡ଵ െ 𝑡ଶ  
 𝛾(0) is the variance. 
 
The autocovariance function is symmetric. That is,  
 𝛾ሺ𝑡ଵ  െ  𝑡ଶሻ ൌ Cov൫𝑌௧భ ,𝑌௧మ൯ = Cov൫𝑌௧మ ,𝑌௧భ൯ = 𝛾ሺ𝑡ଵ  െ  𝑡ଶሻ 
 
Autocovariances are unit dependent. We will have different values if we calculate the 
autocovariance for IBM returns in % terms or in decimal terms. 
 
Remark: The autocovariance measures the (linear) dependence between the 𝑦௧’s separated by k 
periods. 
 
From the autocovariances, we derive the autocorrelations: 



 Corr൫𝑌௧భ ,𝑌௧మ൯ ൌ 𝜌൫𝑌௧భ ,𝑌௧మ൯ ൌ
ఊሺ௧1 -௧2ሻ 

ఙభఙమ
 ൌ ఊሺ௧1 -௧2ሻ 

ఊ(0)
 

the last step takes assumes: 𝜎௧భ ൌ 𝜎௧మ ൌ ඥ𝛾ሺ0ሻ 
 
Corr൫𝑌௧భ ,𝑌௧మ൯ ൌ 𝜌൫𝑌௧భ ,𝑌௧మ൯ is called the auto-correlation function (ACF), –think of it as a 
function of k = 𝑡ଵ െ 𝑡ଶ. The ACF is also symmetric. 
 
Unlike autocovoriances, autocorrelations are not unit dependent. It is easier to compare 
dependencies across different time series. 
 
Stationarity requires all these moments to be independent of time. If the moments are time 
dependent, we say the series is non-stationary. 
 
For strictly stationary process (constant moments), we need: 
   𝜇௧ ൌ 𝜇 
   𝜎௧ ൌ 𝜎 
because 𝐹൫𝑦௧భ൯ ൌ 𝐹൫𝑦௧భశೖ൯   𝜇௧భ ൌ 𝜇௧భశೖ ൌ 𝜇 
     𝜎௧భ ൌ 𝜎௧భశೖ ൌ 𝜎 
Then,  
  𝐹൫𝑦௧భ ,𝑦௧మ൯ ൌ 𝐹൫𝑦௧భశೖ ,𝑦௧మశೖ൯  Cov൫𝑦௧భ ,𝑦௧మ൯= Cov൫𝑦௧భశೖ ,𝑦௧మశೖ൯ 
    𝜌ሺ𝑡ଵ, 𝑡ଶሻ ൌ 𝜌ሺ𝑡ଵ  𝑘, 𝑡ଶ  𝑘ሻ 
Let 𝑡ଵ ൌ 𝑡 െ 𝑘  & 𝑡ଶ ൌ 𝑡   
  𝜌ሺ𝑡ଵ, 𝑡ଶሻ ൌ 𝜌ሺ𝑡 െ 𝑘, 𝑡ሻ ൌ 𝜌ሺ𝑡, 𝑡 െ 𝑘ሻ = 𝜌ሺ𝑘ሻ = 𝜌 
 
The correlation between any two RVs depends on the time difference. Given the symmetry, we 
have 𝜌ሺ𝑘ሻ = 𝜌ሺെ𝑘ሻ. 
 
Example: Informally, we check if in any two periods separated by 𝑘 observations, we have 
similar means, variances and covariances. That is, 
 𝜇௧భ ൌ 𝜇௧భశೖ ൌ 𝜇 
 𝜎௧భ ൌ 𝜎௧భశೖ ൌ 𝜎 

 Cov൫𝑦௧భ ,𝑦௧మ൯= Cov൫𝑦௧భశೖ ,𝑦௧మశೖ൯ 
 

 
 

𝑡ଵ 𝑡ଶ 



Time Series – Weak Stationarity 
A Covariance stationary process (or 2nd -order weakly stationary) has: 
 - constant mean 
 - constant variance 
 - covariance function depends on time difference between RVs. 
 
That is, Zt  is covariance stationary if: 
 Eሺ𝑍௧ሻ = constant = 𝜇  
 Varሺ𝑍௧ሻ = constant = σ 
 Cov൫𝑍௧భ ,𝑍௧మ൯ ൌ  E[(𝑍௧భ െ 𝜇௧భ)(𝑍௧మ െ  𝜇௧మ)] = γሺ𝑡ଵ- 𝑡ଶሻ = 𝑓ሺ𝑡ଵ- 𝑡ଶሻ  
 
Remark: Covariance stationarity is only concerned with the covariance of a process, only the 
mean, variance and covariance are time-invariant. Nth-order stationarity is stronger and assumes 
that the whole distribution is invariant over time. 
 
Example: Stationary time series. Assume ε௧ ~ WN(0, σ2). 
 𝑦௧ = 𝜙 𝑦௧ିଵ + ε௧   (AR(1) process) 
 
• Mean 
Taking expectations on both sides --or applying the expectations operator (E[.])--: 
 E[𝑦௧] = 𝜙 E[𝑦௧ିଵ] + E[ε௧]  
 μ = 𝜙 μ + 0 
  E[𝑦௧] = μ = 0   (assuming 𝜙 ≠ 1) 
 
• Variance 
Computing the variance --or applying the variance operator (Var[.])-- on both sides: 
 Var[𝑦௧] = 𝛾ሺ0ሻ ൌ  𝜙2 Var[𝑦௧ିଵ] + Var[ε௧] 
  𝛾ሺ0ሻ = σ2/(1 - 𝜙2)   (assuming | 𝜙 |< 1) 
 
• Autocovariances 
  γሺ1ሻ ൌ Covሾ𝑦௧, 𝑦௧ିଵሿ ൌ Eሾ𝑦௧ 𝑦௧ିଵሿ ൌ Eሾሺϕ 𝑦௧ିଵ  ε௧ሻ 𝑦௧ିଵሿ  
    ൌ Eሾϕ 𝑦௧ିଵ 𝑦௧ିଵሿ  Eሾ ε௧ 𝑦௧ିଵሿ 
    = 𝜙 E[𝑦௧ିଵ2]  + 0 
    = 𝜙 Var[𝑦௧ିଵ]  
    = 𝜙 𝛾ሺ0ሻ  
    = 𝜙 [σ2/(1- 𝜙 2)] 

  𝛾ሺ2ሻ = Cov[𝑦௧, 𝑦௧ିଶ] = E[𝑦௧ 𝑦௧ିଶሿ] = E[(𝜙 𝑦௧ିଵ  + ε௧) 𝑦௧ିଶ]  
  ൌ Eሾϕ 𝑦௧ିଵ 𝑦௧ିଶሿ  Eሾ ε௧ 𝑦௧ିଶሿ  
  ൌ 𝜙 E[𝑦௧ିଵ 𝑦௧ିଶ]  0  
  = 𝜙 E[𝑦௧ିଵ 𝑦௧ିଶ]  
  = 𝜙 Cov[𝑦௧ିଵ, 𝑦௧ିଶ]  
  = 𝜙 𝜙 𝛾ሺ0ሻ  
  = 𝜙2 𝛾ሺ0ሻ  
  = 𝜙2 [σ2/(1- 𝜙 2)] 



… 
  𝛾ሺ𝑘ሻ = Cov[𝑦௧, 𝑦௧ି] = 𝜙k 𝛾ሺ0ሻ  
 
  If |𝜙| < 1, the process is covariance stationary: mean, variance and covariance are constant. 
 
Remark: To establish stationarity, we need to impose conditions on the AR parameters. 
(Conditions on parameters are not needed for MA processes; MA processes are always 
stationary.)  
 
Note: From the autocovariance function, we can derive the auto-correlation function: 

 𝜌ሺ𝑘ሻ ൌ ఊሺሻ 

ఊ(0)
ൌ థೖ ఊሺሻ

ఊ(0)
ൌ 𝜙.  

If |ϕ |< 1, both the autocovariance function & ACF show exponential decay.  ¶ 
 
Example: Non-stationary time series. Assume εt ~ WN(0, σ2). 
 𝑦௧ = μ + 𝑦௧ିଵ + ε௧  (Random Walk with drift process) 
 
Doing backward substitution: 
  𝑦௧ = μ + (μ + 𝑦௧ିଶ + ε௧ିଵ) + ε௧ 
   = 2*μ + 𝑦௧ିଶ + ε௧ + ε௧ିଵ 
   = 2*μ + (μ + 𝑦௧ିଷ + ε௧ିଶ) + ε௧ + ε௧ିଵ 
   = 3*μ + 𝑦௧ିଷ + ε௧ + ε௧ିଵ + ε௧ିଶ 
  𝑦௧  = μ t + ∑ ε௧ି

௧ିଵ
ୀ  + 𝑦  

 
 
• Mean & Variance 
  E[𝑦௧] = μ t + 𝑦  
   Var[𝑦௧] = 𝛾ሺ0ሻ = ∑ 𝜎2௧ିଵ

ୀ  ൌ 𝜎2 𝑡 
  the process is non-stationary; that is, moments are time  dependent.  ¶ 
 
 
Stationary Series – Examples 
Examples: Assume εt ~ WN(0, σ2). 
 𝑦௧ ൌ 0.08  𝜀௧  0.4 𝜀௧ିଵ - MA(1) process 
 𝑦௧ ൌ 0.13 𝑦௧ିଵ  𝜀௧   - AR(1) process 
 



 
 
Changes in the JPY/USD exchange rate (ef,t) is an example of a stationary series. ¶ 
 
 
Non-Stationary Series – Examples 
Examples: Assume εt ~ WN(0, σ2).  
𝑦௧ ൌ 𝜇 𝑡  𝜑ଵ𝑦௧ିଵ  𝜑ଶ𝑦௧ିଶ  𝜀௧  - AR(2) with deterministic trend 
𝑦௧ ൌ 𝜇  𝑦௧ିଵ  𝜀௧       - Random Walk with drift 
 

 
 
The level of the JPY/USD exchange rate (St) is an example of a non-stationary series. ¶ 
 
 
Time Series – Stationarity: Remarks 
The main characteristic of time series is that observations are dependent. 
 
To analyze time series, however, we need to assume that some features of the series are not 
changing. If we have non-stationary series (say, mean or variance are changing with each 
observation), it is not possible to make inferences.   
 
Stationarity is an invariant property: the statistical characteristics of the time series do not vary 
over time. 



 
If IBM is weak stationary, then, the returns of IBM may change month to month or year to year, 
but the average return and the variance in two equal-length time intervals will be more or less the 
same. 
 
In the long run, say 100-200 years, the stationarity assumption may not be realistic. After all, 
technological change has affected the return of IBM over the long run. But, in the short-run, 
stationarity seems likely to hold. 
 
In general, time series analysis is done under the stationarity assumption. 
 
 
Time Series – Ergodicity 
We want to estimate the mean of the process {Zt}, μ(Zt). But, we need to distinguishing between 
ensemble average (with m observations) and time average (with T observations): 

- Ensemble Average: 𝑧̿ ൌ
∑ 

సభ


 

- Time Series Average: 𝑧 ൌ
∑ 

సభ

்
 

Question: Which estimator is the most appropriate?  
A: Ensemble Average. But, it is impossible to calculate. We only observe one Zt, with dependent 
observations. 
 
Question: Under which circumstances we can use the time average (with only one realization of 
{Zt})? Is the time average an unbiased and consistent estimator of the mean?  
The Ergodic Theorem gives us the answer. 
 
• Intuition behind Ergodicity: 
We go to a casino to play a game with 20% return, but on average, one gambler out of 100 goes 
bankrupt. If 100 gamblers play the game, there is a 99% chance of winning and getting a 20% 
return. This is the ensemble scenario. Suppose that gambler 35 is the one that goes bankrupt. 
Gambler 36 is not affected by the bankruptcy of gamble 35. 
 
Suppose now that instead of 100 gamblers you play the game 100 times. This is the time series 
scenario. You win 20% every day until day 35 when you go bankrupt. There is no day 36 for you 
(dependence at work!). 
 
Result: The probability of success from the group (ensemble scenario) does not apply to one 
person (time series scenario).  
 
Ergodicity describes a situation where the ensemble scenario outcome applies to the time series 
scenario. 
 
• With dependent observation, we cannot use the LLN used before. The ergodicity theorem plays 
the role of the LLN with dependent observations. 
 



The formal definition of ergodicity is complex and is seldom used in time series analysis. One 
consequence of ergodicity is the ergodic theorem, which is extremely useful in time series.  
 
It states that if Zt is an ergodic stochastic process then 

  
ଵ

்
∑ 𝑔ሺ𝑍௧ሻ ௧ୀଵ

.௦
ሱሮ E[𝑔ሺ𝑍ሻ] 

for any function g(.). And, for any time shift k 

  
ଵ

்
∑ 𝑔ሺ𝑍௧భା,𝑍௧మା, … ,𝑍௧ഓାሻ ௧ୀଵ

.௦
ሱሮ E[𝑔ሺ𝑍௧భ ,𝑍௧మ , … ,𝑍௧ഓሻሻ] 

  
where a.s. means almost sure convergence, a strong form of convergence. 
 
Definition: A covariance-stationary process is ergodic for the mean if 

    𝑧̅ 

→ E[Zt] = 𝜇 

 
This result needs the variance of 𝑧̅ to collapse to 0. It can be shown that the var[𝑧] can be written 
as a function of the autocorrelations, 𝜌: 
 varሾ 𝑧 ሿ ൌ varሾ ሺ𝑧ଵ  𝑧ଶ  ⋯ 𝑧்ሻ/𝑇ሿ 
  ൌ ሼvarሾ 𝑧ଵሿ  varሾ𝑧ଶሿ  ⋯ varሾ𝑧்ሿ 
   2 covሾ𝑧ଵ, 𝑧ଶሿ  2 covሾ𝑧ଵ, 𝑧ଷሿ   …  2 covሾ𝑧ଵ, 𝑧்ሿ  
   2 covሾ𝑧ଶ, 𝑧ଷሿ  2 covሾ𝑧ଶ, 𝑧ସሿ   …  2 covሾ𝑧ଶ, 𝑧்ሿ 
   2 covሾ𝑧ଷ, 𝑧ସሿ  2 covሾ𝑧ଷ, 𝑧ହሿ  …  2 covሾ𝑧ଷ, 𝑧்ሿ 
  … 
   2 covሾ𝑧்ିଵ, 𝑧்ሿሽ/𝑇ଶ 
  ൌ ఊబ

்మ
 {𝑇𝜌  2ሺ𝑇 െ 1ሻ𝜌ଵ  2ሺ𝑇 െ 2ሻ𝜌ଶ   … 2 𝜌்ିଵሽ 

  = 
ఊబ
்మ

 {𝑇𝜌 + 2 ∑ ሺ𝑇 െ 𝑘ሻ𝜌
்ିଵ
ୀଵ }  

 
Recalling that 𝜌=𝜌ି, then 
  varሾ 𝑧 ሿ = 

ఊబ
்మ

 ∑ ሺ𝑇 െ |𝑘|ሻ 𝜌
்ିଵ
ୀିሺ்ିଵሻ   

    = 
ఊబ
்

 ∑ ቀ1 െ
||

்
ቁ 𝜌

்ିଵ
ୀିሺ்ିଵሻ  

  
Theorem: A sufficient condition for ergodicity for the mean is that the autocorrelations 𝜌k 
between two observations, say (𝑦௧ ,𝑦௧ೕ), 𝜌൫𝑡 , 𝑡൯ = 𝜌௧ି௧ೕ, go to zero as 𝑡 & 𝑡 grow further 

apart. 
 
Condition for ergodicity: 𝜌 → 0, as k → ∞ 
 
 
Time Series – Lag Operator 
Define the operator L as 
  L 𝑧௧ = 𝑧௧ି. 
 
It is usually called Lag operator. But it can produce lagged or forward variables (for negative 
values of k). For example: 



  Lିଷ 𝑧௧ = 𝑧௧ାଷ. 
 
Also note that if c is a constant   L c = c. 
 
Sometimes the notation for L when working as a lag operator is B (backshift operator), and when 
working as a forward operator is F. 
 
Important application: Differencing 
   𝛥 𝑧௧ = (1 - L) 𝑧௧ = 𝑧௧ െ 𝑧௧ିଵ. 
  𝛥ଶ 𝑧௧ ൌ ሺ1 െ Lሻଶ 𝑧௧ ൌ  𝑧௧ െ 2𝑧௧ିଵ  𝑧௧ିଶ. 
 
 
Time Series – Useful Result: Geometric Series 
The function  𝑓ሺ𝑥ሻ ൌ ሺ1 െ 𝑥ሻିଵ can be written as an infinite geometric series (use a Maclaurin 
series around c=0): 
 

 𝑓ሺ𝑥ሻ ൌ ଵ

ଵି௫
ൌ 1  𝑥  𝑥ଶ  𝑥ଷ  𝑥ସ. . .ൌ ∑ 𝑥ஶ

ୀ  

 
If we multiply 𝑓ሺ𝑥ሻ by a constant, a: 

 ∑ 𝑎𝑥ஶ
ୀ ൌ 

ଵି௫
→  ∑ 𝑎𝑥ஶ

ୀଵ ൌ 𝑎 ቀ ଵ

ଵି௫
െ 1ቁ 

 
Example: In Finance we have many applications of the above results. 
- A stock price, P, equals the discounted some of all futures dividends. Assume dividends are 
constant, d, and the discount rate is r. Then: 

 𝑃 = ∑ ௗ

ሺଵାሻ
ൌ 𝑑ሺ ଵ

ଵ ି భ
భశೝ

ஶ
௧ୀଵ  െ1) = 𝑑ሺ ଵ

భశೝ షభ
భశೝ

 െ1) = 
ௗ


 

where 𝑥 ൌ  ଵ

ଵା
. ¶ 

 
We will use this geometric series result when, under certain conditions, we invert a lag 
polynomial (say, θ(L)) to convert an AR (MA) process into an infinite MA (AR) process. 
 
Example: Suppose we have an MA(1) process: 
  𝑦௧ = μ + θ1 𝜀௧ିଵ + 𝜀௧  = μ + θ(L) 𝜀௧,   
with  
 θ(L) = (1 + θ1 L)   (θ(L): lag polynomial) 
 
Recall, 

 𝑓ሺ𝑥ሻ ൌ ଵ

ଵି௫
ൌ 1  𝑥  𝑥ଶ  𝑥ଷ  𝑥ସ. . .ൌ ∑ 𝑥ஶ

ୀ  

 
Let x = -θ1 L. Then, 
  

 θ(L)-1 = 
ଵ

ଵି(-θ1L)
ൌ 1  (-θ1L) (-θ1L)ଶ   (-θ1L)ଷ   (-θ1L)ସ   ... 

  ൌ ∑ (-θ1 Lሻஶ
ୀ  = 1 െ θ1 L  θ1

ଶLଶ െ θ1
ଷLଷ  θ1

ସLସ  ⋯    



 
That is, we get an AR(∞), by multiplying both sides by θ(L)-1: 
  θ(L)-1 𝑦௧  =  θ(L)-1 μ + 𝜀௧ = μ* + 𝜀௧   
Or 
 θ(L)-1 𝑦௧  = 𝑦௧ െ θ1 𝑦௧ିଵ  θ1

ଶ𝑦௧ିଶ െ θ1
ଷ𝑦௧ିଷ  θ1

ସ𝑦௧ିସ  ⋯ ൌ μ* +  𝜀௧ 
 
Solving for yt: 
 𝑦௧ ൌ μ* + θ1 𝑦௧ିଵ െ  θ1

ଶ𝑦௧ିଶ   θ1
ଷ𝑦௧ିଷ െ  θ1

ସ𝑦௧ିସ  ⋯ +  𝜀௧ . ¶  
 
 
Moving Average Process   
An MA process models E[𝑦௧|It-1] with lagged error terms. An MA(q) model involves q lags.  
We keep the white noise assumption for εt:  εt ~ WN(0, σ2) 
 
Example: A linear MA(q) model:  
 𝑦௧ ൌ 𝜇 + θ1 𝜀௧ିଵ + θ2 𝜀௧ିଶ + ... + θq 𝜀௧ି + 𝜀௧ = 𝜇 + θ(L) 𝜀௧, 
where 
 θ(L) = 1  θ1L  θ2Lଶ  θ3Lଷ  … θqL.   ¶ 
 
In time series, the constant does not affect the properties of AR and MA process. It is usually 
removed (think of the data analyze as demeaned). Thus, in this situation we say “without loss of 
generalization”, we assume μ=0.  
 
  
Moving Average Process – Stationarity     
To check if an MA(q) process is stationary, we check the moments (assume μ = 0).  
 𝑦௧ ൌ 𝜀௧ + θ1 𝜀௧ିଵ + θ2 𝜀௧ିଶ + ... + θq 𝜀௧ି  
 𝑦௧ିଵ = 𝜀௧ିଵ + θ1 𝜀௧ିଶ + θ2 𝜀௧ିଷ+ ... + θq-1 𝜀௧ି + θq 𝜀௧ିሺାଵሻ 
 
•  Mean  
 E[𝑦௧] = E[𝜀௧] + θ1 E[𝜀௧ିଵ] + θ2 E[𝜀௧ିଶ] + ... + θq E[𝜀௧ି] = 0 
 
 
•  Variance 
 Var[𝑦௧] = Var[𝜀௧] + θ1

2 Var[𝜀௧ିଵ] + θ2
2 Var[𝜀௧ିଶ] + ... + θq

2 Var[𝜀௧ି]   
  = (1 + θ1

2 + θ2
2 + ... + θq

2) σ2.  
To get a positive variance, we require (1 + θ1

2 + θ2
2 + ... + θq

2) > 0.  
 
• Autocovariances 
 𝑦௧

 
= 𝜀௧

  
+

 
θ1 𝜀௧ିଵ+ θ2 𝜀௧ିଶ + θ3 𝜀௧ିଷ+ ... + θq 𝜀௧ି 

 𝑦௧ିଵ
 
= 𝜀௧ିଵ + θ1  𝜀௧ିଶ+ θ2 𝜀௧ିଷ + ... + θq 𝜀௧ି+ θq 𝜀௧ିሺାଵሻ  

 𝛾ሺ1ሻ  = Cov[𝑦௧, 𝑦௧ିଵ] = E[𝑦௧ 𝑦௧ିଵ]   
  = E[(𝜀௧+θ1 𝜀௧ିଵ +θ2 𝜀௧ିଶ+...+θq 𝜀௧ି)*(𝜀௧ିଵ+ θ1

 
𝜀௧ିଶ+ θ2 𝜀௧ିଷ +...+ θq 𝜀௧ିሺାଵሻ)] 

  = E[𝜀௧ 𝜀௧ିଵ] + θ1  E[𝜀௧ 𝜀௧ିଶ] + θ2 E[𝜀௧ 𝜀௧ିଷ] + ....  



  + θ1 E[𝜀௧ ିଵ𝜀௧ିଵ] + θ1
2 E[𝜀௧ିଵ 𝜀௧ିଶ] + θ1 θ2 E[𝜀௧ିଵ 𝜀௧ିଷ] + ...    

  + θ2 E[𝜀௧ିଶ 𝜀௧ିଵ] +  θ2 θ1 E[𝜀௧ିଶ 𝜀௧ିଶ] + θ2 θ1 E[𝜀௧ିଶ 𝜀௧ିଷ] + ...  
  ...  
  + θq

 
E[𝜀௧ି𝜀௧ିଵ] +  θq θ1 E[𝜀௧ି𝜀௧ିଶ] + ... + θq θq-1 E[𝜀௧ି𝜀௧ି]  

  + θq
2

 
E[𝜀௧ି 𝜀௧ିሺାଵሻ]  

  = θ1 σ2  + θ2 θ1 σ2  + θ3 θ2 σ2  + ... + θq θq-1  σ2 + 0 
  = σ2 ∑ θj θj-1


ୀଵ     (where θ0 = 1) 

 
We can also derive 𝛾ሺ1ሻ without computing the expectation of the cross products of errors. It is 
easier to look at the sum of E[𝑦௧  εt-j]’s: 
 𝛾ሺ1ሻ = E[𝑦௧ 𝑦௧ିଵ]  
  = E[𝑦௧ * (𝜀௧ିଵ +  θ1 𝜀௧ିଶ +  θ2 𝜀௧ିଷ + ... +  θq-1 𝜀௧ି +  θq 𝜀௧ିሺାଵሻ)]  
  = E[𝑦௧  𝜀௧ିଵ] + θ1 E[𝑦௧  𝜀௧ିଶ] + θ2 E[𝑦௧  𝜀௧ିଷ] + ... + θq-1 E[𝑦௧  𝜀௧ି]+ θq E[𝑦௧ εt-q-1] 
  = θ1 σ2 + θ2 θ1 σ2 + θ3 θ2 σ2 + ... + θq θq-1 σ2 + 0  
  = σ2 ∑ θj θj-1


ୀଵ      (where θ0 = 1) 

 
We continue with the derivations of the 𝛾ሺ𝑘ሻ function. It is easier to derive it by rewriting yt & 
yt-2 :  
 𝑦௧  = εt  + θ1 𝜀௧ିଵ  + θ2 𝜀௧ିଶ+ θ3 𝜀௧ିଷ + ... + θq 𝜀௧ି 
 𝑦௧ିଶ = 𝜀௧ିଶ+ θ1 𝜀௧ିଷ + θ2 𝜀௧ ି ସ + θ3 𝜀௧ ି ହ + ... + θq 𝜀௧ିሺାଶሻ  

 
  𝛾ሺ2ሻ = Cov[𝑦௧, 𝑦௧ିଶ] = E[𝑦௧  𝑦௧ିଶ]  
  = E[𝑦௧  𝜀௧ିଶ] + θ1 E[𝑦௧ 𝜀௧ିଷ] + θ2 E[𝑦௧ 𝜀௧ ି ସ] + ... + θq E[𝑦௧ 𝜀௧ିିଶ] 
  = θ2 σ2 + θ3 θ1 σ2 + θ4 θ2 σ2 + ... + θq θq-2 σ2  + 0  
  = σ2 ∑ θj θj-2


ୀଶ     (where θ0 = 1) 

⋮ 
 𝛾ሺ𝑞ሻ = E[𝑦௧ 𝑦௧ି]] =  
  = E[𝜀௧  𝑦௧ି] + θ1 E[𝜀௧ିଵ 𝑦௧ି] + θ2 E[𝜀௧ିଶ 𝑦௧ି] + ... + θq E[𝜀௧ି 𝑦௧ି] 
  = θq σ2 
  = σ2 ∑ θj θj-q


ୀ     (where θ0 = 1) 

 
In general, for the k autocovariance: 
  𝛾ሺ𝑘ሻ = σ2 ∑ θj θj-k


ୀ   for |k| ≤ q 

   𝛾ሺ𝑘ሻ = 0   for |k| > q 
 
Remark: After lag q , the autocovariances are 0.   
 
• Autocorrelations 
From the autocovariances, we define the autocorrelations, by dividing the autocorrelations by 
𝛾ሺ0ሻ: 

  𝜌ሺ𝑞ሻ = 
σ2 ∑ θjθj-q


ೕస  

(1 + θ1
2 + θ2

2 + ... + θq
2) σ2  

 =  
∑ θjθj-q

ೕస  

(1 + θ1
2 + θ2

2 + ... + θq
2) 

    (θ0=1) 

In general, for the k autocorrelation function (ACF): 



  𝜌ሺ𝑘ሻ = 
∑ θjθj-q

ೕస  

(1 + θ1
2 + θ2

2 + ... + θq
2) 

 for |k| ≤ q 

  𝜌ሺ𝑘ሻ = 0   for |k| > q 
Remark: After lag q , the ACF is 0. 
 
• It can be shown that for εt with same distribution (say, normal) the ACF are non-unique. For 
example, for the MA(1) processes: 
 𝑦௧ = 𝜀௧ + 0.5 𝜀௧ିଵ   𝜌ሺ1ሻ ൌ  θ1/(1+ θ1

2) = 0.4  
 𝑦௧ = 𝜀௧ + 2 𝜀௧ିଵ   𝜌ሺ1ሻ ൌ  θ1/(1+ θ1

2) = 0.4  
 
• It is easy to verify that the sums ∑ θjθj-k


ୀ  are finite. Then, mean, variance and covariance are 

constant.  
   MA(q) is always stationary.   
 
 
Moving Average Process – Invertibility     
As mentioned above, it is possible that different time-series processes produce the same ACF. 
 
Example: Two MA(1) produce the same 𝛾ሺ𝑘ሻ:  
 𝑦௧ = 𝜀௧ + 0.2 𝜀௧ିଵ,  𝜀௧ ~ i.i.d. N(0, 25) 
 𝑧௧ = υ௧+ 5 υ௧ିଵ, υ௧ ~ i.i.d. N(0, 1) 
 
We only observe the time series, 𝑦௧  or 𝑧௧, and not the noise, 𝜀௧ or υ௧, thus, we cannot distinguish 
between the models. Thus, we select only one of them. Which one? We select the model with an 
AR(∞) representation. 
 
Assuming θ(L) ≠ 0, we can invert θ(L). Then, by inverting θ(L), an MA(q) process generates an 
AR process: 
 𝑦௧  = μ + θ(L) 𝜀௧   θ(L)-1 𝑦௧= Π(L) 𝑦௧ = μ* +  𝜀௧. 
 
Then, we have an infinite sum polynomial on θL. (Recall the geometric series result.) That is, we 
convert an MA(q) into an AR(∞): 
  ∑ 𝜋ሺ𝐿ሻ𝑦௧

ஶ
ୀ = 𝜇∗  𝜀௧ 

 
We need to make sure that Π(L) = θ(L)-1 is defined: We require θ(L) ≠ 0. When this condition is 
met, we can write εt as a causal function of yt. We say the MA is invertible. For this to hold, we 
require: 
  ∑ |𝜋ሺ𝐿ሻ|

ஶ
ୀ ൏ ∞ 

 
Technical note: An invertible MA(q ) is typically required to have roots of the lag polynomial 
equation θ(z) = 0 greater than one in absolute value (“outside the unit circle”). In the MA(1) 
case, we require | θ1 | < 1. 
 
In the previous example, we select the model with θ1 = 0.2.  
 



 
Moving Average Process – MA(1) 
Example:  𝑦௧  = θ1 𝜀௧ିଵ + 𝜀௧   = μ + θ(L) 𝜀௧,  with θ(L) = (1 + θ1 L) 
 
• Moments 
 E[𝑦௧] =  0  
 Var[𝑦௧] = 𝛾ሺ0ሻ = 𝜎2 + θ1

2 𝜎2 = 𝜎2 (1+ θ1
2)  

 Cov[𝑦௧, 𝑦௧ିଵ] = 𝛾ሺ1ሻ = E[𝑦௧ 𝑦௧ିଵ]  
  = E[(θ1 𝜀௧ିଵ + 𝜀௧) * (θ1 𝜀௧ିଶ + 𝜀௧ିଵ)] 
  = θ1 σ2  
 Cov[𝑦௧, 𝑦௧ିଶ] = 𝛾ሺ2ሻ E[𝑦௧ 𝑦௧ିଶ]  
  = E[(θ1 𝜀௧ିଵ + 𝜀௧) * (θ1 𝜀௧ିଷ+ 𝜀௧ିଶ)]  
  = 0 
 ⋮ 
 𝛾ሺ𝑘ሻ = E[𝑦௧ 𝑦௧ି] = E[(θ1 𝜀௧ିଵ+ 𝜀௧)) * (θ1 𝜀௧ିሺାଵሻ+𝜀௧ି)])] = 0  (for k > 1)  
 
That is, for |k| > 1,   𝛾ሺ𝑘ሻ = 0. 
 
To get the ACF, we divide the autocovariances by 𝛾ሺ0ሻ. Then, the autocorrelation function 
(ACF): 
 𝜌ሺ1ሻ ൌ  𝛾ሺ1ሻ/𝛾ሺ0ሻ = θ1 σ2 /σ2 (1 + θ1

2) = θ1 / (1 + θ1
2)   

⋮ 
 𝜌ሺ𝑘ሻ ൌ  𝛾ሺ𝑘ሻ/𝛾ሺ0ሻ = 0   (for k > 1) 
 
Remark: The autocovariance function is zero after lag 1. Similarly, the ACF is also zero after lag 
1. 
 
Note that |𝜌ሺ1ሻ| ≤ 0.5.  
 
When θ1 = 0.5  𝜌ሺ1ሻ = 0.4.  
 θ1 = -0.9  𝜌ሺ1ሻ = -0.497238.  
 θ1 = -2   𝜌ሺ1ሻ = -0.4. (same 𝜌ሺ1ሻ for θ1 & 1/θ1) 
 
 
Moving Average Process – MA(1): Simulations 
We simulate and plot three MA(1) processes, with standard normal 𝜀௧ -i.e., σ =1:   
  𝑦௧ = 𝜀௧ + 0.5 𝜀௧ିଵ 
  𝑦௧ = 𝜀௧ - 0.9 𝜀௧ିଵ 
  𝑦௧  = 𝜀௧ - 2 𝜀௧ିଵ 
 
R Note: We use the arima.sim function to simulate the behavior of different ARIMA models (or 
ARMA, by setting the orden of Integration (I) equal to 0). Below we plot differen MA(1) 
process. On the first panel, we use the script below to plot 𝑦௧  = 𝜀௧ + 0.5 𝜀௧ିଵ with 100 
simulations. The other panels are straightforward to get. 
 



> plot(arima.sim(list(order=c(0,0,1), ma=0.5), n=100), ylab="ACF", 
main=(expression(MA(1)~~~theta==+.5))) 

 

 

 
Note: The process θ1 > 0 is smoother than the ones with θ1 < 0.  
 
Below, we compute and plot the ACF for the 3 simulated process, using the acf R function. 
 
1)  𝑦௧  = 𝜀௧ + 0.5 𝜀௧ିଵ 
sim_ma1_5 <- arima.sim(list(order=c(0,0,1), ma=0.5), n=200)  
acf_ma1_5 <- acf(sim_ma1_5, main=(expression(MA(1)~~~theta==+.5))) 
> acf_ma1_5 
Autocorrelations of series ‘sim_ma1_6’, by lag 
    0    1 2  3  4   5  6  7  8  9  10  11  12   13  
1.000  0.438  0.069  0.014  0.103  0.173  0.107  0.015 -0.080 -0.054  0.011 -0.006  0.041  0.000  
14  15 16 17  18  19   20 21  22 23  
-0.094 -0.147 -0.129 -0.082 -0.150 -0.196 -0.251 -0.235 -0.021  0.110   
 



 
 
2)   𝑦௧  = 𝜀௧ – 0.9 𝜀௧ିଵ 
sim_ma1_9 <- arima.sim(list(order=c(0,0,1), ma=-0.9), n=200)  
acf_ma1_9 <- acf(sim_ma1_5, main=(expression(MA(1)~~~theta==-0.9))) 
> acf_ma1_9 
Autocorrelations of series ‘sim_ma1_9’, by lag 
    0    1 2  3  4   5  6  7  8  9  10  11  12   13  
 1.000 -0.584  0.093  0.061 -0.132  0.147 -0.181  0.122 -0.013 -0.023  0.014 -0.012  0.092 -0.199   
14  15 16 17  18  19   20 21  22 23  
0.193 -0.155  0.143 -0.107  0.014  0.174 -0.244  0.196 -0.154  0.105 
 

 
 
3)  𝑦௧  = 𝜀௧ – 2 𝜀௧ିଵ 
sim_ma1_2 <- arima.sim(list(order=c(0,0,1), ma=-2), n=200)  
acf_ma1_2 <- acf(sim_ma1_2, main=(expression(MA(1)~~~theta==-2))) 
> acf_ma1_2 
Autocorrelations of series ‘sim_ma1_2’, by lag 
    0    1 2  3  4   5  6  7  8  9  10  11  12   13  
 1.000 -0.524  0.150 -0.064  0.006 -0.014  0.022 -0.070  0.068 -0.015 -0.002  0.054 -0.121  0.055 
14  15 16 17  18  19   20 21  22 23  
-0.029  0.026 -0.054  0.121 -0.156  0.106 -0.009  0.037 -0.080  0.104   
 



 
 
 
• Invertibility: If |θ1| < 1, we can write  (1 + θ1 L)-1 𝑦௧ + μ* = εt  
Or expanding 
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That is, πi = (-θ1)i. 
 
The simulated process with θ1 = -2 is non-invertible, the infinite sum of πi would explode. We 
would select the MA(1) with θ1 = -.5. 
 
 
Moving Average Process – MA(2) 
Example:  yt = μ + θ2 εt-2 + θ1 εt-1 + εt  = μ + θ(L) εt,   
with  
 θ(L) =(1+ θ1 L + θ2 L2). 
 
• Moments 
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Remark: The autocovariance function is zero after lag 2. Similarly, the ACF is also zero after lag 
2. 
 
– Invertibility: The roots of 𝜆ଶ - θ1 𝜆 - θ2 = 0 all lie inside the unit circle. It can be shown the 
invertibility condition for an MA(2) process is:  
 θ1 + θ2 < 1 
  θ1 - θ2 < 1 
 -1 < θ2 <1. 
 
 



Moving Average Process – Estimation 
MA processes are more complicated to estimate. In particular, there are nonlinearities. Consider 
an MA(1):  
  𝑦௧  = θ 𝜀௧ିଵ + 𝜀௧, 𝜀௧ ~ WN. 
 
We cannot do OLS, since we do not observe 𝜀௧ିଵ. But, based on the ACF, we can estimate θ. 
 
• The auto-correlation is ρ1 = θ/(1+θ2). Then, we can use the method of moments (MM), which 
sets the theoretical moments equal to the sample moments and, then, solve for parameters of 
interest. In the MA(1) case, the theoretical formula for ρ1 is: 
 ρ1 ൌ θ/(1 +  θ2) .

  
 
Then, we use the estimated ρ1, 𝑟ଵ, to estimate  θ: 

  𝑟ଵ ൌ
ఏ

ሺଵାఏమሻ
 ⇒   𝜃 ൌ

ଵേටଵିସభ
మ

ଶభ
 

 
A nonlinear solution and difficult to solve. 
 
• Alternatively, if |θ|< 1, we can invert the MA(1) process. Then, based on the AR representation, 
we can try finding a ∈(-1; 1), 
   𝜀௧ሺ𝑎ሻ ൌ 𝑦௧  𝑎𝑦௧ିଵ  𝑎ଶ 𝑦௧ିଶ   … 
 
and look (numerically) for the least-square estimator 

  θ = arg minθ {S(𝒚; θ) = ∑ 𝜀௧ሺ𝑎ሻ்
௧ୀଵ

ଶ
ሽ 

where a௧= θ1
௧. 

   
 
The Wold Decomposition  
Theorem - Wold (1938). 
Any covariance stationary {𝑦௧} has infinite order, moving-average representation: 
  𝑦௧ ൌ 𝑆௧+ 𝜅௧ , 
where  
 𝜅௧ is a deterministic term –i.e., completely predictable. For example, 𝜅௧= μ or a linear 
 combination of past (known) values of 𝜅௧. 
 𝑆௧= ∑ 𝜓

ஶ
ୀ  ε௧ି  (= 𝜓ሺ𝐿ሻε௧ ,  with 𝜓ሺ𝐿ሻ = infinite lag polynomial) 

 ∑ 𝜓
ଶஶ

ୀ  < ∞  (assumption for the stability of polynomial, “square summability”)   
 𝜓 only depend on j  (weights of innovations are not time dependent) 
 𝜓 = 1   (a convenient assumption) 
 𝜀௧ ~ WN(0, σ2) (𝜀௧ independent and uncorrelated with 𝑆௧) 
  
Thus, 𝑦௧  is a linear combination of innovations over time plus a deterministic part. 
 
• A stationary process can be decomposed into a sum of two parts, one represented as an MA(∞) 
and the other a deterministic “trend.” 



 
Example: Let 𝑥௧  = 𝑦௧  – 𝜅௧. (𝑥௧ = MA(∞) part) Then, check moments: 
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{𝑥௧ሽ is a covariance stationary process.   ¶  
 
Remark: This old theorem is the backbone of time series analysis. We will approximate the Wold 
infinite lag polynomial 𝜓ሺ𝐿ሻ with a ratio of two finite lag polynomials. This approximation is the 
basis of ARMA modeling. 
 
 
Autoregressive (AR) Process 
We model the conditional expectation of 𝑦௧, E[𝑦௧|It-1], as a function of its past history. We 
assume 𝜀௧ follows a WN(0, σ2). 
 
The most common models are AR models. An AR(1) model involves a single lag, while an 
AR(p) model involves p lags. Then, the AR(p) process is given by: 
 𝑦௧ = μ + 𝜙ଵ 𝑦௧ିଵ + 𝜙ଶ 𝑦௧ିଶ +... + 𝜙p 𝑦௧ି + 𝜀௧, 𝜀௧ ~ WN. 
 
Using the lag operator, we write the AR(p) process: 
  𝜙ሺLሻ 𝑦௧  ൌ 𝜀௧ 
with  
  𝜙(L) = 1 - 𝜙ଵ L - 𝜙ଶ L2 - ... - 𝜙p Lp 
 
• We can look at an AR(p) process: 
 𝑦௧ = μ + 𝜙ଵ  𝑦௧ିଵ + 𝜙2 𝑦௧ିଶ +... +𝜙p 𝑦௧ି + 𝜀௧,  
as a stochastic (linear) difference equation (SDE). With difference equations we try to get a 
solution –i.e., given some initial conditions/history, we know the value of 𝑦௧ for any 𝑡– and, 
then, we study its characteristics (stability, long-run value, etc.). 
 
The solution to a difference equation can be written as a sum of two solutions: 
1) Homogeneous equation (the part that only depends on the 𝑦௧’s):  
 𝑦௧  = 𝜙ଵ 𝑦௧ିଵ + 𝜙2 𝑦௧ିଶ +... + 𝜙p 𝑦௧ି (set μ + 𝜀௧= 0) 
2) A particular solution to the equation.  
 
Once we get a solution, we study its stability. We want a stable one.  
 
• We get a solution to the simple case, the AR(1) process. 
  𝑦௧  = μ + 𝜙ଵ 𝑦௧ିଵ + 𝜀௧ ,  𝜀௧ ~ WN. 



 
We use the backward substitution method: 
 𝑦௧  = μ + 𝜙ଵ (μ + 𝜙1 𝑦௧ିଶ+ 𝜀௧ିଵ) + 𝜀௧  
 = μ (1 + 𝜙ଵ) + 𝜙ଵ

ଶ 𝑦௧ିଶ+ 𝜀௧ + 𝜙1 𝜀௧ିଵ 
 = μ (1 + 𝜙ଵ) + 𝜙ଵ

ଶ (μ + 𝜙1 𝑦௧ିଷ + 𝜀௧ିଶ) + 𝜀௧ + 𝜙1 𝜀௧ିଵ 
 = μ (1 + 𝜙ଵ + 𝜙ଵ

ଶ) + 𝜙ଵ
ଷ 𝑦௧ିଷ + 𝜀௧ + 𝜙1 𝜀௧ିଵ+ 𝜙ଵ

ଶ 𝜀௧ିଶ 
  ⋮ 
  𝑦௧  = μ (1 + 𝜙ଵ + 𝜙ଵ

ଶ +... + 𝜙ଵ
௧ିଵ) + ∑ 𝜙ଵ

𝜀௧ି
௧ିଵ
ୀ  + 𝜙ଵ

௧  𝑦  
 
The solution is a function of 𝑡, the whole sequence 𝜀௧, 𝜀௧ିଵ, ..., 𝜀ଵ and the initial condition 𝑦. 
The effect of 𝑦 “dies out” if |𝜙1|< 1.  
 
• The stability of the solution is crucial. With a stable solution, Yt does not explode. This is good: 
We need well defined moments. 
 
It turns out that the stability of the equation depends on the solution to the homogenous equation. 
In the AR(1) case: 
    𝑦௧  = 𝜙1 𝑦௧ିଵ  
with solution 𝑦௧  = 𝜙ଵ

௧  𝑦 
 
If |𝜙1|< 1, 𝑦௧ never explodes, as 𝑡 → ∞. In this case, in the solution to the AR(1) process, the 
effect of 𝑦 “dies out” as 𝑡 → ∞. 
 
• We can analyze the stability from the point of view of the roots, z, of the characteristic 
equation of the AR(p) process, 𝜙(L) = 0.  
 
For the AR(1) process 
 𝜙(z) = 1 - 𝜙ଵ z = 0    |z| = 1/|𝜙ଵ| > 1.  
That is, the AR(1) process is stable if the root of 𝜙(z) is greater than one (also said as “the roots 
lie outside the unit circle”). 
 
This result generalizes to AR(p) process. For example, for the AR(3) process  
 𝑦௧ = 𝜙ଵ 𝑦௧ିଵ + 𝜙ଶ 𝑦௧ିଶ + 𝜙3 𝑦௧ିଷ + 𝜀௧ ,  
 𝜙(z) = 1 - 𝜙ଵ z - 𝜙2 z2 - 𝜙3 z3  the roots, z1, z2 & z3, should lie outside the unit circle. 
 
For an AR(p), we need the roots of 𝜙(z) to be outside the unit circle. 
 
For the AR(2),  𝑦௧ = 𝜙ଵ 𝑦௧ିଵ + 𝜙ଶ 𝑦௧ିଶ . 
 
We need the roots of 𝜙(z) to be outside the unit circle. 
 
The characteristic polynomial of the AR(2) can be written as:  
 𝜙(z) = 1 – (𝜆1+ 𝜆2) z – 𝜆1 𝜆2 z2 = (1 – 𝜆1 z) (1 – 𝜆2 z) = 0  
where 𝜙1 = 𝜆1+ 𝜆2, and 𝜙2 = 𝜆1 𝜆2. (𝜆1 & 𝜆2 are eigenvalues or characteristic roots.) 
 



If |𝜆1| < 1, and |𝜆2| < 1, the roots lie outside the unit root  stationary. 
 
Then, some implications for 𝜙ଵ & 𝜙2: 
   |𝜆1 + 𝜆2 |< 2 ⇒|𝜙ଵ| < 2  
   | 𝜆1  𝜆2| < 1 ⇒|𝜙2| < 1 
 
• Summary: 
We say the process is globally (asymptotically) stable if the solution of the associated 
homogenous equation tends to 0, as t → ∞. 
 
Theorem 
A necessary and sufficient condition for global asymptotical stability of a pth order deterministic 
difference equation with constant coefficients is that all roots of the associated lag polynomial 
equation 𝜙(z)=0 have moduli strictly more than 1. 
 
For the case of real roots, moduli means “absolute values.” 
 
 
AR(1) Process – Stationarity & ACF 
An AR(1) model:  
  𝑦௧  = 𝜙ଵ 𝑦௧ିଵ + 𝜀௧, 𝜀௧~ WN. 
Recall that in a previous example, under the stationarity condition |𝜙ଵ| < 1, we derived the 
moments: 
 E[𝑦௧] = μ = 0    (assuming 𝜙ଵ ≠ 1) 
 Var[𝑦௧] = 𝛾ሺ0ሻ = σ2/(1 - 𝜙1

2)  (assuming |𝜙ଵ| < 1) 
 𝛾ሺ1ሻ = E[𝑦௧ 𝑦௧ିଵ] = E[(𝜙ଵ 𝑦௧ିଵ + 𝜀௧) * 𝑦௧ିଵ] = 𝜙ଵ 𝛾ሺ0ሻ   
 𝛾ሺ2ሻ  = E[𝑦௧ 𝑦௧ିଶ] = E[(𝜙ଵ 𝑦௧ିଵ + 𝜀௧) * 𝑦௧ିଶ]  
  = 𝜙ଵ E[𝑦௧ିଵ 𝑦௧ିଶ] = 𝜙ଵ 𝛾ሺ1ሻ = 𝜙ଵ2 𝛾ሺ0ሻ  
  
 𝛾ሺ3ሻ  = E[𝑦௧ 𝑦௧ିଷ] = E[(𝜙1 𝑦௧ିଵ + 𝜀௧) * 𝑦௧ିଷ]  
  = 𝜙ଵ E[𝑦௧ିଵ 𝑦௧ିଷ] = 𝜙1 𝛾ሺ2ሻ = 𝜙1

3 𝛾ሺ0ሻ  
 ⋮ 
 𝛾ሺ𝑘ሻ = 𝜙ଵ 𝛾ሺ𝑘 െ 1ሻ = 𝜙1

k 𝛾ሺ0ሻ  
 

Now, we derive the autocorrelation:  𝜌ሺ𝑡ଵ, 𝑡ଶሻ ൌ
ఊሺ௧1 - ௧2ሻ 

ఙభఙమ
 

If the process is stationary (𝜎௧ ൌ 𝜎௧ିଵ ൌ ඥ𝛾ሺ0ሻሻ 

 𝜌ሺ1ሻ ൌ 𝜌ሺ𝑡,  𝑡 െ 1ሻ ൌ  ఊሺଵሻ 

ఙఙషభ
ൌ 

ఊሺଵሻ 

ఊሺሻ
 = 𝜙1   

 𝜌ሺ2ሻ ൌ  ఊሺଶሻ 
ఊሺሻ

ൌ  𝜙ଵ
ଶ 

 ⋮ 
 𝜌ሺ𝑘ሻ ൌ  ఊሺሻ 

ఊሺሻ
ൌ  𝜙ଵ

 

 
Remark: The ACF decays with k.  
 



Note that when 𝜙ଵ = 1, the AR(1) is non-stationary, 𝜌ሺ𝑘ሻ ൌ  1, for all k. The present and the past 
are always correlated! 
 
• Again, when |𝜙ଵ| < 1, the autocorrelations do not explode as k increases. There is an 
exponential decay towards zero. 
 
Note: 
– when    0 < 𝜙ଵ< 1   All autocorrelations are positive. 
– when  1 < 𝜙ଵ< 0   The sign of 𝜌ሺ𝑘ሻ shows an alternating pattern beginning with a 
negative value. 
 
The plot of 𝜌ሺ𝑘ሻ against 𝑘, is called autocorrelogram.  We also plot 𝜌ሺ0ሻ, which is 1. 
 
 
AR(1) Process – Stationarity & ACF: Simulations 
We simulate and plot three AR(1) processes, with standard normal 𝜀௧-i.e., σ =1:   
  𝑦௧  = 0.5 𝑦௧ିଵ + 𝜀௧ 
  𝑦௧  = -0.9 𝑦௧ିଵ  + 𝜀௧ 
  𝑦௧  = 2 𝑦௧ିଵ  + 𝜀௧ 
 
To simulate ARMA process, we use the arima.sim R function. Below, we start with the plot of 
the first AR(1) process: 
  𝑦௧  = 0.5 𝑦௧ିଵ + 𝜀௧  with 200 simulations. 
 
> plot(arima.sim(list(order = c(1,0,0), ar = 0.5), n=200), ylab="Simulated Series", 
main=(expression(AR(1)~~~phi==+.5))) 
 

 
 



 

 
Note: The process θ1 > 0 is smoother than the ones with θ1 < 0. The process with |θ1| > 1, 
explodes! 
 
Below, we compute and plot the ACF for the the two stable simulated process. 
1)  𝑦௧  = 0.5 𝑦௧ିଵ + 𝜀௧  

 
sim_ar1_5 <- arima.sim(list(order = c(1,0,0), ar = 0.5), n=200)  
acf_ar1_5 <- acf(sim_ar1_5, main=(expression(AR(1)~~~phi==+.5))) 
> acf_ar1_5 
 
Autocorrelations of series ‘sim_ma1_5’, by lag 
     0    1 2  3  4   5  6  7  8  9  10  11  12   13  
 1.000 -0.860  0.720 -0.551  0.427 -0.330  0.258 -0.205  0.183 -0.202  0.209 -0.218  0.213 -0.216  
14  15 16 17  18  19   20 21  22 23  
-0.026 -0.106 -0.123  0.009 -0.009 -0.004 -0.012 -0.015  0.000 -0.008 

 



2)   𝑦௧  = -0.9 𝑦௧ିଵ + 𝜀௧ 
sim_ar1_9 <- arima.sim(list(order=c(1,0,0), ar = -0.9), n=200) 
acf_ar1_9 <- acf(sim_ar1_9, main=(expression(AR(1)~~~phi==-.9))) 
> acf_ar1_9 
 
Autocorrelations of series ‘sim_ma1_9’, by lag 
     0    1 2  3  4   5  6  7  8  9  10  11  12   13  
1.000 -0.584  0.093  0.061 -0.132  0.147 -0.181  0.122 -0.013 -0.023  0.014 -0.012  0.092 -0.199  
14  15 16 17  18  19   20 21  22 23  
0.193 -0.155  0.143 -0.107  0.014  0.174 -0.244  0.196 -0.154  0.105 
 
 
 
AR(1) Process – Stationarity & ACF: Real Data 
Example: A process with |𝜙1|< 1 (actually, 0.065) is the monthly changes in the USD/GBP 
exchange rate. Below we plot its corresponding ACF: 

 
Below we plot the monthly changes in the USD/GBP exchange rate. Stationary series do not 
look smooth: 

 
Example: A process with 𝜙ଵ≈ 1 (actually, 0.99) is the nominal USD/GBP exchange rate. Below, 
we plot the ACF, it is not 1 all the time, but its decay is very slow (after 30 months, it is still .40 
correlated!): 



  
Below we plot the nominal USD/GBP exchange rate.  Stationary series look smooth, smooth 
enough that you can clearly spot trends: 

 
 
AR(1) Process – Stationarity & ACF 
An AR(2) model:  
  𝑦௧  = μ +  𝜙ଵ 𝑦௧ିଵ + 𝜙ଶ 𝑦௧ିଶ + 𝜀௧, εt~ WN. 
 
 
• Moments: 
 E[𝑦௧] = μ/ (1 - 𝜙ଵ - 𝜙ଶ) = 0  (assuming𝜙ଵ+ 𝜙ଶ ≠ 1) 
 Var[𝑦௧] = σ2/(1 - 𝜙1

2 - 𝜙ଶ2)  (assuming 𝜙1
2+ 𝜙ଶ2 < 1) 

 
• Autocovariance function   
 𝛾ሺ𝑘ሻ = Cov[𝑦௧, 𝑦௧ି] = E[(𝜙ଵ 𝑦௧ିଵ + 𝜙ଶ 𝑦௧ିଶ + 𝜀௧) 𝑦௧ି] 
  = 𝜙ଵ E[𝑦௧ିଵ 𝑦௧ି]+ 𝜙ଶ E[𝑦௧ିଶ 𝑦௧ି] + E[𝜀௧ 𝑦௧ି]  
  = 𝜙ଵ 𝛾ሺ𝑘 െ 1ሻ + 𝜙ଶ 𝛾ሺ𝑘 െ 2ሻ + E[𝜀௧ 𝑦௧ି]  
 
• We have a recursive formula: 
(k=0) 𝛾ሺ0ሻ = 𝜙ଵ 𝛾ሺെ1ሻ + 𝜙ଶ 𝛾ሺെ2ሻ + E[𝜀௧ 𝑦௧] 
  = 𝜙ଵ 𝛾ሺ1ሻ + 𝜙ଶ 𝛾ሺ2ሻ + σ2  
(k=1)  𝛾ሺ1ሻ = 𝜙ଵ1 𝛾ሺ0ሻ + 𝜙ଶ 𝛾ሺ1ሻ + E[𝜀௧ 𝑦௧ିଵ] 
  = 𝜙ଵ 𝛾ሺ0ሻ + 𝜙ଶ 𝛾ሺ1ሻ  



  𝛾ሺ1ሻ = [𝜙ଵ/(1 - 𝜙ଶ)] 𝛾ሺ0ሻ 
(k=2)  𝛾ሺ2ሻ = 𝜙ଵ 𝛾ሺ1ሻ + 𝜙ଶ 𝛾ሺ0ሻ + E[𝜀௧ 𝑦௧ିଶ]  
  = 𝜙ଵ 𝛾ሺ1ሻ + 𝜙ଶ 𝛾ሺ0ሻ  
  𝛾ሺ2ሻ = [𝜙1

2 𝛾ሺ0ሻ/(1 - 𝜙ଶ)] + 𝜙2 𝛾ሺ0ሻ  
   = [𝜙1

2/(1 - 𝜙ଶ) + 𝜙ଶ] 𝛾ሺ0ሻ   
Replacing 𝛾ሺ1ሻ and 𝛾ሺ2ሻ back to 𝛾ሺ0ሻ: 
 𝛾ሺ0ሻ = [𝜙1

2 /(1 - 𝜙ଶ)] 𝛾ሺ0ሻ + [𝜙ଶ 𝜙1
2/(1 - 𝜙ଶ) + 𝜙2

2] 𝛾ሺ0ሻ + σ2 
  

  = 
σ2(1 - థ2)

(1 - థ2) ି థ1
2(1 + థ2) + థ2

2(1 - థ2)
   |𝜙ଶ|<1 

 
• Dividing the previous formulas by 𝛾ሺ0ሻ, we get the ACF: 
 𝜌ሺ𝑘ሻ ൌ 𝛾ሺ𝑘ሻ/ 𝛾ሺ0ሻ = 𝜙1 𝜌ሺ𝑘 െ 1ሻ + 𝜙ଶ 𝜌ሺ𝑘 െ 2ሻ + E[𝜀௧ 𝑦௧ି]/ 𝛾ሺ0ሻ  
(k=0) 𝜌ሺ0ሻ = 1 
(k=1)  𝜌ሺ1ሻ = 𝜙ଵ /(1 - 𝜙2) 
(k=2)  𝜌ሺ2ሻ = 𝜙ଵ 𝜌ሺ1ሻ + 𝜙ଶ 𝜌ሺ0ሻ = 𝜙1

2/(1 - 𝜙ଶ) + 𝜙ଶ 
(k=3)  𝜌ሺ3ሻ = 𝜙ଵ 𝜌ሺ2ሻ + 𝜙ଶ 𝜌ሺ1ሻ = 
  = 𝜙1

3/(1 - 𝜙2) + 𝜙1 𝜙ଶ + 𝜙ଶ𝜙1 /(1 - 𝜙ଶ) 
 
Remark: Again, we see exponential decay in the ACF. 
 
From the work above, we need: 𝜙1 + 𝜙2 ≠ 1. 
     𝜙1

2+ 𝜙2
2 < 1. 

     |𝜙2|< 1. 
 
 
AR(p) Process – VAR(1) Representation 
With AR process with more lags than the AR(1) process, it is complicated to determine 
stationarity by looking at the i’s coefficients.  
  
Stationarity conditions can be derived in a simplified way by rewriting an AR(p) as AR(1) 
process. For example, the AR(2) process: 
 𝑦௧ ൌ 𝜇  𝜙ଵ 𝑦௧ିଵ  ଶ𝑦௧ିଶ  𝜀௧  ⇒ ሺ1 െ1 𝐿 െ ଶ𝐿

ଶሻ𝑦௧ ൌ 𝜇  𝜀௧ 
can be written in matrix form as an AR(1): 

ቂ
𝑦௧
𝑦௧ିଵ

ቃ ൌ ቂ
𝜇
0ቃ  

ଵ ଶ
1 0

൨ ቂ
𝑦௧ିଵ
𝑦௧ିଶ

ቃ  ቂ
𝜀௧
0 ቃ      𝑦௧ ൌ 𝜇  𝐴𝑦௧ିଵ  𝜀௧̃ 

 
• The AR(2) in matrix AR(1) form is called Vector AR(1) or VAR(1). 
 
• We can derived a matrix lag polynomial A(L): 
 𝑦௧ ൌ 𝜇  𝐴𝑦௧ିଵ  𝜀௧̃   ⇒ 𝐴ሺ𝐿ሻ𝑦௧ ൌ ሾ𝐼 െ 𝐴𝐿ሿ 𝑦௧ ൌ 𝜀௧̃ . 
 
 
AR(2) Process – VAR(1) & Stationarity 
If A(L) is invertible we can write an MA(∞) representation: 



 𝑦௧ ൌ 𝜇  𝐴𝑦௧ିଵ  𝜀௧̃   ⇒ 𝑦௧ ൌ ሾ𝐼 െ 𝐴𝐿ሿିଵ𝜀௧̃ 
 
Note: Recall the expansion: 
 
Checking that [I – AL] is not singular, same as checking that Aj does not explode. The stability 
of the system (solution) can be determined by the eigenvalues of A. That is, get the λi’s and 
check if |λi|<1 for all i. 

 𝑨 ൌ ቂ𝜙ଵ 𝜙ଶ
1 0

ቃ ⇒ |𝑨 െ 𝜆𝐼| ൌ det ቂ𝜙ଵ െ 𝜆 𝜙ଶ
1 െ𝜆

ቃ ൌ -(𝜙ଵ െ  𝜆ሻ𝜆 െ 𝜙ଶ 

 ൌ 𝜙ଶ െ 𝜙ଵ𝜆   𝜆ଶ 

• Solution to quadratic equation:  𝜆i = 
1 േට1

మିସ2 

ଶ
 

 
Stability and stationary: |𝜆i |< 1.  roots of 𝜙(z) outside unit circle. 
For the AR(2) process, we have already derived some relations between 𝜆i’s and 𝜙i’s: 
 𝜆ଵ𝜆ଶ ൌ 𝜙ଶ ⇒ |𝜆ଵ𝜆ଶ| ൌ |𝜙ଶ| ൏ 1  
 𝜆ଵ  𝜆ଶ ൌ1  ⇒ |𝜆ଵ  𝜆ଶ| ൌ |𝜙ଵ | ൏ 2 
 
• We derived autocovariance function, γ(k), before, getting a recursive formula. Let’s write the 
first autocovariances: 
(k=0) 𝛾ሺ0ሻ = 𝜙ଵ 𝛾ሺ1ሻ + 𝜙2 𝛾ሺ2ሻ + σ2  
(k=1)  𝛾ሺ1ሻ = [𝜙ଵ/(1 - 𝜙2)] 𝛾ሺ0ሻ 
(k=2)  𝛾ሺ2ሻ = [𝜙1

2/(1 - 𝜙2) + 𝜙2] 𝛾ሺ0ሻ 
 
With |2|< 1, we get well defined γ(1), γ(2) & γ(0). 
 
The VAR(1) has a nice property: The VAR(1) is Markov -i.e., forecasts depend only on today’s 
data.  
 
It looks complicated, but it is straightforward to apply the VAR formulation to any AR(p) 
processes. We can also use the same eigenvalue conditions to check the stationarity of AR(p) 
processes. 
 
 
AR Process –Stationarity & Ergodicity 
Theorem: The linear AR(p) process is strictly stationary and ergodic if and only if the roots of 
(L)  are |𝑟 |>1 for all j, where |𝑟 | is the modulus of the complex number 𝑟. 
 
Note: If one of the rj’s equals 1, (L) (& 𝑦௧) has a unit root –i.e., (1)=0. This is a special case of 
non-stationarity. 
 
Recall (L)-1 produces an infinite sum on the εt-j’s. If this sum does not explode, we say the 
process is stable.  
 
 



AR Process – Dynamic Multiplier & IRF 
If the process is stable, we can calculate 

δ௬
δఌషೕ

  

 
δ௬
δఌషೕ

 = How much 𝑦௧ is affected today by an innovation 𝑡 െ 𝑗j periods ago, 𝜀௧ି. When expressed 

as a function of j, we call this dynamic multiplier. Accumulated over time it is the impulse 
response function (IRF). 
 
The dynamic multiplier measurers the effect of an innovation, 𝜀௧, (economist like to call the 𝜀௧’s, 
“shocks”) on subsequent values of 𝑦௧: That is, the first derivative on the “Wold representation” –
i.e., a stationary process represented as an MA process: 

  
δ௬శೕ
δఌ

 = 
δ௬
δఌబ

 = 𝜓.  

where 𝜓′s are the coefficient of MA representation. 
 
For an AR(1) process:  

 
δ௬శೕ
δఌ

 = 
δ௬
δఌబ

 = ϕ. 

 
That is, the dynamic multiplier for any linear stochastic difference equation (SDE) depends only 
on the length of time j, not on time t.  
 
• The impulse-response function (IRF) is an accumulation of the sequence of dynamic 
multipliers, as a function of time from the one time change in the innovation, 𝜀௧. 
 
Usually, IRFs are represented with a graph, that measures the effect of the innovation, 𝜀௧, on 𝑦௧ 
over time: 

 
δ௬శೕ
δఌ

 + 
δ௬శೕశభ
δఌ

 + 
δ௬శೕశమ
δఌ

 +... = 𝜓 + 𝜓ାଵ + 𝜓ାଶ + ... 

 
Once we estimate the AR, MA or ARMA coefficients, we draw an IRF. 

 
 
Example: AR(1) process:    
 𝑦௧ = μ + 𝜙ଵ 𝑦௧ିଵ + 𝜀௧,  𝜀௧ ~ WN. 
The AR(1) is stable if |𝜙ଵ| < 1   stationarity condition. 
 
We invert the AR(1) to get an MA(∞): 1/ሺ1 െ 𝜙ଵሻ ൌ ∑ 𝜙1

ஶ
ୀ    

 



Then, 
 𝑦௧ ൌ μ* + 𝜙ଵ  𝜀௧ିଵ  𝜙ଵ

ଶ𝜀௧ିଶ  𝜙ଵ
ଷ𝜀௧ିଷ  𝜙ଵ

ସ𝜀௧ିସ  ⋯ + 𝜀௧. 
 
Under the stationarity condition, we calculate the dynamic multiplier:    
 δ𝑦௧ାଵ/δ𝜀௧ି = 𝜙1 j 
 
Accumulated over time, after J periods, the effect of shock 𝜀t at t+J is: 
 IRF(at t+J) = ∑ 𝜙1

ିଵ
ୀ  

 
Suppose 𝜙1 = 0.40. Then, 
   δ𝑦௧/δ𝜀௧ିଵ = 𝜙ଵ = 0.40 
   δ𝑦௧/δ𝜀௧ିଶ = 𝜙ଵ = 0.402 
   ⋮ 
   δ𝑦௧/δ𝜀௧ି = 𝜙ଵ = 0.40J 
 
After 5 periods, the accumulated effect of a shock today is:  
  IRF(at t+5) = 0.40 + 0.402 + 0.403 + 0.404 + 0.405 = 0.65984.   ¶  
 
 
AR Process – Causality 
The AR(p) model:  ϕሺ𝐿ሻ𝑦௧ ൌ 𝜇  𝜀௧, 𝜀௧  ~ WN. 
 
where 𝜙ሺ𝐿ሻ ൌ 1 െ 𝜙ଵ𝐿ଵ െ 𝐿ଶ𝜙ଶെ. . . .െ𝜙𝐿 
 
Then, 𝑦௧ ൌ ϕሺ𝐿ሻିଵሺ𝜇  𝜀௧ሻ,    an MA(∞) process! 
 
But, we need to make sure that we can invert the polynomial (L).  
 
When (L) ≠ 0, we say the process 𝑦௧ is causal (strictly speaking, a causal function of {𝜀௧}). 
 
Definition: A linear process {𝑦௧} is causal if there is a  
 
Definition: A linear process {𝑦௧} is causal if there is a  

𝜓ሺ𝐿ሻ ൌ 1  𝜓ଵ𝐿  𝜓ଶ𝐿ଶ  ⋯ 

with ห𝜓ሺ𝐿ሻห

ஶ

ୀ

൏ ∞ 

with 𝑦௧ ൌ 𝜓ሺ𝐿ሻ𝜀௧ . 
 
Example: AR(1) process: 
 ሺ𝐿ሻ𝑦௧ ൌ 𝜇  𝜀௧ ,     where ሺ𝐿ሻ ൌ 1 െ 𝜙ଵ𝐿 
 
Then, yt is causal if and only if:  
 |𝜙ଵ| < 1  (same condition as stationarity)   
or  



 the root 𝑟ଵ of the polynomial (z) = 1 − 1 z satisfies |𝑟ଵ|>1. 
 
Question: How do we calculate the  ‘s coefficients for an AR(p)?  
A: Matching coefficients (𝜇 =0): 

 𝑌௧ ൌ  ଵ

ሺଵିଵሻ
𝜀௧ ൌ⏞

หభหழଵ

∑ 1𝐿𝜀௧
ஶ
ୀ  

  ൌ ሺ1  1𝐿  1ଶ𝐿ଶ  ⋯ሻ 𝜀௧   ⇒ 𝜓 ൌ 1
 ,     𝑖  0 

 
 
AR Process – Estimation and Properties 
We go back to the  general AR(p). Define 
 𝒙௧ ൌ ൫1 𝑦௧ିଵ 𝑦௧ିଶ … . 𝑦௧ି൯ 
 𝛃 ൌ ሺ𝜇 ଵ ଶ . . . . ሻ 
 
Then the model can be written as 
  𝑦௧ ൌ 𝒙௧′𝛃  𝜀௧ 
 
The OLS estimator is 
 𝐛 ൌ ሺ𝑿′𝑿ሻିଵ𝑿′𝒚 
 
• Properties: 
 – Using the Ergodic Theorem, OLS estimator is consistent. 
 – Using the MDS CLT, OLS estimator is asymptotically normal. 
   asymptotic inference is the same.  
 
The asymptotic covariance matrix is estimated just as in the cross-section case: The sandwich 
estimator. 
 
 
ARMA Process 
A combination of AR(p) and MA(q) processes produces an ARMA(p, q) process: 
 𝑦௧ ൌ 𝜇  ଵ𝑦௧ିଵ  ଶ𝑦௧ିଶ  ⋯ .𝑦௧ି  𝜀௧ െ 𝜃ଵ𝜀௧ିଵ െ 𝜃ଶ𝜀௧ିଶ െ ⋯െ 𝜃𝜀௧ି  

  ൌ 𝜇  ∑ 

ୀଵ 𝑦௧ି െ ∑ 𝜃𝐿𝜀௧


ୀଵ  𝜀௧  

  ሺ𝐿ሻ𝑦௧ ൌ 𝜇  𝜃ሺ𝐿ሻ𝜀௧ 
 
Usually, we insist that (L) ≠ 0, θ(L) ≠ 0 & that the polynomials (L), θ(L) have no common 
factors. This implies it is not a lower order ARMA model. 
 
 
ARMA Process – Common Factors 
It is possible to reduce the order of an ARMA structure if the (L) and θ(L) lag polynomials have 
common factors. 
 
Example: Suppose we have the following ARMA(2, 3) model 



 ሺ𝐿ሻ𝑦௧ ൌ 𝜃ሺ𝐿ሻ𝜀௧ 
with 
 ሺ𝐿ሻ ൌ 1 െ .6𝐿  .3𝐿ଶ 
 𝜃ሺ𝐿ሻ ൌ 1 െ 1.4𝐿  .9𝐿ଶ െ .3𝐿ଷ ൌ ሺ1 െ .6𝐿  .3𝐿ଶሻሺ1 െ 𝐿ሻ 
 
This model simplifies to: 𝑦௧ ൌ ሺ1 െ 𝐿ሻ𝜀௧   an MA(1) process.   ¶ 
 
 
ARMA Process – Representation 
An ARMA process can be rewritten as: 

- Pure AR Representation: 𝛱ሺ𝐿ሻሺ𝑦௧ െ 𝜇ሻ ൌ 𝜀௧ ⇒ 𝛱ሺ𝐿ሻ ൌ
ሺሻ

ఏሺሻ
 

 

- Pure MA Representation: ሺ𝑦௧ െ 𝜇ሻ ൌ 𝛹ሺ𝐿ሻ𝜀௧ ⇒ 𝛹ሺ𝐿ሻ ൌ
ఏሺሻ

ሺሻ
 

 
• Special ARMA(p, q) cases:   – p = 0: MA(q) 
     – q = 0: AR(p).  
 
 
ARMA: Stationarity, Causality and Invertibility 
Theorem: If (L) and θ(L) have no common factors, a (unique) stationary solution to  ሺ𝐿ሻ𝑦௧ ൌ
𝜃ሺ𝐿ሻ𝜀௧  exists if and only if 
 |𝑧|  1 ⇒ሺ𝑧ሻ ൌ 1 െ ଵ 𝑧 െ ଶ𝑧

ଶെ. . .െ𝑧
 ് 0.  

 
This ARMA(p, q) model is causal if and only if  
 |𝑧|  1 ⇒ሺ𝑧ሻ ൌ 1 െ ଵ𝑧 െ ଶ𝑧

ଶെ. . .െ 𝑧
 ് 0. 

 
This ARMA(p, q) model is invertible if and only if 
 |𝑧|  1 ⇒ 𝜃ሺ𝑧ሻ ൌ 1  𝜃ଵ𝑧 െ 𝜃ଶ𝑧ଶ. . .𝜃𝑧 ് 0. 
 
Note: Real data cannot be exactly modeled using a finite number of parameters. We choose p, q 
to create a good approximated model. 

  



 
Lecture 9 – ARIMA Models – Identification & Estimation 
 
ARMA Process 
We defined the ARMA(𝑝, 𝑞) model: 
 𝜙ሺ𝐿ሻሺ𝑦௧ െ 𝜇ሻ ൌ 𝜃ሺ𝐿ሻ𝜀௧   
 
The mean does not affect the order of the ARMA. Then, if 𝜇≠0 , we demean the data: 𝑥௧ ൌ 𝑦௧ െ
𝜇. 
 
Then, 𝜙ሺ𝐿ሻ𝑥௧ ൌ 𝜃ሺ𝐿ሻ𝜀௧  xt is a demeaned ARMA process.  
 
• In this lecture, we will study: 
- Identification of  𝑝, 𝑞. 
- Estimation of ARMA(𝑝, 𝑞) 
- Non-stationarity of 𝑥௧. 
- Differentiation issues – ARIMA(𝑝, d, 𝑞) 
- Seasonal behavior  – SARIMA(𝑝, d, 𝑞)S 
 
 
Autocovariance Function (Again)   
We define the autocovariance function: 𝛾ሺ𝑡 െ 𝑗ሻ ൌ 𝐸ሾ𝑦௧ 𝑦௧ିሿ 
 
For an AR(𝑝) process, WLOG with μ=0 (or demeaned 𝑦௧), we get: 
 𝛾ሺ𝑡 െ 𝑗ሻ ൌ 𝐸ൣ൫𝜙ଵ 𝑦௧ିଵ 𝑦௧ି  𝜙ଶ 𝑦௧ିଶ 𝑦௧ି  ⋯ . 𝜙 𝑦௧ି 𝑦௧ି  𝜀௧ 𝑦௧ି൯൧     
  ൌ 𝜙ଵ 𝛾ሺ𝑗 െ 1ሻ  𝜙ଶ𝛾ሺ𝑗 െ 2ሻ. . . . 𝜙 𝛾ሺ𝑗 െ 𝑝ሻ 
 
Notation: γ(k) or γk are commonly used. Sometimes, γ(k) is referred as “covariance at lag k.” 
 
The γ(t-j) determine a system of equations: 
 𝛾ሺ0ሻ ൌ 𝐸ሾ𝑦௧ 𝑦௧ሿ ൌ 𝜙ଵ𝛾ሺ1ሻ  𝜙ଶ𝛾ሺ2ሻ  𝜙ଷ𝛾ሺ3ሻ ⋯ . 𝜙𝛾ሺ𝑝ሻ  𝜎ଶ 
 𝛾ሺ1ሻ ൌ 𝐸ሾ𝑦௧ 𝑦௧ିଵሿ ൌ 𝜙ଵ𝛾ሺ0ሻ  𝜙ଶ𝛾ሺ1ሻ  𝜙ଷ𝛾ሺ2ሻ ⋯ . 𝜙𝛾ሺ𝑝 െ 1ሻ 
 𝛾ሺ2ሻ ൌ 𝐸ሾ𝑦௧ 𝑦௧ିଶሿ ൌ 𝜙ଵ𝛾ሺ1ሻ  𝜙ଶ𝛾ሺ0ሻ  𝜙ଷ𝛾ሺ1ሻ . . . . 𝜙𝛾ሺ𝑝 െ 2ሻ ⋮    ⋮
    ⋮    ⋮    ⋮    ⋮ 
 
This a 𝑝x𝑝 system of equations. Using linear algebra, we can write the system as: 
  Γ 𝜙 = γ 
where Γ is a pxp matrix of autocovariances, with 𝛾ሺ0ሻ on the diagonal; 𝜙 is the px1 vector of 
AR(𝑝) coefficients; and γ is the px1 vector of 𝛾ሺ𝑘ሻ autocovariances 
 
Example: AR(1) model: 
  𝑦௧  = 𝜙ଵ 𝑦௧ିଵ + 𝜀௧, 𝜀௧ ~ WN.  
 
Then, the autocovariance function is: 



 𝛾ሺ0ሻ = 𝐸ሾ𝑦௧ 𝑦௧ሿ = Var[𝑦௧] = σ2 /(1- 𝜙ଵ2)  
 
 𝛾ሺ1ሻ = 𝐸ሾ𝑦௧ 𝑦௧ିଵሿ= E[(𝜙ଵ  𝑦௧ିଵ + 𝜀௧) *  𝑦௧ିଵ] = 𝜙ଵ 𝛾ሺ0ሻ  
 
 𝛾ሺ2ሻ = 𝐸ሾ𝑦௧ 𝑦௧ିଶሿ = E[(𝜙ଵ  𝑦௧ିଵ + 𝜀௧) * 𝑦௧ିଶ] = 𝜙ଵ 𝛾ሺ1ሻ = 𝜙ଵ2 𝛾ሺ0ሻ  
  
 𝛾ሺ3ሻ = 𝐸ሾ𝑦௧ 𝑦௧ିଷ ሿ = E[(𝜙ଵ 𝑦௧ିଵ + 𝜀௧) * 𝑦௧ିଷ] = 𝜙ଵ E[𝑦௧ିଵ  𝑦௧ିଷ]] = 𝜙ଵ3 𝛾ሺ0ሻ  
....  
 𝛾ሺ𝑘ሻ = 𝜙ଵ 𝛾ሺ𝑘 െ 1ሻ = 𝜙ଵk 𝛾ሺ0ሻ    If |𝜙ଵ| < 1, exponential decay.  
 
Under stationarity, moments are constant. That is, 
 Var[𝑦௧] ൌ Var[𝑦௧ିଵ ሿ ൌ ඥ𝛾ሺ0ሻ. ¶ 
 
Example: MA(1) process: 
 𝑦௧  =  θଵ 𝜀௧ିଵ + 𝜀௧,   𝜀௧  ~ WN. 
 
Then, the autocovariance function is: 
 𝛾ሺ0ሻ = σ2 + θଵ

2 σ2 = σ2 (1+ θ1
2)   

 𝛾ሺ1ሻ = E[𝑦௧  𝑦௧ିଵ] = E[(θଵ 𝜀௧ିଵ + 𝜀௧) (θଵ 𝜀௧ିଶ + 𝜀௧ିଵ)] = θ1 σ2  
.....  
 𝛾ሺ𝑘ሻ = E[𝑦௧ 𝑦௧ି] = E[(θଵ 𝜀௧ିଵ + 𝜀௧) (θଵ 𝜀௧ିିଵ + 𝜀௧ି)] = 0  (for k>1)  
 
That is, for |k| > 1,   𝛾ሺ𝑘ሻ = 0. ¶ 
 
Example: ARMA(1,1) process: 
  𝑦௧ ൌ 𝜙ଵ 𝑦௧ିଵ θ1 𝜀௧ିଵ  𝜀௧,   𝜀௧ ~ WN. 
 
𝛾ሺ𝑘ሻ ൌ 𝐸ሾ𝑦௧ 𝑦௧ିሿ ൌ 𝐸ሾሼ𝜙1𝑦௧ିଵ  θ1 𝜀௧ିଵ+ 𝜀௧ሽ 𝑦௧ିሿ

ൌ 𝜙ଵ 𝐸ሾ𝑦௧ିଵ 𝑦௧ିሿ  𝐸ሾ𝜀௧ 𝑦௧ିሿ  θଵ𝐸ሾ𝜀௧ିଵ 𝑦௧ିሿ
ൌ 𝜙ଵ 𝛾ሺ𝑘 െ 1ሻ  𝐸ሾ𝜀௧ 𝑦௧ିሿ  θଵ𝐸ሾ𝜀௧ିଵ 𝑦௧ିሿ 

𝛾ሺ0ሻ ൌ 𝜙1𝛾ሺെ1ሻ  𝐸ሾ𝜀௧ 𝑦௧ሿᇣᇧᇤᇧᇥ
ఙ2

 θଵ𝐸 𝜀௧ିଵ   𝑦௧  ถ
థ1௬షభା ఌ ା θ1ఌషభ

൩

ൌ 𝜙ଵ𝛾ሺ1ሻ   𝜎2 + θଵ𝐸 𝜀௧ିଵሺ𝜙ଵ 𝑦௧ିଵถ  𝜀௧   θ1𝜀௧ିଵሻ
థ1௬షమା ఌషభାθ1ఌషమ

൩

ൌ 𝜙ଵ𝛾ሺ1ሻ  𝜎2  θଵሺ𝜙ଵ 𝜎2  θ1𝜎2ሻ 
 
• Similarly,  
for 𝑘 = 1,  
  𝛾ሺ1ሻ ൌ  𝜙ଵ𝛾ሺ0ሻ  𝐸ሾ𝜀௧ 𝑦௧ିଵሿ  θଵ 𝐸 ሾ𝜀௧ିଵ 𝑦௧ିଵሿ 
 ൌ  𝜙ଵ 𝛾ሺ0ሻ  θଵ𝐸ሾ𝜀௧ିଵሼ𝜙ଵ𝑦௧ିଶ  θଵ 𝜀௧ିଶ+ 𝜀௧ିଵሽሿ 
 ൌ  𝜙ଵ 𝛾ሺ0ሻ  θଵ 𝛾ሺ1ሻ 
 
For 𝑘 = 2,  
  𝛾ሺ2ሻ ൌ  𝜙ଵ𝛾ሺ1ሻ  𝐸ሾ𝜀௧ 𝑦௧ିଶሿ  θଵ 𝐸ሾ𝜀௧ିଵ 𝑦௧ିଶሿ 



 ൌ  𝜙ଵ 𝛾ሺ1ሻ  θଵ𝐸ሾ𝜀௧ିଵሼ𝜙ଵ𝑦௧ିଷ  θ1𝜀௧ିଷ+ 𝜀௧ିଶሽሿ 
 ൌ  𝜙ଵ 𝛾ሺ1ሻ 
 
For a general 𝑘,  
 𝛾ሺ𝑘ሻ ൌ  𝜙ଵ  𝛾ሺ𝑘 െ 1ሻ 
 ൌ 𝜙ଵ

ିଵ𝛾ሺ1ሻ,  𝑘  1    If |𝜙1|<1, exponential decay.  
 
• Two equations for 𝛾ሺ0ሻ and 𝛾ሺ1ሻ: 
 𝛾ሺ0ሻ ൌ 𝜙ଵ 𝛾ሺ1ሻ  𝜎2  θ1 ሺ𝜙ଵ 𝜎2  θ1 𝜎2ሻ 
  𝛾ሺ1ሻ ൌ  𝜙ଵ 𝛾ሺ0ሻ  θ1 𝛾ሺ1ሻ 
Solving for 𝛾ሺ0ሻ & 𝛾ሺ1ሻ:  
  

 𝛾ሺ0ሻ ൌ 𝜎2 ଵ ା θ1
మ ା ଶథଵ θ1

ଵ ି థభ
మ  

 𝛾ሺ1ሻ ൌ 𝜎2 
ሺଵ ା థభ θ1ሻ ∗ ሺథభ ା θ1ሻ

ଵ ି థభ
మ  

  ⋮ 
 𝛾ሺ𝑘ሻ ൌ 𝜙1

ିଵ𝛾ሺ1ሻ,  𝑘  1.   
 
Note: If stationary, ARMA(1,1) & AR(1) show exponential decay. Difficult to distinguish one 
from the other through autocovariances. 
 
 
Autocorrelation Function (ACF) 
Now, we define the autocorrelation function (ACF): 

𝜌ሺ𝑘ሻ ൌ
γ(𝑘)

γ(0)
ൌ

covariance at lag 𝑘
variance

 

 
The ACF lies between -1 and +1, with 𝜌ሺ0ሻ ൌ 1. 
 
Dividing the autocovariance system by γ(0), we get:  
 

 ൦

𝜌ሺ0ሻ 𝜌ሺ1ሻ ⋯ 𝜌ሺ𝑝 െ 1ሻ
𝜌ሺ1ሻ 𝜌ሺ0ሻ ⋯ 𝜌ሺ𝑝 െ 2ሻ
⋮ ⋮ ⋯ ⋮

𝜌ሺ𝑝 െ 1ሻ 𝜌ሺ𝑝 െ 2ሻ ⋯ 𝜌ሺ0ሻ

൪ ൦

𝜙ଵ
𝜙ଶ
⋮
𝜙

൪ ൌ ൦

𝜌ሺ1ሻ
𝜌ሺ2ሻ
⋮

𝜌ሺ𝑝ሻ

൪ 

 
Or using linear algebra: 
   Ρ 𝜙 = ρ 
 
These are “Yule-Walker” equations, which can be solved numerically. 
 
 
Autocorrelation Function (ACF) – Estimation & Correlogram 
• Estimation:   
Easy: Use sample moments to estimate γ(k) and plug in formula: 



𝑟 ൌ 𝜌ො ൌ
∑ሺ𝑌௧ െ 𝑌ሜ ሻሺ𝑌௧ା െ 𝑌ሜ ሻ

∑ሺ𝑌௧ െ 𝑌ሜ ሻଶ
 

 
Then, we plug the 𝜌ො in the Yule-Walker equations and solve for 𝝓: 
   Ρ  𝜙 =  ρ  
 
The sample correlogram is the plot of the ACF against k. As the ACF lies between -1 and +1, the 
correlogram also lies between these values. 
 
• Distribution:  
For a linear, stationary process, with large T, the distribution of the sample ACF, 𝑟 ൌ 𝜌ො is 
approximately normal with: 

  r  
   ௗ  
ሱሮ  N(ρ, V/T),  V is the covariance matrix. 

 
Under H0: ρk = 0   for all k > 1. 

  r  
   ௗ  
ሱሮ  N(0, I/T)   Var[r(k)] = 1/T.  

 
Under H0: ρk = 0 for all k., the SE = 1/√𝑇   95% C.I.: 0 ± 1.96 * 1/√𝑇 
 
Then, for a white noise sequence, approximately 95% of the sample ACFs should be within the 
above C.I. limits.  
 
Note: The SE = 1/√𝑇 are sometimes referred as Bartlett’s SE.  
 
Example: Sample ACF for an AR(1) process:  
Under stationarity (constant moments, in particular, Var[𝑦௧] = Var[𝑦௧ିଵ] = 𝛾ሺ0ሻ): 
 𝜌ሺ𝑘ሻ ൌ  ఊሺሻ 

ఊሺሻ
ൌ  𝜙ଵ

  𝑘 = 0, 1, 2, … 

 
If | 𝜙1 |< 1, the ACF will show exponential decay. 
 
Suppose 𝜙1 = 0.4. Then, 
 𝜌ሺ0ሻ = 1 
 𝜌ሺ1ሻ = 0.4 
 𝜌ሺ2ሻ = 0.42 = 0.16 
 𝜌ሺ3ሻ = 0.43 = 0.064 
 𝜌ሺ4ሻ = 0.44 = 0.0256 
 ⋮   
 𝜌ሺ𝑘ሻ ൌ  0.4k 
 
• We simulate an AR(1) series with with 𝜙1= 0.4, using the R function arima.sim. 
 
sim_ar1_04 <- arima.sim(list(order=c(1,0,0), ar=0.4), n=200)  #simulate AR(1) series 
plot(sim_ar1_04, ylab="Simulated Series", main=(expression(AR(1):~~~phi==0.4))) 
acf(sim_ar1_04)       #plot ACF for sim series 



 

 
 

 
 
 
Example: Sample ACF for an MA(1) process:  
 ρ(0) = 1 
 ρ(𝑘) = θ1/(1+ θ1

2),   for 𝑘 = 1, -1 
 ρ(𝑘) = 0   for |𝑘| > 1. 
After k = 1 –i.e., one lag– the ACF dies out. 
 
Suppose θ1 = 0.5. Then, 
 𝜌ሺ0ሻ = 1 
 𝜌ሺ1ሻ = 0.4 
 𝜌ሺ𝑘ሻ = 0   for |𝑘| > 1. 
 
• We simulate an MA(1) series with 𝜙1=0.4 
sim_ma1_05 <- arima.sim(list(order=c(0,0,1), ma=0.5), n=200)  #simulate MA(1) series 
plot(sim_ma1_05, ylab="Simulated Series", main=(expression(MA(1):~~~theta==0.5))) 
acf(sim_ma1_05)      #plot ACF for sim series 
 
  



 
 
 
 
The goal of these criteria is to provide us with an easy way of comparing alternative model 
specifications, by ranking them.   
 
General Rule: The lower the IC, the better the model. For the previous IC’s, then choose model 
to AICJ, BICJ, or HQIC. 
 
Some remarks about IC’s: 
- IC’s are not test statistics. They do not test a model.\ 
 
 
 
 
 
 
 
 
 
 
 
 
Example: Sample ACF for an MA(q) process: 
 γ(0) = E[𝑦௧  𝑦௧]] = σ2 (1 + θ1

2 + θ2
2 +...+ θq

2)  
 γ(1) = E[𝑦௧  𝑦௧ିଵ] = σ2 (θ1 + θ2 θ1 + θ3 θ2 +...+ θq θq-1)  
 γ(2) = E[𝑦௧  𝑦௧ିଶ]] = σ2 (θ2 + θ3 θ1 +...+ θq θq-2)  
 ⁞ 
 γ(q) = θq 
 
In general, 𝛾ሺ𝑘ሻ ൌ 𝜎ଶ ∑ 𝜃𝜃ି


ୀ   𝑘  𝑞  ሺwith 𝜃 ൌ 1ሻ. 

  ൌ 0      otherwise. 
  

Then, 𝜌ሺ𝑘ሻ ൌ
∑ ఏೕఏೕషೖ

ೕసೖ

൫ଵାఏభ
మାఏమ

మା⋯ାఏ
మ൯

  𝑘  𝑞 

  ൌ 0        otherwise. 
 
For an MA(3): 
 𝑦௧ ൌ 𝜇  𝜀௧  𝜃ଵ𝜀௧ିଵ  𝜃ଶ𝜀௧ିଶ  𝜃ଷ𝜀௧ିଷ 
 
Then, 
 𝜌ሺ0ሻ = 1 

 𝜌ሺ1ሻ = 
ఏభ ା ఏమఏభ ା ఏయఏమ

ሺଵ ା ఏభ
మା ఏమ

మା ఏయ
మሻ

 



 𝜌ሺ2ሻ = 
ఏమ ା ఏయఏభ 

ሺଵ ା ఏభ
మା ఏమ

మା ఏయ
మሻ

 

 𝜌ሺ3ሻ = 
ఏయ 

ሺଵ ା ఏభ
మା ఏమ

మା ఏయ
మሻ

 

  
 𝜌ሺ𝑘ሻ = 0    for |𝑘| > 3. 
 
Suppose θ1 = 0.5; θ2 = 0.4; θ3 = 0.2.  
 
Then, 
 𝜌ሺ0ሻ = 1 
 𝜌ሺ1ሻ = (0.5+0.4*0.5+0.1*0.4)/(1 + 0.52+ 0.42+ 0.12) = 0.5211 
 𝜌ሺ2ሻ = (0.4+0.1*0.5) /(1 + 0.52+ 0.42+ 0.12) = 0.3169 
 𝜌ሺ3ሻ = (0.1)/(1 +0.52 +0.42+ 0.12) = 0.0704 
 𝜌ሺ𝑘ሻ = 0    for | 𝑘 | > 3. 
 
Plot of simulated series and ACF 
> sim_ma3_05 <- arima.sim(list(order=c(0,0,3), ma=c(0.5, 0.4, 0.1)), n=200)   # sim MA(3) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example: Sample ACF for an ARMA(1,1) process: 
  𝑦௧ ൌ 𝜙1𝑦௧ିଵ  𝜀௧  𝜃ଵ𝜀௧ିଵ 
 
From the autocovariances, we get  

 𝛾ሺ0ሻ ൌ 𝜎ଶ ଵାθ1
మାଶథଵ θ1

ଵିథଵ మ
 

 𝛾ሺ1ሻ ൌ 𝜎ଶ
ሺଵାథଵ θ1ሻ∗ሺథଵା θ1ሻ

ଵିథଵ మ
 

 𝛾ሺ𝑘ሻ ൌ 𝜙1𝛾ሺ𝑘 െ 1ሻ ൌ 𝜙1
ିଵ𝜎ଶ

ሺଵାథଵ θ1ሻ∗ሺథଵା θ1ሻ

ଵିథଵ మ
 



 
Then, 

 𝜌ሺ𝑘ሻ ൌ 𝜙1
ିଵ ሺଵ ା థଵ ଵሻ ∗ ሺథଵାଵሻ

ଵ ା ଵమା ଶథଵଵ
 

  
  If | 𝜙ଵ | < 1, exponential decay. Similar pattern to AR(1). 
 
• The ACF for an ARMA(1,1): 

 𝜌ሺ𝑘ሻ ൌ 𝜙1
ିଵ ሺଵ ା థଵ ଵሻ ∗ ሺథଵାଵሻ

ଵ ା ଵమା ଶథଵଵ
 

 
• Suppose  𝜙ଵ = 0.4, θ1 = 0.5. Then, 
 𝜌ሺ0ሻ = 1 

 𝜌ሺ1ሻ ൌ 
ሺଵ ା .ସ ∗ .ହሻ ∗ ሺ.ସ ା .ହሻ

ଵ ା .ହమା ଶ∗.ସ∗.ହ
 = 0.6545  

 𝜌ሺ2ሻ ൌ 0.4 *  
ሺଵ ା .ସ ∗ .ହሻ ∗ ሺ.ସ ା .ହሻ

ଵ ା .ହమା ଶ∗.ସ∗.ହ
 = 0.2618 

 𝜌ሺ3ሻ ൌ 0.42 *  
ሺଵ ା .ସ ∗ .ହሻ ∗ ሺ.ସ ା .ହሻ

ଵ ା .ହమା ଶ∗.ସ∗.ହ
 = 0.0233  

⋮   

 𝜌ሺ𝑘ሻ ൌ0.4k-1 *  
ሺଵ ା .ସ ∗ .ହሻ ∗ ሺ.ସ ା .ହሻ

ଵ ା .ହమା ଶ∗.ସ∗.ହ
 

 
Plot of simulated series ARMA (1,1) and ACF 
> sim_arma11 <- arima.sim(list(order=c(1,0,1), ar=0.4, ma=0.5), n=200)   # sim ARMA(1,1) 

 

 
 



Example: US Monthly Returns (1871 – 2020, T=1,795) 
Sh_da <- read.csv("C://Financial Econometrics/Shiller_2020data.csv", head=TRUE, sep=",") 
x_P <- Sh_da$P 
x_D <- Sh_da$D 
T <- length(x_P) 
lr_p <- log(x_P[-1]/x_P[-T]) 
lr_d <- log(x_D[-1]/x_D[-T]) 
acf_p <- acf(lr_p)    # acf: R function that estimates the ACF 
> acf_p 
Autocorrelations of series ‘lr_p’, by lag 
0 1  2  3  4 5 6  7  8   9     10     11  
1.000  0.279  0.004  -0.043  0.017  0.074  0.039  0.039  0.044  0.035  0.034  0.022  
    12   13      14   15   16 17 18 19 20  21   22     23  
-0.010 -0.059 -0.058 -0.056  0.009  0.033  0.047 -0.040 -0.087 -0.090 -0.029  0.005  
    24  25  26   27   28  29    30 31     32  
 0.003 -0.013 -0.058 -0.018 -0.005  0.026  0.011  0.000  0.020 
 
SE(rk) = 1/sqrt(T) = 1/sqrt(1,795) = .0236.   95% C.I.: ± 2* 0.0236 
 

 
Note: With the exception of first correlation, correlations are small. However, many are 
significant, not strange result when T is large. ¶ 
 
 
Example: US Monthly Changes in Stock Dividends (1871 – 2020, T=1,795) 
> acf_d 
Autocorrelations of series ‘lr_d’, by lag 
0 1  2  3  4 5 6  7  8   9     10     11  
1.000  0.462  0.516  0.432  0.444  0.326  0.442  0.288  0.283  0.265  0.202  0.168 
    12   13      14   15   16 17 18 19 20  21   22     23  
0.142  0.100  0.122  0.123  0.085  0.045  0.026 -0.013  0.001 -0.029 -0.049 -0.077 
   24  25  26   27   28  29    30 31     32  
-0.038 -0.100 -0.095 -0.055 -0.081 -0.092 -0.034 -0.063 -0.089 
 
High correlations and significant even after 32 months!  
 



 
Note: Correlations are positive for almost 1.5 years, then correlations become negative. ¶ 
 
 
ACF – Joint Significance Tests 
Recall the Ljung-Box (LB) statistic as: 

𝐿𝐵 ൌ 𝑇ሺ𝑇  2ሻሺ
𝜌ො
ଶ

ሺ𝑇 െ 𝑘ሻ



ୀଵ

ሻ 

The LB test can be used to determine if the first m sample ACFs are jointly equal to zero. Under 
H0: ρ1= ρ2=...= ρm= 0, the LB has an asymptotic χ2(m) distribution. 
 
Example: LB test with 20 lags for US Monthly Returns and Changes in Dividends (1871 – 
2020) 
> Box.test(lr_p, lag=20, type= "Ljung-Box") 
 
        Box-Ljung test 
 
data:  lr_p 
X-squared = 208.02, df = 20, p-value < 2.2e-16   Reject H0 at 5% level. Joint significant  
first 20 correlations. 
 
> Box.test(lr_d, lag=20, type= "Ljung-Box") 
 
        Box-Ljung test 
 
data:  lr_d 
X-squared = 2762.7, df = 20, p-value < 2.2e-16  Reject H0 at 5% level. Joint significant
 first 20 correlations. ¶ 
 
 
Partial ACF (PACF) 
The ACF gives us a lot of information about the order of the dependence when the series we 
analyze follows a MA process: The ACF is zero after q lags for an MA(q) process. 
 



If the series we analyze, however, follows an ARMA or AR, the ACF alone tells us little about 
the orders of dependence: We only observe an exponential decay.  
 
We introduce a new function that behaves like the ACF of MA models, but for AR models, 
namely, the partial autocorrelation function (PACF).  
 
The PACF is similar to the ACF. It measures correlation between observations that are k time 
periods apart, after controlling for correlations at intermediate lags. 
 
Intuition: Suppose we have an AR(1):   
  𝑦௧ ൌ 𝜙ଵ 𝑦௧ିଵ  𝜀௧. 
Then,   
  𝛾ሺ2ሻ =  𝜙ଵ2 𝛾ሺ0ሻ  
The correlation between yt and yt-2 is not zero, as it would be for an MA(1), because yt is 
dependent on yt-2 through yt-1.  
 
Suppose we break this chain of dependence by removing (“partialing out”) the effect 𝑦௧ିଵ. Then, 
we consider the correlation between [𝑦௧   – 𝜙1 𝑦௧ିଵ] and [𝑦௧ିଶ – 𝜙1

 𝑦௧ିଵ ] –i.e, the correlation 
between yt and yt-2 with the linear dependence of each on yt-1 removed: 
 𝛾ሺ2ሻ = Cov(𝑦௧  – 𝜙ଵ 𝑦௧ିଵ, 𝑦௧ିଶ – 𝜙1

 𝑦௧ିଵ) = Cov(𝜀௧, 𝑦௧ିଶ –  𝜙ଵ𝑦௧ିଵ) = 0. 
 
Similarly, 
 𝛾ሺ𝑘ሻ = Cov(𝜀௧, 𝑦௧ି – 𝜙ଵ 𝑦௧ିଵ) = 0 for all 𝑘  > 1. 
 
Definition: The PACF of  a stationary time series {𝑦௧} is 
ϕଵଵൌ Corrሺ𝑦௧,  𝑦௧ିଵሻ ൌ ρሺ1ሻ 
ϕ  ൌ Corrሺ𝑦௧  – Eሾ𝑦௧|𝐼௧ିଵሿ, 𝑦௧ି  – Eሾ𝑦௧ି|𝐼௧ିଵሿሻ  for ℎ ൌ 2, 3, .... 
 
This removes the linear effects of 𝑦௧ିଵ, 𝑦௧ିଶ, .... 𝑦௧ି. 
 
The PACF Φhh is also the last coefficient in the best linear prediction of 𝑦௧ given 𝑦௧ିଵ, 𝑦௧ିଶ, .... 
𝑦௧ି. 
 
Estimation by Yule-Walker equation, using sample estimates:  
 𝝓 ൌ ሾ𝑹ሿିଵ𝛾ොሺ𝑘ሻ   a recursive system, 
where 𝜙h = (ϕଵ, ϕଶ , ..., ϕ) and 𝑹 is the (ℎxℎ) correlation matrix. 
 
A recursive algorithm, Durbin-Levinson, can be used. Also OLS can be used. 
 
 
Partial ACF – AR(𝒑) 
Example: AR(𝑝) process: 
 𝑦௧ ൌ 𝜇  𝜙ଵ𝑦௧ିଵ  𝜙ଶ𝑦௧ିଶ   …  𝜙𝑦௧ି  𝜀௧ 
 𝐸ሾ𝑦௧|𝐼௧ିଵሿ ൌ 𝜇  𝜙ଵ𝑦௧ିଵ  𝜙ଶ𝑦௧ିଶ   . . . 𝜙𝑦௧ିିଵ 
 𝐸ሾ𝑦௧ି|𝐼௧ିଵሿ ൌ 𝜇  𝜙ଵ𝑦௧ିିଵ  𝜙ଶ𝑦௧ିିଶ   . . . 𝜙𝑦௧ିଵ 
 



Then,   
 ϕ  = ϕ if 1≤ ℎ ≤ 𝑝 
  = 0 otherwise 
 After the 𝑝th PACF, all remaining PACF are 0 for AR(𝑝) processes. ¶ 
 
The plot of the PACF is called the partial correlogram. 
 
R Note: The R function pacf computes the PACF. 
 
Example: We simulate an AR(2) process: 
 𝑦௧ ൌ 𝜇  𝜙ଵ𝑦௧ିଵ  𝜙ଶ𝑦௧ିଶ 𝜀௧ 
 
sim_ar2 <- arima.sim(list(order=c(1,0,0), ar=c(0.5, 0.3)), n=200)  #simulate AR(2) series 
plot(sim_ar2, ylab="Simulated Series", main=(expression(AR(2)))) 
pacf_ar2 <- pacf(sim_ar2)   
 
• Print PACF 
> pacf_ar2 
  1   2  3  4 5 6  7  8   9     10     11  
0.558  0.286  0.038  0.103 -0.010  0.009  0.111  0.060 -0.021 -0.076  0.016 
    12   13      14   15   16 17 18 19 20  21   22     23  
-0.086 -0.139  0.100  0.061 -0.156  0.078 -0.103  0.043 -0.075  0.104  0.024  0.061 
   24  25  26   27   28  29      30 31      32  
-0.038 -0.100 -0.095 -0.055 -0.081 -0.092 -0.034 -0.063 -0.089 
 
SE(rk) ≈ 1/sqrt(200) = .0707    95% C.I.: 0 ± 1.96 * 0.0707 
 
Plot of simulated series and PACF 
> plot(sim_ar2, ylab="Simulated Series", main=(expression(AR(2)))) 
>pacf_ar2 <- pacf(sim_ar2) 
 

 
 



 
 
Note: The PACF can be calculated by h regressions, each one with h lags. The hh coefficient is 
the hth order PACF. 
 
> ar(sim_ar2, order.max=1, method = “ols") 
Coefficients: 
     1   
0.5586   
Intercept: -0.008403 (0.0761)  
Order selected 1  sigma^2 estimated as  1.152 
 
> ar(sim_ar2, order.max=2, method = "ols") 
Coefficients: 
     1       2   
0.3974  0.2869   
Intercept: -0.009847 (0.07326)  
Order selected 2  sigma^2 estimated as  1.063. ¶  
 
 
Partial ACF – MA(𝒒) 
Following the analogy that PACF for AR processes behaves like an ACF for MA processes, we 
will see exponential decay (“tails off”) in the partial correlogram for MA process. Similar pattern 
will also occur for ARMA(p, q) process.  
  
Example: We simulate an MA(1) process with 𝜃ଵ = 0.5. 
sim_ma1 <- arima.sim(list(order=c(0,0,1), ma=0.5), n=200)    
> pacf(sim_ma1) 



 
 
 
Partial ACF – ARMA(p,q) 
For an ARMA processes, we will see exponential decay (“tails off”) in the partial correlogram.  
 
Example: We simulate an ARMA(1) process with 𝜙1= 0.4 & 𝜃ଵ= 0.5. 
sim_arma11 <- arima.sim(list(order=c(1,0,1), ar=0.4, ma=0.5), n=200)    
> pacf(sim_arma11) 

 
 
Partial ACF – Examples 
Example: US Monthly Returns (1871 – 2019, T=1,795) 
pacf_p <- acf(lr_p)    # pacf: R function that estimates the PACF 
> pacf_p 
 
Partial autocorrelations of series ‘lr_p’, by lag 
  1   2  3  4 5 6  7  8   9     10      11  
  0.278 -0.081 -0.026  0.041  0.058  0.002  0.038  0.032  0.016  0.022  0.009   
    12   13      14   15   16 17 18 19 20  21   22      
-0.023 -0.057 -0.032 -0.045  0.027  0.017  0.037 -0.059 -0.051 -0.050  0.005    
   24  25  26   27   28  29      30 31      32  
0.006  0.004 -0.005 -0.051  0.014 -0.007  0.037  0.008  0.018   
 
SE(rk) = 1/sqrt(1,795) = .0236    95% C.I.: 0 ± 1.96 * 0.0236 
 



> pacf(lr_p) 
 

 
 
Note: With the exception of the first partial correlation, partial correlations are small, though, 
again, some are significant. ¶ 
 
 
Example: US Monthly Stock Dividends (1871 – 2020, T = 1,795) 
pacf_d <- pacf(lr_d) 
> pacf_d 
 
Partial autocorrelations of series ‘lr_d’, by lag 
  1  2  3  4 5 6  7  8   9     10     11  
0.462  0.385  0.160  0.150 -0.033  0.189 -0.054 -0.056  0.027 -0.082 -0.019  
 12   13      14   15   16 17 18 19 20  21   22      
-0.023 -0.057 -0.032 -0.045  0.027  0.017  0.037 -0.059 -0.051 -0.050  0.005    
    23 24  25  26   27   28  29    30 31     32  
-0.041  0.050 -0.036 -0.030  0.091  0.006 -0.017  0.044 -0.002 -0.042  
 
Higher partial correlations than for stock returns.   
 
> pacf(lr_d) 
 

 
Note: Partial correlations are positive for almost 6 lags, then become small. ¶ 



 
 
Non-Stationary Time Series Models 
The ACF is as a rough indicator of whether a trend is present in a series. A slow decay in ACF is 
indicative of highly correlated data, which suggests a true unit root process, or a trend stationary 
process. 
 
Formal tests can help to determine whether a system contains a trend and whether the trend is 
deterministic or stochastic (unit root). Popular tests are the ADF(Augmented Dickey-Fuller), PP( 
Philllips-Perron) and KPSS (Kwiatkowski-Phillips-Schmidt-Shin ). 
 
We will analyze two situations faced in ARMA models:  
(1) Deterministic trend  –  Simple model: yt = α + β t + εt. 
– Solution: Detrending –i.e., regress yt on t. Then, keep residuals for further modeling. 
 
(2) Stochastic trend  –  Simple model:  yt = c + yt−1 + εt. 
– Solution: Differencing –i.e., apply ∆ = (1 – L) operator to yt . Then, use ∆yt for further 
modeling. 
 
Example: Below, we plot two series with a clear trend: U.S. Monthly Prices and U.S. Dividends 
(1871 – 2020). 
 
 
 
 
 
 
 
 
 

 
 
Non-Stationary Time Series Models – Deterministic Trend 
Suppose we have the following model:  
 𝑦௧=  +  t + 𝜀௧.   Δ𝑦௧ = 𝑦௧ – 𝑦௧ିଵ 



ሼ𝑦௧} shows only temporary departures, given by the 𝜀௧’s, from trend line  +  𝑡. This type of 
model is a trend stationary (TS) model. 
 
We take first differences in the TS model: 
 Δ𝑦௧ = 𝑦௧ – 𝑦௧ିଵ 

=  +  𝑡 + 𝜀௧ – ( +  ሺ𝑡 െ 1ሻ + 𝜀௧ିଵሻ. 

 
=  + 𝜀௧ – 𝜀௧ିଵ 

 
Taking expectations:  
  E[Δ𝑦௧] =      𝑦௧shows constant change over time. 
 
If a series is TS –i.e., it has a deterministic time trend–, then we simply regress 𝑦௧ on an intercept 
and a time trend (𝑡 = 1, 2, …, T) and save the residuals:  
  𝑒௧ ൌ 𝑦௧ െ ෝ െ  𝑡 
 
The residuals are the detrended 𝑦௧ series (=𝑦௧ without the influence of 𝑡). 
 
If 𝑦௧ is stochastic, we do not necessarily get stationary series, by detrending. 
 
Many economic series exhibit “exponential trend/growth”. They grow over time like an 
exponential function over time instead of a linear function. In this cases, it is common to work 
with logs 
 ln(𝑦௧) = α + β t + 𝜀௧.  ( 𝑦௧ = 𝑒ఈ +  ௧ + ఌ) 
 
 We take first differences in the exponential trend/growth model: 
 Δln(𝑦௧) = ln(𝑦௧) – ln(𝑦௧ିଵ) = α +  𝑡 + 𝜀௧ –   –  ሺ𝑡 െ 1ሻ – 𝜀௧ିଵ 
  =  + 𝜀௧ – 𝜀௧ିଵ 
  The average growth rate is: E[Δln(𝑦௧)] =    
 
• We can have ARMA models, with more complex trend structure: 

𝑦௧ ൌ 𝛼  𝜙
1
𝑦௧ିଵ . . . 𝜙𝑝𝑦௧ି  βଵ𝑡  βଶ𝑡ଶ. . . β𝑡  𝜀௧ . 

 
In these cases, in general, the estimation of ARMA involves two steps, both with OLS. For 
example for the case of AR(𝑝) with a trend and quadratic trend components: 
 
(1) Detrend 𝑦௧: regress 𝑦௧ against a constant, 𝑡, and 𝑡ଶ.  
    get the residuals (=𝑦௧ without the influence of 𝑡). 
 
(2) Estimate AR(𝒑): Use residuals to estimate the AR(𝑝) model.  
 
Note: This 2-step method is usually called Frish-Waugh method. 
 
 
Simulated Example 1: We simulate an AR(1) series with a trend: 

𝑦௧ ൌ 0.3  0.2 𝑦௧ିଵ  0.05 𝑡  𝜀௧ . 
 



T_sim <- 200    # Length of simulation 
y_sim <- matrix(0,T_sim,1)  # vector to accumulate simulated data  
u <- rnorm(T_sim, sd = 1)  # Draw T_sim normally distributed errors 
mu <- 0.3    # Constant 
phi1 <- 0.2    # Change to create different AR(1) patterns 
mu_t <- .05    # Trend coefficient 
y_sim[1] <- mu/(1 - phi1)  # Initial observation (= to unconditional mean &  t=0) 
t <- 2     # Time index for observations 
while (t <= T_sim) {   
y_sim[t] = mu + phi1 * y_sim[t-1] +  mu_t * t + u[t] # y_sim simulated autocorrelated values    
t <- t + 1 
}  
y_det_t <- y_sim[2: T_sim] 
plot(y_det_t, type="l", col = "blue", main = "Simulated Series with a Deterministic Trend") 
 
# Detrend series 
T_sim1 <- length(y_det_t) 
trend <- c(1:T_sim1) 
fit_det_t <- lm(y_det_t ~ trend) 
y_det_t_filt <- fit_det_t$residuals   # Filtered series 
plot(y_det_t_filt, type="l", main = "Detrended Simulated Series") 
 
• Below, we plot the simulated AR(1) series (blue) and the detrended simulated series (red). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Remark: There is no longer a trend, only the AR(1) component remains in the detrended series. 
 
Simulated Example 2:  Now, in the previous simulated example, we add a quadratic trend: 

𝑦௧ ൌ 0.3  0.2 𝑦௧ିଵ  0.05 𝑡  0.003 𝑡ଶ  𝜀௧ . 
 
mu_t2 <- .003    # Trend square coefficient 
t <- 2     # Time index for observations 
while (t <= T_sim) {   
y_sim[t] = mu + phi1 * y_sim[t-1] +  mu_t * t + u[t] # y_sim simulated autocorrelated values    
t <- t + 1 
}  
y_det_t <- y_sim[2: T_sim] 
 
# Detrend series with only a linear trend 
trend <- c(1:(T_sim1-1)) 
fit_det_t <- lm(y_det_t ~ trend) 
y_det_t_filt <- fit_det_t$residuals  # Filtered series 
 
• Below, we plot the simulated AR(1) series (blue) and the detrended series from the above  
regression, which only involves a constant (violet). 
 
plot(y_det_t, type="l", col = "blue", main = "Simulated Series with a Deterministic Trend") 
 

 
 
plot(y_det_t_filt, type="l", main = "Detrended Simulated Series") 



 
 
Remark: We made a mistake, we detrended a series with a linear and a quadratic trend, using a 
model with only a linear trend. As observe above, an unexpected deterministic (U-shape) 
patterns shows up in the detrended series –i.e., the residuals. We need to detrend using an 
appropriate model, with a linear and quadratic trends. This is what we do below: 
 
## Detrend series with a linear & Quadratic trends 
trend2 <- trend^2fit_det_t <- lm(y_det_t ~ trend + trend2) 
y_det_t_filt <- fit_det_t$residuals  # Filtered series 
plot(y_det_t_filt, type="l", col = "violet", main="Detrended Simulated Series") 
 
• Below, we plot the detrended simulated series with a linear and quadratic trends (red). 
 

 
Remark: A series with a quadratic trend, needs to be detrended with a quadratic trend, otherwise 
extra patterns (U-shape, in this case) appear. Once we use an appropriate detrending model, we 
use the detrended series –i.e., the residuals– for furthering (ARMA) modeling. 
 
 
 
Example: We detrend U.S. Stock Prices 
T <- length(x_P)    # length of series 
trend <- c(1:T)     # create trend 



det_P <- lm(x_P ~ trend)   # regression to get detrended e 
detrend_P <- det_P$residuals 
plot(detrend_P, type="l", col="blue", ylab ="Detrended U.S. Prices", xlab ="Time") 
title("Detrended U.S. Stock Prices") 
 
 
 
 
 
 
 
 
 
 
 
 
 
• Not very appealing series. We still see trends and an extra U-shape pattern shows up in 
detrended series. Now, we detrend U.S. Stock Prices adding a squared trend. 
 
trend2 <- trend^2 
det_P2 <- lm(x_P ~ trend + trend2)  # regression to get detrended e 
detrend_P2 <- det_P2$residuals 
plot(detrend_P2, type="l", col="blue", ylab ="Detrended U.S. Prices", xlab ="Time") 
title("Detrended U.S. Stock Prices with linear and quadratic trends") 
 
 
 
 
 
 
 
 
 
 
 
 
 
• Still, trends and an extra pattern are still observed. It is possible that there is exponential growth 
in original series. Then, we detrend Log U.S. Stock Prices adding, first,  a linear trend and. 
Second, both a linear and square trends. 
 
l_P <- log(x_P) 
det_lP <- lm(l_P ~ trend)   # regression to get detrended e 
detrend_lP <- det_lP$residuals 
plot(detrend_lP, type="l", col="blue", ylab ="Detrended Log U.S. Prices", xlab ="Time") 



title("Detrended Log U.S. Stock Prices") 
 
det_lP2 <- lm(l_P ~ trend + trend2)  # regression to get detrended e 
det_lP2 <- det_lP2$residuals 
plot(det_lP2, type="l", col="blue", ylab ="Det Log U.S. Prices", xlab ="Time") 
title("Detrended Log U.S. Stock Prices with linear and quadratic trends") 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Remark: The second detrended series, with linear and quadratic trends looks better, but we still 
see trends in the graph, and, thus, evidence of a time dependent mean. ¶ 
 
 
Non-Stationary Time Series Models – Stochastic Trend 
The more modern approach is to consider trends in time series as a variable.  
 
A variable trend exists when a trend changes in an unpredictable way. Therefore, it is considered 
as stochastic. 
 
Recall the AR(1) model: 𝑦௧ = c + 𝜙1 𝑦௧ିଵ+ 𝜀௧. 
 
As long as || < 1, everything is fine, we have a stationary AR(1) process: OLS is consistent, t-
stats are asymptotically normal, etc. 
 
 Now consider the extreme case where 𝜙1 = 1,  𝑦௧= c + 𝑦௧ିଵ + 𝜀௧. 
 
 Where is the (stochastic) trend? No t term. 
 
Let us replace recursively the lag of yt on the right-hand side: 
 𝑦௧  = μ + 𝑦௧ିଵ + 𝜀௧ 
   = μ + (μ + 𝑦௧ିଶ + 𝜀௧ିଵ) + 𝜀௧ 
  ... 
  = 𝑦 + t μ + ∑ 𝜀௧ି

௧
ୀ  

 



A constant (y0), a determinist trend (t μ) and an accumulation of errors over time (∑ 𝜀௧ି
௧
ୀ ) 

appear in the recursive formulation. This is what we call a “random walk with drift”. The series 
grows with t. 
 
Each εt shock represents a shift in the intercept. All values of {εt} have a 1 as coefficient   
  each shock never vanishes (permanent). 
 
We remove the trend by differencing 𝑦௧  ∆𝑦௧ = (1 – L) 𝑦௧ = μ + 𝜀௧ 
 
Note: Applying the (1 − L) operator to a time series is called differencing 
 
Example: We difference U.S. Stock Prices, using the diff R function: 
diff_P <- diff(x_P) 
> plot(diff_P,type="l", col="blue", ylab ="Differenced U.S. Stock Prices", xlab ="Time") 
> title("Differenced U.S. Stock Prices") 
 
 
 
 
 
 
 
 
 
 
 
 
 
Remark: The trend is gone from the graph. ¶ 
 
• 𝑦௧ is said to have a stochastic trend (ST), since each εt shock gives a permanent and random 
change in the conditional mean of the series.  
 
For these situations, we use Autoregressive Integrated Moving Average (ARIMA) models.  
 
Question: Deterministic or Stochastic Trend? 
They appear similar: Both lead to growth over time. The difference is how we think of εt. Should 
a shock today affect 𝑦௧ାଵ? 
 – TS:   𝑦௧ାଵ= c +  (t+1) + 𝜀௧ାଵ      𝜀௧ does not affect 𝑦௧ାଵ.  
 – ST:   𝑦௧ାଵ = c + 𝑦௧ + 𝜀௧ାଵ= c + [c + 𝑦௧ିଵ + 𝜀௧] + 𝜀௧ାଵ  𝜀௧ affects 𝑦௧ାଵ. (In fact,  
       the shock will have a permanent impact.)  
 
 
ARIMA(𝒑, 𝒅, 𝒒) Models 
For 𝑝, 𝑑, 𝑞 ≥ 0, we say that a time series {𝑦௧} is an ARIMA (𝑝, 𝑑, 𝑞) process if 𝑤௧ = Δௗ  𝑦௧ = 
ሺ1 െ 𝐿ሻௗ  𝑦௧ is ARMA(𝑝, 𝑞). That is, 



𝜙ሺ𝐿ሻሺ1 െ 𝐿ሻௗ  𝑦௧ ൌ 𝜃ሺ𝐿ሻ 𝜀௧   
 
Applying the (1 − L) operator to a time series is called differencing. 
 
Notation: If 𝑦௧ is non-stationary, but Δௗ𝑦௧ is stationary, then 𝑦௧ is integrated of order 𝑑, or I(𝑑). 
A time series with unit root is I(1), typical of asset prices. A stationary time series is I(0), typical 
of log changes of asset prices (returns).  
 
Examples: 
Example 1: RW:  𝑦௧  = 𝑦௧ିଵ + 𝜀௧.  
yt is non-stationary, but   
 (1 − L) 𝑦௧  = 𝜀௧  white noise! 
Now, 𝑦௧   ~ ARIMA(0,1,0). 
 
Example 2: AR(1) with time trend:  𝑦௧   = μ + δ t + 𝜙1 𝑦௧ିଵ + 𝜀௧. 
𝑦௧  is non-stationary, but     
𝑤௧  = (1 − L) 𝑦௧ = μ + δ t + 𝜙1 𝑦௧ିଵ + 𝜀௧ – (μ + δ (t-1) + 𝜙1 𝑦௧ିଶ + 𝜀௧ିଵ   
 = δ + 𝜙1 𝑤௧ିଵ  + 𝜀௧  – 𝜀௧ିଵ 
Now, 𝑦௧ ~ ARIMA(1,1,1). 
 
We call both process first difference stationary. ¶ 
 
 
Note:  
− Example 1: Differencing a series with a unit root in the AR part of the model reduces the AR 
order. 
− Example 2: Differencing can introduce an extra MA structure. We introduced non-invertibility. 
This happens when we difference a TS series. Detrending should be used in these cases.  
 
 
• In practice:  
A root near 1 of the AR polynomial   differencing 
A root near 1 of the MA polynomial   over-differencing 
 
• In general, we have the following results:  
- Too little differencing: not stationary. 
- Too much differencing: extra dependence introduced.  
 
• Finding the right d is crucial. For identifying preliminary values of d: 
- Use a time plot. 
- Check for slowly decaying (persistent) ACF/PACF. 
 
 
ARIMA Models: Unit Roots 1? 
Example 1: Monthly Stock Price levels (1871-2020) 
acf_P <- acf(x_P) 



> acf_P 
Autocorrelations of series ‘x_p’, by lag 
 
0 1  2  3  4 5 6  7  8   9     10     11  
1.000  0.992  0.984  0.977  0.971  0.966  0.961  0.954  0.946  0.938  0.931  0.924      
 12   13      14   15   16 17 18 19 20  21   22     23  
0.917  0.911  0.904  0.897  0.891  0.884  0.877  0.871  0.865  0.860  0.854  0.848  
   24  25  26   27   28  29    30 31     32  
0.841  0.834  0.827  0.821  0.815  0.809  0.803  0.797  0.790  
 
 

 
 

 
Very high autocorrelations. Looks like 𝜙1 ≈ 1. ¶ 
 
Example 2: Monthly Interest Rates (1871-2020) 
acf_i <- acf(x_i) 
> acf_i 
Autocorrelations of series ‘x_i’, by lag 
0 1  2  3  4 5 6  7  8   9     10     11  
1.000  0.996  0.990  0.985  0.980  0.975  0.970  0.965  0.960  0.956  0.951  0.946  
 12   13      14   15   16 17 18 19 20  21   22     23  
0.940  0.934  0.929  0.924  0.919  0.915  0.912  0.908  0.904  0.901  0.899  0.896    
 24  25  26   27   28  29    30 31     32  
0.894  0.891  0.889  0.887  0.884  0.882  0.879  0.877  0.874  
 



 
 

 
Very high autocorrelations. Looks like 𝜙1 ≈ 1. ¶ 
 
 
ARIMA Models – Random Walk 
A random walk (RW) is defined as a process where the current value of a variable is composed 
of the past value plus an error term defined as a white noise (a normal variable with zero mean 
and variance one). 
 
A Random Walk is an ARIMA(0,1,0) process  

𝑦௧ ൌ 𝑦௧ିଵ  𝜀௧    ⇒ 𝛥𝑦௧ ൌ ሺ1 െ 𝐿ሻ𝑦௧ ൌ 𝜀௧ ,   𝜀௧ ~ 𝑊𝑁ሺ0,𝜎ଶሻ. 
 
Popular model. Used to explain the behavior of financial assets, unpredictable movements 
(Brownian motions, drunk persons).  
 
It is a special case (limiting) of an AR(1) process: a unit-root process. 
 
Implication:  E[𝑦௧ାଵ|𝐼௧] = 𝑦௧   ∆𝑦௧ is absolutely random. 
 
Thus, a RW is nonstationary, and its variance increases with t. 
 
Examples: Two simulated RW 
T_sim <- 200     # Sample size for simulation 
u <- rnorm(200)    # Draw T_sim normally distributed errors 
y_sim <- matrix(0,T_sim,1)   # Vector to collect simulated data 
phi <- 1     # Change to create different correlation patterns 



a <- 2      # Time index for observations 
mu <- 0     # RW Drift (mu = 0, no drift) 
while (a <= T_sim) { 
   y_sim[a] = mu + rho * y_sim[a-1] + u[a] # y_sim simulated autocorrelated values   
a <- a + 1 
}  
plot(y_sim, type="l", col="blue", ylab ="Simulated Series", xlab ="Time") 
title("Simulated RW Series with no drift") 
 
 
 
 
 
 
 
 
 
 

Remark: The (stochastic trends) are clear in both graphs. ¶ 

 
 
ARIMA Models – Random Walk with Drift 
Change in 𝑦௧  is partially deterministic (𝜇) and partially stochastic. 
  𝑦௧ െ 𝑦௧ିଵ ൌ 𝛥𝑦௧ ൌ 𝜇  𝜀௧ 
 
It can also be written as 
 𝑦௧ = 𝑦 + t μ  + ∑ 𝜀௧ି

௧
ୀ  

 εt has a permanent effect on the mean of yt . 
 
Recall the difference between conditional and unconditional forecasts: 
 E[𝑦௧] = 𝑦  + t μ   (Unconditional forecast) 
  E[yt+s |𝑦௧] = 𝑦௧  + s μ   (Conditional forecast) 
 
 
ARIMA Models: Box-Jenkins 
An effective procedure for building empirical time series models is the Box-Jenkins approach, 
which consists of three stages:  
(1) Identification or Model specification (of ARIMA order) 
(2) Estimation of identified ARM(𝑝, 𝑞) structure. 
(3) Diagnostics testing: Checking that residuals are white noise. 
 
Two main approaches to (1) Identification.  
- Correlation approach: Mainly based on ACF & PACF. 
1) Make sure data is stationary –check a time plot. If not, differentiate. 



2) Using ACF & PACF, guess small values for p & q. 
 
- Information criteria: Very common situation: The order choice not clear from looking at ACF 
& PACF. Then, use AIC (or AICc), BIC, or HQIC (Hannan and Quinn (1979)).  
This is the usual (& easier) approach. 
 
Value parsimony. When in doubt, keep it simple (KISS). 
 
 
ARIMA Models: Identification – ACF & PACF 
Basic tools: sample ACF and sample PACF. 
   - ACF identifies order of MA: Non-zero at lag q; zero for lags > q. 
   - PACF identifies order of AR: Non-zero at lag 𝑝; zero for lags  > 𝑝. 
   - All other cases, try ARMA(𝑝, 𝑞) with 𝑝 > 0 and q > 0. 
 
Summary: For p>0 and q>0. 
 

 
AR(p) MA(q) ARMA(p, q) 

ACF Tails off 0 after lag q Tails off 

PACF 0 after lag p Tails off Tails off 

 
Note: Ideally, “Tails off” is exponential decay. In practice, in these cases, we may see a lot of 
non-zero values for the ACF and PACF. 
 
ARIMA Models: Identification – AR(1) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
ARIMA Models: Identification – MA(1) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ARIMA Models: Identification – ARMA(1,1) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

  



ARIMA Models: Identification – Examples 
Example 1: Monthly US Returns (1871 - 2020). 

 

 
Note: ARMA(1,1), MA(1), AR(2)?  
 
Example 2: Monthly US Dividend Changes (1871 - 2020). 

 
 

 
 
Note: Not clear: Maybe long a ARMA(p,q) or needs differencing? ¶ 



 
Example 3: Monthly Log Changes in Oil Prices (1973 - 2020). 
 

 
 

 
Note: MA(1), AR(4)? ¶ 
 
Example 4: Monthly Log Changes in Gold (1973 - 2020). 
 

 
 



 
Note: No clear ARMA structure. ¶ 
 
 
ARIMA Model: Identification – IC 
In general, it is not easy to identify an ARMA model using the ACF and PACF. It is common to 
rely on information criteria (IC). 
  
IC’s are equal to the estimated variance or the log-likelihood function plus a penalty factor, that 
depends on k. Many IC’s: 
 
- Akaike Information Criterion (AIC) 
 AIC = -2 * (ln L – k) = -2 ln L + 2 * k   
   if normality AIC = T * ln(e’e/T) + 2* k         (+constants) 
 
- Bayes-Schwarz Information Criterion (BIC or SBIC) 
 BIC = -2 * ln L – ln(T) * k 
   if normality AIC = T * ln(e’e/T) + ln(T) * k   (+constants) 
 
- Hannan-Quinn (HQIC) 
 HQIC = -2*(ln L – k  [ln(ln(T))] 
   if normality AIC = T * ln(e’e/T) + 2 k [ln(ln(T))] (+constants) 
 
 It is very common to compute the IC’s under normality (it is the default setting in R and almost 
all other packages). Recall that under normality, we write the Likelihood function as: 
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constant

 

 
Since we compare different ARIMA models, using the same data, the constants play no role in 
our decision. They can be ignored. Then,  
 - AIC = T * ln(σෝଶ) + 2 * k           
 - BIC = T * ln(σෝଶ) + ln(T) * k     
 - HQIC = T * ln(σෝଶ) + 2 * k * [ln(ln(T))] 
 



The goal of these criteria is to provide us with an easy way of comparing alternative model 
specifications, by ranking them.   
 
General Rule: The lower the IC, the better the model. For the previous IC’s, then choose model 
to AICJ, BICJ, or HQIC. 
 
 
ARIMA Model: Identification – Remarks 
Some remarks about IC’s: 
- IC’s are not test statistics. They do not test a model. 
- They are used for ranking. The raw value tends to be ignored. 
- They have two components: a goodness of fit component –based on lnL– and a model 
complexity component –the penalty based on k. 
- Different penalties, different IC’s. 
- Some authors scale the IC’s by T. Since raw values tend to be irrelevant, this is not an issue. 
 
We would like these statistics –i.e., the IC’s– to have good properties. For example, if the true 
model is being considered among many, we want the IC to select it. This can be done on average 
(unbiased) or as T increases (consistent). 
 
Some results regarding AIC and BIC.  
- AIC and Adjusted R2 are not consistent. 
- AIC is conservative –i.e., it tends to over-fit: kAIC too large models. 
- In time series, AIC selects the model that minimizes the out-of-sample one-step ahead forecast 
MSE.  
- BIC is more parsimonious than AIC. It penalizes the inclusion of parameters more (kBIC ≤ kAIC). 
- BIC is consistent in autoregressive models. 
- No agreement which criteria is better. 
 
 
ARIMA Model: Identification – Small Sample Modifications 
• There are modifications of IC to get better finite sample behavior, a popular one is AIC 
corrected, 𝐴𝐼𝐶𝑐, statistic: 

 𝐴𝐼𝐶𝑐 ൌ 𝑇 𝑙𝑛𝜎ොଶ  ଶሺାଵሻ

்ିିଵ
 

 
𝐴𝐼𝐶𝑐 converges to AIC as T gets large. Using AICc is not a bad idea. 
  
For AR(p) models, other AR-specific criteria are possible: Akaike’s final prediction error (FPE), 
Akaike’s BIC, Parzen’s CAT. 
 
Hannan and Rissannen’s (1982) minic (=Minimum IC): Calculate the BIC for different p’s 
(estimated first) and different q’s. Select the best model –i.e., lowest BIC. 
 
Note: Box, Jenkins, and Reinsel (1994) proposed using the AIC above. 
 



R Note: The R function auto.arima uses 𝐴𝐼𝐶𝑐 to select 𝑝, 𝑞; 𝑑 is selected using a formal unit root 
test (KPSS). 
 
 
 
ARIMA Model: Identification – In practice 
Example: We compute, for monthly US Returns (1871 - 2020), annan and Rissannen (1982)’s 
minic, based on AIC. 

Minimum Information Criterion 

Lags MA 0 MA 1 MA 2 MA 3 MA 4 MA 5 

AR 0 -6403.59 -6552.94 -6552.69 -6554.27 -6552.88 -6557.37 

AR 1 -6545.22 -6552.23 -6551.86 -6552.42 -6552.64 -6561.48 

AR 2 -6554.76 -6553.28 -6554.85 -6554.35 -6564.32 -6559.48 

AR 3 -6553.94 -6552.53 -6554.44 -6552.33 -6550.36 -6558.52 

AR 4 -6554.98 -6559.83 -6559.92 -6558.94 -6554.1 -6558.16 

AR 5 -6558.81 -6558.65 -6557.45 -6555.78 -6558.66 -6556.06 

 
Note: Best Model is ARMA(2,4); other potential candidates: ARMA(1,5), ARMA(4,2), ARMA 
(5,0). 
 
R Note: R has a couple of functions that select automatically the “best” ARIMA model: 
armaselect (using package caschrono) minimizes BIC and auto.arima (using package forecast) 
minimizes AIC, AICc (default) or BIC. 
> armaselect(lr_p)    # shows the best 10 models according to BIC 
      p q       sbc 
 [1,] 2 0 -11644.79 
 [2,] 1 0 -11641.53 
 [3,] 3 0 -11637.71 
 [4,] 4 0 -11632.43 
 [5,] 5 0 -11629.95 
 [6,] 2 1 -11627.42 
 [7,] 6 0 -11621.70 
 [8,] 1 3 -11620.18 
 [9,] 3 1 -11619.93 
[10,] 2 2 -11619.44 
 
> auto.arima(lr_p, ic="bic", trace=TRUE)   # ic=“BIC”.  
function approximates models.  



  
Fitting models using approximations to speed things up... 
 
 ARIMA(2,0,2) with non-zero mean : -6519.957 
 ARIMA(0,0,0) with non-zero mean : -6392.599 
 ARIMA(1,0,0) with non-zero mean : -6527.879 
 ARIMA(0,0,1) with non-zero mean : -6536.548 
 ARIMA(0,0,0) with zero mean     : -6385.246 
 ARIMA(1,0,1) with non-zero mean : -6529.358 
 ARIMA(0,0,2) with non-zero mean : -6530.806 
 ARIMA(1,0,2) with non-zero mean : -6523.415 
 ARIMA(0,0,1) with zero mean     : -6534.284 
 
 Now re-fitting the best model(s) without approximations... 
 
 ARIMA(0,0,1) with non-zero mean : -6536.463 
 
> auto.arima(lr_p, ic="bic", max.p=5, max.q = 5, trace=TRUE) # approximates models.  
Series: lr_p  
ARIMA(0,0,1) with non-zero mean  
Coefficients: 
         ma1    mean 
      0.2880  0.0037 
s.e.  0.0218  0.0012 
sigma^2 estimated as 0.001523:  log likelihood=3279.47 
AIC=-6552.94   AICc=-6552.93   BIC=-6536.46 
 
Note: The function auto.arima does not try a lot of models, it tries to keep the p+q ≤ 5. ¶ 
 
Remark: Do not take the results from auto.arima or armaselect or minic as the final model. We 
still need to check the residuals are WN.  
 
• Script in R to select model using arima function. 
p <- 6      # set max order for AR part: p-1 
q <- 6      # set max order for Ma part: q-1 
npq <- p*q 
aic_m <- matrix(0,nrow = npq, ncol=3)  # matrix collects p, q, AIC: AIC in last 
column 
j <- 0 
k <- 1 
while (j < p) { 
i <- 0 
while (i < q) { 
mod_j <- arima(lr_p, order=c(i,0,j))  # fit arima(p,0,q) process 
aic_m[k,] <- cbind(i, j, mod_j$aic)  # extract aic from arima fit model 
i <- i + 1 



k <- k + 1 
} 
j <- j + 1 
} 
aic_m      # Print all the results AR(i), MA(j), AIC 
min_aic <- min(aic_m[,3])   # Minimum AIC 
min_aic      # Print Minimum 
which(aic_m == min_aic, arr.ind=TRUE) # Prints the row 
 
 
ARIMA Model: Identification – Final Remarks 
There is no agreement on which criteria is best. The AIC is the most popular, but others are also 
used.  
 
Asymptotically, the BIC is consistent –i.e., it selects the true model if, among other assumptions, 
the true model is among the candidate models considered.  
 
The AIC is not consistent, generally producing too large a model, but is more efficient –i.e., 
when the true model is not in the candidate model set the AIC asymptotically chooses whichever 
model minimizes the MSE/MSPE. 
 
 
ARIMA Process – Estimation 
We assume: 
- The model order (d, p and q) is known. Make sure yt is I(0). 
- The data has zero mean (μ=0). If this is not reasonable, demean y . 
 
Fit a zero-mean ARMA model to the demeaned yt: 
  𝜙ሺ𝐿ሻሺ𝑦௧ െ �̄�ሻ ൌ 𝜃ሺ𝐿ሻ𝜀௧ 
 
Several ways to estimate an ARMA(p, q) model: 
1) Maximun Likelihood Esimation (MLE). Assume a distribution, usually a normal distribution, 

and, then, do ML.  
2) Yule-Walker for ARMA(p,q). Method of moments. Not efficient. 
3) Innovations algorithm for MA(q).  
4) Hannan-Rissanen algorithm for ARMA(p, q). 
 
 
ARIMA Process – Estimation: MLE 
Steps: 
1) Assume a distribution for the errors. Typically, .i.i.d. normal, say: 
  𝜀௧~ i.i.d. N(0,σ2) 

  pdf:  𝑓ሺ𝜀௧ሻ ൌ
ଵ

√ଶగ
exp ቂെ ఌ

మ

ଶమ
ቃ 

 
2) Write down the joint pdf for 𝜺:  f(𝜀ଵ, ..., 𝜀்) = f(𝜀ଵ) ... f(𝜀்) 



Note: We are not writing the joint pdf in terms of the 𝑦௧’s, as a multiplication of the marginal 
pdfs because of the dependency in 𝑦௧.  
 
3) Get εt. For the general stationary ARMA(p,q) model: 
 𝜀௧ ൌ 𝑦௧ െ 𝜙1𝑦௧ିଵ െ ⋯െ 𝜙𝑝𝑦௧ି െ 𝜃ଵ𝜀௧ିଵ െ ⋯െ 𝜃𝜀௧ି 
(if μ≠0, demean 𝑦௧.) 
 
4) The joint pdf for {𝜀ଵ. ..., 𝜀்) is: 

 L  ൌ  𝑓൫𝜀ଵ,⋯ , 𝜀்ห𝜇,𝜙, 𝜃,𝜎ଶ ൯ ൌ ൫2𝜋𝜎ଶ ൯
ି்/ଶ

exp ൜െ ଵ

ଶఙమ
∑ 𝜀௧ଶ

௧ୀଵ ൠ 

 
5) Let Y = (𝑦ଵ, 𝑦ଶ,... , 𝑦்). With an AR(p, q) model, we need p and q initial lags for 𝑦௧ and 𝜀௧. 
We assume that initial conditions Y* =(𝑦, 𝑦ିଵ, ... , 𝑦ିାଵ)’ and 𝜀∗= (𝜀, 𝜀ିଵ, … , 𝜀ିାଵ)’ are 
known. 
 
6) The conditional log-likelihood function is given by 

 L = ln L ൫𝜇,𝜙,𝜃,𝜎ଶ ൯ ൌ െ ்

ଶ
ln൫2𝜋𝜎ଶ ൯ െ ௌ∗ሺఓ,థ,ఏሻ

ଶఙమ
 

where 𝑆∗ሺ𝜇,𝜙,𝜃ሻ ൌ ∑ 𝜀௧ଶሺ𝜇,𝜙,𝜃|𝑌,𝑌∗, 𝜀∗ሻ
௧ୀଵ   is the conditional sum of squares (SS). 

 
Note: Usual Initial conditions: 𝑦∗ ൌ �̄� and 𝜀∗ ൌ 𝐸ሾ𝜀௧ሿ ൌ 0. 
 
• Numerical optimization problem, where initial values (y*) matter. 
 
Example: AR(1) process: 

  𝑦௧ ൌ 𝜙1 𝑦௧ିଵ  𝜀௧ ,   𝜀௧ ~
..ௗ.

𝑁൫0,𝜎ଶ ൯. 
- Write down the joint likelihood for εt  

 L  ൌ  𝑓ሺ𝜀ଵ,⋯ , 𝜀ሻ ൌ ሺ2𝜋𝜎ሻି/ଶ exp ൜െ ଵ

ଶఙమ
∑ 𝜀௧ଶ

௧ୀଵ ൠ 

First, we need to solve for εt: 
 𝑌ଵ ൌ 𝜙1 𝑌  𝜀ଵ    → Let's take 𝑌 ൌ 0 
 𝑌ଶ ൌ 𝜙1 𝑌ଵ  𝜀ଶ    ⇒ 𝜀ଶ ൌ 𝑌ଶ െ 𝜙1 𝑌ଵ 
 𝑌ଷ ൌ 𝜙1 𝑌ଶ  𝜀ଷ    ⇒ 𝜀ଷ ൌ 𝑌ଷ െ 𝜙1 𝑌ଶ 
 ⋮ 
 𝑌 ൌ 𝜙1 𝑌ିଵ  𝜀 ⇒ 𝜀 ൌ 𝑌 െ 𝜙1 𝑌ିଵ 
 
Technical note: The joint likelihood is in terms of 𝜀௧. We want to change the joint from εt to yt, 
for this, we need the Jacobian |J|. 
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Then,  
𝑓ሺ𝑌ଶ,⋯ ,𝑌|𝑌ଵሻ ൌ 𝑓ሺ𝜀ଶ,⋯ , 𝜀ሻ|𝐽| ൌ 𝑓ሺ𝜀ଶ,⋯ , 𝜀ሻ 

 
- Then, the likelihood function can be written as 



 Lሺ𝜙1,𝜎ଶሻ ൌ 𝑓ሺ𝑌ଵ,⋯ ,𝑌ሻ ൌ 𝑓ሺ𝑌ଵሻ𝑓ሺ𝑌ଶ,⋯ ,𝑌|𝑌ଵሻ ൌ 𝑓ሺ𝑌ଵሻ𝑓ሺ𝜀ଶ,⋯ , 𝜀ሻ 
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- Then, the log likelihood function: 
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where S*(𝜙1) is the conditional SS and S(𝜙1) is the unconditional SS. 
 
• F.o.c.’s: 

 
డ൫థ1,ఙమ ൯

డథ1
 = 0 

 
డ൫థ1,ఙమ ൯

డఙ
 = 0 

 
Note:  
- If we neglect ln(1 𝜙1

2), then MLE = Conditional LSE. 
  max

థ
 𝐿൫𝜙1,𝜎ଶ ൯ ൌ min 𝑆 ሺ𝜙1ሻ. 

- If we neglect both ln(1 𝜙1
2) and ൫1 െ 𝜙1

ଶ൯𝑌ଵ
ଶ, then 

  max
థ
𝐿൫𝜙1,𝜎ଶ ൯ ൌ min 𝑆 ൫𝜙1∗൯. ¶ 

 
ARIMA Process – Estimation: Yule-Walker 
Yule-Walker for AR(p): Regress yt against yt-1, yt-2 ,. . . , yt-p 
Yule-Walker for ARMA(p, q): Method of moments. Not efficient.  
 
Example: For an AR(p), we the Yule-Walker equations are   

 ൦

𝜌ሺ0ሻ 𝜌ሺ1ሻ ⋯ 𝜌ሺ𝑝 െ 1ሻ
𝜌ሺ1ሻ 𝜌ሺ0ሻ ⋯ 𝜌ሺ𝑝 െ 2ሻ
⋮ ⋮ ⋯ ⋮

𝜌ሺ𝑝 െ 1ሻ 𝜌ሺ𝑝 െ 2ሻ ⋯ 𝜌ሺ0ሻ

൪ ൦

𝜙ଵ
𝜙ଶ
⋮
𝜙

൪ ൌ ൦

𝜌ሺ1ሻ
𝜌ሺ2ሻ
⋮

𝜌ሺ𝑝ሻ

൪ 

 
Method of Moments (MM) Estimation: Equate sample moments to population moments, and 
solve the equation. In this case, we use: 



 𝐸ሺ𝑌௧ሻ ൌ
ଵ

்
∑ 𝑌௧்
௧ୀଵ ⇒ 𝜇 ൌ 𝑌ሜ  

 𝐸ሾሺ𝑌௧ െ 𝜇ሻሺ𝑌௧ି െ 𝜇ሻሻ ൌ ଵ

்
∑ ሺ𝑌௧ െ 𝜇ሻሺ𝑌௧ି െ 𝜇ሻሻ்
௧ୀଵ  ⇒ 𝛾 ൌ 𝛾ො ሺ& 𝜌 ൌ 𝜌ොሻ 

 
• Then, the Yule-Walker estimator for 𝜙 is given by solving 

 ൦

1 𝜌ොሺ1ሻ ⋯ 𝜌ොሺ𝑝 െ 1ሻ
𝜌ොሺ1ሻ 1 ⋯ 𝜌ොሺ𝑝 െ 2ሻ
⋮ ⋮ ⋯ ⋮

𝜌ොሺ𝑝 െ 1ሻ 𝜌ොሺ𝑝 െ 2ሻ ⋯ 1

൪

⎣
⎢
⎢
⎡𝜙
ଵ
𝜙ଶ
⋮
𝜙⎦
⎥
⎥
⎤
ൌ ൦

𝜌ොሺ1ሻ
𝜌ොሺ2ሻ
⋮

𝜌ොሺ𝑝ሻ

൪ 

 ⇒ 𝜙 ൌ 𝑅୮
ିଵ
𝜌ො ¶ 

 
Note: If 𝛾ො  0,  then, 𝛤 is nonsingular. 
 
• If {Yt} is an AR(p) process, 

 𝜙
 ௗ 
ሱ⎯⎯ሮ𝑁 ൬𝜙,

ఙమ

்
𝛤ିଵ൰ 

 𝜙
 ௗ 
ሱ⎯⎯ሮ𝑁 ቀ0, ଵ

்
ቁ  for k  p. 

• Thus, we can use the sample PACF to test for AR order, and we can calculate approximated 
C.I. for 𝜙. 
 
• Distribution: 
If 𝑦௧ is an AR(p) process, and T is large, 

 √𝑇൫𝜙 െ 𝜙൯ ~
௫.

𝑁൫0,𝜎ොଶ𝛤ିଵ൯ 
 
100(1)% approximate C.I. for j is 

 𝜙 േ 𝑧ఈ/ଶ
ఙෝ

√்
൫𝛤ିଵ൯

ଵ/ଶ
 

 
Note: The Yule-Walker algorithm requires Γ-1.  
 
• For AR(p).  The Levinson-Durbin (LD) algorithm avoids Γ-1. It is a recursive linear algebra 
prediction algorithm. It takes advantage that Γ is a symmetric matrix, with a constant diagonal 
(Toeplitz matrix). Use LD replacing γ with 𝛾ො. 
 
Side effect of LD: automatic calculation of PACF and MSPE. 
 
Example 1: AR(1) (MM) estimation:   
  𝑦௧ ൌ 𝜙ଵ𝑦௧ିଵ  𝜀௧ 
It is known that 1 = 𝜙ଵ. Then, the MME of 𝜙ଵ is 
  ⇒ 𝜌ଵ ൌ 𝜌ොଵ 

 𝜙ଵ ൌ 𝜌ොଵ ൌ
∑ ሺିሜ ሻሺషభିሜ ሻ

సభ

∑ ሺିሜ ሻమ
సభ

  

• Also, σ2 is unknown:  𝛾 ൌ
ఙమ

൫ଵିథ1
మ൯
⇒ 𝜎ොଶ ൌ 𝛾ො ቀ1 െ 𝜙ଵ

ଶ
ቁ. ¶ 

 



Example 2: Suppose we suspect an AR(3). We have estimated 𝜌ොଵ, 𝜌ොଶ, and 𝜌ොଷ. Then,  

  
1 𝜌ොଵ 𝜌ොଶ
𝜌ොଵ 1 𝜌ොଵ
𝜌ොଶ 𝜌ොଵ 1

൩ 
𝜙ଵ
𝜙ଶ
𝜙ଷ
൩ ൌ 

𝜌ොଵ
𝜌ොଶ
𝜌ොଷ
൩ 

Suppose we get: 𝜌ොଵ= 0.5, 𝜌ොଶ = 0.4, and 𝜌ොଷ = -0.3. Then, solving for 𝝓: 

  
𝜙ଵ
𝜙ଶ
𝜙ଷ

 = 
1 0.5 0.4

0.5 1 0.5
0.4 0.5 1

൩

ିଵ


0.5
0.4
െ0.3

൩ ൌ 
0.555
0.511
െ0.777

൩ 

 
• Solving system with R: 
Rho <- matrix(c(1, 0.5, 0.4, 0.5, 1, 0.5, 0.4, 0.5, 1), nrow=3) 
r <- c(.5, 0.4, -0.3) 
solve(Rho)%*%r. ¶ 
 
Example: MA(1) process with MM estimation:   
  𝑦௧ ൌ 𝜀௧ െ θ1𝜀௧ିଵ 
Again using the autocorrelation of the series at lag 1, 

 𝜌ଵ ൌ െ θ1

൫ଵାθ1
మ൯
ൌ 𝜌ොଵ 

 θ1
ଶ𝜌ොଵ  θ1  𝜌ොଵ ൌ 0 

 𝜃ଵ,ଶ ൌ
ିଵേටଵିସఘෝభ

మ

ଶఘෝభ
 

• Choose the root satisfying the invertibility condition. For real roots: 
1 െ 4𝜌ොଵ

ଶ  0  ⇒ 0.25  𝜌ොଵ
ଶ  ⇒ െ0.5  𝜌ොଵ  0.5 

 
If 𝜌ොଵ ൌ േ 0.5, unique real roots but non-invertible. 
 
If |𝜌ොଵ| ൏ 0.5, unique real roots and invertible. ⇒ We keep this one. ¶ 
 
• Remarks 
- The MMEs for MA and ARMA models are complicated.  
- In general, regardless of AR, MA or ARMA models, the MMEs are sensitive to rounding 
errors. They are usually used to provide initial estimates needed for a more efficient nonlinear 
estimation method.  
- The moment estimators are not recommended for final estimation results and should not be 
used if the process is close to being nonstationary or noninvertible.  
 
 
ARIMA Process – Estimation: Yule-Walker – Remarks 
The MM estimations for MA and ARMA models are complicated.  
 
In general, regardless of AR, MA or ARMA models, the MMEs are sensitive to rounding errors.  
 
They are usually used to provide initial estimates needed for a more efficient nonlinear 
estimation method.  



 
The moment estimators are not recommended for final estimation results and should not be used 
if the process is close to being nonstationary or noninvertible.  
 
 
ARIMA Process – Estimation: Hannan-Rissanen 
Hannan-Rissanen algorithm for ARMA(p,q) 
 
Steps: 
1. Estimate high-order AR. 
2. Use Step (1) to estimate (unobserved) noise εt  
3. Regress yt against 𝑦௧ିଵ, 𝑦௧ିଶ, ..., 𝑦௧ି, 𝜀௧̂ିଵ, ... ,  𝜀௧̂ି 
4. Get new estimates of εt. Repeat Step (3).   
 
Example: We estimate a ARIMA(0,0,1) model for S&P 500 historical returns, using the arima 
function, part of the R forecast package. 
> arima(lr_p, order=c(0,0,1), method="ML")  #ML estimation method 
Call: 
arima(x = lr_p, order = c(0, 0, 1), method = "ML") 
Coefficients: 
         ma1  intercept 
      0.2880     0.0037 
s.e.  0.0218     0.0012 
sigma^2 estimated as 0.001522:  log likelihood = 3279.47,  aic = -6552.94. ¶ 
 
Note: Model was selected by ACF/PACF and confirmed with auto.arima function. Not a lot of 
structure in stock returns. 
 
Example: We use auto.arima function to estimate a model for DIS, GE, and IBM returns. 
 
> auto.arima(lr_dis) 
Coefficients: 
         ar1    mean 
      0.0538  0.0072 
s.e.  0.0419  0.0038 
sigma^2 estimated as 0.007462:  log likelihood=588.13 
AIC=-1170.25   AICc=-1170.21   BIC=-1157.22 
 
> auto.arima(lr_ge) 
Coefficients: 
         ar1      ma1 
      0.0592  -0.9848 
s.e.  0.0428   0.0096 
sigma^2 estimated as 0.005591:  log likelihood=667.5 
 
Note: For both DIS & GE returns, we observe low AR(1) coefficient, and not significant.  



 
> auto.arima(lr_ibm) 
Series: lr_ibm  
ARIMA(0,0,0) with zero mean  
sigma^2 estimated as 0.005126:  log likelihood=694.13 
AIC=-1386.26   AICc=-1386.25   BIC=-1381.91 
sigma^2 estimated as 0.001522:  log likelihood = 3279.47,  aic = -6552.94.  
 
Note: Unpredictable! In general, we do not find a lot of structure in stock returns; 
autocorrelations die out very quickly. This result is expected, given the Efficient Markets 
Hypothesis. ¶ 
 
Example: We use auto.arima function to estimate a model for changes in oil prices. 
> auto.arima(lr_oil) 
Series: lr_oil  
ARIMA(4,0,0) with zero mean  
Coefficients: 
         ar1      ar2      ar3      ar4 
      0.2950  -0.1024  -0.0570  -0.0984 
s.e.  0.0521   0.0543   0.0551   0.0539 
 
sigma^2 estimated as 0.008913:  log likelihood=344.52 
AIC=-679.04   AICc=-678.87   BIC=-659.55 
 
Note: AR(4)  ⇒ significant autocorrelation in changes in oil prices, but mainly decaying at .30. 
 
Example: We use auto.arima function to estimate a model for monthly U.S. interest long rates 
(1871 – 2020). 
> auto.arima(x_i) 
Series: x_i  
ARIMA(0,1,2)  
Coefficients: 
         ma1      ma2 
      0.4012  -0.0957 
s.e.  0.0236   0.0238 
sigma^2 estimated as 0.02719:  log likelihood=690.02 
AIC=-1374.04   AICc=-1374.03   BIC=-1357.56 
 
Note: We need to differentiate interest rates to get a stationary MA(2) model. ¶ 
 
 
ARIMA Process – Diagnostic Tests 
Once the model is estimated, we run diagnostic tests. Usually, we check for extra-AR structure in 
the mean. We check visual plots of residuals, ACFs, and the distribution of residuals. More 
formally, we compute the LB test on the residuals. If we find extra-AR structure, we increase p 
and/or q. 



 
R Note: If we use arima() or auto.arima() functions, we can use the function checkresiduals() to 
do the plots and testing for us.  
 
Example: We check the MA(1) model for U.S. historical stock returns 
> fit_arima_lr_p <- arima(lr_p, order=c(0,0,1), method="ML") 
> checkresiduals(fit_arima_lr_p) 
 
        Ljung-Box test 
 
data:  Residuals from ARIMA(0,0,1) with non-zero mean 
Q* = 18.579, df = 8, p-value = 0.01728    There seems to be more AR structure 
 
Model df: 2.   Total lags used: 10 
 

 
 
R Note: We check stationarity/invertibility too -i.e., if the roots are inside the unit circle. In this 
case, an MA model, stationarity is not an issue (MA are stationary), but invertibility is. We use 
the R function autoplot, part of the forecast package. Be aware that autoplot plots the inverse 
roots, not the roots; in this case, a stationary AR (or invertible MA) process will have the inverse 
roots inside the unit circle. 
 
> autoplot(fit_arima_lr_p) 
 



 
Note: The inverse root is inside the unit circle and are real: invertible MA(1).  ¶ 
 
Example: We change the model for U.S. stock returns. We estimate an ARIMA(1,0,5). 
> fit_arima_lr_p15 <- arima(lr_p, order=c(1,0,5)) 
> fit_arima_lr_p15 
 
Coefficients: 
         ar1      ma1      ma2      ma3     ma4     ma5   intercept 
      0.7077  -0.4071  -0.1965  -0.0671  0.0338  0.0807     0.0035 
s.e.  0.1039   0.1058   0.0392   0.0263  0.0256  0.0250     0.0014 
 
sigma^2 estimated as 0.001502:  log likelihood = 3278.2,  aic = -6540.4 
 
> checkresiduals(fit_arima_lr_p15) 
        Ljung-Box test 
 
data:  Residuals from ARIMA(1,0,5) with non-zero mean 
Q* = 1.7047, df = 3, p-value = 0.6359  The joint 10 lag autocorrelation not significant.  
 
Model df: 7.   Total lags used: 10 
 



 
Note: We still see some small autocorrelations different from 0.  
 
We check the stationarity and invertibility of ARIMA(1,0,5) model  
> autoplot(fit_arima_lr_p15) 

 
Note: All inverse roots inside the unit circle: stationary and invertible. Notice that we have some 
roots on the MA part that are imaginary. ¶ 
 
Example: We check the fit of the ARIMA model for U.S. long interest rates 
> fit_arima_i <- auto.arima(x_i) 
ARIMA(0,1,2)  
Coefficients: 



         ma1      ma2 
      0.4012  -0.0957 
s.e.  0.0236   0.0238 
 
sigma^2 estimated as 0.02719:  log likelihood=690.02 
AIC=-1374.04   AICc=-1374.03   BIC=-1357.56 
 
> checkresiduals(fit_arima_i) 
 
        Ljung-Box test 
data:  Residuals from ARIMA(0,1,2) 
Q* = 34.029, df = 8, p-value = 4.014e-05  Again, more AR or MA structure needed 
 
Model df: 2.   Total lags used: 10 

 
Note: We still see some large autocorrelations.  change model (usually, increase p and/or q). 
But, we may in the presence of a series with regime change. We may need to focus on 2nd regime 
(post 1950s). 
 
We check the invertibility of ARIMA(0,1,2) model  
> autoplot(fit_arima_i) 



 
Note: All inverse roots are inside the unit circle. MA process is invertible. Notice that all roots 
are real. ¶ 
 
Example: We check the fit of the ARIMA(4,0,0) model selected by auto.arima for changes in 
Oil Prices. 
fit_arima_oil<- auto.arima(lr_oil) 
> fit_arima_oil 
Series: lr_oil  
ARIMA(4,0,0) with zero mean  
 
Coefficients: 
        ar1     ar2     ar3     ar4 
      0.295  -0.102  -0.057  -0.098 
s.e.  0.052   0.054   0.055   0.054 
 
sigma^2 estimated as 0.00891:  log likelihood=344.52 
AIC=-679.04   AICc=-678.87   BIC=-659.55 
 
> checkresiduals(fit_arima_oil) 
 
        Ljung-Box test 
 
data:  Residuals from ARIMA(4,0,0) with zero mean 
Q* = 2.72, df = 9, p-value = 0.84   No significant joint AR structure  
 
Model df: 4.   Total lags used: 10 
 



 
Note: Nothing significant. Happy with fit. Ready to forecast.  
 
We check the stationarity of AR(4) model 
> autoplot(fit_arima_oil) 

 
Note: All (inverse) roots inside the unit circle –we have imaginary roots. ¶ 
 
 
Non-Stationarity in Variance 
Stationarity in mean does not imply stationarity in variance. However, non-stationarity in mean 
implies non-stationarity in variance. 
 
If the mean function is time dependent: 
1. The variance, Var(yt) is time dependent. 
2. Var[yt] is unbounded as t ∞. 



3. Autocovariance functions and ACFs are also time dependent. 
4. If t is large with respect to the initial value y0, then k  1. 
 
• It is common to use variance stabilizing transformations: Find a function G(.) so that the 
transformed series G(yt) has a constant variance. Very popular transformation: 
 
1) Log transformation: 
  𝐺ሺ𝑌௧ሻ ൌ log ሺ𝑌௧ሻ  
 
Example: We log transform the monthly variable Total U.S. Vehicle Sales data (1976: Jan – 
2020: Sep): 
ts_car <- ts(x_car,start=c(1976,1),frequency=12)  
plot.ts(ts_car,xlab="Time",ylab="div", main="Total U.S. Vehicle Sales") 

 
l_car <- log(ts_car) 
> plot.ts(l_car,xlab="Time",ylab="div", main="Log Total U.S. Vehicle Sales")library(tseries) 

 
Note: The volatility is significantly reduced by the log transformation. ¶ 
 
2) Box-Cox transformation: 

   Gሺ𝑌௧ሻ ൌ

ഊିଵ

ఒ
  

where 𝜆 > 0, usually between 0 and 2 (it can be estimated too). When 𝜆=1, we have a linear 𝑦௧; 
when 𝜆 → 0, we have a log transformation for 𝑦௧.  
 
Example: We do a Box-Cox transformation of the monthly variable Total U.S. Vehicle Sales 
data (1976: Jan – 2020: Sep), setting 𝜆 = 0.75: 
lambda <- 0.75 
b_cox_car <- (ts_car^lambda - 1)/lambda 
> plot.ts(b_cox_car, xlab="Time",ylab=“cars", main=" Box-Cox Total U.S. Vehicle Sales") 



 
Note: Again, we see a reduced volatility. But, different 𝜆s will have a different impact on 
volatility. ¶ 
 
Remarks:  
- Variance stabilizing transformation is only done for positive series, usually for nominal series 
(say, in USD total retail sales or units, like Total U.S. vehicle sales).  
- If a series has negative values, then, we need to add each value with a positive number so that 
all the values in the series are positive.  
- Then, we can search for any need for transformation. 
- It should be performed before any other analysis, such as differencing. 
- Not only stabilize the variance, but we tend to find that it also improves the approximation of 
the distribution by the Normal distribution. 
 
 
Seasonal Time Series 
In time series, seasonal patterns (“seasonalities”) can show up in two forms: additive and 
multiplicative. 
- Additive: The seasonal variation is independent of the level. 
- Multiplicative: The seasonal variation is a function of the level.  
 

 
Note: In the multiplicative case, the amplitude of the seasonal pattern is changing over time, 
while in the additive the amplitude is constant. 
 
Examples: We simulate the two seasonal patterns, additive and multiplicative, with trend and no 
trend. 
A. With trend 



 
 
 
 
 
 
 
 
 
 
B. With no trend 
 
 
 
 
 
 
 
 
 
 
 
• In the presence of seasonal patterns, we proceed to do seasonal adjustments to remove these 
predictable influences, which can blur both the true underlying movement in the series, as well 
as certain non-seasonal characteristics which may be of interest to analysts. 
 
The type of adjustment depends on how we view the seasonal pattern: Deterministic or 
Stochastic. 
 
Similar to the situation where the series had a trend, once we determine the nature of the seasonal 
pattern, we filter the series –i.e., we remove the seasonal patter- to conduct further ARIMA 
modeling. 
 
When we work with a nominal series (not changes, say, USD total retail sales or total units sold), 
it is common to first apply a variance stabilizing transformation to the data, usually using logs.  
 
 
Seasonal Time Series – Types 
Two types of seasonal behavior: 
- Deterministic – Usual treatment: Build a deterministic function, 

𝑓ሺ𝑡ሻ ൌ 𝑓ሺ𝑡  𝑘 ൈ 𝑠ሻ,   𝑘 ൌ 0,േ1,േ2,⋯ 
 
We can include seasonal (means) dummies, for example, monthly or quarterly dummies. (This is 
the approach in Brooks’ Chapter 10). 
 



Instead of dummies, trigonometric functions (sum of cosine curves) can be used. A linear time 
trend is often included in both cases. 
 
-Stochastic – Usual treatment: SARIMA model. For example: 
  𝑦௧ ൌ 𝜃 𝛷ଵ 𝑦௧ି௦   𝜀௧  𝛩ଵ𝜀௧ି௦ 
or  
  ሺ1 െ 𝛷ଵ𝐿௦ሻ 𝑦௧ ൌ ሺ1 െ 𝛩ଵ𝐿௦ሻ 𝜀௧ 
where s the seasonal periodicity –associated with the frequency– of 𝑦௧. For quarterly data, s = 4; 
monthly, s= 12; daily, s = 7, etc.  
 
 
Seasonal Time Series – Finding Seasonality with Visual Patterns 
The raw series along with the ACF and PACF can be used to discover seasonal patterns.  

 
Signs: Periodic repetitive wave pattern in ACF, repetition of significant ACFs, PACFs after s 
periods.  
 
• We simulate an ARMA(1,1) with a December seasonal pattern, typical of retail sales with a 
significant Christmas spike. 

 
 
 
 
 
 



 
 
 
 
Seasonal Time Series – Deterministic 
We use seasonal dummy variables, say monthly, in a linear model to capture seasonal patterns. 
Depending on the pattern, we have different specifications to remove the pattern.  
 
Suppose 𝑦௧ has monthly frequency and we suspect that in every December 𝑦௧ increases.  
– For the additive model, we can regress 𝑦௧ against a constant and a December dummy, Dt:  

𝑦௧ ൌ 𝜇  𝑫௧𝝁௦  𝜀௧ 
 
For the multiplicative model, we can regress 𝑦௧ against a constant and a December dummy, Dt:, 
interacting with a trend: 

𝑦௧ ൌ 𝜇  𝑫௧𝝁௦ ∗ 𝑡  𝜀௧ 
 
The residuals of this regressions, 𝑒௧, –i.e., 𝑒௧ = filtered 𝑦௧, free of “monthly seasonal effects”– 
are used for further ARMA modeling. 
 
Example: We simulate an AR(1) series, with a multiplicative December seasonal behavior. 

𝑦௧ ൌ 𝜇  𝜙ଵ𝑦௧ିଵ  𝑫௧ 𝝁௦ ∗ 𝑡  𝜀௧ 
Seas_12 <- rep(c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1), (length(y_sim)/12+1)) # Create Oct dummy 
T_sim <- 500 
u <- rnorm(T_sim, sd=0.75)    # Draw T_sim normally distributed errors 
y_sim <- matrix(0,T_sim,1)    # vector to accumulate simulated data 
  
phi1 <- 0.2      # Change to create different correlation 
patterns 
k <- 12       # Seasonal Periodicity 
a <- k+1      # Time index for observations 
mu <- 0.2 
mu_s <- .02 
while (a <= T_sim) { 
   y_sim[a] = mu + phi1 * y_sim[a-1] + Seas_12[a] * mu_s * a + u[a]  # y_sim 
simulated autocorrelated values   
a <- a + 1 
}  
y_seas <- y_sim[(k+1):T_sim] 
plot(y_seas, type="l", main="Simulated Deterministic Seasonality") 
 
We plot simulated series, ACF, & PACF.  



 
 
 

 

 
• We detrend (“filter” the simulated series).  
trend <- c(1:T_sim) 
trend_sim <- trend[(k+1):T_sim] 
sea_trend <- seas_d*trend_sim 
fit_seas <- lm(y_seas ~ seas_d + trend_sim + sea_trend) 
> summary(fit_seas) 
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept) 0.1356538 0.0804474   1.686  0.09239 .   
seas_d    0.6929134 0.2859528   2.423  0.01575 *   
trend_sim  0.0008504 0.0002749   3.093  0.00209 **  
sea_trend  0.0174034 0.0009766  17.821  < 2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.8209 on 484 degrees of freedom 
Multiple R-squared:  0.7929,    Adjusted R-squared:  0.7917  
F-statistic: 617.8 on 3 and 484 DF,  p-value: < 2.2e-16 
 
• We plot the detrended simulated series, along with the ACF and PACF.  



 
 

 

 
 
The strong December seasonal pattern is gone from the detrended series. We run an 
ARIMA(1,0,0): 
> fit_y_seas_ar1 <- arima(y_seas_filt, order=c(1,0,0)) 
Call: 
arima(x = y_seas_filt, order = c(1, 0, 0)) 
 
Coefficients: 
         ar1  intercept 
      0.1785    -0.0001     Very close to phi1 = 0.20  
s.e.  0.0446     0.0443 
 
sigma^2 estimated as 0.6471:  log likelihood = -586.26,  aic = 1178.51 
 
y_seas_filt_2 <- fit_seas_det_ar1$residuals  # Extract Residuals 
 
plot(y_seas_filt_2,type="l", main="AR(1) Residuals") 
acf(y_seas_filt_2, main="ACF: AR(1) Residuals") 
pacf(y_seas_filt_2, main="ACF: AR(1) Residuals") 



 

 
 

 
There is no seasonality pattern in the residuals. ¶  
 
Example: We model log changes in real estate prices in the LA market, 𝑦௧. First, we run a 
regression to remove (filter) the monthly effects from 𝑦௧. Then, we model 𝑦௧ as an ARMA(p, q) 
process. 
 
RE_da <- read.csv(" https://www.bauer.uh.edu/rsusmel/4397/Real_Estate_2019.csv", 
head=TRUE, sep=",") 
x_la <- RE_da$LA_c 
zz <- x_la 
T <- length(zz) 
plot(x_la, type="l", main="Changes in Log Real Estate Prices in LA") 
 

 



We look at the ACF & PACF for LA 
> acf(x_la) 
> pacf(x_la) 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: ACF shows highly autocorrelated data, with some seasonal pattern (there is a periodic 
decreasing wave). 
 
• We define monthly dummies. Then, we regress x_la against the monthly dummies. 
Feb1 <- rep(c(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), (length(zz)/12+1)) # Create January dummy 
Mar1 <- rep(c(0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), (length(zz)/12+1)) # Create March dummy 
Apr1 <- rep(c(0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0), (length(zz)/12+1)) # Create April dummy 
May1 <- rep(c(0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0), (length(zz)/12+1)) # Create May dummy 
Jun1 <- rep(c(0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0), (length(zz)/12+1)) # Create June dummy 
Jul1 <- rep(c(0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0), (length(zz)/12+1)) # Create Jul dummy 
Aug1 <- rep(c(0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0), (length(zz)/12+1)) # Create Aug dummy 
Sep1 <- rep(c(0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0), (length(zz)/12+1)) # Create Sep dummy 
Oct1 <- rep(c(0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0), (length(zz)/12+1)) # Create Oct dummy 
Nov1 <- rep(c(0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0), (length(zz)/12+1)) # Create Oct dummy 
Dec1 <- rep(c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0), (length(zz)/12+1)) # Create Oct dummy 
seas1 <- cbind(Feb1, Mar1, Apr1, May1, Jun1, Jul1, Aug1, Sep1, Oct1, Nov1, Dec1) 
seas <- seas1[1:T,] 
x_la_fit_sea <- lm(x_la ~ seas)  # Regress x_la against constant + seasonal dummies 
> summary(x_la_fit_sea) 
 
Coefficients: 
                Estimate  Std. Error t value Pr(>|t|)     
(Intercept) -0.0014063 0.0020125  -0.699 0.485157     
seasFeb1  0.0006752 0.0028223   0.239 0.811079     
seasMar1 0.0049095 0.0028223   1.740 0.082838 .   
seasApr1 0.0090903 0.0028223   3.221 0.001400 **  
seasMay1 0.0104159 0.0028223   3.691 0.000260 *** 



seasJun1 0.0103464 0.0028223   3.666 0.000285 *** 
seasJul1 0.0080593 0.0028223   2.856 0.004557 **  
seasAug1 0.0062247 0.0028223   2.206 0.028080 *   
seasSep1 0.0032244 0.0028223   1.142 0.254055     
seasOct1  0.0011967 0.0028461   0.420 0.674421     
seasNov1 -0.0006218 0.0028461  -0.218 0.827181     
seasDec1  -0.0009031 0.0028461  -0.317 0.751195     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Note: Returns –i.e., home prices– are higher from April to August. 
 
Now, we model et, the filtered LA series 
  
x_la_filt <- x_la_fit_sea$residuals  # residuals, et = filtered x_la series 
fit_ar_la_filt <- auto.arima(x_la_filt)  # use auto.arima to look for a good model 
> fit_ar_la_filt 
 
Series: x_la_filt  
ARIMA(2,0,1) with zero mean  
 
Coefficients: 
         ar1     ar2     ma1 
      0.0987  0.7737  0.7245 
s.e.  0.0963  0.0866  0.1136 
 
sigma^2 estimated as 1.668e-05:  log likelihood=1453.66 
AIC=-2899.33   AICc=-2899.21   BIC=-2883.83 
 
> checkresiduals(fit_ar_la_filt) 
 
        Ljung-Box test 
 
data:  Residuals from ARIMA(2,0,1) with zero mean 
Q* = 13.5, df = 7, p-value = 0.06083  Reject H0 at 5% lever. But, judgement call is OK. 
 
Model df: 3.   Total lags used: 10 
 
We check residual plots. 



 
 
Note: ACF shows some small, but significant autocorrelations, but the seasonal (wave) pattern is 
no longer there.  
 
Finally, we check the stationarity & the invertibility of the ARIMA(2,0,1) process. 

 
Note: All inverse roots inside the unit circle (& real): stationarity and invertibility. ¶ 
 
 
Seasonal Time Series – SARIMA 
For stochastic seasonality, we use the Seasonal ARIMA model. In general, we have the 
SARIMA(P, D, Q)s: 

𝛷ሺ𝐿௦ሻሺ1 െ 𝐿௦ሻ𝑦௧ ൌ 𝜃  𝛩ொሺ𝐿௦ሻ𝜀௧ 
where 0 is constant and 



𝛷ሺ𝐿௦ሻ ൌ 1 െ 𝛷ଵ𝐿௦ െ 𝛷ଶ𝐿ଶ௦ െ ⋯െ 𝛷𝐿௦ 
𝛩ொሺ𝐿௦ሻ ൌ 1  𝛩ଵ𝐿௦  𝛩ଶ𝐿ଶ௦  ⋯ 𝛩ொ𝐿௦ொ 

 
Example 1: SARIMA(0,0,1)12= SMA(1)12 
  𝑦௧ ൌ 𝜃  𝜀௧  𝛩ଵ𝜀௧ିଵଶ 
 
- Invertibility Condition: |𝛩ଵ|< 1.  
 െ E[𝑦௧] = 0. 
 െ 𝑉𝑎𝑟ሺ𝑦௧ሻ ൌ ൫1  𝛩ଵ

ଶ൯𝜎ଶ  

 െ 𝐴𝐶𝐹: 𝜌 ൌ ቊ
௵భ

ଵ ା ௵భ
మ ,  |𝑘| ൌ 12

0,         otherwise
   ACF non-zero at seasonal lags 12, 24,... 

 
Example 2: SARIMA(1,0,0)12 = SAR(1)12 
  ሺ1 െ 𝛷ଵ𝐿ଵଶሻ𝑦௧ ൌ 𝜃  𝜀௧ 
The process is  
  𝑦௧ ൌ 𝜃  𝛷ଵ𝑦௧ିଵଶ  𝜀௧ 
 
- This is a simple seasonal AR model. 
- Stationarity Condition: |𝛷ଵ| < 1. 

 െ 𝐸ሾ𝑌௧ሿ ൌ
ఏబ

ଵିఃభ
 

 െ 𝑉𝑎𝑟ሺ𝑌௧ሻ ൌ
ఙమ

ଵିఃభ
మ 

 െ 𝐴𝐶𝐹:   𝜌ଵଶ ൌ 𝛷ଵ
,             𝑘 ൌ  0,   േ 1,   േ 2,⋯ 

When 𝛷ଵ = 1, the series is non-stationary.  ¶ 
 
• Now, we put together the seasonal behavior and the ARMA behavior. That is, we have the 
multiplicative SARIMA model (p,d,q) x (P,D,Q)s  
 
Example 1: ARIMA(0,0,1) x (0,0,1)12 (usually, with monthly data): 
  𝑦௧ ൌ ሺ1  𝜃ଵ𝐿ሻሺ1  𝛩𝐿ଵଶሻ𝜀௧ 
Then, the process is 
  𝑦௧ ൌ 𝜀௧  𝜃ଵ𝜀௧ିଵ  𝜀௧ିଵଶ  𝜃ଵ𝛩𝜀௧ିଵଶ. ¶ 
 
Example 2: Suppose p = Q = 1 and P = q = 0, with s=4, then, we have an ARIMA(1,0,0) x 
(0,0,1)4 (usually, with quarterly data): 
  ሺ1 െ 𝜙ଵ𝐿ሻ 𝑦௧ ൌ ሺ1  𝛩𝐿ସሻ𝜀௧ 
Then, the process is 
  𝑦௧ ൌ 𝜙ଵ𝑦௧ିଵ  𝜀௧  𝛩𝜀௧ିସ. ¶ 
 
In general, we the multiplicative SARIMA model (p,d,q) x (P,D,Q)s is written as: 
  𝛷ሺ𝐿ሻ𝜙ሺ𝐿ሻ𝑦௧ ൌ 𝜃ሺ𝐿ሻ𝛩ሺ𝐿ሻ𝜀௧ 
 
where 𝜙ሺ𝐿ሻ is the AR lag polynomial, 𝜃ሺ𝐿ሻ is the MA lag polynomial, 𝛷ሺ𝐿ሻ is the seasonal AR 
lag polynomial, and 𝛩ሺ𝐿ሻ is the seasonal MA lag polynomial. 
 



Example: We model with a SARIMA model for U.S. vehicle sales. First, we look at the raw 
data: 
Car_da <- read.csv("https://www.bauer.uh.edu/rsusmel/4397/TOTALNSA.csv", head=TRUE, 
sep=",") 
x_car <- Car_da$TOTALNSA 
> acf(x_car) 
 
 
 
 
 
 
 
 
 
 
 
 
Note: ACF shows a highly autocorrelated data, with some clear seasonal wave pattern.  
 
• Then, we plot the data and, then, log transform the data: 
ts_car <- ts(x_car,start=c(1976,1),frequency=12)  
plot.ts(ts_car, xlab="Time", ylab="div", main="Total U.S. Vehicle Sales") 
 

 
l_car <- log(ts_car) 
> plot.ts(l_car,xlab="Time",ylab="div", main="Log Total U.S. Vehicle Sales")library(tseries) 
 

 



R Note: R has a function, decompose, that decomposes the data in trend, seasonal and random 
(unexplained):  
comp_lcar <- decompose(l_car) 
> plot(comp_lcar) 

 
• Question: Should we try deterministic seasonalities?  
No clear trend in data. We regress l_car against monthly dummies: 
zz <- l_car 
seasd <- cbind(Jan1, Feb1, Mar1, Apr1, May1, Jun1, Jul1, Aug1, Sep1, Oct1, Nov1) 
seas_d <- seasd[1:length(zz),] 
fit_car_det <- lm(l_car ~ seas_d) 
> summary(fit_car_det) 
 
Coefficients: 
             EstimateStd. Error t value Pr(>|t|)     
(Intercept) 7.03020 0.02564 274.171  < 2e-16 *** 
seas_dJan1 0.08235 0.03626   2.271 0.023551 *   
seas_dFeb1 -0.09854 0.03606  -2.733 0.006494 **  
seas_dMar1 0.01462  0.03606   0.406 0.685259     
seas_dApr1 0.19884 0.03606   5.514 5.51e-08 *** 
seas_dMay1 0.11396  0.03606   3.160 0.001668 **  
seas_dJun1 0.20192 0.03606   5.599 3.47e-08 *** 
seas_dJul1 0.17824  0.03606   4.943 1.04e-06 *** 
seas_dAug1 0.12804  0.03606   3.551 0.000419 *** 
seas_dSep1 0.14824  0.03606   4.111 4.57e-05 *** 
seas_dOct1 0.06599  0.03606   1.830 0.067813 .   
seas_dNov1 0.07014 0.03626   1.934 0.053638 .   
 
• Check ACF and PACF 



res_car_det <- fit_car_det$residuals  
acf(res_car_det) 
pacf(res_car_det) 

 

 
• Now, we use auto.arima to check for best SARIMA model: 
> fit_lcar <- auto.arima(l_car, trace=TRUE, ic="bic") 
 
 Fitting models using approximations to speed things up... 
 
 ARIMA(2,0,2)(1,1,1)[12] with drift         : -1049.585 
 ARIMA(0,0,0)(0,1,0)[12] with drift         : -609.8308 
 ARIMA(1,0,0)(1,1,0)[12] with drift         : -928.3348 
 ARIMA(0,0,1)(0,1,1)[12] with drift         : -780.978 
... 
 ARIMA(2,0,2)(0,1,2)[12] with drift         : -1072.605 
 ARIMA(2,0,2)(1,1,2)[12] with drift         : -1055.059 
 ARIMA(1,0,2)(0,1,2)[12] with drift         : -1080.563 
 ARIMA(0,0,2)(0,1,2)[12] with drift         : -905.0785 
 ARIMA(1,0,1)(0,1,2)[12] with drift         : -1081.598  
Now re-fitting the best model(s) without approximations... 
 
 ARIMA(1,0,1)(0,1,2)[12]                    : -1132.208 
 
 Best model: ARIMA(1,0,1)(0,1,2)[12]  
 
• Check estimated best SARIMA model and check its residuals: 
> fit_lcar 
Series: l_car  
ARIMA(1,0,1)(0,1,2)[12]  
 
Coefficients: 
         ar1      ma1     sma1     sma2 



      0.9539  -0.5113  -0.5921  -0.2099 
s.e.  0.0163   0.0509   0.0464   0.0442 
 
sigma^2 estimated as 0.006296:  log likelihood=581.76 
AIC=-1153.52   AICc=-1153.41   BIC=-1132.21 
 
> checkresiduals(fit_lcar) 
 
        Ljung-Box test 
 
data:  Residuals from ARIMA(1,0,1)(0,1,2)[12] 
Q* = 44.006, df = 20, p-value = 0.001502 
 
Model df: 4.   Total lags used: 24 
 
• Finally, we check residuals, ACF and distribution.  

 
Note: ACF shows small and significant autocorrelation, but the seasonal pattern is gone. More 
lags maybe needed. ¶ 
 
 
Forecasting 
One of the most important objectives in time series analysis is to forecast its future values. It is 
the primary objective of ARIMA modeling. 
 
Two types of forecasts. 
- In sample (prediction): The expected value of the RV (in-sample), given the estimates of the 
parameters. 



- Out of sample (forecasting): The value of a future RV that is not observed by the sample. 
 
To evaluate forecasts, we can use in-sample estimation to learn about the order of the 
ARMA(p,q) model and then use the model to forecast. We do the in-sample estimation keeping a 
hold-out sample. We use the hold-out sample to validate the selected ARMA model. 
 
Any forecasts needs an information set, IT. This includes data, models and/or assumptions 
available at time T. The forecasts will be conditional on IT. 
 
The variable to forecast 𝑌 ାℓ is a RV. It can be fully characterized by a pdf.  
 
In general, it is difficult to get the pdf for the forecast. In practice, we get a point estimate (the 
forecast) and a C.I.  
 
Notation:  
 - Forecast for T+ℓ made at T: 𝑌் ାℓ, 𝑌் ାℓ|், 𝑌் ሺℓሻ. 
 - T+ℓ forecast error: 𝑒்ାℓ ൌ 𝑒்ሺℓሻ ൌ 𝑌 ାℓ െ 𝑌் ାℓ 
 - Mean squared error (MSE): 𝑀𝑆𝐸ሺ𝑒்ାℓሻ ൌ 𝐸ሾ𝑌 ାℓ െ 𝑌் ାℓ]

2 
 
To get a point estimate, ¤ ¤𝑌��𝑇ℓ�, we need a cost function to judge various alternatives. 
This cost function is call loss function. Since we are working with forecast, we work with a 
expected loss function. 
 
A popular loss functions is the MSE, which is quadratic and symmetric. We can use asymmetric 
functions, for example, functions that penalize positive errors more than negative errors.  
 
If we use the MSE as the loss function, we look for 𝑌் ା , which minimizes it. That is, 

min𝐸 ሾ𝑒்ାℓ
ଶ ሿ ൌ 𝐸ሾሺ𝑌 ାℓ െ 𝑌் ାℓሻଶሿ ൌ 𝐸ሾ𝑌 ାℓ

ଶ െ 2𝑌 ାℓ𝑌் ାℓ  𝑌் ାℓ
ଶ
ሿ 

 
Then, f.o.c. implies:  

𝐸ሾെ2𝑌 ାℓ  2𝑌் ାℓሿ ൌ 0  ⇒ 𝐸ሾ𝑌 ାℓሿ ൌ 𝑌் ାℓ. 
 
The optimal point forecast under MSE is the (conditional) mean: 
   𝑌் ାℓ ൌ Eሾ𝑌 ାℓ|𝐼்ሿ 
 
Different loss functions lead to different optimal forecast. For example, for the MAE, the optimal 
point forecast is the median. 
 
The computation of E[𝑌 ାℓ |IT] depends on the distribution of {𝜀௧}. If {𝜀௧} ~ WN, then 
E[𝜀்ାℓ|IT] = 0, which greatly simplifies computations, especially in the linear model. 
 
Then, for an ARMA(p, q) stationary process (with a Wold representation), the minimum MSE 
linear forecast (best linear predictor) of 𝑌 ାℓ, conditioning on IT is: 

𝑌 ାℓ ൌ  𝜃  𝛹𝜀்ାℓ  𝛹ାଵ𝜀்ାℓିଵ  ⋯ 
 



 
Forecasting Steps for ARMA Models 
The usual process has the following steps:  
- ARIMA model:   𝑌௧ ൌ ϕ 𝑌௧ିଵ  𝜀௧ 
- Estimation   ϕ  ሺEstimate of ϕሻ ⇒ 𝑌௧ ൌ ϕ  𝑌௧ିଵ ሺPredictionሻ 
 (Evaluation in-sample) 
- Forecast   Y୲ାଵ ൌ ϕ  𝑌௧ሺForecastሻ 
 (Evaluation out-of-sample) 
 
We observe the time series: IT = {Y1, Y2,…,YT}. 
 - At time T, we want to forecast: YT+1, YT+2,…, 𝑌 ାℓ.  
 - T: The forecast origin. 
 - ℓ: Forecast horizon 
 -  𝑌் ሺℓሻ: ℓ-step ahead forecast = Forecasted value 𝑌 ାℓ 
 
Use the conditional expectation of 𝑌 ାℓ, given the observed sample. 
  𝑌் ାℓ ൌ 𝐸ሾ𝑌 ାℓ|𝑌 ,𝑌 ିଵ,  … ,𝑌ଵሿ 
 
Example: One-step ahead forecast:  𝑌் ାଵ ൌ 𝐸ሾ𝑌 ାଵ|𝑌 ,𝑌 ିଵ,  … ,𝑌ଵሿ. ¶ 
 
Forecast accuracy to be measured by MSE  
    conditional expectation, best forecast. 
 
 
Forecasting From MA(q) Models 
The stationary MA(q) model for Yt is 
  𝑌௧ ൌ 𝜇  𝜀௧  𝜃ଵ𝜀௧ିଵ  ⋯ 𝜃𝜀௧ି 
 
Then, assuming we have the data up to time T  (𝑌ଵ, 𝑌ଶ, ..., 𝑌 , 𝜀ଵ, 𝜀ଶ, ..., 𝜀்) and parameter 
constancy, we produce at time T l-step ahead forecasts using: 
 𝑌 ାଵ ൌ 𝜇  𝜀்ାଵ  𝜃ଵ𝜀்  ⋯ 𝜃𝜀்ିାଵ 
 𝑌 ାଶ ൌ 𝜇  𝜀்ାଶ  𝜃ଵ𝜀்ାଵ  ⋯ 𝜃𝜀்ିାଶ 
⋮ 
 𝑌 ା ൌ 𝜇  𝜀்ା  𝜃ଵ𝜀்ାିଵ  ⋯ 𝜃𝜀்ାି   (l > 2) 
 
Now, we take conditional expectations: 
 𝑌் ା ൌ 𝐸ሾ𝑌 ା |𝐼்ሿ = 𝜇  Eሾ𝜀்ା |ITሿ  𝜃ଵEሾ𝜀்ାିଵ|𝐼்ሿ  ⋯ 𝜃Eൣ𝜀்ାି |𝐼்൧ 
 
Note: The forecasts are a linear combination of forecast and past errors.  
 
Some of the errors are know at time T: 𝜀1ൌ 𝜀ଵ̂, 𝜀2 ൌ 𝜀ଶ̂, ..., 𝜀T ൌ 𝜀்̂ , the rest are unknown. Thus,  
  E[𝜀்ା |𝐼்ሿ = 0   for l > 1. 
 
Example: For an MA(2) we have: 
 𝑌் ାଵ= 𝜇  Eሾ𝜀்ାଵ|𝐼்ሿ  𝜃ଵEሾ𝜀் |𝐼்ሿ  𝜃ଶEሾ𝜀்ିଵ|𝐼்ሿ 



 𝑌் ାଶ= 𝜇  Eሾ𝜀்ାଶ|𝐼்ሿ  𝜃ଵEሾ𝜀்ାଵ|𝐼்ሿ  𝜃ଶEሾ𝜀் |𝐼்ሿ 
 𝑌் ାଷ= 𝜇  Eሾ𝜀்ାଷ|𝐼்ሿ  𝜃ଵEሾ𝜀்ାଶ|𝐼்ሿ  𝜃ଶEሾ𝜀்ାଵ|𝐼்ሿ 
 
At time T=t, we know 𝜀௧ and 𝜀௧ିଵ. Set Eൣ𝜀௧ା |It൧=0 for j > 1. Then, 
 𝑌௧ାଵ= 𝜇   𝜃ଵEሾ𝜀௧ |Itሿ  𝜃ଶEሾ𝜀௧ିଵ|I𝑡ሿ = 𝜇   𝜃ଵ𝜀௧̂  𝜃ଶ𝜀௧̂ିଵ 
 𝑌௧ାଶ= 𝜇  𝜃ଶEሾ𝜀௧ |I𝑡ሿ = 𝜇   𝜃ଶ𝜀௧̂ 
 𝑌௧ାଷ= 𝜇 
 𝑌௧ା= 𝜇   for l > 2   
  
 MA(2) memory of 2 periods. For l > 2, all forecast are constant (= 𝜇). ¶ 
 
The example generalizes: An MA(q) process has a memory of only q periods. All forecasts 
beyond q revert to the unconditional mean, μ. 
 

Example: An industrial firm uses an MA(2) to forecast sales. The estimated MA(2) model is: 

 𝑌் = 2.2  0.4 𝜀்ିଵ  0.2 𝜀்ିଶ 

At time T=t, the firms know 𝜀௧ = 1.42 and 𝜀௧ିଵ = -0.91.  

Then, the first three forecast are: 

 𝑌௧ାଵ = 2.2  0.4 ∗ 𝟏.𝟒𝟐  0.2 ∗ ሺെ𝟎.𝟗𝟏ሻ = 2.586 

 𝑌௧ାଶ = 2.2  0.2 ∗ ሺ𝟏.𝟒𝟐ሻ = 2.484 

 𝑌௧ାଷ = 2.2    ( 𝑌௧ା = 2.2  for l > 3.)  

Later, the firm observes: 𝑌௧ାଵ = 4.77, 𝑌௧ାଶ = 3.15 & 𝑌௧ାଷ = 1.85. Then, the MSE: 

MSE = 
ଵ

ଷ
 * [(4.77 - 2.586)2 + (3.15 - 2.484)2 + (1.85 - 2.2)2] = 1.779. ¶ 

 
Example:  We fit an MA(1) to the U.S. stock returns (T=1,975): 
library(tseries) 
library(forecast) 
fit_p_ts <- arima(lr_p, order=c(0,0,1))  #fit an MA(1) model 
fcast_p <- forecast(fit_p_ts, h=4)   #produce 4-step ahead forecasts  
> fit_p_ts 
> fcast_p 
Coefficients: 
         ma1  intercept 
      0.2888     0.0037 
s.e.  0.0218     0.0012 
 
sigma^2 estimated as 0.001522:  log likelihood = 3275.83,  aic = -6545.67 
 
> fcast_p 
     Point Forecast       Lo 80      Hi 80       Lo 95      Hi 95 
1796    0.012570813 -0.03742238 0.06256401 -0.06388718 0.08902881 



1797    0.003689524 -0.04834634 0.05572539 -0.07589247 0.08327152 
1798    0.003689524 -0.04834634 0.05572539 -0.07589247 0.08327152 
1799    0.003689524 -0.04834634 0.05572539 -0.07589247 0.08327152  
 
Remark: After the first forecast, the MA(1) process generates constant forecasts. ¶ 
 
 
Forecasting From AR(p) Models 
The stationary AR(p) model for Yt is 
 𝑌௧ ൌ 𝜇  ϕଵ𝑌௧ିଵ  ϕଶ𝑌௧ିଶ  ⋯ ϕ𝑌௧ି  𝜀௧ 
 
Then, assuming we have the data up to time T (𝑌ଵ, 𝑌ଶ, ..., 𝑌  ) and parameter constancy, we 
produce at time T l-step ahead forecasts using: 
 𝑌 ାଵ ൌ 𝜇  ϕଵ𝑌  ϕଶ𝑌 ିଵ  ⋯ ϕ𝑌 ିାଵ  𝜀்ାଵ 
 𝑌 ାଶ ൌ 𝜇  ϕଵ𝑌 ାଵ  ϕଶ𝑌 ⋯ϕ𝑌 ିାଶ  𝜀்ାଶ 
⋮ 
 𝑌 ା ൌ 𝜇  ϕଵ𝑌 ାିଵ  ϕଶ𝑌 ାିଶ  ⋯ ϕ𝑌 ାି  𝜀௧ା   (l > 2)  
 
Now, we take conditional expectations: 
 𝑌் ା ൌ 𝐸ሾ𝑌 ା |ITሿ = 𝜇  ϕଵEሾ𝑌 ାିଵ|ITሿ  ϕଶEሾ𝑌 ାିଶ|ITሿ   ⋯ϕEൣ𝑌 ାି|IT൧ 
 
Note that Eൣ𝑌 ାି |IT൧ are also forecasts. The forecasts 𝑌் ା is a linear combination of past 
forecast.  
 
Example: AR(2) model for Yt+l is 
 𝑌௧ା ൌ 𝜇  ϕଵ𝑌௧ାିଵ  ϕଶ𝑌௧ାିଶ  𝜀௧ା 
 
Then, taking conditional expectations at time T=t, we get the forecasts: 
 𝑌௧ାଵ ൌ 𝜇  ϕଵ𝑌௧  ϕଶ𝑌௧ିଵ 
 𝑌௧ାଶ ൌ 𝜇  ϕଵ𝑌௧ାଵ  ϕଶ𝑌௧ 
 𝑌௧ାଷ ൌ 𝜇  ϕଵ𝑌௧ାଶ  ϕଶ𝑌௧ାଵ 
 ⋮ 
 𝑌௧ା ൌ  𝜇  ϕଵ𝑌௧ାିଵ  ϕଶ𝑌் ାିଵ 
 
AR-based forecasts are autocorrelated, they have long memory! ¶ 
 

Example: An industrial firm uses an AR(2) to forecast sales. The estimated AR(2) model is: 

 𝑌் = 0.7  0.51 𝑦்ିଵ  0.1 𝑦்ିଶ 

At time T=t, the firms know 𝑌௧ = 3 and 𝑌௧ିଵ = 3.52.  

Then, the first three forecast are: 

 𝑌௧ାଵ= 0.7  0.51 ∗ 𝟑  0.1 * 3.52 = 2.582 

 𝑌௧ାଶ= 0.7  0.51 ∗ 2.582  0.1 * 3 = 2.317   



 𝑌௧ାଷ = 0.7  0.51 ∗ 2.317   0.1 * 2.582 = 2.140 

Later, the firm observes: 𝑌௧ାଵ = 4.77, 𝑌௧ାଶ = 3.15 & 𝑌௧ାଷ = 1.85. Then, the MSE: 

MSE = 
ଵ

ଷ
 * [(4.77 - 2.582)2 + (3.15 - 2.317)2 + (1.85 - 2.140)2] = 1.855. ¶ 

 
Example:  We  fit an AR(4) to the changes in Oil Prices (T=346): 
fit_oil_ts <- arima(lr_oil, order=c(4,0,0)) 
fcast_oil <- forecast(fit_oil_ts, h=12) 
> fit_oil_ts 
 
Coefficients: 
         ar1  ar2 ar3 ar4   intercept 
      0.2946  -0.1027  -0.0571  -0.0983     0.0017 
s.e.  0.0521   0.0543   0.0551   0.0539     0.0051 
 
sigma^2 estimated as 0.008812:  log likelihood = 344.57,  aic = -677.14  
 
> fcast_oil 
    Point Forecast      Lo 80      Hi 80      Lo 95   Hi 95 
365  -5.425015e-02 -0.1745546 0.0660543 -0.2382399 0.1297396 
366  -1.578754e-02 -0.1412048 0.1096297 -0.2075966 0.1760216 
367   2.455760e-03 -0.1229760 0.1278875 -0.1893755 0.1942871 
368   1.356917e-02 -0.1123501 0.1394884 -0.1790077 0.2061460 
369   1.160479e-02 -0.1154462 0.1386558 -0.1827029 0.2059125 
370   5.060891e-03 -0.1221954 0.1323172 -0.1895608 0.1996826 
371   9.059104e-04 -0.1263511 0.1281629 -0.1937169 0.1955287 
 
Note: You can extract the point forecasts from the forecast function using $mean. That is, 
fcast_oil$mean extracts the whole vector of forecasts. 
 
• We  plot the 12 forecasts: 
> plot(fcast_oil) 

 
 



Remark: Different from the MA(1) forecasts, the AR(1) process generates non-constant 
forecasts. ¶ 
 
 
Forecasting From ARMA(p,q) Models 
The stationary ARMA model for Yt is 

𝑌௧ ൌ 𝜃  ϕଵ𝑌௧ିଵ  ⋯ ϕ𝑌௧ି  𝜀௧  𝜃ଵ𝜀௧ିଵ  ⋯ 𝜃𝜀௧ି 
 
Assume that we have data Y1, Y2, ... , YT ; 𝜀1ൌ 𝜀ଵ̂, 𝜀2ൌ 𝜀ଶ̂, ..., 𝜀Tൌ 𝜀்̂ . We want to forecast 𝑌 ାℓ. 
Then, 
 𝑌 ାℓ ൌ 𝜃  ϕଵ𝑌 ାℓିଵ ⋯ ϕ𝑌 ାℓି  𝜀்ାℓ  𝜃ଵ𝜀்ାℓିଵ  ⋯ 𝜃𝜀்ାℓି  
 
Taking expectations: 
𝑌் ା ൌ 𝜃  ϕଵ𝑌் ାିଵ  ⋯ ϕ𝑌் ାି  𝐸ሾ𝜀்ାℓ|I𝑇ሿ  𝜃ଵEሾ𝜀்ାℓିଵ|I𝑇ሿ  ⋯ 𝜃 Eൣ𝜀்ାℓି|I𝑇൧  
 
Remark: An ARMA forecasting is a combination of past 𝑌் ାି forecasts and observed past 
𝜀௧̂ାି.  
 

Example: An industrial firm uses an ARMA(1,2) to forecast sales. The estimated ARMA(1,2) 
model is: 

 𝑌் = 1. 9  0.32 𝑦்ିଵ   0.25 𝜀்ିଵ െ 0.1 𝜀்ିଶ 

At time T=t, the firm knows: 𝑌௧ = 3, 𝜀௧ = 0.81, & 𝜀௧ିଵ = 0.47.  

Then, the first three forecast are: 

 𝑌௧ାଵ = 1. 9  0.32 ∗ 𝟑  0.25 ∗ ሺ𝟎.𝟖𝟏ሻ – 0.1 * 0.47 = 2.981 

 𝑌௧ାଶ = 1. 9  0.32 ∗ 𝟐.𝟗𝟖𝟏 – 0.1 * 0.81 = 2.770  

 𝑌௧ାଷ = 1. 9  0.32 ∗ 𝟐.𝟕𝟕𝟎 = 2.786 

Later, the firm observes: 𝑌௧ାଵ = 4.77, 𝑌௧ାଶ = 3.15, & 𝑌௧ାଷ = 1.85. Then, the MSE: 

MSE = 
ଵ

ଷ
 * [(4.77 - 2.981)2 + (3.15 - 2.770)2 + (1.85 - 2.786)2] = 1.407. ¶ 

 
Alternatively, we can forecast considering the Wold representation: 

𝑌 ାℓ ൌ 𝜇  𝛹ሺ𝐵ሻ𝜀௧ ൌ 𝜃 
𝜃ሺ𝐵ሻ

ϕሺ𝐵ሻ
𝜀௧ ൌ 𝜇  𝜀்ାℓ  𝛹ଵ𝜀்ାℓିଵ  𝛹ଶ𝜀்ାℓିଶ  ⋯𝛹ℓ𝜀்  ⋯ 

 
Taking the expectation of 𝑌 ାℓ, we have 
 𝑌் ାℓ ൌ 𝐸ሺ𝑌 ାℓ|𝑌 ,𝑌 ିଵ,⋯ ,𝑌ଵሻ = 𝜇   𝛹ℓ𝜀்  𝛹ℓାଵ𝜀்ିଵ  ⋯ 
where 

  𝐸൫𝜀்ା|𝑌 ,⋯ ,𝑌ଵ൯ ൌ ൜
0,   𝑗  0
𝜀்ା ,  𝑗  0 

 
Then, we define the forecast error: 



 𝑒்ሺℓሻ ൌ 𝑌 ାℓ െ 𝑌் ାℓ ൌ 𝜀்ାℓ  𝛹ଵ𝜀்ାℓିଵ  ⋯𝛹ℓିଵ𝜀்ାଵ 

ൌ 𝛹𝜀்ାℓି
ℓିଵ

ୀ
 

 
The forecast error is: 𝑒்ሺℓሻ ൌ ∑ 𝛹𝜀்ାℓି

ℓିଵ
ୀ  

 
Note: The expectation of the forecast error: E[𝑒்ሺℓሻ] = 0 
  we say the forecast is unbiased. 
 
• The variance of the forecast error: 

𝑉𝑎𝑟൫𝑒்ሺℓሻ൯ ൌ 𝑉𝑎𝑟 ቌ𝛹𝜀்ାℓି

ℓିଵ

ୀ

ቍ ൌ 𝜎ଶ 𝛹
ଶ

ℓିଵ

ୀ

 

Example 1: One-step ahead forecast (l = 1). 
  𝑌 ାଵ ൌ 𝜇  𝜀்ାଵ  𝛹ଵ𝜀்  𝛹ଶ𝜀்ିଵ ⋯ 
 𝑌் ାଵ ൌ 𝜇  𝛹ଵ𝜀்  𝛹ଶ𝜀்ିଵ  ⋯ 
 𝑒்ሺ1ሻ ൌ 𝑌 ାଵ െ 𝑌் ାଵ ൌ 𝜀்ାଵ 
 𝑉𝑎𝑟൫𝑒்ሺ1ሻ൯ ൌ 𝜎ଶ  . ¶ 
 
Example 2: One-step ahead forecast (ℓ = 2). 
 𝑌 ାଶ ൌ 𝜇  𝜀்ାଶ  𝛹ଵ𝜀்ାଵ  𝛹ଶ𝜀் ⋯𝑌் ାଶ 
 = 𝜇  𝛹ଶ𝜀்  ⋯𝑒்ሺ2ሻ 
 ൌ 𝑌 ାଶ െ 𝑌் ାଶ ൌ 𝜀்ାଶ  𝛹ଵ𝜀்ାଵ𝑉𝑎𝑟൫𝑒்ሺ2ሻ൯ ൌ 𝜎ଶ ∗ ሺ1 𝛹ଵ

ଶሻ 
 
Note:  lım

ℓ→ஶ
𝑌
் ሺℓሻ ൌ 𝜇 

  lim
ℓ→ஶ

𝑉𝑎𝑟ሾ𝑒்ሺℓሻሿ ൌ 𝛾 ൏ ∞ 

 
Recall that the Wold representation depends on an infinite number of parameters, but, in 
practice, they decay rapidly. Then, as we forecast into the future, the forecasts are not very 
interesting (unconditional forecasts!).  
 
That is why ARMA (or ARIMA) forecasting is useful only for short-term forecasting. ¶ 
 
 
Forecasting From ARMA(p,q) Models: C.I. 
A 100(1- )% prediction interval for YT+ℓ  (ℓ-steps ahead) is 

  𝑌் ሺℓሻ േ  𝑧ഀ
మ
 ට𝑉𝑎𝑟൫𝑒்ሺℓሻ൯ 

  𝑌் ሺℓሻ േ  𝑧ఈ/ଶ 𝜎 ට∑ 𝛹
ଶℓିଵ

ୀ  

 
Example: 95% C.I. for the 2-step-ahead forecast: 

  𝑌் ሺ2ሻ േ  1.96 𝜎 ඥ1 𝛹ଵ
ଶ 



 
When computing prediction intervals from data, we substitute estimates for parameters, giving 
approximate prediction intervals.  ¶ 
 
Note: Since 𝛹

ᇱs are RV, MSE[εT+ℓ] = MSE[eT+ℓ] = 𝜎ଶ ∑ 𝛹
ଶℓିଵ

ୀ  

 
Example: We fit an ARMA(4, 5), as selected by the function auto.arima, to changes in monthly 
U.S. earnings (1871 – 2020): 
x_E <- Sh_da$E 
T <- length(x_E) 
lr_e <- log(x_E[-1]/x_E[-T]) 
fit_e <- auto.arima(lr_e) 
> auto.arima(lr_e) 
 
Series: lr_e  
ARIMA(4,0,5) with non-zero mean  
 
Coefficients: 
         ar1     ar2      ar3       ar4     ma1      ma2      ma3     ma4 
      0.3541  0.9786  0.2530  -0.6381  0.2943  -0.6794  -0.5720  0.1787 
s.e.  0.0414  0.0466  0.0414   0.0363  0.0455   0.0400   0.0465  0.0362 
          ma5    mean 
      -0.1498  0.0032 
s.e.   0.0286  0.0008 
 
sigma^2 estimated as 0.0005759:  log likelihood=4140.46 
AIC=-8258.91   AICc=-8258.76   BIC=-8198.52 
 
• We forecast 20 periods ahead 
> fcast_e <- forecast(fit_e, h=20)  # h=number of step-ahead forecasts 
> fcast_e  
     Point Forecast       Lo 80         Hi 80        Lo 95        Hi 95 
1791   -0.054521445 -0.08527728 -0.023765608 -0.10155844 -0.007484451 
1792   -0.048064225 -0.08471860 -0.011409845 -0.10412226  0.007993811 
1793   -0.032702992 -0.07280271  0.007396723 -0.09403021  0.028624230 
1794   -0.030680456 -0.07365723  0.012296320 -0.09640776  0.035046851 
1795   -0.017583413 -0.06228564  0.027118816 -0.08594957  0.050782746 
1796   -0.013681751 -0.05882105  0.031457550 -0.08271635  0.055352853 
1797   -0.008775187 -0.05458154  0.037031165 -0.07882996  0.061279583 
1798   -0.001197077 -0.04705319  0.044659034 -0.07132795  0.068933794 
1799   -0.001083388 -0.04698821  0.044821436 -0.07128876  0.069121982 
1800    0.005124015 -0.04078796  0.051035988 -0.06509229  0.075340318 
1801    0.006219195 -0.03973961  0.052178005 -0.06406874  0.076507130 
1802    0.007874051 -0.03809120  0.053839304 -0.06242374  0.078171840 
1803    0.011029600 -0.03506469  0.057123889 -0.05946553  0.081524732 
1804    0.010082045 -0.03611076  0.056274848 -0.06056375  0.080727841 



 
Note: You can extract the point forecasts from the forecast function using $mean. That is, 
fcast_e$mean extracts the whole vector of forecasts. 
 
• We plot the forecast and the C.I. 
> plot(fcast_e, type="l", include = 24, main = "Changes in Earings: Forecast 2020:Oct - 
2021:Jun")  #We include the last 24 observations along the forecast. 
 

 
 
Forecasting From ARMA(p,q) Models - Updating 
Suppose we have T observations at time t=T.  We have a good ARMA model for Yt. We obtain 
the forecast for YT+1, YT+2, etc.  
 
• At t = T + 1, we observe YT+1. Now, we update our forecasts using the original value of YT+1 
and the forecasted value of it. 
 
The forecast error is:    𝑒்ሺℓሻ ൌ 𝑌 ାℓ െ 𝑌் ሺℓሻ ൌ ∑ 𝛹𝜀்ାℓି

ℓିଵ
ୀ  

 
The forecast error associated with 𝑌் ିଵሺℓ  1ሻ is: 
 𝑒்ିଵሺℓ  1ሻ  ൌ 𝑌 ିଵାℓାଵ െ 𝑌் ିଵሺℓ  1ሻ 
 ൌ ∑ 𝛹𝜀்ିଵାℓାଵି

ℓ
ୀ ൌ ∑ 𝛹𝜀்ାℓି

ℓ
ୀ  

 ൌ ∑ 𝛹𝜀்ାℓି
ℓିଵ
ୀ  𝛹ℓ𝜀் ൌ 𝑒்ሺℓሻ  𝛹ℓ𝜀் 

 
• Then, 
 𝑒்ିଵሺℓ  1ሻ ൌ  𝑌 ାℓ െ 𝑌் ିଵሺℓ  1ሻ ൌ 𝑌 ାℓ െ 𝑌் ሺℓሻ  𝛹ℓ𝜀்  
 𝑌் ሺℓሻ ൌ 𝑌் ିଵሺℓ  1ሻ  𝛹ℓ𝜀்  
 𝑌் ሺℓሻ ൌ 𝑌் ିଵሺℓ  1ሻ  𝛹ℓ൛𝑌 െ 𝑌் ିଵሺ1ሻൟ  
 𝑌் ାଵሺℓሻ ൌ 𝑌் ሺℓ  1ሻ  𝛹ℓ൛𝑌 ାଵ െ 𝑌் ሺ1ሻൟ 
 
Example: ℓ = 1, T = 100.  
  𝑌ଵଵሺ1ሻ ൌ 𝑌ଵሺ2ሻ  𝛹ଵ൛𝑌ଵଵ െ 𝑌ଵሺ1ሻൟ . ¶ 
 
 
Forecasting From ARMA(p,q) Models - Remarks 



In general, we need a large T. Better estimates and it is possible to check for model stability and 
check forecasting ability of model by withholding data. 
 
Seasonal patterns also need large T. Usually, you need 4 to 5 seasons to get reasonable estimates. 
 
Parsimonious models are very important. Easier to compute and interpret models and forecasts. 
Forecasts are less sensitive to deviations between parameters and estimates. 
 
 
Forecasting From Simple Models: ES 
Industrial companies, with a lot of inputs and outputs, want quick and inexpensive forecasts. 
Easy to fully automate. In general, they only use past observations of the series to forecat. That 
is, we use past 𝑌௧ to forecast future 𝑌௧′𝑠, which in the literature is usually referred as the “level’s 
forecasts.” 
 
Exponential Smoothing Models (ES) fulfill these requirements. 
 
In general, these models are limited and not optimal, especially compared with Box-Jenkins 
methods. 
 
Goal of these models: Suppress the short-run fluctuation by smoothing the series. For this 
purpose, a weighted average of all previous values works well.  
 
There are many ES models. We will go over the Simple Exponential Smoothing (SES) and Holt-
Winter’s Exponential Smoothing (HW ES).  
 
 
Simple Exponential Smoothing: SES 
We “smooth” the series 𝑌௧ to produce a quick forecast, 𝑆௧ାଵ called the “level’s forecast.” 
Smooth? The graph of 𝑆௧ is less jagged than the graph of original series 𝑌௧. 
 
Observed time series at time T: 𝑌ଵ, 𝑌ଶ, ..., 𝑌 . 
 
The SES Model has only one equation, we only forecast the level: 
  𝑆௧ ൌ 𝛼𝑌௧ିଵ  ሺ1 െ 𝛼ሻ𝑆௧ିଵ 
where  
 - : The smoothing parameter, 0    1. 
 - Yt: Value of the observation at time t. 
 - St: Value of the smoothed observation at time t –i.e., the forecast. 
 
The equation can also be written as an updating equation: 

𝑆௧ ൌ 𝑆௧ିଵ  𝛼ሺ𝑌௧ିଵ െ 𝑆௧ିଵሻ ൌ 𝑆௧ିଵ  𝛼 ∗  ሺpast forecast erro𝑟ሻ 
 
Note: The updating form of the SES model looks like an MA(1) model. 
 
 



SES: Forecast and Updating 
From the updating equation for 𝑆௧: 

𝑆௧ ൌ 𝑆௧ିଵ  𝛼ሺ𝑌௧ିଵ െ 𝑆௧ିଵሻ 
we compute the forecast:  

𝑆௧ାଵ ൌ 𝛼𝑌௧  ሺ1 െ 𝛼ሻ𝑆௧ ൌ 𝑆௧  𝛼ሺ𝑌௧ െ 𝑆௧ሻ 
 
That is, a simple updating forecast: last period forecast + adjustment. 
 
For the next period, we have: 
 𝑆௧ାଶ ൌ 𝛼𝑌௧ାଵ  ሺ1 െ 𝛼ሻ𝑆௧ାଵ ൌ 𝛼𝑆௧ାଵ  ሺ1 െ 𝛼ሻ𝑆௧ାଵ= 𝑆௧ାଵ 
 
Then the ℓ-step ahead forecast is: 
  𝑆௧ାℓ ൌ 𝑆௧ାଵ  A naive forecast!  
 
Note: Similar to an MA(1) process, SES forecasts are not very interesting after ℓ > 1. 
 
Example: An industrial firm uses SES to forecast sales: 

𝑆௧ାଵ ൌ 𝑆௧  𝛼 ∗  ሺ𝑌௧ െ 𝑆௧ሻ 
The firm estimates 𝛼 = 0.25. The firm observes 𝑌௧ = 5 and, last period’s forecast, 𝑆௧ = 3.  
Then, the forecast for time t+1 is: 

 𝑆௧ାଵ ൌ 3 + 0.25 * (5 – 3) = 3.50 

The forecast for time t+1 and any period after time t+1, we have  𝑆௧ାℓ ൌ 𝑆௧ାଵ ൌ  3.50   
for ℓ > 1.  

Later, the firm observes: 𝑌௧ାଵ = 4.77, 𝑌௧ାଶ = 3.15, & 𝑌௧ାଷ = 1.85. Then, the MSE: 

MSE = 
ଵ

ଷ
 * [(4.77 – 3.50)2 + (3.15 - 3.50)2 + (1.85 - 3.50)2] = 1.486.  

 

Note: If 𝛼 = 0.75, then  

 𝑆௧ାଵ ൌ 3 + 0.75 * (5 – 3) = 4.50 

A bigger 𝛼 gives more weight to the more recent observation –i.e., 𝑌௧. ¶  
 
 
SES: Exponential? 
Question: Why Exponential?  
 
For the observed time series {Y1,Y2,…,YT, YT+1}, using backward substitution, 𝑆௧ାଵ ൌ 𝑌௧ሺ1ሻ can 
be expressed as a weighted sum of previous observations: 
 
𝑆௧ାଵ ൌ 𝛼𝑌௧  ሺ1 െ 𝛼ሻ𝑆௧ ൌ 𝛼𝑌௧  ሺ1 െ 𝛼ሻሾ𝛼𝑌௧ିଵ  ሺ1 െ 𝛼ሻ𝑆௧ିଵሿ 
 ൌ 𝛼𝑌௧  𝛼ሺ1 െ 𝛼ሻ𝑌௧ିଵ  ሺ1 െ 𝛼ሻଶ𝑆௧ିଵ 

⇒  𝑌௧ሺ1ሻ ൌ 𝑐𝑌௧  𝑐ଵ𝑌௧ିଵ  𝑐ଶ𝑌௧ିଶ  ⋯ 
where ci’s are the weights, with  

𝑐 ൌ 𝛼ሺ1 െ 𝛼ሻ;  𝑖 ൌ 0,  1,   . . . ;  0  𝛼  1. 



 
We have decreasing weights, by a constant ratio for every unit increase in lag. 
 
Then, 
 𝑌௧ሺ1ሻ ൌ 𝛼ሺ1 െ 𝛼ሻ𝑌௧  𝛼ሺ1 െ 𝛼ሻଵ𝑌௧ିଵ  𝛼ሺ1 െ 𝛼ሻଶ𝑌௧ିଶ  ⋯ 
 𝑌௧ሺ1ሻ ൌ 𝛼𝑌௧  ሺ1 െ 𝛼ሻ𝑌௧ିଵሺ1ሻ  ⇒ 𝑆௧ାଵ ൌ 𝛼𝑌௧  𝑆௧ 
 
• Let’s look at the weights: 
  𝑐 ൌ 𝛼 ሺ1 െ 𝛼ሻ;              𝑖 ൌ 0,  1,   . . . ;  0  𝛼  1. 
 

𝒄𝒊 ൌ 𝜶ሺ𝟏 െ 𝜶ሻ𝒊 𝜶 = 0.25 𝜶 = 0.75 

𝑐  0.25 0.75 

𝑐ଵ  0.25 * 0.75  = 0.1875 0.75 * 0.25 = 0.1875 

𝑐ଶ  .25 * 0.752  = 0.140625 0.75 * 0.252 = 0.046875  

𝑐ଷ  .25 * 0.753  = 0.1054688 0.75 * 0.253 = 0.01171875 

𝑐ସ .25 * 0.754  = 0.07910156 0.75 * 0.254 = 0.002929688 

⋮ 
  

𝑐ଵଶ .25 * 0.7512  = 0.007919088 0.75 * 0.2512 = 4.470348e-08 

 
Decaying weights. Faster decay with greater 𝛼, associated with faster learning: we give more 
weight to more recent observations.  
 
We do not know ; we need to estimate it. 
 
 

SES: Selecting  
Choose  between 0 and 1. 
- If  = 1, it becomes a naive model; if  ≈ 1, more weights are put on recent values.  The model 
fully utilizes forecast errors. 
- If  is close to 0, distant values are given weights comparable to recent values. Set  ≈ 0 when 
there are big random variations in Yt.  
-  is often selected as to minimize the MSE. 
 
In empirical work, 0.05    0.3 are used ( ≈ 1 is used rarely). 
 
Numerical Minimization Process:  
- Take different  values ranging between 0 and 1. 
- Calculate 1-step-ahead forecast errors for each , where the forecast error is 𝑒௧ ൌ 𝑌௧ െ 𝑆௧. 
- Calculate MSE for each case. 



- Then, choose the  which produces the minimum MSE: 𝑚𝑖𝑛ఈ ∑ 𝑒௧ଶ

௧ୀଵ  

 
Example: 

Time Yt St+1 ( = 0.10) (YtSt)2 

1 5 - - 

2 7 (0.1)5 +(0.9)5 = 5 4 

3 6 (0.1)7 + (0.9)5 = 5.2 0.64 

4 3 (0.1)6 + (0.9)5.2 = 5.28 5.1984 

5 4 (0.1)3 + (0.9)5.28 = 5.052 1.107 

TOTAL 10.945 

𝑀𝑆𝐸 ൌ
𝑆𝑆𝐸
𝑛 െ 1

ൌ 2.74 

Calculate this for  = 0.2, 0.3,…, 0.9, 1 and compare the MSEs. Choose  with minimum MSE. 
 
Note: Yt=1 = 5 is set as the initial value for the recursive equation. ¶ 
 
 
SES: Initial Values 
We start forecasting at time 2. Since we have a recursive equation, we need an initial value for S1 
(or Y0). 
 
Approaches:  
– Set S1 to Y1 is one method of initialization. Then, S2 = Y1. 

– Take the average of the first p observations, say first 4 or 5 observations: 𝑌 ൌ
∑ 

సభ


 

Use this average as an initial value S1 = Y0. Obviously, in ths case our first prediction will be for 
time (p+1), which becomes: 𝑆ଶ. 
 
– Estimate S1 (similar to the estimation of 𝛼). 
 
 
SES: Forecasting Examples 
Example 1: We want to forecast log changes in U.S. monthly dividends (T=1796) using SES. 
First, we estimate the model using the R function HoltWinters(), which has as a special case 
SES: set beta=FALSE, gamma=FALSE. We use estimation period T=1750. 
 
mod1 <- HoltWinters(lr_d[1:1750], beta=FALSE, gamma=FALSE) 
> mod1 
Holt-Winters exponential smoothing without trend and without seasonal component. 
Call: 
HoltWinters(x = lr_d[1:1750], beta = FALSE, gamma = FALSE) 



Smoothing parameters: 
 alpha: 0.289268     Estimated    
 beta : FALSE 
 gamma: FALSE 
Coefficients: 
         [,1] 
a 0.004666795     Forecast 
 

 
 
 

 
 
• Now, we forecast one-step ahead forecasts 
T_last <- nrow(mod1$fitted)    # number of in-sample forecasts 
h <- 25       # forecast horizon 
ses_f <- matrix(0,h,1)     # Vector to collect forecasts 
alpha <- 0.29 
y <- lr_d    
T <- length(lr_d) 
sm <- matrix(0,T,1)  
T1 <- T – h + 1      # Start of forecasts 
a <- T1       # index for while loop 
sm[a-1] <- mod1$fitted[T_last]    # last in-sample forecast  
while (a <= T) { 
   sm[a] = alpha * y[a-1] +  (1-alpha) * sm[a-1] 
a <- a + 1 



}  
ses_f <- sm[T1:T] 
ses_f 
f_error_ses <- sm[T1:T] - y[T1:T]   # forecast errors 
MSE_ses <- sum(f_error_ses^2)/h   # MSE 
plot(ses_f, type="l", main ="SES Forecasts: Changes in Dividends") 

 

 
• h-step-ahead forecasts 
> forecast(mod1, h=25, level=.95) 
     Point Forecast       Lo 95      Hi 95 
1751    0.004666795 -0.01739204 0.02672563 
1752    0.004666795 -0.01829640 0.02762999 
1753    0.004666795 -0.01916647 0.02850006 
1754    0.004666795 -0.02000587 0.02933947 
1755    0.004666795 -0.02081765 0.03015124 
1756    0.004666795 -0.02160435 0.03093794 
1757    0.004666795 -0.02236816 0.03170175 
1758    0.004666795 -0.02311098 0.03244457 
1759    0.004666795 -0.02383445 0.03316804 
1760    0.004666795 -0.02454001 0.03387360 
1761    0.004666795 -0.02522891 0.03456250 
1762    0.004666795 -0.02590230 0.03523589 
1763    0.004666795 -0.02656117 0.03589476 
1764    0.004666795 -0.02720642 0.03654001 
... 
 
Note: Constant forecasts, but C.I. gets wider (as expected) with h. ¶  
 
Example 2: We want to forecast log monthly U.S. vehicles (1976-2020, T=537) using SES.  
mod_car <- HoltWinters(l_car[1:512], beta=FALSE, gamma=FALSE) 



> mod_car 
Holt-Winters exponential smoothing without trend and without seasonal component. 
Call: 
HoltWinters(x = l_car[1:512], beta = FALSE, gamma = FALSE) 
Smoothing parameters: 
 alpha: 0.4888382     Estimated   
 beta : FALSE 
 gamma: FALSE 
Coefficients: 
      [,1] 
a 7.315328 
 
• Now, we do one-step ahead forecasting 
ses_f_c <- sm_c[T1:T] 
f_error_c_ses <- sm_c[T1:T] - y[T1:T] 
> plot(ses_f_c, type="l", main ="SES Forecasts: Log Vehicle Sales") 

 
> plot(f_error_c_ses, type="l", main ="SES Forecasts Errors: Log Vehicle Sales") 

 
MSE_ses <- sum(f_error_c_ses^2)/h 
> MSE_ses  
[1] 0.027889. ¶ 
 
 
SES: Remarks 
Some computer programs automatically select the optimal  using a line search method or non-
linear optimization techniques. 
 
We have a recursive equation, we need initial values for S1.   
 
This model ignores trends or seasonalities. Not very realistic, especially for manufacturing 
facilities, retail sector, and warehouses. But, deterministic components, Dt, can be easily 
incorporated.  
 
The model that incorporates both features is called Holt-Winter’s ES. 



 
 
Holt-Winters (HW) Exponential Smoothing 
Now, we introduce trend (𝑇௧) & seasonality (𝐼௧) factors. Since we also produce smooth forecasts 
for 𝑇௧ & 𝐼௧, this method is also called triple exponential smoothing.  
 
The h-step ahead forecast is a combination of the smooth forecasts of 𝑆௧ (Level), 𝑇௧ (Trend) & 
𝐼௧ାି௦ (Seasonal).  
 
Both, 𝑇௧ & 𝐼௧, can be included as additively or multiplicatively factors. In this class, we consider 
an additive trend and the seasonal factor as additive or multiplicative, see Figure 9.1. We 
produce h-step ahead forecasts: 
 
For the additive model:   𝑌௧ሺℎሻ ൌ  𝑆௧  ℎ 𝑇௧  𝐼௧ାି௦ 
 
For the multiplicative model:   𝑌௧ሺℎሻ ൌ ሺ𝑆௧  ℎ 𝑇௧ሻ ∗ 𝐼௧ାି௦ 
 
Note: Seasonal factor is multiplied in the h-step ahead forecast. 
 

Figure 9.1 – Different Seasonality Models with Additive Trend 
 
 
 
 
 
 
 
 
 
 
 
 
 
Holt-Winters (HW) ES: Additive Model 
Additive model (additive trend and additive seasonality) h-step ahead forecast: 
  𝑌௧ሺℎሻ ൌ  𝑆௧  ℎ 𝑇௧  𝐼௧ାି௦ 
where s is the number of periods in seasonal cycles (s =4 for quarters). 
 
• Components: 
- The level, 𝑆௧, is a weighted average of seasonal adjusted 𝑌௧ and the non-seasonal forecast 
ሺ𝑆௧ିଵ   𝑇௧ିଵሻ: 
 𝑆௧ ൌ 𝛼ሺ𝑌௧ െ 𝐼௧ି௦ሻ  ሺ1 െ 𝛼ሻሺ𝑆௧ିଵ  𝑇௧ିଵሻ 
 
- The trend, 𝑇௧, is a weighted average of 𝑇௧ିଵ and the change in 𝑆௧.  
 𝑇௧ ൌ 𝛽ሺ𝑆௧ െ 𝑆௧ିଵሻ  ሺ1 െ 𝛽ሻ𝑇௧ିଵ 
 

Additive Model: Additive seasonal variability 
with an additive trend.  

Multiplicativ Model: Multiplicative seasonal 
variability with an additive trend. 



- The seasonality is also a weighted average of seasonal index of s last year,  𝐼௧ି௦, and the current 
seasonal index ሺ𝑌௧ିଵ െ 𝑆௧ିଵ െ 𝑇௧ିଵሻ:  
 𝐼௧ ൌ 𝛾ሺ𝑌௧ െ 𝑆௧ିଵ െ 𝑇௧ିଵሻ  ሺ1 െ 𝛾ሻ𝐼௧ି௦ 
 
• Summary: 
The additive model produces the following h-step ahead forecast: 
 𝑌௧ሺℎሻ ൌ  𝑆௧  ℎ 𝑇௧  𝐼௧ାି௦ 
 
We use three equations: 
 𝑆௧ ൌ 𝛼ሺ𝑌௧ െ 𝐼௧ି௦ሻ  ሺ1 െ 𝛼ሻሺ𝑆௧ିଵ  𝑇௧ିଵሻ 
 
 𝑇௧ ൌ 𝛽 ሺ𝑆௧ െ 𝑆௧ିଵሻ   ሺ1 െ 𝛽ሻ 𝑇௧ିଵ 
 
 𝐼௧ ൌ 𝛾ሺ𝑌௧ െ 𝑆௧ିଵ െ 𝑇௧ିଵሻ  ሺ1 െ 𝛾ሻ𝐼௧ି௦ 
 
We have only three smoothing parameters: 
  = level coefficient 
 𝛽 = trend coefficient 
  = seasonality coefficient 
 
 
Holt-Winters (HW) ES: Multiplicative Model 
In the multiplicative seasonal case (with an additive trend), we have the h-step ahead forecast:  

𝑌௧ሺℎሻ ൌ ሺ𝑆௧  ℎ 𝑇௧ሻ ∗ 𝐼௧ାି௦ 
 
Details for multiplicative seasonality –i.e., Yt/It– and additive trend 

- The forecast, 𝑆௧, now shows the average 𝑌௧ adjusted (

ூషೞ

).  

- The trend, Tt, is a weighted average of Tt-1 and the change in St.  
- The seasonality is also a weighted average of It-S and the Yt/St  
 
Then, the model has three equations: 

 𝑆௧ ൌ 𝛼 
షభ
ூషೞ

   ሺ1 െ 𝛼ሻ ሺ𝑆௧ିଵ െ 𝑇௧ିଵሻ 

 𝑇௧ ൌ 𝛽 ሺ𝑆௧ െ 𝑆௧ିଵሻ   ሺ1 െ 𝛽ሻ 𝑇௧ିଵ 

 𝐼௧ ൌ 𝛾 

ௌ

   ሺ1 െ 𝛾ሻ 𝐼௧ି௦ 

 
We think of (Yt /St) as capturing seasonal effects, where s represents the number of periods in the 
seasonal cycles. For example, s = 4, for quarterly data; s = 12, for monthly data; 
 
Again We have only three parameters: 
  = smoothing parameter 
  𝛽 = trend coefficient 
   = seasonality coefficient 
 
Question: How do we determine these 3 parameters? 



 - Ad-hoc method: α, 𝛽 and  can be chosen as value between 0.02< , , 𝛽 <0.2  
 - Optimal method: Minimization of the MSE, as in SES. 
 
Example: An industrial firm uses HW ES to forecast sales next three quarters (ℎ = 1, 2 & 3; with 
𝑠 = 4): 
  𝑌௧ሺℎሻ ൌ 𝑌௧ା ൌ ሺ𝑆௧  ℎ 𝑇௧ሻ ∗ 𝐼௧ାି௦ 
with 𝑆௧, 𝑇௧, & 𝐼௧ factors given by: 

 𝑆௧ ൌ 𝛼 
ூషೞ

   ሺ1 െ 𝛼ሻ ሺ𝑆௧ିଵ  𝑇௧ିଵሻ 

 𝑇௧ ൌ 𝛽 ሺ𝑆௧ െ 𝑆௧ିଵሻ   ሺ1 െ 𝛽ሻ 𝑇௧ିଵ 
 𝐼௧ ൌ 𝛾 

ௌ
   ሺ1 െ 𝛾ሻ 𝐼௧ି௦ 

 
The firm estimates: 𝛼 = 0.25; 𝛽 = 0.1; and 𝛾 = 0.4. The firm observes 𝑌௧ = 5; last quarter’s 
smoothed forecasts: 𝑆௧ିଵ = 3, & 𝑇௧ିଵ = 1.2; and last year’s seasonal factors: 𝐼௧ିସ = 1.1 , 𝐼௧ିଷ = 0.7  
& 𝐼௧ିଶ = 1.2, & 𝐼௧ିଶ = 0.8. 
 
• Components forecasts:  
 

 𝑆௧ ൌ 0.25 ∗  5

1.1
   ሺ1 െ 0.25ሻ ∗  ሺ3  1.2ሻ = 4.2864 

 𝑇௧ ൌ 0.1 ∗ ሺ4.2864 െ 3ሻ   ሺ1 െ 0.1ሻ * 1.2= 1.2086 

 𝐼௧ ൌ 0.4 ∗  5

4.2864 
   ሺ1 െ 0.4ሻ ∗  1.1 = 1.1266 

 
The forecast for ℎ = 1 (next quarter) is: 
 𝑌௧ାଵ ൌ ሺ4.2864  1.2086ሻ ∗ 0.𝟕 = 4.8125 
 
The forecast for ℎ = 2 & 3 are:  
 𝑌௧ାଶ ൌ ሺ4.2864   2 ∗ 1.2086ሻ ∗ 1.2 = 7.8475.  
 𝑌௧ାଷ ൌ ሺ4.2864    3 ∗ 1.2086ሻ ∗ 0.8 = 6.1329. ¶ 
 
 
Holt-Winters (HW) ES: Initial Values 
We have three recursive equations. That is, we need initial values for S0, T0 and It-s. To calculate 
initial values for the algorithm, we need at least one complete season of data to determine the 
initial estimates. 
 
Like in the SES model, there are different approaches. Below, we present one approach for the 
multiplicative model: 
 
- Initial values for S0 and T0: 

 𝑆 ൌ
∑ 
ೞ
సభ

௦ బ்
 

 T ൌ
ଵ

௦
ቀೞశభିభ

௦
 ೞశమିమ

௦
 ⋯ ೞశೞିೞ

௦
ቁ 

 or T ൌ ሾሼ∑ 𝑌௧/𝑠௦
௧ୀଵ ሽ െ ሼ∑ 𝑌௧/𝑠ଶ௦

௧ୀ௦ାଵ ሽሿ/𝑠 
 



- Initial values for It-s.: 
Assume we have T observation and quarterly seasonality (s=4): 
(1) Compute the averages of each of T years. 
 𝐴௧ ൌ ∑ 𝑌௧,/4ସ

ୀଵ ,  𝑡 ൌ 1,  2,⋯ ,6 ሺyearly averagesሻ 
(2) Divide the observations by the appropriate yearly mean: Yt,i/At. 
(3) Is is formed by computing the average Yt,i/At per year: 
 𝐼௦ ൌ ∑ 𝑌௧,௦/𝐴௧

்
ୀଵ  𝑠 ൌ 1,  2,  3,  4 

 
 
Holt-Winters (HW) ES: Damped Model 
We can damp the trend as the forecast horizon increases, using a parameter 𝜙. For the 
multiplicative model, see Figure 9.2, we have: 

𝑆௧ ൌ 𝛼
𝑌௧ିଵ
𝐼௧ି௦

 ሺ1 െ 𝛼ሻሺ𝑆௧ିଵ െ 𝜙 𝑇௧ିଵሻ𝑇௧ ൌ 𝛽ሺ𝑆௧ െ 𝑆௧ିଵሻ  ሺ1 െ 𝛽ሻ𝑇௧ିଵ𝐼௧ ൌ 𝛾
𝑌௧
𝑆௧
 ሺ1 െ 𝛾ሻ𝐼௧ି௦ 

 
Then, the h-step ahead forecast:  

𝑌௧ሺℎሻ ൌ  ሼ𝑆௧   ሺ1  𝜙  𝜙ଶ ⋯ 𝜙ଶିଵሻ𝑇௧ሽ ∗ 𝐼௧ାି௦ 
 

Figure 9.2 – Damped Additive Trend with Multiplicative Seasonality 
 
 
 
 
 
 
 
 
 
 
This model is based on practice: It seems to work well for industrial outputs. Not a lot of theory 
or clear justification behind the damped trend.  
 
 
HW ES Models – Different Types 
We have many variations: 
1. No trend and additive seasonal variability. 
2. Additive seasonal variability with an additive trend. 
3. Multiplicative seasonal variability with an additive trend. 
4. Multiplicative seasonal variability with a multiplicative trend.  
5. Dampened trend with additive seasonal variability. 
6. Multiplicative seasonal variability and dampened trend.  
 
Q: Which model should be used?  
A: Select the type of model to fit based on the presence of   
- Trend – additive or multiplicative, dampened or not 
- Seasonal variability – additive or multiplicative  



 
 
HW ES: Example – Log U.S. Vehicles Sales  
Example: We want to forecast log U.S. monthly vehicle sales with HW. We use the R function 
HoltWinters().  
l_car_18 <- l_car[1:512] 
l_car_ts <- ts(l_car_18, start = c(1976, 1), frequency = 12) # convert lr_d in a ts object 
hw_d_car <- HoltWinters(l_car_18, seasonal="additive") 
> hw_d_car 
Holt-Winters exponential smoothing with trend and additive seasonal component. 
 
Call: 
HoltWinters(x = lr_d_ts, seasonal = "additive") 
 
Smoothing parameters: 
 alpha: 0.4355244      Estimated smoothing parameter 
 beta : 0.009373815      Estimated trend parameter ≈ 0 (no trend) 
 gamma:0.3446495   Estimated seasonal parameter 
 
> hw_d_car 
Coefficients: 
             [,1] 
a    7.177857555    forecast for level  
b    0.0001100345    forecast for trend  
s1  -0.075314457     forecast for seasonal month 1 
s2  -0.084468361     forecast for seasonal month 2 
s3   0.049447067 
s4  -0.273299309 
s5  -0.138251757 
s6  -0.026603921 
s7  -0.144953062 
s8   0.079214066 
s9   0.037899454 
s10  0.020477134 
s11  0.089309775 
s12 -0.012530316 
 
>plot(hw_d_car) 
 



 
• Now, we forecast one-step ahead forecasts 
T_last <- nrow(hw_d_car$fitted) 
h <- 25 
ses_f_hw <- matrix(0,h,1) 
 alpha <- 0.4355244 
 beta <- 0.009373815 
 gamma <- 0.3446495 
y <- l_car 
T <- length(l_car) 
sm <- matrix(0,T,1) 
Tr <- matrix(0,T,1) 
I <- matrix(0,T,1) 
T1 <- T-h+1 
a <- T1 
sm[a-1] <- 7.177857555 
Tr[a-1] <- -0.000309358 
I[501:512] <- c(-0.075314457,-0.084468361,0.049447067,-0.273299309,-0.138251757, -
0.026603921, -0.144953062,0.079214066,0.037899454,0.020477134,0.089309775,-
0.012530316) 
while (a <= T) { 
   sm[a] = alpha * y[a-1] +  (1-alpha) * sm[a-1] 
 Tr[a] = beta * (sm[a] - sm[a-1]) + (1 - beta) * Tr[a-1] 
 I[a] = gamma * (y[a] - sm[a]) + (1 - gamma) * I[a - 12] 
a <- a + 1 
} 
 
hh <- c(1:h) 
car_f_hw <- sm[T1:T] + hh*Tr[T1:T] + I[T1:T] 
car_f_hw 
f_error_c_hw<- car_f_hw - y[T1:T] 
plot(car_f_hw, type="l", main ="SES Forecasts: Log Vehicle Sales") 



 
MSE_hw <- sum(f_error_c_hw^2)/h 
> MSE_hw 
[1] 0.01655964. ¶ 
 
 
HW ES: Remarks 
If a computer program selects  = 0 = β, it has a lack of trend or seasonality. It implies a constant 
(deterministic) component. In this case, an ARIMA model with deterministic trend may be a 
more appropriate model.  
 
- For HW ES, a seasonal weight near one implies that a non-seasonal model may be more 
appropriate.  
 
We can model seasonalities as multiplicative or additive: 
   Multiplicative seasonality:   Forecastt = St * It-s.  
   Additive seasonality:   Forecastt = St + It-s. 
 
 
Evaluation of forecasts – Accuracy measures 
The mean squared error (MSE) and mean absolute error (MAE) are the most popular accuracy 
measures: 

 MSE = 
ଵ
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where m is the number of out-of-sample forecasts. 
 
But other measures are routinely used: 

- Mean absolute percentage error (MAPE) = 
ଵ
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- Absolute MAPE (AMAPE) = 
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Remark: There is an asymmetry in MAPE, the level 𝑦 matters. 
 

- % correct sign predictions (PCSP) = 
ଵ

்ିሺିଵሻ
∑ 𝑧
்ା
ୀ்ାଵ   

where 𝑧 = 1  if ሺ𝑦ොା ∗  𝑦ା) > 0  
 = 0,  otherwise. 



- % correct direction change predictions (PCDP)= 
ଵ

்ିሺିଵሻ
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where 𝑧 = 1  if ሺ𝑦ොା െ 𝑦) * (𝑦ା െ 𝑦) >0  
 = 0,  otherwise. 
 
Remark: We value forecasts with the right direction (sign) or forecast that can predict turning 
points. For stock investors, the sign matters! 
 
MSE penalizes large errors more heavily than small errors, the sign prediction criterion, like 
MAE, does not penalize large errors more.  
 
Example: We compute MSE and the % of correct direction change (PCDC) predictions for the 
one-step forecasts for U.S. monthly vehicles sales based on the SES and HW ES models. 
> MSE_ses  
[1] 0.027889 
> MSE_hw 
[1] 0.01655964 
 
We calculate PCDC with following script for HW and SES: 
bb_hw <- (car_f_hw - y[(T1-1):(T-1)]) * (y[T1:T] - y[(T1-1):(T-1)]) 
indicator_hw <- ifelse(bb_hw > 0,1,0) # ifelse (“if else”) produces a 1 if condition is true 
pcdc_hw <- sum(indicator_hw)/h 
> indicator_hw 
 [1] 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 0 0 0 
> pcdc_hw 
[1] 0.76 
 
bb_s <- (ses_f_c - y[(T1-1):(T-1)]) * (y[T1:T] - y[(T1-1):(T-1)]) 
indicator_s <- ifelse(bb_s > 0,1,0) 
pcdc_s <- sum(indicator_s)/h 
> indicator_s 
 [1] 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 0 0 
> pcdc_s  
[1] 0.76.  
 
Note: Same percentage of correct direction change (PCDC) predictions, but the sequence of 
correct predictions is not the same. ¶ 
 
 
Evaluation of forecasts – DM Test 
To determine if one model predicts better than another, we define the loss differential between 
two forecasts:  
   dt = g(et

M1) – g(et
M2) 

  
where g(.) is the forecasting loss function. M1 and M2 are two competing sets of forecasts –
could be from models or something else. 
  



We only need {et
M1} & {et

M2}, not the structure of M1 or M2. In this sense, this approach is 
“model-free.” 
 
Typical (symmetric) loss functions:  g(et) = et

2  &  g(et) =|et|.  
 
But other g(.)’s can be used: g(et) = exp(λet

2 ) – λet
2  (λ>0). 

 
Then, we test the null hypotheses of equal predictive accuracy:  
  H0: E[dt] = 0 
  H1: E[dt] = μ ≠ 0. 
  
- Diebold and Mariano (1995) assume {et

M1} & {et
M2} is covariance stationarity and other 

regularity conditions (finite Var[dt], independence of forecasts after ℓ periods) needed to apply 
CLT. Then, 
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• Then, under H0, the DM test is a simple z-test: 

  𝐷𝑀 ൌ ௗሜ
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where 𝑉𝑎𝑟ሾ𝑑ሜሿ is a consistent estimator of the variance, usually based on sample autocovariances 
of dt: 

𝑉𝑎𝑟ሾ𝑑ሜሿ ൌ 𝛾ሺ0ሻ  2𝛾ሺ𝑗ሻ

ℓ

ୀ

 

There are some suggestion to calculate small sample modification of the DM test. For example, : 
 DM* = DM/{[T + 1 – 2 ℓ + ℓ (ℓ – 1)/T]/T}1/2 ~ tT-1. 
 
where ℓ-step ahead forecast. If ARCH is suspected, replace ℓ with [0.5 √(T)] + ℓ. 
 
Note:  If {et

M1} & {et
M2} are perfectly correlated, the numerator and denominator of the DM test 

are both converging to 0 as  T → ∞.      
  Avoid DM test when this situation is suspected (say, two nested models.) Though, in 
 small samples, it is OK. 
 
• Code in R 
dm.test <- function (e1, e2, h = 1, power = 2) { 
d <- c(abs(e1))^power - c(abs(e2))^power 
  d.cov <- acf(d, na.action = na.omit, lag.max = h - 1, type = "covariance", plot = FALSE)$acf[, , 
1] 
  d.var <- sum(c(d.cov[1], 2 * d.cov[-1]))/length(d) 
  dv <- d.var   #max(1e-8,d.var) 
  if(dv > 0) 
    STATISTIC <- mean(d, na.rm = TRUE) / sqrt(dv) 
  else if(h==1) 



    stop("Variance of DM statistic is zero") 
  else 
  { 
    warning("Variance is negative, using horizon h=1") 
    return(dm.test(e1,e2,alternative,h=1,power)) 
  } 
    n <- length(d) 
  k <- ((n + 1 - 2*h + (h/n) * (h-1))/n)^(1/2) 
  STATISTIC <- STATISTIC * k 
  names(STATISTIC) <- "DM" 
} 
 
Example: We compare the SES and HW forecasts for the log of U.S. monthly vehicle sales. We 
use the dm.test function, part of the forecast package. 
library(forecast) 
 
> dm.test(f_error_c_ses, f_error_c_hw, power=2) 
        Diebold-Mariano Test 
data:  f_error_c_sesf_error_c_hw 
DM = 1.6756, Forecast horizon = 1, Loss function power = 2, p-value = 0.1068 
alternative hypothesis: two.sided 
 
> dm.test(f_error_c_ses,f_error_c_hw, power=1) 
        Diebold-Mariano Test 
data:  f_error_c_sesf_error_c_hw 
DM = 1.94, Forecast horizon = 1, Loss function power = 1, p-value = 0.064 
alternative hypothesis: two.sided 
 
Note: Cannot reject H0: MSESES = MSEHW at 5% level. ¶ 
 
 
Evaluation of forecasts – DM Test: Remarks 
The DM tests is routinely used. Its “model-free” approach has appeal.  There are model-
dependent tests, with more complicated asymptotic distributions. 
 
The loss function does not need to be symmetric (like MSE). 
 
The DM test is based on the notion of unconditional –i.e., on average over the whole sample- 
expected loss.  
 
Following Morgan, Granger and Newbold (1977), the DM statistic can be calculated by 
regression of dt, on an intercept, using NW SE. But, we can also condition on variables that may 
explain dt. We move from an unconditional to a conditional expected loss perspective. 
 
 
Combination of Forecasts  



Idea – from Bates & Granger (Operations Research Quarterly, 1969): 
- We have different forecasts from R models:  
  𝑌்ெଵሺℓሻ,𝑌்ெଶሺℓሻ, . . . .𝑌்ெோሺℓሻ 
 
Question: Why not combine them? 

𝑌்ሺℓሻ ൌ 𝜔ெଵ𝑌்ெଵሺℓሻ  𝜔ெଶ𝑌்ெଶሺℓሻ. . . .𝜔ெோ𝑌்ெோሺℓሻ 
 
Very common practice in economics, finance and politics, reported by the press as “consensus 
forecast.” Usually, as a simple average. 
 
Question: Advantage? Lower forecast variance. Diversification argument. 
 
Intuition: Individual forecasts are each based on partial information sets (say, private 
information) or models.  
 
The variance of the forecasts is: 
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Note: Ideally, we would like to have negatively correlated forecasts. 
 
Assuming unbiased forecasts and uncorrelated errors, 
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Example: Simple average: ωj=1/R. Then, 
    𝑉𝑎𝑟ሾ𝑌்ሺℓሻሿ ൌ 1/𝑅ଶ ∑ 𝜎

ଶோ
ୀଵ . ¶ 

 
Example: We combine the SES and HW forecast of log US vehicles sales: 
f_comb <- (ses_f_c + car_f_hw)/2 
f_error_comb <- f_comb - y[T1:T] 
> var(f_comb) 
[1] 0.0178981 
> var(car_f_hw) 
[1] 0.02042458 
> var(ses_f_c) 
[1] 0.01823237. ¶ 
 
 
Combination of Forecasts – Optimal & Regression Weights 
We can derived optimal weights –i,e., ωj’s that minimize the variance of the forecast. Under the 
uncorrelated assumption:  
  𝜔ெ ∗ൌ 𝜎
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The ωj*’s are inversely proportional to their variances.  



 
In general, forecasts are biased and correlated. The correlations will appear in the above formula 
for the optimal weights. For the two forecasts case: 
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Ideally, we would like to have negatively correlated forecasts. 
 
• Granger  and  Ramanathan (1984) used a regression method to combine forecasts.  
- Regress the  actual  value on the forecasts. The estimated coefficients are the weights. 

𝑦்ାℓ ൌ 𝛽ଵ𝑌்ெଵሺℓሻ  𝛽ଶ𝑌்ெଶሺℓሻ. . . .𝛽ோ𝑌்ெோሺℓሻ  𝜀்ାℓ 
 
Should use a constrained regression 
 – Omit the constant 
 – Enforce non-negative coefficients. 
 – Constrain coefficients to sum to one 
 
Example: We regress the SES and HW forecasts against the observed  car sales to obtain 
optimal weights. We omit the constant 
> lm(y[T1:T] ~ ses_f_c + car_f_hw - 1) 
 
Call: 
lm(formula = y[T1:T] ~ ses_f_c + car_f_hw - 1) 
 
Coefficients: 
 ses_f_c  car_f_hw   
 -0.5426    1.5472  
 
Note: Coefficients (weights) add up to 1. But, we see negative weights. In general, we 
use a constrained regression, forcing parameters to be between 0 and 1 (& non-negative). But, 
h=25 delivers not a lot of observations to do non-linear estimation. ¶ 
 
• Remarks: 
- To get weights, we do not include a constant. Here, we are assuming unbiased forecasts. If the 
forecasts are biased, we include a constant. 
- To account for potential correlation of errors, we can allow for ARMA residuals or include yT+l-

1 in the regression. 
- Time varying weights are also possible. 
 
Question: Should weights matter? Two views: 
- Simple averages outperform more complicated combination techniques. 
 - Sampling variability may affect weight estimates to the extent that the combination has a larger 
MSE.  
 
 
Combination of Forecasts: Final Remarks  



• Since Bates and Granger (1969) and Granger and Ramanathan (1984), combination weights 
have generally been chosen to minimize a symmetric, squared-error loss function.   
 
• But, asymmetric loss functions can also be used. Elliot and Timmermann (2004) allow for 
general loss functions (and distributions). They find that the optimal weights depend on higher 
order moments, such a skewness. 
 
• It is also possible to forecast quantiles and combine them. We will not explore these issues in 
more detail in this class. 
 



Lecture 10 – Efficient Markets Hypothesis & Predictability 
 
Efficient Markets Hypothesis (EMH) 
Questions: Can we predict stock returns? Can past information be used to build profitable trading 
rules in financial markets? In particular, can past return realizations tell us anything about 
expected future returns?  Very old questions. 
 
• The efficient markets hypothesis (EMH) is a first attempt to address the predictability issue. 
 
• Earliest known version: 
“When shares become publicly known in an open market, the value which they acquire there 
may be regarded as the judgement of the best intelligence concerning them.” 
- George Gibson, The Stock Exchanges of London, Paris and New York, G. P. Putnman & Sons, 
New York, 1889. 
 
• In 1900, Louis Bachelier, a French PhD student at the time, was the first to propose the 
“Random Walk Model” for security prices.  
 
• Samuelson (1965) 
“In an informationally efficient market, price changes must be unforecastable.” 
 
• Fama (1970) 
“A market in which prices always fully reflect available information is ‘efficient’.” 
If we have new information (a new earnings announcement) prices will adjust immediately (or 
very fast). Prices (significantly) jump with relevant information. But, they have to jump a proper 
amount, not too much (over-reaction) or not too little (under-reaction)! 
 
• Grossman and Stiglitz (1980)  
“There must be sufficient profit opportunities, i.e. inefficiencies, to compensate investors for the 
cost of trading and information-gathering. ”  
 
The, under a frictionless world, it is impossible to have efficient prices (& EM). Only when all 
information gathering & trading costs are zero we can expect prices to fully reflect all available 
information.  
 
But, if prices reflect fully and instantly all available information, who is going to gather 
information? 
 
• Malkiel (1992) 
“The market is said to be efficient with respect to some information set… implies that it is 
impossible to make economic profits by trading on the basis of [the information in that set].” 
 
The first sentence of Malkiel’s definition expands Fama’s definition and suggests a test for 
efficiency useful in a laboratory.  
 



The second sentence suggests a way to judge efficiency that can be used in empirical work. This 
is what is usually done in the finance literature. 
 
Example: If Fund managers outperform the market consistently, then prices are not efficient 
with respect to their information set. 
 
Many examples of “inefficiencies” with respect to some information sets. 
 
The behavioral finance field has found that investors often show predictable and financially 
ruinous behavior (irrational?). Different causes: overreaction, overconfidence, loss aversion, 
herding, psychological accounting, miscalibration of probabilities, regret, etc.  
 
Examples: Momentum strategies (buying past winners and selling past losers, under-reaction?) 
and Contrarian strategies (buying past losers and selling past winners, over-reaction?) achieve 
abnormal returns. 
 
• Lo (2004)  
“… much of what behavioralists cite as counterexamples to economic rationality […] are, in fact, 
consistent with an evolutionary model of individuals adapting to a changing environment.” 
There is a time dimension. It takes time to adapt to new circumstances. 
 
 
EMH: Versions 
Efficiency can only be defined with reference to a specific type of information. Fama (1970) 
defined three classes of information sets: 
 (a) Historical sequence of prices. This set gives Weak form EMH. 
 (b) Public records of companies and public forecasts regarding the future performance 
and    possible actions. Sets (a) & (b) create the Semi-strong form EMH. 
 (c) Private or inside information. Sets (a), (b) & (c) deliver the Strong form EMH. 
 
• Violations: 
 - Technical traders devising profitable strategies (weak EMH)  
 - Reading a newspaper and devising a profitable trading strategy (semi-strong EMH) 
 - Corporate insiders making profitable trades (strong EMH). 
 
Question: Can markets really be strong-form efficient? Very unlikely, plenty of examples of 
successful trading with private information: Jeffrey Skilling (Enron), Ivan Boesky & Michael 
Milken (junk bonds), Eugene Plotkin and David Pajcin (from Goldman Sachs, trading on M&A 
inside information), James McDermott Jr (Keefe, Bruytee & Woods, passed M&A tips to his 
mistress), Raj Rajaratnam (Galleon Group), Scott London (KPMG, passed tips from clients to a 
friend). 
 
• Perfectly rational factors may account for violations of EMH: 
 - Microstructure issues and trading costs. 
 - Rewarding investors for bearing certain dynamic risks. 
 - Time-varying expected returns due to changing conditions can generate predictability. 



 
 
EMH: Joint Tests 
We are talking about economic profits, adjusting for risk and costs. Thus, a model for risk 
adjustment is needed. Results will be conditional on the underlying asset pricing model. 
 
Fama (1991) remarks that tests of efficiency are joint tests of efficiency and some asset pricing 
model, or benchmark. 
 
Example: Many benchmarks assume constant “normal” returns.  This is easier to implement, but 
may not be correct. Thus, rejections of efficiency could be due to rejections of the benchmark. 
 
Most tests suggest that if the security return (beyond the mean) cannot be forecasted, then market 
efficiency is not rejected. 
 
Example: A wrong asset pricing model may reject efficiency.  It would be easy to find 
(demeaned) returns to be forecastable if we use the wrong mean. 
 
 
EMH: Expectations and Information Set 
The conditional expectation of the stochastic process Xt+1, conditioned on information set It, can 
be written as: 
   E[Xt+1|It] = Et [Xt+1] 
 
 Information set, It: It describes what we know at time t. The usual assumption is that we do not 
forget anything. Over time, the information set increases: It is contained in It+1 ; It+1 is contained 
in It+2 , etc.  That is, we have a sequence I0 ⊆ I1 ⊆ I2 … ⊆ It. In stochastic processes this 
sequence is called a “filtration,” with notation {ℱt}. 
 
Technical note: We say a stochastic process {Xt} is adapted to a filtration {ℱt} if Xt is 
measurable ℱt for all t.  
 
Measurable? The event of interest is in ℱt. 
 
 
EMH: Random Prices 
Efficient market: A market where prices are random with respect to an information set 
(“filtration”), It. 
 
Let the price of a security at time 𝑡 be given by the expectation of some “fundamental value,” 
V*, conditional on It: 
  Pt = E[V*|It] = Et[V*] 
 
The same equation holds one period ahead so that: 
  Pt+1 = E[V*|It+1] = Et+1[V*] 
 



The expectation of the price change over the next period is: 
  Et[Pt+1 - Pt] = Et[Et+1[V*] - Et[V*]] = 0 
since It is contained in It+1  Et[Et+1[V*]] = Et[V*] (by the law of IE). 
 
Remark: Under efficiency, financial asset prices are unpredictable. 
 
 
EMH: Martingale & Fair Games 
Martingale: A stochastic process Pt is a martingale if: 
  E[Pt+1 | t] = Pt (or Et[Pt+1] = Pt) 
where the information set is t (what we know at time t, includes Pt). 
 
Submartingale:  If E[Pt+1 | t]  Pt. -Pt is a lower bound for Et[Pt+1] 
Supermartingale: If E[Pt+1 | t]  Pt  -Pt is an upper bound for Et[Pt+1]  
 
Fair game model: A stochastic process 𝑟௧ is a fair game if: 
  E[𝑟௧ାଵ| t] = 0 
 if Pt is a martingale or pure random walk, (Pt+1 – Pt) is a fair game. 
 
Note: Only referring to expected values!  
 
The Martingale process can be setup as a special case of an AR(1) process:  
  𝑝௧ = μ + 𝜙 𝑝௧ିଵ + ௧ 
with 𝜙 = 1, μ = 0, & Et[௧ାଵ] = 0. A non-stationary process. 
Technical detail: Martingale condition is neither a necessary nor a sufficient condition for 
rational expectations models of asset prices (LeRoy (1973), Lucas (1978)).  
 
According to Lucas (1978), in markets where all investors have rational expectations, prices do 
fully reflect all available information and marginal-utility weighted prices follow martingales. 
 
But, we consider the martingale as an important starting point. 
 
 
EMH: The Random Walk Hypothesis (RWH) 
Definition: Random Walk (RW)  
A stochastic process 𝑝௧ is a RW if: 
   𝑝௧ = μ + 𝑝௧ିଵ + ௧ -where 𝑝௧= ln(Pt) 
     𝑟௧ = μ + ௧ = Δ 𝑝௧ 
 
Assumptions about ௧: Uncorrelated with past information, with constant mean (=0) & variance 
(2). That is,  
  t  D (0, 2),    
with Et[௧ାଵ] = 0, Et[2

t+1] = 2 
 
If μ ് 0, the process is called a RW with a drift. 



 
A RW with no drift is a martingale with structure for the error term, t, uncorrelated, zero mean 
and constant variance. 
 
• We start testing the EMH by assuming log returns, 𝑟௧, follow a RW with a drift. We called this 
“Random Walk Model”: 
    𝑟௧ = Δ 𝑝௧ ൌ 𝜇 + ௧ = Δ 𝑝௧ 
where t  D (0, 2). 
   
• Different specifications for t produce different testable hypothesis for the EMH-RW Model: 
- RW1: ௧  is independent and identically distributed (i.i.d.) ~ D(0, σ2). Not realistic. (Old tests: 
Cowles and Jones (1937)). 
- RW2: ௧ is independent (allows for heteroskedasticity). Test using filter rules, technical 
analysis. (Alexander (1961, 1964), Fama (1965)). 
- RW3: ௧ is uncorrelated (allows for dependence in higher moments). Test using 
autocorrelations, variance ratios, long horizon regressions. 
 
 
The RWH: Autocorrelations & ACF 
Assume 𝑟௧ is covariance stationary and ergodic. Then, 
 𝛾= cov(𝑟௧, 𝑟௧ି)  - Auto-covariance between times 𝑡 & 𝑡 െ 𝑘  𝜌= 𝛾/ 𝛾.   
is not time dependent. We estimate both statistics with 𝛾ො and 𝜌ො. (Recall that Var[𝑟௧] = 𝛾.) 
 
• Under RW1 Hypothesis (and some assumptions) 

  √𝑇  𝜌ො  
  
ሱ⎯⎯ሮ N(0, 1) 

   SE[𝜌ො] = 1/√𝑇  
Technical Note: The sample correlation coefficients, 𝜌ො, are negatively biased in finite samples. 
See Fuller (1976).  
 
• To check autocorrelations up to order 𝑘, we use the ACF for 𝑟௧. Confidence Intervals can be 
easily approximated by േ 2/√𝑇 . 

 
Example: ACF with 𝑘 = 24 lags for the monthly Equal- and Value-weighted (EW & VW, 
respectively) CRSP index returns from 1926:Jan – 2022:March (T = 1,155): 

EMH_da <- read.csv("http://www.bauer.uh.edu/rsusmel/4397/crsp_ew_vw_m.csv", 
head=TRUE,sep=",") 

 
lr_vw <- EMH_da$vwretd  # Value weighted CRSP returns (including distributions) 
lr_ew <- EMH_da$ewretd  # Equal weighted CRSP returns (including distributions) 

T <- length(lr_vw) 
SE_rho <- 1/sqrt(T)   # Asymptotic SE for rho’s: |rho| > 2 * SE => significant 
> SE_rho 
[1] 0.02942449   # |rho| > 2 * SE => significant 



 
## Monthly Value-Weighted 
acf_y <- acf(lr_vw) 
> acf_y 
Autocorrelations of series ‘lr_vw’, by lag 
 0 1  2  3  4  5  6  7  8   9     10     11  12 
  1.000 -0.011  0.044 -0.183  0.140 -0.001  0.002 -0.010  0.121 -0.024 -0.003 -0.045 -0.002 
 13     14   15 16 17 18 19 20 21 22 23 24  
 0.045  0.009 -0.004  0.007  0.010  0.015 -0.010 -0.004 -0.005  0.051 -0.009 -0.015 
 

 
 
Conclusion for Monthly VW returns: There are a few significant autocorrelations (3rd, 4th, and 
8th), all smaller than 0.2 in absolute value.  
 
## Monthly Equal-Weighted 
acf_y <- acf(lr_ew) 
> acf_y 
Autocorrelations of series ‘lr_vw’, by lag 
 0 1  2  3  4  5  6  7  8   9     10     11  12 
1.000  0.101 -0.023 -0.094  0.014  0.056 -0.038  0.018  0.041  0.056  0.014 -0.020 -0.001 
 13     14   15 16 17 18 19 20 21 22 23 24  
1.000  0.101 -0.023 -0.094  0.014  0.056 -0.038  0.018  0.041  0.056  0.014 -0.020 -0.001 

 
Conclusion for Monthly EW returns: Again, a few significant autocorrelations, but, small in size. 
¶ 



 
Example: ACF with 𝑘 = 24 lags for the daily Equal- and Value-weighted (EW & VW, 
respectively) CRSP index returns from 1926:Jan 1 – 2022:March 30 (T = 23,359): 
 
EMH_d_da <- read.csv("http://www.bauer.uh.edu/rsusmel/4397/crsp_ew_vw_d.csv", 
head=TRUE,sep=",") 
 

lr_vw_d <- EMH_d_da$vwretd # VW CRSP returns (including distributions) 
lr_ew_d <- EMH_d_da$ewretd # EW CRSP returns (including distributions) 
T <- length(lr_ew_d) 
SE_rho <- 1/sqrt(T) # Asymptotic SE for rho’s: |rho| > 2 * SE => significant 
> SE_rho 
[1] 0.006279628   # |rho| > 2 * SE => significant 
 
## Daily Value-Weighted 
acf_y <- acf(lr_vw_d) 
> acf_y 
Autocorrelations of series ‘lr_vw_d’, by lag 
 0 1  2  3  4  5  6  7  8   9     10     11  12 
1.000  0.053 -0.027  0.001  0.018  0.007 -0.027 -0.003  0.002  0.019  0.014  0.010  0.023 
 13     14   15 16 17 18 19 20 21 22 23 24  
-0.001 -0.001 -0.017  0.024  -0.010 -0.011  0.013  0.014 -0.008 -0.003  0.011  0.006  
 

 
Conclusion for daily VW returns: There are many significant autocorrelations, with the 
exception of the first one, all very small. 
 
## Daily Equal-Weighted 
acf_y <- acf(lr_ew_d) 
> acf_y 
Autocorrelations of series ‘lr_ew_d’, by lag 
 0 1  2  3  4  5  6  7  8   9     10     11  12 
  1.000  0.198  0.016  0.046  0.061  0.049  0.000  0.018  0.023  0.042  0.034  0.033  0.040 
 13     14   15 16 17 18 19 20 21 22 23 24  



  0.015  0.014  0.004  0.021   0.007  0.008  0.033  0.025  0.003  0.009  0.023  0.007  
 
Conclusion for daily EW rturns: Lots of significant autocorrelations, but, in general, small. ¶ 
 
 
The RWH: Autocorrelations Joint Tests 
We already know two tests to check for zero autocorrelation in a time series: Box-Pierce Q and 
Ljung-Box tests. We usually rely on the Ljung-Box (1978), LB, test, since it has better small 
sample properties. 
 
-The Q & LB statistics test a joint hypothesis that the first 𝑝 autocorrelations are zero:  H0: r1 = ... 
= rp = 0  
 
Under RW1 and using the asymptotic distribution of 𝜌ො: 

  Q = T  ∑ r̂
ଶ

ୀଵ

ௗ
→  χ

ଶ . 

  LB = T * (T – 2) * ∑ r̂ೖ
మ

்ି 

ୀଵ  

  ௗ  
ሱሮ  χ

ଶ . 

 
• Q & LB tests are widely use, but they have two main limitations:  
 
(1) The test was developed under the independence (RW1) assumption.  
If 𝑦௧ shows dependence, such as heteroscedasticity, the asymptotic variance of √𝑇 𝝆ෝ is no longer 
I, but a non-diagonal matrix. 
 
There are several proposals to “robustify” both Q & LB tests, see Diebold (1986), Robinson 
(1991), Lobato et al. (2001). The “robustified” Portmanteau statistic uses 𝜌 instead of 𝜌: 

  𝜌 = 
ఊෝೖ
ఛೖ  

 = 
∑ ሺ௬ ି ௬തሻሺ௬షೖ ି  ௬തሻ
సೖశభ

∑ ሺ௬ ି ௬തሻమ ሺ௬షೖ ି ௬തሻమ
సೖశభ

 

Thus, for Q we have: 

  Q* = T  ∑ 𝜌
ଶ

ୀଵ

ௗ
→  χ

ଶ . 

 
(2) The selection of the number of autocorrelations 𝑝 is arbitrary. 
The traditional approach is to try different 𝑝 values, say 3, 6 & 12. Another popular approach is 
to let the data “select” 𝑝, for example, using AIC or BIC, an approach sometimes referred as 
“automatic selection.”  
 
Escanciano and Lobato (2009) propose combining BIC’s and AIC’s penalties to select 𝑝 in Q* 
(BIC for small r and AIC for bigger r). 
 
Note: It is common to reach different conclusion from Q and Q*.  
 

Example: Q and LB tests with 𝒑 = 3 & 12 lags for the monthly EW & VW CRSP index returns 
from 1926:Jan – 2022:March (T = 1155): 

• Q  test for monthly VW 



> Box.test(lr_vw, lag = 4, type="Box-Pierce") 

 Box-Pierce test 

data:  lr_vw 

X-squared = 22.812, df = 4, p-value = 0.000138 

> Box.test(lr_vw, lag = 12, type="Box-Pierce") 

 Box-Pierce test 

data:  lr_vw 

X-squared = 34.696, df = 12, p-value = 0.0005234 

 

• LB  tests for monthly VW 

> Box.test(lr_vw, lag = 4, type="Ljung-Box") 

 Box-Ljung test 

data:  lr_vw 

X-squared = 22.891, df = 4, p-value = 0.0001332 

> Box.test(lr_vw, lag = 12, type="Ljung-Box") 

 Box-Ljung test 

data:  lr_vw 

X-squared = 34.87, df = 12, p-value =  0.0004912 

Q* tests with automatic lag selection. In R, the package vrtest has the Auto.Q function that 
computes this test. As always, you need to install vrtest first.  

 

• Q*  test for monthly VW  

> Auto.Q(lr_vw, 12) 

$Stat 

[1] 3.059582 

$Pvalue 

[1] 0.08026232 

Conclusion for monthly VW returns: Once we take into consideration potential 
heteroscedasticity in 𝑦௧, there is weak evidence for autocorrelation in  monthly Value-weighted 
CRSP index returns. 

 

• Q  test for monthly EW  

> Box.test(lr_ew, lag = 4, type="Box-Pierce") 

 Box-Pierce test 

data:  lr_ew 

X-squared = 61.607, df = 4, p-value = 1.333e-12 



> Box.test(lr_ew, lag = 12, type="Box-Pierce") 

X-squared = 83.328, df = 12, p-value = 9.531e-13 

• LB  tests for monthly EW 

> Box.test(lr_ew, lag = 4, type="Ljung-Box") 

X-squared = 61.793, df = 4, p-value = .218e-12 

> Box.test(lr_ew, lag = 12, type="Ljung-Box") 

X-squared = 83.719, df = 12, p-value =  8.02e-13 

 

• Q*  test for monthly EW  

library(vrtest) 

> Auto.Q(lr_ew, 12) 

$Stat 

[1] 6.487553 

$Pvalue 

[1] 0.01086324 

 

Conclusion for monthly EW returns: Strong evidence for autocorrelation in monthly EW CRSP 
returns (the evidence was weaker, once we take into consideration potential heteroscedasticity in 
𝑦௧, for monthly VW CRSP returns). That is, we reject the RW hypothesis for monthly EW CRSP 
returns. ¶ 

  

Example: Q and LB tests with 𝒑 = 5 & 20 lags for the daily Equal- and Value-weighted (EW & 
VW, respectively) CRSP index returns from 1926: Jan 1 – 2022 :March 30 (T = 25,359): 

 
EMH_d_da <- read.csv("http://www.bauer.uh.edu/rsusmel/4397/crsp_ew_vw_d.csv", 
head=TRUE,sep=",") 

 
lr_vw_d <- EMH_d_da$vwretd # Value weighted CRSP returns (with distributions) 
lr_ew_d <- EMH_d_da$ewretd # Equal weighted CRSP returns (with distributions) 
T <- length(lr_ew_d) 

• Q  tests for daily VW 

> Box.test(lr_vw_d, lag = 5, type="Box-Pierce") 

data:  lr_vw_d 

X-squared = 100.64, df = 5, p-value = 2.2e-16 

> Box.test(lr_vw_d, lag = 20, type="Box-Pierce") 

data:  lr_vw_d 

X-squared = 184.68, df = 20, p-value < 2.2e-16 



 

• Q*  test for daily VW (continuation) 

> Auto.Q(y, 20)    # Q* test automatic selection of p 

$Stat 

[1] 11.73454 

$Pvalue 

[1] 0.0006135076 

 

• Q  tests for daily EW 

> Box.test(lr_ew_d, lag = 5, type="Box-Pierce") 

data:  lr_ew_d 

X-squared = 1213.3, df = 5, p-value = 2.2e-16 

> Box.test(lr_ew_d, lag = 20, type="Ljung-Box") 

data:  lr_ew_d 

X-squared = 1445.4, df = 20, p-value = 2.2e-16 

 

• Q*  test for daily EW (continuation) 

> Auto.Q(y, 40)    # Q* test automatic selection of p 

$Stat 

[1] 235.7106 

$Pvalue 

[1] 0 

 
Conclusion: Strong evidence for autocorrelation in daily VW & EW CRSP returns. That is, we 
reject the uncorrelated returns hypothesis as implied by the RW hypothesis for daily VW & EW 
CRSP returns. ¶ 
 
 
The RWH: Variance Ratio (VR) Test 
Intuition: For all 3 RW hypotheses, the variance of RW increments is linear in the time interval. 
If the interval is twice as long, the variance must be twice as big. That is, the variance of monthly 
data should be 4 times bigger than the variance of weekly data. (Recall the log approximation 
rules for i.i.d. returns.) 

 

If rt is a covariance stationary process (constant first two moment, and covariance independent of 
time), then for the variance ratio of 2-period versus 1-period returns, VR(2): 

 VR(2) = 
Var[(2)]

2*Var[ሿ
 = 

Var[+శభ]

2*Var[ሿ
 =   



  = 
Var[ሿ + Var[శభ] + 2 Cov[,శభ]

2*Var[ሿ
 = 

2 σ2 + 2 ఊభ
2σ2

 = 1 + 𝜌ଵ 

where 𝑟௧(2) = 𝑟௧ + 𝑟௧ାଵ 

 
• Three cases: 
 𝜌ଵ= 0  VR(2) = 1 (True under RW1, random walk) 
 𝜌ଵ> 0  VR(2) > 1 (mean aversion) 
 𝜌ଵ < 0  VR(2) < 1 (mean reversion) 

 
The intuition generalizes to longer horizons: 

 VR(q) = 
Var[(q)]

q *Var[]
 = 1 + 2 * ∑ ሺ1 െ 


ିଵ
ୀଵ ሻ 𝜌. 

The VR(q) is a particular linear combination of the 1st (q - 1) autocorrelation coefficients (with 
linearly declining weights). 

 
• Under RW1, we have  H0: VR(q) = 1. 
    H1: VR(q) ≠ 1. 
 
Technical Note: Under RW2 and RW3, VR(q) = 1 provided 
  1/T Σ

t
 Var[𝑟௧] → σതଶ > 0 

we need this assumption, since some “fat-tailed” distributions do not have a well-defined second 
moment. 
 
• To do any testing we need the sampling distribution of the VRs (estimated variance ratios) 
under H

0
: VR(q) = 1. We use the statistic: 

   
ඥ்

ඥଶ∗ሺିଵሻ
ሺVR (q) – 1)  

  
ሱ⎯⎯ሮ N(0, 1) 

This is Cochrane’s (1988) VR test. The test rejects H0 –i.e., the RWH – if the above statistic is 
greater in absolute value than 1.96.  

 
For the special case of q = 2, we use  

 √𝑇 (VR (2) – 1) 
  
ሱ⎯⎯ሮ N(0, 1) 

 
• Var[𝑟௧(q)] is computed using the MLE formulation, that is, dividing by T, not by (T - 1) (or T 
minus degrees of freedom).  
 
Example: We have monthly data from Jan 1973. Then, we compute 

  Var[𝑟௧] = 
∑ ሺ ି 𝒓തሻమ
సభ

்
 

  Var[𝑟௧(2)] = 
∑ ሺሺଶሻିଶ∗ 𝒓തሻమ
సభ

்
.  

 



Note: Since the tests are asymptotic tests, in this case, relying on the Normal distribution, 
dividing by T or by (T - 𝑘) does not make any difference.  ¶ 
 
• Var[𝑟௧(q)] is computed using non-overlapping returns. 
 
Example: We compute non-overlapping bi-monthly returns, using monthly data from Jan 
1973.  
(1) monthly returns: 𝑟௧ is computed as usual. For the first return:  
 𝑟௧ୀ ଷ = ln ሺ𝑃௧ୀ ଷଵ, ଷሻ െ ln ሺ𝑃௧ୀ ଵ, ଷሻ 
(2) bi-monthly returns. The first three 𝑟௧(2) are computed as: 
  𝑟௧ୀி ଷ(2) = 𝑟௧ୀி ଷ  𝑟௧ୀ ଷ  
 𝑟௧ୀ ଷ(2) = r௧ୀ ଷ  𝑟௧ୀெ ଷ 
 𝑟௧ୀ௨ ଷ(2) = r௧ୀ௨ ଷ  𝑟௧ୀெ௬ ଷ 
 
Note: We have “clean data,” with no introduced serial correlation. But, we lose observations. If 
we have 1,000 monthly returns, using non-overlapping bi-monthly returns we end up with only 
500 observations. ¶ 
 
Example: We check the RW Hypothesis, under RW3, for the monthly CRSP EW and VW Index 
returns. In R, the package vrtest has functions to compute the above mentioned VR tests.  
 
• VR tests for monthly VW  
library(vrtest) 
kvec <- c(2,3,12)    #Vector with different q 
y <- lr_vw 
> vr_1 <- VR.minus.1(y, kvec)  # Stat should be close to 0 if RW 
> vr_1 
$VR.auto     # VR with Automatic (“optimal) q selection 
[1] 0.1954746 
 
$Holding.Periods 
[1]  2  3 12 
 
$VR.kvec     (VR – 1) stat for each q=kvec[i]  
[1] 0.1007011 0.1187365 0.1212423 
 
> sqrt(T*kvec)/sqrt(2*(kvec-1))*vr_1$VR.kvec  # VR test for each q=kvec[i] ~ N(0,1)  
[1] 3.422358 3.494666 3.043158 
 
• VR tests for monthly EW  
> y <- lr_ew 
> vr_1 <- VR.minus.1(y, kvec)  # Stat should be close to 0 if RW 
> vr_1 
$VR.auto     # VR with Automatic (“optimal) q selection 
[1] 0.1954746 
 



$Holding.Periods 
[1]  2  3 12 
 
$VR.kvec     (VR – 1) stat for each q=kvec[i]  
[1] 0.2043236 0.2789327 0.2180176 
 
> sqrt(T*kvec)/sqrt(2*(kvec-1))*vr_1$VR.kvec  # VR test for each q=kvec[i] ~ N(0,1)  
[1] 6.943998 8.209583 5.472199 
 
Conclusion: Using the VR test (with q = 2, 3, 12), we reject the RW Hypothesis  tests are 
greater in absolute value than 1.96. ¶ 
 
 
The RWH: Variance Ratio (VR) Test – Issues 
Several issues has been raised regarding the VR’s tests. The main issues are: 
 
(1) Choice of q. In the previous examples, we have arbitrarily selected q. Similar to the situation 
with the Q and LB tests, there are suggestions to automatically (or “optimally,” according to 
some loss function) select q. Choi (1999) is one example of this approach,  (the vrtest R package 
uses this approach in the Auto.VR test). 
 
(2) Poor asymptotic approximation. In simulations, it is found that the asymptotic Normal 
distribution is a poor approximation to the small-sample distribution of the VR statistic. The 
usual solution is to use a bootstrap (Kim’s (2009) bootstrap gives the p-value of the automatic 
VR test in the Auto.VR function). 
 
Example: We use VR tests with automatic selection and a bootstrap to check the RW Hypothesis 
for the monthly CRSP EW and VW Index returns. Again, we use AutoBoot.test function in R 
package vrtest.  
 
• Automatic VR tests for monthly VW  
y <- lr_vw 
> AutoBoot.test(y, nboot=1000, wild="Normal", 
prob=c(0.025,0.975))
 
# Choi (1999) 
$test.stat   (Automatic variance ratio test statistic as in Choi (1999)) 
[1] 2.509324 
   
$VRsum   (1+ weighted sum of autocorrelation up to the optimal order) 
[1] 1.195475 
$pval 
[1] 0.064 
$CI.stat 
     2.5%     97.5%  
-2.836631  2.612363 



$CI.VRsum 
     2.5%     97.5%  
0.8323731 1.1927214  
 
• Automatic VR tests for monthly EW  
y <- lr_ew 
> AutoBoot.test(y, nboot=1000, wild="Normal", 
prob=c(0.025,0.975))
 
# Choi (1999) 
$test.stat   (Automatic variance ratio test statistic as in Choi (1999)) 
[1] 4.173898   
$VRsum   (1+ weighted sum of autocorrelation up to the optimal order) 
[1] 1.382554 
$pval 
[1] 0.021 
$CI.stat 
     2.5%     97.5%  
-3.262026  3.359002 
$CI.VRsum 
     2.5%     97.5%  
0.7687769 1.2610106 
 
Conclusion: Using the Automatic VR test and a bootstrap, we have strong evidence against the 
RW Hypothesis for EW, but weak for VW. ¶ 
 
 
The RWH: VR Tests – LM’s Modifications 
Lo & MacKinlay (LM, 1988, 1989) propose modifications to the test:  
 
- Allow for overlapping returns, and, thus, using more observations.  But, overlapping returns 
will be autocorrelated, even if underlying process is not. We need to adjust for this feature. 
 
- Use unbiased estimators of variances –i.e., divide by (T - df). 

  𝑀ଵሺ𝑞ሻ ൌ 
ඥଷ∗்∗

ඥଶ∗ሺଶିଵሻ∗ሺିଵሻ
ሺ𝑉𝑅തതതതሺq) – 1)  

  
ሱ⎯⎯ሮ N(0, 1), 

where 𝑉𝑅തതതത(q) is the VR statistic computed using overlapping returns. 
 
- Allow for possible heteroscedasticity of returns (more realistic) 

  𝑀ଶሺ𝑞ሻ ൌ 
ሺோതതതതሺq) – 1)

ඥథሺሻ
 

  
ሱ⎯⎯ሮ N(0, 1), 

where  

 𝜙ሺ𝑞ሻ =  ∑ ሾଶሺିሻ


ሿଶ
ୀଵ  ∗ ሼ

∑ ሺ ି 𝒓തሻమሺషೕ ି 𝒓തሻమ
సೕశభ

ሾ∑ ሺ ି 𝒓തሻమ
సభ ሿమ

}. 

 
 



Example: We check the RW Hypothesis, under RW3, for the monthly CRSP EW and VW Index 
returns using the LM’s tests: M1 and M2. Again, we use the R package vrtest. 
 
• Automatic VR tests for monthly VW  
library(vrtest) 
kvec <- c(2,3,12)   #Vector with different q 
y <- lr_vw 
> Lo.Mac(y, kvec)   # LM’s tests M1 & M2 ~ asymptotic N(0,1) 
$Stats 
           M1        M2 
k=2  3.422358 1.7485059 
k=3  2.706957 1.4241521 
k=12 1.099060 0.6373211 
Conclusion: We reject H0

 
(RW Model) using M1 for q = 2, 3; but, once we allow for 

heteroscedasticity (M2 tests), we cannot reject H0.   
 
• Automatic VR tests for monthly EW  
y <- lr_ew 
> Lo.Mac(y, kvec)   # LM’s tests M1 & M2 ~ asymptotic N(0,1) 
$Stats 
           M1        M2 
k=2  6.943998 2.5480302 
k=3  6.359116 2.5009114 
k=12 1.976326 0.9975538 
Conclusion: Strong rejection of RW using M1, especially for q = 2, 3; but, using M2 test with q = 
12 , we cannot reject the RW Hypothesis. Consistent with previous result, stronger evidence for 
EW returns than for VW returns. ¶ 
 
 
The RWH: VR & LM Tests – Issues  
Several issues has been raised regarding the LM’s tests: 
 
(1) Poor asymptotic approximation. The asymptotic standard normal distribution provides a 
poor approximation to the small-sample distribution of the VR statistic. LM’s tests tend to be 
biased and right-skewed, in finite samples.  
 
• Proposed solutions:  
- Alternative asymptotic distributions, as in Richardson and Stock (1989) or Chen and Deo 
(2006).  
- Bootstrapping, as in Kim (2006) or Malliaropulos and Priestley (1999).  
 
(2) Joint tests. The LM’s tests are individual tests, where H0 is tested for a specific  value of q. 
But, under H0, VR(q) = 1, for all q. LM’s tests ignore the joint nature of testing for the RW 
Hypothesis. 
 
• Proposed solutions:  



- RS statistic, a Wald Test, as proposed by Richardson and Smith (1993): 

 RS(q) = T (VR − ι )′ Φ
-1

 T (VR −ι )  
 ௗ 
ሱ⎯⎯ሮ  𝜒q

ଶ. 
where VR is the (q×1) vector of q sample variance ratios, ι is the (q×1) unit vector, and Φ is the 
covariance matrix of VR. 
- QP statistic, a Wald Test based on a “power transformed” VR statistic, as proposed by Chen 
and Deo (2006). QP asymptotically follows a 𝜒q

ଶ distribution. This test is a one-sided test (H
1
: 

VR(q) < 1 for all q.) 
- CD statistic, a join test, as proposed by Chow and Denning (1993):  
 CD = √𝑇 max

ଵஸஸ
|𝑀ଶሺ𝑞ሻ| 

which follows a complex distribution, the studentized maximum modulus [SMM] distribution 
with m and T degrees of freedom (m is the number of k values). This SMM distribution is 
tabulated in Hahn and Hendrickson (1971) and Stoline and Ury (1979).  
 
In general, we use the simulated critical values obtained by simulations as done by Chow and 
Denning themselves or a bootstrap as in Kim (2006). 
 
 
Example: We check the monthly LM test results using a bootstrap instead of the asymptotic 
distribution. We use the Boot.test function in the R package vrtest, which provides two 
bootstrapped p-values: one for the LM statistic and the other one for the CD statistic.  
 
• VR tests for monthly VW  
> y <- lr_vw 
> Lo.Mac(y, kvec) # LM’s tests M1 & M2  
$Stats 
           M1        M2 
k=2  3.422358 1.7485059 
k=3  2.706957 1.4241521 
k=12 1.099060 0.6373211 
 
> Boot.test(y, kvec, nboot=1000, wild="Normal", prob=c(0.025,0.975))  #Kim’s Bootstrap 
$Holding.Period 
[1]  2  3 12 
$LM.pval (Bootstrap p-values for the Lo-MacKinlay M2 tests) 
[1] 0.067 0.157 0.503 
 
> Lo.Mac(y, kvec) # LM’s tests M1 & M2  
$Stats 
           M1        M2 
k=2  3.422358 1.7485059 
k=3  2.706957 1.4241521 
k=12 1.099060 0.6373211 
 
> Boot.test(y, kvec, nboot=1000, wild="Normal" prob=c(0.025,0.975)) #Kim’s Bootstrap 
$Holding.Period 



[1]  2  3 12 
 
$LM.pval (Bootstrap p-values for the Lo-MacKinlay M2 tests) 
[1] 0.067 0.157 0.503 
 
$CD.pval (Bootstrap p-value for the Chow-Denning test) 
[1] 0.153 
$CI (C.I. for Lo-Mackinlay M2 tests from Bootstrap distr) 
          2.5%    97.5% 
k=2  -1.825961 1.827630 
k=3  -1.847447 1.855263 
k=12 -1.712367 2.152280 
 
> Wald(y, kvec) # RS Wald test 
$Holding.Period 
[1]  2  3 12 
 
$Wald.stat 
[1] 12.42735 
 
$Critical.Values_10_5_1_percent 
[1]  6.251389  7.814728 11.344867  
> Chen.Deo(y, kvec)  # QP Wald test 
$Holding.Period 
[1]  2  3 12 
 
$VRsum 
[1] 0.07335402 
 
$QPn 
[1,] 3.154226 
 
$ChiSQ.Quantiles_1_2_5_10_20_percent 
[1] 11.344867  9.837409  7.814728  6.251389  4.641628 
 
• VR tests for monthly EW  
 
> y <- lr_ew 
> Lo.Mac(y, kvec) # LM’s tests M1 & M2  
$Stats 
           M1        M2 
k=2  6.943998 2.5480302 
k=3  6.359116 2.5009114 
k=12 1.976326 0.9975538 
> Boot.test(y, kvec, nboot=1000, wild="Normal", 
prob=c(0.025,0.975)) #Kim’s Bootstrap 



$Holding.Period 
[1] 5 20 60 
$LM.pval (Bootstrap p-values for the Lo-MacKinlay M2 tests) 
[1] 0.001 0.004 0.279 
$CD.pval (Bootstrap p-value for the Chow-Denning test) 
[1] 0.017 
 
$LM.pval (Bootstrap p-values for the Lo-MacKinlay M2 tests) 
[1] 0.001 0.004 0.279 
$CD.pval (Bootstrap p-value for the Chow-Denning test) 
[1] 0.017 
$CI (C.I. for Lo-Mackinlay M2 tests from Bootstrap distr) 
          2.5%    97.5% 
k=2  -1.754012 1.708415 
k=3 -1.710910 1.816157 
k=12 1.563058 2.092434 
> Wald(y, kvec) # RS Wald test 
$Holding.Period 
[1]  2  3 12 
$Wald.stat 
[1] 52.68679 
$Critical.Values_10_5_1_percent 
[1]  6.251389  7.814728 11.344867 
 
> Chen.Deo(y, kvec)  # QP Wald test 
$Holding.Period 
[1]  2 3 12 
 
$VRsum 
[1] 0.1442001 
 
$QPn 
[1,] 6.524497 
 
$ChiSQ.Quantiles_1_2_5_10_20_percent 
[1] 11.344867  9.837409  7.814728  6.251389  4.641628 
 
Conclusion: Consistent with previous result, solid evidence for the RW for EW returns, but weak 
evidence (only the Wald test rejects H

0
) for VW returns. ¶ 

 
 
Example: We check the RW Hypothesis, under RW3, for the daily CRSP EW and VW Index 
returns.  
 
• VR tests for daily VW  
kvec <- c(5, 20, 60) #Vector with different q 



y <- lr_vw 
vr_1 <- VR.minus.1(y, kvec) # Stat should be close to 0 if RW 
> vr_1 
$VR.auto (value of VR-1 with automatic selection of holding vectors) 
[1] 0.08049192 
 
$Holding.Periods 
[1]  5  20 60 
 
$VR.kvec (the values of VR-1 for the chosen holding periods) 
[1] 0.06015875  0.11155693  0.16958754 
 
> sqrt(T*kvec)/sqrt(2*(kvec-1))*vr_1$VR.kvec  # VR test for each q=kvec[i] (~ N(0,1) dist) 
[1] 1.616329 2.750494 4.109789 
 
> AutoBoot.test(y, nboot=300, wild="Normal", prob=c(0.025,0.975))  # Choi (1999) 
$test.stat 
[1] 4.354851 
 
$VRsum 
[1] 1.080492 
 
$pval 
[1] 0.02333333 
 
$CI.stat 
     2.5%     97.5%  
-3.423189  4.067023  
$CI.VRsum 
     2.5%     97.5%  
0.9483973 1.0656480  
 
> Lo.Mac(y, kvec)  # LM’s tests M1 & M2  
$Stats 
           M1        M2 
k=5  4.372645 1.757401 
k=20 3.574490 1.573525 
k=60 3.057608 1.536068 
 
> Boot.test(y, kvec, nboot=1000, wild="Normal", prob=c(0.025,0.975))#Kim’s Bootstrap 
$Holding.Period 
[1]  2  3 12 
 
$LM.pval (Bootstrap p-values for the Lo-MacKinlay M2 tests) 
[1] 0.06333333 0.08000000 0.07333333 
 



$CD.pval (Bootstrap p-value for the Chow-Denning test) 
[1] 0.11333 
 
$CI (C.I. for Lo-Mackinlay M2 tests from Bootstrap distrib) 
          2.5%    97.5% 
k=5  -1.602225 2.333427 
k=20 -1.594718 1.935643 
k=60 -1.748524 1.782090 
 
> Wald(y, kvec)  # RS Wald test 
$Holding.Period 
[1]  5 20 60 
 
$Wald.stat 
[1] 21.19834 
 
$Critical.Values_10_5_1_percent 
[1]  6.251389  7.814728 11.344867 
 
> Chen.Deo(y, kvec)  # QP Wald test 
$VRsum 
[1] 0.05863072 
 
$QPn 
         [,1] 
[1,] 3.639522 
 
$ChiSQ.Quantiles_1_2_5_10_20_percent 
[1] 11.344867  9.837409  7.814728  6.251389  4.641628.  ¶ 
 
 
The RWH: Overall Evidence & Implications 
Tests results are based on CRSP value-weighted (VW) and equal weighted (EW) indices from 
1925 & individual securities from 1962. 
 
Daily, weekly and monthly returns from VW and EW indices show significant (positive) 
autocorrelation.  
 
VR(q) > 1 statistics reject RW3 for EW index but not VW index.   Market capitalization or size 
may be playing a role. Rejection of RW stronger for smaller firms. Their returns more serially 
correlated. 
 
For individual securities, VR(q) < 1, suggesting small and negative correlations (and not 
significant).  
 



VR tests in other countries and financial markets. Tests also tend to reject the RWH, with 
stronger rejections for smaller markets and less liquid markets.   
 
The rejection of the RWH does not necessarily imply a violation of the EMH.  
 
Main implication: Theoretical pricing models should be able to explain the pattern of serial 
correlation.  
 
Side Question: How can portfolios show VR(q) > 1 when individual securities show VR(q) < 1?  
 

 

Predictability 
Traditional view pre 1980: 
- CAPM is a good measure of risk 
- Usual findings:  
 (a) Stock, bond and foreign exchange changes are not predictable 
 (b) Constant equity premium 
- Market volatility does not change much through time 
- Professional managers do not reliably outperform simple indices and passive portfolios once 
one corrects for risk 
 
• Summary of State of the Art, late 1970s (Jensen, 1978):  
“I believe there is no other proposition in economics which has more solid evidence supporting it 
than the Efficient Markets Hypothesis.” 
 
Modern view post-1980: 
- Rejection of the RW Hypothesis. 
- Stock returns are predictable. 
  Valuation ratios (D/P, E/P, B/M ratios) 
  Interest rates (term spread, short-long T-bill rates, etc.) 
  Decision of market participants (corporate financing, consumption). 
 Cross-sectional equity pricing. 
 Bond and foreign exchange returns are also predictable. 
- Some funds seem to outperform simple indices, even after controlling for risk through market 
betas. 
- New equilibrium (theory) models with time-varying equity premium. 
 
 
Predictive Regressions 
Motivation: 
 1. Mounting evidence that stock and bond returns are predictable. 
 2. Q: Market inefficiency vs Rational variation in expected returns? 
 
Economic questions: 
 1. Do the expected returns on bonds and stocks move together?  



 2. Do the same variables forecast bond and stock returns? 
 3. Is the variation in expected returns related to business cycles? 

 
Setup:  
Regress future returns, 𝑟௧ାτ, on variables 𝒙𝒕 known at time 𝒕. 
   𝑟௧ାτ ൌ 𝝁𝒕   β 𝒙𝒕  𝜺𝒕ାτ   (1) 
where τ can be one month, one quarter, and one to four years.  
 
 
Predictive Regressions – Fama-French (1989) 
One of the first papers to show a predictive pattern at different horizons. The setup of Fama and 
French (JFE, 1989):  

- 𝑟௧ାτ: value- & equal-weighted market portfolios of NYSE; value-weighted corporate bond 
portfolios. 

- 𝒙𝒕variables: 
  - Dividend yields, 𝐷௧/𝑃௧: Add monthly dividends for the year preceding time 𝑡 divided by the 
  value of the portfolio at time 𝑡  
 - Term Premium, 𝑇𝐸𝑅𝑀௧: Long term government bond yield minus treasuries –see, Keim  
  and Stambaugh (1986).  
 - Default premium, 𝐷𝐸𝐹௧: AAA bond yields minus BAA bond yields –see, Keim and   
  Stambaugh (1986).  

Sample: Non-overlapping data for quarterly (T=244) & annual (T=61) data. For longer horizons 
(bi-annual+), overlapping observations.   

 

• Findings: 
– 𝒙𝒕variables work, especially 𝐷𝒕/𝑃𝒕 with high t-stats & high R2 for forecast horizons beyond 1 
year.  
– (Conditional) Expected returns move with the predictors, 𝒙𝒕: 
   [𝑟௧ାτሿ ൌ 𝝁ෝ𝒕  β 𝒙𝒕   
That is, even with 𝝁𝒕= 𝝁, expected future returns are time-varying!  
– Regression coefficients and R2 increase with the forecast horizon. ¶ 

 
• Interpretation of the Fama-French’s slope estimate for 𝐷𝒕/𝑃𝒕 (similar of other financial ratios 
with 𝑃𝒕 in the denominator): 
- There is a positive relation between 𝐷𝒕/𝑃𝒕 and 𝑟௧ାτ. A high (low) 𝐷𝒕/𝑃𝒕 forecasts high (low) 
subsequent returns (higher 𝑃௧ାτ!). Since we tend to observe high 𝐷𝒕/𝑃𝒕 when 𝑃𝒕 is low, we have 
evidence for mean reversion in stock prices.  
- Let’s look at the one-year 𝐷𝒕/𝑃𝒕 EW slope coefficient: 5.75. Then, a 1% increase in dividend 
increase expected (total) returns by 5.75% (an investor gets 1% dividend plus 4.75% extra 
return). Big number! 
- Using the above 5.75 slope, we can derive an informal range for the expected 1-year return: In 
the past 40 years 𝐷𝒕/𝑃𝒕 ranged from 1% to 6%, ignoring 𝝁ෝ𝒕, the range for E

t
[𝑟௧ାଵ௬ሿ is {5.75% -

34%}. Very big!  



 
• Interpretation of Fama-French’s R2 for 𝐷𝒕/𝑃𝒕 (again, similar interpretation for other ratios with 
𝑃𝒕 in the denominator): 
- R2 are small, but they start to be worth paying attention to for horizons of 1-year ahead or 
longer. “Small” and “big” are relative term, remember that according to the RW the R2 should be 
0! Then, any R2 > 0 is “interesting.”  
- For the EW returns, 𝐷𝒕/𝑃𝒕 predicts 7% of the variability of one-year ahead returns and  23% of 
the variability of 4-year ahead returns. These are results that, on average, can produce profitable 
investment strategies. 

 
• Rational explanations for time-variation of expected return: 
 - Time-varying risk aversion 
 - Time-varying amount of risk 
 - Parallel behavior explanation (investor sentiment). 

Remark: We expect low prices –relative to 𝐷𝒕, 𝐸𝒕, 𝐵𝑜𝑜𝑘𝒕– to be followed by high returns (high 
prices). Going back to the EMH, can we profit from this predictability? 

 

Note: Another well-cited paper is Lamont (JF, 1998), who finds that other financial ratios also 
work as predictors: dividends yield & earnings yield. Lamont also find that the dividend payout 
ratio has cross-sectional predictive power.  

 

Example: We use Shiller’s data (1871:Jan - 2021:Dec) to redo the monthly predictive 
regressions of Fama-French (see FEc_prog_Pred for code and links to data). 

 
 

Independent Variable: Excess Returns at 𝒕+1 (1871-2021) 
 

𝑟௧ 𝐷௧/𝑃௧ 𝐷𝑌௧ 𝐸௧/𝑃௧ 𝐷௧/𝐸௧ 𝐷𝐹𝑌௧ 𝐷𝐹𝑅௧ 

𝜇 0.00398 

(0.0011) 

0.00992 

(0.0141) 

0.01694 

(0.0142) 

0.02570 

(0.0150) 

-0.0183 

(0.0195) 

0.00979 

(0.0025) 

0.00435 

(0.0030) 

β 0.11256 

(0.0234) 

0.00095 

(0.0025) 

0.00218 

(0.0025) 

0.00410 

(.0029) 

-0.0041 

(0.0035) 

-0.0939 

(0.0435) 

0.11446   
(0.2169) 

        

R2 0.00731 0.0004 0.00001 0.0011 0.0008 0.0041 0.0002 

Findings: With the exception of lagged excess returns and the default yield spread (AAA yield 
– BBB yield) nothing is significant. ¶ 

 



Example: We use Shiller’s data (1925:Jan - 2021:Dec) to redo the monthly predictive 
regressions of Fama-French (see FEc_prog_Pred for code and links to data). 

 
 

Independent Variable: Excess Returns at 𝒕+1 (1871-2021) 
 

𝑟௧ 𝐷௧/𝑃௧ 𝐷𝑌௧ 𝐸௧/𝑃௧ 𝐷௧/𝐸௧ 𝐷𝐹𝑌௧ 𝐷𝐹𝑅௧ 

𝜇 0.00354 
(0.0016) 

0.02127 
(0.0199) 

0.02709 
(0.0201) 

0.02605 
(0.0199) 

-0.00118 
(0.0277) 

0.00724 
(0.0030) 

0.01038 
(0.0025) 

β 0.08548 
(0.0294) 

0.00296 
(0.0034) 

0.00396 
(0.0034) 

0.00424 
(.0038) 

-0.0009 
(0.0049) 

0.10056 
(0.2165) 

-0.0475   
(0.0438) 

        

R2 0.01267 0.0007 0.00117 0.00216 0.00002 0.00017 0.00104 
 
Findings: Now, only lagged excess returns are significant. We just see “momentum” at work at 
the monthly level. ¶ 

 

 
Predictive Regressions: Methodological Issues 
• Data snooping. Are 𝐷𝒕/𝑃𝒕, 𝑇𝐸𝑅𝑀𝒕, Payout Ratios the only variables used in those regressions? 
The standard finance and economic databases used in academic and industry research (CRSP, 
Compustat, Refinivit) have thousands of potential predictors.  

Recall Type I error: If  we use 100 regressors, 5 will be significant at the 5% level! 

• Peso problem. In the sample, we do not observe a “crash,” which are very low probability events, 
but agents do compute that probability in the expectation. Then, on average, the sample average is 
biased!  

• Regime Change. Always a potential problem. Maybe coefficients change with the business cycle, 
Fed policy, bull/bear markets, etc.  

• Endogeneity. Regressors are only predetermined, but not exogenous. OLS slopes have a small 
bias (Stambaugh, 1986). Traditional OLS S.E. are likely not appropriate (Hodrick, 1992).  

• Persistence of  Financial Ratios. Valuation ratios are persistent and their innovations are 
correlated with returns, causing 

 – biased predictive coefficients: Stambaugh (1999) 

 – over-rejection by standard t-test: Cavanagh-Elliott-Stock (1995) 

Note: These issues are less relevant for interest rates & recently proposed predictor variables 
(persistent, but less correlated with 𝑟௧).  

 



 
Predictive Regressions: Valuation Ratios – Persistence 

• 𝐷௧/𝑃௧ is persistent, 𝐷௧/𝑃௧ stays “high” or “low” for a long time. It  moves around a constant mean 
(in red) & has no trend (stationary?). 

 

 

 

 

 

 

 

 

There is some evidence for mean reversion, but it can take many years (decades?) to get back to the 
mean.   

Given the persistence in 𝐷௧/𝑃௧, the Fama-French results imply that we should also have persistence 
in the forecast of  expected returns. That is, we have high (low) expected returns for a long time 
(decades?)!  

Issue: How persistent is 𝐷௧/𝑃௧? 

 - 𝐷௧/𝑃௧ is likely to be persistent: it reflects long-run expectations. 

 - But, is 𝐷௧/𝑃௧ stationary? unit root? explosive? 

To answer the above question, we compute the ACF for 𝐷௧/𝑃௧. (Recall that a persistent series will 
show a slow decay in the ACF.) 

 
The first order autocorrelation is 0.882. Very persistent series! That is, next period dividend yield 
is very likely to be similar to this period.  
 
There seems to be a relation (non-linear?) between 𝐷௧/𝑃௧ & the business cycle. We see big spikes 
in 𝐷௧/𝑃௧ when there is a recession (clear spike in the 1930s and in 2008-2009). Though these 
spikes are relatively short-lived (years, not decades). 
 



Thus, expected returns vary with the business cycle (not a surprise): A big increase when there is 
a recession (risk is higher).  
 
• Potential Problem with 𝐷௧: “too smooth” (measurement error?). The observed data may not  be 
the “true” series of interest.  
 
Subtle point: Since 𝐷௧ is too smooth, all the predictability comes from 𝑃௧. What news affect more 
future stock prices (& returns):  “Cash Flows news or Discount Rates news”? Discount rates 
news. 
 
 
Predictive Regressions: Stambaugh Bias 
One econometric issue in Fama and French (1989): Regressors are only predetermined, but not 
exogenous. 
 
• Start with predictive regression for returns, 𝒓𝒕ା𝟏: 
 𝑟௧ାଵ =  α + β 𝑥௧   𝜀௧ାଵ     
𝑥௧: 𝐷௧/𝑃௧ –i.e., the dividend price ratio 
 
Note: 𝑥௧ depends on the price at the beginning of 𝑡, the change of 𝑥 at the end of 𝑡+1 reflects 
changes in price from 𝑡 to 𝑡+1 , as does 𝑟௧ାଵ; E[𝜀௧ାଵ|𝑥௧ାଵ, 𝑥௧] ≠ 0, more generally, E[𝜀௧ |𝑥௦, 𝑥௪] ≠ 
0, 𝑠 < 𝑡 < 𝑤. 
 
 Assumption (A2) is violated!  
 
In addition, 𝒙𝒕 is persistent. It can be modeled with an ARMA. 
 
Stambaugh (1999) assumes that 𝒙𝒕 follows an AR(1) 
  𝒙𝒕 = 𝜇 + 𝝓 𝒙𝒕ିଵ + 𝜈𝒕  (2) 
where 𝜈𝒕 & 𝜺𝒕 follow a multivariate N(0, Σ), independent across 𝒕. 
 
Results: b (OLS estimate) is biased upward, positively skewed, and has higher variance and 
kurtosis than the normal sampling distribution of the OLS estimator. 
 
• Stambaugh bias: 
  E[b - β] = (σ𝜺𝜈/ σఔ

ଶ) E[𝝓  - 𝝓] 
It turns out 𝝓  has a downward bias and σ𝜺𝜈 is negative 
   b shows an upward bias. Conventional t-tests are misleading. 
 
Finding: Correcting the bias weakens the predictability evidence. 
 
Since conventional t-tests are misleading, there are many suggestions to check if the 
predictability of the very persistent valuation ratios remains after correcting for the bias. 
 
One approach is Lewellen (2004): Adjust the OLS estimator under worst case scenario for 
persistence (𝜙 = 1): 



 badj = b - (σ𝜀𝜈/ σఔ
ଶ) E[𝜙 - 1] 

 
In practice, the estimated persistence is very close to one. The bias correction is small. 
Predictability survives: 
- 𝐷௧/𝑃௧ predicts market returns from 1946–2000 and sub-samples.   
- B/M and 𝐸௧/𝑃௧ predict returns during the shorter sample 1963–2000.  
 
Interesting Result: In a (1)-(2) framework NW SE are not reliable in small samples. Result from 
Hodrick (1992) & Kim and Nelson (1993).  
 
 
Predictive Regressions: Long Horizon Returns (Aside) 
𝑫𝒕/𝑷𝒕 and other ratios forecast excess returns on stocks. Regression coefficients and R2 rise with 
the forecast horizon. 
 
This is a result of the fact that the forecasting variable is persistent. 
 
Model (1)-(2), assuming α = 𝜇 = 0.  
  𝑟௧ାଵ =  α + β 𝒙௧   𝜀௧ାଵ (1) 
  𝒙𝒕 = 𝜇 + ϕ 𝒙𝒕ିଵ + 𝜈𝒕  (2) 
Now, we compound 2-period returns (with log returns, we add them): 
 𝑟௧ାଶሺ2ሻ =  β 𝒙௧ାଵ   𝜀௧ାଶ + β 𝒙𝒕   𝜀௧ାଵ 
   =  β (𝒙௧ାଵ  𝒙𝒕ሻ   𝜀௧ାଶ   𝜀௧ାଵ 
   =  β (𝝓 𝒙𝒕 + 𝜈𝒕ାଵ  𝒙𝒕ሻ   𝜀௧ାଶ   𝜀௧ାଵ 
   =  β (1 + 𝝓ሻ 𝒙𝒕 + β 𝜈𝒕ାଵ  𝜀௧ାଶ   𝜀௧ାଵ 
   =  βଶ 𝒙𝒕 𝝎ଶ௧   βଶ > β. 
 
• The previous result generalizes: 
 𝑟௧ାሺ𝑘ሻ =  β 𝒙௧ା   𝜀௧ା  β 𝒙௧ାିଵ   𝜀௧ାିଵ  ⋯ + β 𝒙𝒕   𝜀௧ାଵ 
  =  β (𝒙௧ା  𝒙௧ାିଵ  ⋯ 𝒙𝒕ሻ  𝜀௧ା ⋯  𝜀௧ାଵ 
  =  β (1 + ϕ   ϕଶ   …  ϕሻ 𝒙𝒕 + 𝝎௧ 
  =  β 𝒙𝒕 𝝎௧   β > βିଵ. 
 
The coefficient of the persistent ratio is increasing with the horizon of compounding returns. 
 
Note: A more complicated derivation is needed for the increase in R2.  
 
 
Predictive Regressions: More Predictors 
Lots of variables have been proposed as predictors. A short list: 

- Book-to-market (b/mt-1),  equity share in new issues (S, equist-1), and lagged returns, as in 
Baker and Wurgler (2000) (B-W, next slide). 

- Cross-sectional premium (csp): The relative valuations of high- and low-beta stocks, as in 
Polk, Thompson, and Vuolteenaho (2006). 



- Net Equity Expansion (ntis): The ratio of 12-month moving sums of net issues by NYSE listed 
stocks divided by the total end-of-year market capitalization, as in Boudoukh, et al. (2007). 

- Long Term Yield (lty): Long-term government bond yields. 

- Investment to Capital Ratio (i/k): The ratio of aggregate (private nonresidential fixed) 
investment to aggregate capital for the whole economy, as in  Cochrane (1991). 

- Consumption, wealth, income ratio (cay): Estimated from an equation from a model 
proposed by Lettau and Ludvigson (2001). 

 
Example: We use the expanded Goyal and Welch data (1927 - 2021) to redo the annual 
predictive regressions of Baker-Wurgler, using S&P excess returns (see FEc_prog_Pred for 
code & data). Script for ik: 

Pred_da_a <- read.csv("http://www.bauer.uh.edu/rsusmel/4397/goyal-welch-a_27.csv", 
head=TRUE, sep=",") 

lr_sp <- Pred_da_a$sp_ret  # Value weighted S&P returns (with distributions) 

ik <- Pred_da_a$ik   # Investment-to-capital 

TA <- length(lr_sp) 

TI <- 21 

y_a_ik <- lr_sp[(TI+1):TA] - Rf_a[(TI+1):TA]/100 

ik_a <- ik[TI:(TA-1)] 

fit_lag_y_ik <- lm(y_a_ik ~ ik_a) 

> summary(fit_lag_y_ik) 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept)   0.23805    0.06206   3.836 0.000268 *** 

ik_a       -0.07640    0.01747  -4.372 4.13e-05 *** 

 
 
 
 
 

 

 
 

Independent Variable: Excess Returns at 𝒕+1 (1871-2021) 
 

𝑟௧ 𝐷௧/𝑃௧ 𝐷𝑌௧ 𝐸௧/𝑃௧ 𝐷௧/𝐸௧ 𝐷𝐹𝑌௧ 𝐷𝐹𝑅௧ 



𝜇 -0.0087 
(0.0096) 

0.02039 
(0.0668) 

0.00511 
(0.0626) 

-0.0152 
(0.0169) 

-0.0212 
(0.0214) 

0.04094 
(0.0174) 

0.23805    
(0.0621)  

β 0.00234 
(0.1093) 

0.00856 
(0.0195) 

0.00501   
(0.0225) 

0.00555   
(0.0119) 

0.00023   
(0.0003) 

-0.0027  
(0.0008) 

-0.07640   
(0.0175)  

        

R2 0.00001 0.0021 0.0005 0.0331 0.0046 0.1066 0.2121 
 
Findings: Consistent with the previous table for VW returns, equity share in new equity is 
significant. We also run predictive regressions for the other variables mentioned above. 
Investment-to-capital (ik, starting in 1947) was very significant, with very high R2. (Note: cay 
(starting in 1944) & csp (starting in 1937) were not significant). ¶ 
 
 
Predictive Regressions: Way More Predictors 
With the advances in computer power, the success of finding predictors of future returns has 
continued almost exponentially. For example, using Machine Learning models (Neural 
Networks) we have: 

- Gu, Kelly and Xiu (2020): 176 predictors, grouped in 94 stock-level predictive 
characteristics (Green et al. (2017)); 8 macroeconomic & financial variables predictors 
(Welch and Goyal (2008)); and 74 industry dummies (& even 94 * 8 interaction terms!). 

- Bianchi, Buchner and Tamoni (2021): 128 monthly macroeconomic and financial variables 
(McCracken and Ng (2015)). 

• Always keep in mind that the standard finance databases for research (CRSP & Compustat) 
have over 1,000 potential predictors (without counting interactions). It is always possible to 
find more predictors! 

Question: Why not use them all? 
 
 
Predictive Regressions: In-sample vs Out-of-sample 
In a very well know paper, Goyal and Welch (2008) argue that the in-sample (IS) predictability 
seen in predictive regression, once evaluated out-of-sample (OOS), becomes very weak or just 
disappears. 

• Setup of OOS Evaluation  

(1) Perform Q 𝜏-step-ahead forecasts using: 

- Rolling predictive regressions, adding one observation at a time. That is, we obtain Q forecasts, 
�̂�௧ାఛ. 

- Use the mean of the rolling period at time 𝒕 as the forecast. That is, we obtain Q forecasts, �̅�௧. 

(2) Get Q rolling forecast errors, 𝑒, & Q mean forecasts, 𝑒ே.   



(3) Compute 𝑀𝑆𝐸 & 𝑀𝑆𝐸ே.  

(4) Evaluate MSEs using the Diebold-Mariano test. 

 
• An OOS R2 can be computed as:  

  𝑅ைைௌ
ଶ  = 1 - 

ெௌாಲ
ெௌாಿ

  

with  𝑀𝑆𝐸 = ∑ ሺ𝒓𝒕ାఛ െ �̂�௧ାఛሻଶ
ொ
௧ୀଵ  

 𝑀𝑆𝐸ே = ∑ ሺ𝒓𝒕ାఛ െ �̅�௧ሻଶ
ொ
௧ୀଵ  

 
Note: Goyal and Welch (2008) evaluate the MSEs using other tests, proposed by Clark and 
McCracken (2001) and McCracken’s (2004) variation of the Diebold-Mariano test. 

 
Findings: Very difficult to identify any robust predictor of excess stock returns. There are short 
time intervals of significant OOS predictability, but these “pockets of predictability” are 
surrounded by long periods of little or no predictability, see Lansing, LeRoy & Ma (2022). 

 
Example: We use the expanded Goyal and Welch data (1927 - 2021) to compute their annual 
OOS R2, using rolling regressions starting in 1967, and perform Diebold-Mariano (DM) tests for 
significant differences of the forecasts (R script below for ik).  

Findings: Consistent with the results of Goyal and Welch (2008), we do not find a lot of 
consistent predictability out of sample. In general, DM tests fail to reject H0 that the predictors 
do better than the unconditional mean in forecasting next year excess returns. 

 
• R Code for ik (OOS rolling regressions) 
yy <- y_a_ik    # Dependent variable (y_t+1) of rolling regression 
xx <- ik_a    # Independent  variable x_t 
Alles = NULL    # Initialize empty (a space to put forecasts errors) 
k_for <- 40    # Start of Rolling Sample 
i <- k_for    # Counter for while loop 
TF <- length(yy) 
while (i <= TF-1) { 
  y_tp1 <- yy[1:i]      
  x_t <- xx[1:i] 
  pred_reg <- lm (y_tp1 ~ x_t)  # OLS predictive regression 
  b_hat <- pred_reg$coefficients  # Extract coefficient 
  y_hat <- b_hat[1]+b_hat[2]*xx[i+1]  # t+1 forecast 
  f_e_a <- y_hat - yy[i+1]   # t+1 forecast error for model 
  f_e_n <- mean(y_tp1) - yy[i+1]  # t+1 forecast error for mean 
  f_2e <- c(f_e_a, f_e_n)   # Combine both forecast errors in a vector 
  Alles = rbind(Alles,f_2e)     # accumulate forecast errors in rows (two columns) 
  i <- i+1 
} 



 
# Checking accuracy of forecasts with OOS R^2 
mse <- colSums(Alles^2)/(TF-k_for) 
r2_oos <- 1 - mse[1]/mse[2] 
> r2_oos 
[1] 0.02177127    Relative to IS results, big reduction in R2. 
 
# Testing accuracy of forecasts with Diebold-Mariano 
> dm.test(Alles[,1], Alles[,2], power=2) 
 Diebold-Mariano Test 
data:  Alles[, 1]Alles[, 2] 
DM = -0.12985, Forecast horizon = 1, Loss function power = 2, p-value = 0.8975 
alternative hypothesis: two.sided 
 
>dm.test(Alles[,1], Alles[,2], power=1) 
DM = -0.23874, Forecast horizon = 1, Loss function power = 1, p-value = 0.8128 
alternative hypothesis: two.sided. ¶ 
 
 
Predictive Regressions: Final Remarks 
There is a big and active literature on the predictability of stock returns, lately using ML/AI 
models. It has found lots of potential predictors of excess stock returns, for example, Gu, Kelly 
and Xiu (2020) use Neural Networks to discover 176 predictors (with interaction terms, they 
almost use almost 1,000 predictors!) 
 
Given the usual data mining results in large datasets, many of the discovered predictors are not 
“true predictors,” but “false positive (FP) predictors.” A lot of FP predictors will increase C.I. for 
forecasts.  
 
We have a typical model selection problem. If we use the General-to-specific approach, the 
question is: How to reduce the GUM? Several proposals: optimize 𝑅ைைௌ

ଶ , OOS SR, minimize FP 
predictors, etc. 
 
Old question: Can we make money from these predictors? Not clear. 

 

 

 

 
 
 
 
 
 

 



  



Lecture 11 – Volatility Models 
 
Linear and Non-linear Models 
So far, we have focused on linear models. We have relied on Assumption (A1), where the 
relation between 𝑦௧ & 𝑋௧ is given by: 
    𝑦௧ ൌ 𝑋௧β + 𝜀௧,  𝜀௧ ~ 𝑖. 𝑖.𝑑.  D(0, σ2) 
   
 There are, however, many relationships in finance that are intrinsically non-linear: The payoffs 
to options are non-linear in some of the input variables, for example, St; investors’ willingness to 
trade off returns and risks are also non-linear; CEO compensation that depends on thresholds and 
with a big option component are also non-linear.  
 
The textbook of Campbell et al. (1997) defines a non-linear data generating process as one where 
the current value of 𝑦௧ is related non-linearly to current and previous values of the error term, 𝜀௧: 
    𝑦௧ = f(𝜀௧, 𝜀௧ିଵ, 𝜀௧ିଶ,  . . .)  
where 𝜀௧ is i.i.d. and f is a non-linear function. 
 
A friendlier and slightly more specific definition of a non-linear model is given by the equation 
  𝑦௧ = g(𝜀௧, 𝜀௧ିଵ, 𝜀௧ିଶ,  . . .) + 𝜀௧ σ2(𝜀௧, 𝜀௧ିଵ, 𝜀௧ିଶ,  . . .)  
where g is a function of past error terms only, and σ2 can be interpreted as a variance term, since 
it is multiplied by the current value of the error.  
 
Cases 
- Non-linear in mean only:   g (•) = non-linear & σ2(•) = σ2  
- Non-linear in variance only:  g (•) = linear & σ2(•) ≠ non-linear g (•)  
- Non-linear in mean and variance:  both g (•) & σ2(•) are non-linear. 
 
Most popular non-linear models in finance: The ARCH models, where we model a time-varying 
variance as a function of past 𝜀௧’s. 
 
 
ARCH Models 
Until the early 1980s econometrics had focused almost solely on modeling the conditional means 
of time series, conditioning on information set at time t, It :  
   𝑦௧ = E[𝑦௧| It] + 𝜀௧, 𝜀௧~ D(0, σ2) 
Suppose we have an AR(1) process:  
   𝑦௧ = α + ϕ 𝑦௧ିଵ + 𝜀௧. 
The conditional mean is: 
E[𝑦௧ାଵ| It] = Et[𝑦௧ାଵ] = α + ϕ 𝑦௧  
 
The unconditional mean and variance are: 
  E[𝑦௧] =



ଵ ିథ
  α/(1 – ϕ) = constant  

  Var[𝑦௧] = 
ଶ

ଵ ି థమ
 = constant 

 
Note: Conditional mean is time varying; unconditional mean is not! 



 
 
Similar idea for the variance. For the AR(1) process, we have:  
- Conditional variance:      
  Var[𝑦௧ାଵ|It] = Et[(𝑦௧ାଵ – Et[𝑦௧ାଵ|It])2] = Et[𝜀௧ାଵ

ଶ ] 
- Unconditional variance:  

  Var[𝑦௧ାଵ] = E[(𝑦௧ାଵ – E[𝑦௧ାଵ])2] = 
ଶ

ଵ ି థమ
 

 
The unconditional variance measures overall uncertainty. In the AR(1) example, the information 
available at time t, It , plays no role, it is always a constant!  
 
The conditional variance, Var[𝑦௧|It], is a better measure of uncertainty at time t. It is a function 
of information at time t, It. 
 
Notation: 𝐸௧ሾ𝑍௧ାଵሿ = 𝐸ሾ𝑍௧ାଵ| Itሿ 
 
Summary: 
- Unconditional variance measures the overall uncertainty.  
- Conditional variance measures uncertainty at time t.  
 
Remark: Conditional moments are time varying; unconditional moments are not! 
 
 
ARCH Models: Stylized Facts of Asset Returns 
(1) Thick tails: Leptokurtic (thicker tails than Normal). 
(2) Volatility clustering: “Large changes tend to be followed by large changes of either sign.”  
(3) Leverage Effects: Tendency for changes in stock prices to be negatively correlated with 
changes in volatility.  
(4) Non-trading Effects, Weekend Effects: When a market is closed, information accumulates at a 
different rate to when it is open –for example, the weekend effect, where stock price volatility on 
Monday is not three times the volatility on Friday.  
(5) Expected events: Volatility is high at regular times such as news announcements or other 
expected events, or even at certain times of day –for example, less volatile in the early afternoon. 
(6) Volatility and serial correlation: Inverse relationship between the two. 
(7) Co-movements in volatility: Volatility is positively correlated across markets/assets. 
 
We need a model that accommodates all these (non-linear) facts. 
 
Stylized facts (1) and (2) form the basis of Volatility (ARCH) Models. 
 
• Easy to check leptokurtosis (Stylized Fact #1). 
 
Descriptive Statistics and Distribution for Monthly S&P500 Returns 
 



 
Statistic 

Mean (%) 0. 0585 
(p-value: 0.0004) 

Standard Dev (%) 0.0449 

Skewness -0.7294 

Excess Kurtosis 2. 6406 

Jarque-Bera 216.15 
(p-value: <0.000001) 

 

 
Note: Excess kurtosis greater than 0! Heavy tails are very common in financial time series.  
 
• Easy to check Volatility Clustering (Stylized Fact #2) 

 



 
Note: Periods with low changes, usually long, and periods of high changes, usually short. That is, 
volatility shows autocorrelation. 
 
 
ARCH Models:  Engle (1982)  
We start with assumptions (A1) to (A5), but with a specific (A3’): 
  𝑦௧ ൌ 𝛾𝑋௧  𝜀௧,  𝜀௧ ~ 𝑁ሺ0,𝜎௧ଶሻ 
(A3’)  𝜎௧ଶ ൌ 𝑉𝑎𝑟௧ିଵሾ𝜀௧ሿ ൌ 𝐸௧ିଵሾ𝜀௧ଶሿ ൌ 𝜔  𝛼ଵ𝜀௧ିଵ

ଶ  ⋯ 𝛼𝜀௧ିଶ  
which we can write, using the L operator, as: 
 𝜎௧ଶ ൌ ∑ 𝛼𝜀௧ି

ଶ
ୀଵ ൌ 𝜔  𝛼ሺ𝐿ሻ𝜀ଶ 

 
We can write the model in terms of an AR(q) for 𝜀௧ଶ. Define  
 𝜈௧ ≡ 𝜀௧ଶ െ 𝜎௧ଶ,  -an error term for the variance. 
Then, 
 𝜀௧ଶ ൌ 𝜔  𝛼ሺ𝐿ሻ𝜀௧ଶ  𝜈௧ 
 
Correlated 𝜀௧ଶ’s: High (low) past 𝜀௧ଶ’s produce a high (low) 𝜀௧ଶ today. 
 
The model 
 𝜎௧ଶ ൌ ∑ 𝛼𝜀௧ି

ଶ
ୀଵ ൌ 𝜔  𝛼ሺ𝐿ሻ𝜀ଶ 

is an AR(q) model for squared innovations, 𝜀௧ଶ. We have the ARCH model: Auto-Regressive 
Conditional Heteroskedasticity.  
 
The ARCH(q) model estimates the unobservable (latent) variance.  
 
Non-negative constraints: Since we are dealing with a variance, we usually impose  
  ω > 0 and αi > 0 for all i. 
 
Notation: 𝐸௧ିଵሾ𝜀௧ଶሿ = 𝐸ሾ𝜀௧ଶ||It-1ሿ 
 
Useful result: Since E[𝜀௧] = 0, then 𝐸௧ିଵ[𝜀௧ଶ] = 𝜎௧ଶ 
 
 
ARCH Models:  Unconditional Variance 
The unconditional variance is determined by: 
 𝜎ଶ ൌ 𝐸ሾ𝜎௧ଶሿ ൌ 𝜔  ∑ 𝛼𝐸ሾ𝜀௧ି

ଶ ሿ ൌ
ୀଵ 𝜔  ∑ 𝛼𝜎ଶ


ୀଵ  



That is,  
  𝜎ଶ ൌ  ఠ

ଵ ି ∑ ఈ

సభ

 

To obtain a positive σ2, we impose another restriction: (1 െ ∑ 𝛼

ୀଵ ) > 0 

 
Example: ARCH(1) 
  𝑌௧ ൌ 𝛽𝑋௧  𝜀௧,  𝜀௧~𝑁ሺ0,𝜎௧ଶሻ 
  𝜎௧ଶ ൌ 𝜔  𝛼ଵ𝜀௧ିଵ

ଶ    𝜎ଶ ൌ ఠ

ଵ ି ఈభ
 

We need to impose restrictions: 𝜔 > 0, α1 > 0,  &  (1 – α1) > 0. ¶ 
 
 
ARCH Models:  Leptokurtosis 
Errors may be serially uncorrelated, but they are not independent: There will be volatility 
clustering, which produces fat tails.   
 
We want to calculate the kurtosis of the errors: 
 𝜅ሺ𝜀௧ሻ ൌ 𝐸ሾ𝜀௧ସሿ/𝐸ሾ𝜀௧ଶሿଶ 
 
We define standardized errors:  𝑧௧ ൌ

ఌ
ఙ

   

 
They have conditional mean zero and a time invariant conditional variance equal to 1. That is, zt 
~ N(0, 1). 
 
From the definition of 𝑧௧ we have:  𝜀௧ = 𝑧௧𝜎௧ 
 
Now, we compute the fourth (also central, since E[𝜀௧]=0) moment:  

𝐸ሾ𝜀௧ସሿ ൌ 𝐸ሾ𝑧௧ସሿ𝐸ሾ𝜎௧ସሿ 
 
Then, using Jensen’s inequality: 
 𝐸ሾ𝜀௧ସሿ ൌ 𝐸ሾ𝑧௧ସሿ𝐸ሾ𝜎௧ସሿ  𝐸ሾ𝑧௧ସሿ𝐸ሾ𝜎௧ଶሿଶ ൌ 𝐸ሾ𝑧௧ସሿ𝐸ሾ𝜀௧ଶሿଶ 
  ൌ 3 𝐸ሾ𝜀௧ଶሿଶ 
 
  𝜅ሺ𝜀௧ሻ ൌ 𝐸ሾ𝜀௧ସሿ/𝐸ሾ𝜀௧ଶሿଶ  3. 
where we have used the fact that since E[𝜀௧] = 0, then E[𝜀௧ଶ] = E[𝜎௧ଶ]. 
 
Technical point: It can be shown that for an ARCH(1), the 4th moment for an ARCH(1): 

 𝜅ሺ𝜀௧ሻ ൌ
ଷ൫ଵିఈమ൯

ଵିଷఈమ
   if 3𝛼ଶ ൏ 1. 

 
 
More convenient, but less intuitive, presentation of the ARCH(1) model: 
  𝑦௧ ൌ 𝛾𝑋௧  𝜀௧   
  𝜀௧ ൌ 𝜎௧𝜐௧,   𝜐௧ ~ 𝐷ሺ0,  1ሻ 
 
that is, 𝜐௧ is i.i.d. with mean 0, and Var[𝜐௧]=1. Since 𝜐௧ is i.i.d., then: 



𝐸௧ିଵሾ𝜀௧ଶሿ ൌ 𝐸௧ିଵሾ𝜎௧ଶ𝜐௧ଶሿ ൌ 𝐸௧ିଵሾ𝜎௧ଶሿ 𝐸௧ିଵሾ𝜐௧ଶሿ ൌ 𝜔  𝛼ଵ𝜀௧ିଵ
ଶ  

 
which delivers the AR(1) representation for 𝜀௧ଶ. 
 
Also, if we assume 𝜐௧ is normally distributed, then 
  𝜀௧ ~ 𝑁ሺ0,𝜎௧ଶሻ. 
 
 
GARCH Model: Bollerslev (1986) 
An early technique to determine q was to look at the ACF/PACF for squared returns, 𝜀௧ଶ, which 
usually determined a very large q.  
 
Example: We calculate the ACF and PACF for the squared of the U.S. monthly stock returns 
(1871-2020). 

 

 
Note: Highly autocorrelated squared returns. To accommodate the long autocorrelations, we use 
large q. 
 
This result is not surprising, 𝜎௧ଶ is a very persistent process. Persistent processes can be captured 
with an AR(p), where p is large. This is not efficient. 
 
Following the idea of an ARMA process, we can use a more parsimonious representation of the 
ARCH model: The Generalized ARCH model or GARCH(q, p): 
 
 𝜎௧ଶ ൌ 𝜔   ∑ 𝛼𝜀௧ି

ଶ
ୀଵ    ∑ 𝛽𝜎௧ି

ଶ
ୀଵ  

  ൌ 𝜔  𝛼ሺ𝐿ሻ𝜀ଶ  𝛽ሺ𝐿ሻ𝜎ଶ  
which can be shown it is an ARMA(max(p,q), p) model for the squared innovations. 
 
Popular GARCH model: GARCH(1,1): 
   𝜎௧ାଵ

ଶ ൌ 𝜔  𝛼ଵ𝜀௧ଶ  𝛽ଵ𝜎௧ଶ 
with an unconditional variance: Var[𝜀௧ଶ] = σ2 = 

ఠ

ଵ ି ఈభ ି ఉభ
  



 
  Restrictions: ω > 0, 𝛼ଵ > 0, 𝛽ଵ > 0; (1 - 𝛼ଵ - 𝛽ଵ) > 0. 
 
Technical details: This is covariance stationary if all the roots of  
   α(L) + β(L) = 1  
lie outside the unit circle. For the GARCH(1,1) this amounts to 
   𝛼ଵ + 𝛽ଵ < 1.  
 
 
Question: What should be the order of the GARCH Model? 
We should use enough lags to make sure the residuals do not have any more autocorrelation in 
the square residuals. 
 
If the order of GARCH process is well determined, the ACF/PACF for 𝜀௧ଶ should show no 
significant autocorrelations. 
 
We can add lags until the tests for ARCH structure in the squared residuals, discussed later, are 
not longer significant. 
 
• A GARCH(1,1) is a very good starting point. 
 
 
GARCH-X 
In the GARCH-X model, exogenous variables are added to the conditional variance equation.  
 
Consider the GARCH(1,1)-X model: 
 𝜎௧ଶ ൌ 𝜔  𝛼ଵ𝜀௧ଶ  𝛽ଵ𝜎௧ିଵ

ଶ + δ f(Xt-1, 𝜃), 
where f(Xt, 𝜃) is strictly positive for all t. Usually, Xt, is an observed economic variable or 
indicator, for example, a liquidity index, and f(.) is a non-linear transformation, which should be 
non-negative. 
 
Examples: We can use 3-mo T-bill rates for modeling stock return volatility, or interest rate 
differentials between countries to model FX return volatility.   
 
The US congressional budget office uses inflation in an ARCH(1) model for interest rate 
spreads. ¶ 
 
 
ARCH Estimation: MLE 
All of these models can be estimated by maximum likelihood. First we need to construct the 
sample likelihood.  
 
Since we are dealing with dependent variables, we use the conditioning trick to get the joint 
distribution:  
𝑓ሺ𝑦ଵ, 𝑦ଶ, … ,𝑦்;𝜃ሻ ൌ 𝑓ሺ𝑦ଵ|𝑥ଵ;𝜃ሻ ∗ 𝑓ሺ𝑦ଶ|𝑦ଵ, 𝑥ଶ, 𝑥ଵ;𝜃ሻ ∗ 𝑓ሺ𝑦ଷ|𝑦ଶ,𝑦ଵ, 𝑥ଷ, 𝑥ଶ, 𝑥ଵ;𝜃ሻ * 
   ∗ . . .∗  𝑓ሺ𝑦்|𝑦்ିଵ, … , 𝑦ଵ, 𝑥்ିଵ,  … , 𝑥ଵ;𝜃ሻ. 



 
Taking logs: 

𝐿 ൌ logሺ 𝑓ሺ𝑦ଵ,𝑦ଶ, … , 𝑦்;𝜃ሻሻሻሻ ൌ logሺ 𝑓ሺ𝑦ଵ|𝑥ଵ;𝜃ሻሻ  logሺ 𝑓ሺ𝑦ଶ|𝑦ଵ, 𝑥ଶ, 𝑥ଵ;𝜃ሻ 
       …   logሺ 𝑓ሺ𝑦்|𝑦்ିଵ, … , 𝑦ଵ, 𝑥்ିଵ, … , 𝑥ଵ;𝜃ሻሻ  
  ൌ ∑ logሺ 𝑓ሺ𝑦௧|𝑌௧ିଵ,𝑋௧;𝜃ሻሻ்

௧ୀଵ  
 
We maximize this function with respect to the k mean parameters (γ) and the m variance 
parameters (ω, α, β). 
 
Example: ARCH(1) model. 
 Mean equation:  𝑦௧ ൌ 𝑿௧𝜸  𝜀௧, 𝜀௧ ~ N(0, 𝜎௧ଶ) 
 Variance equation: 𝜎௧ଶ ൌ 𝜔  𝛼ଵ𝜀௧ିଵ

ଶ  
 
We write the pdf for the normal distribution,  

 𝑓ሺ𝜀௧|𝛾, 𝜔, 𝛼ଵሻ ൌ
ଵ

ටଶగఙ
మ

exp ቂെ ఌ
మ

ଶఙ
మቃ = 

ଵ

ටଶగఙ
మ

exp ቂെ
ሺ௬ ି 𝜸ሻమ

ଶఙ
మ ቃ 

We form the likelihood L (the joint pdf): 

 L  ൌ ∏ ଵ

ටଶగఙ
మ

 exp ቀെ ఌ
మ

ଶఙ
మቁ

்
௧ୀଵ ൌ ሺ2𝜋ሻି்/ଶ ∏ ଵ

ටఙ
మ

exp ቀെ ఌ
మ

ଶఙ
మቁ

்
௧ୀଵ   

We take logs to form the log likelihood, 𝐿 = log L: 

𝐿 ൌ logሺ 𝑓௧ሻ

்

௧ୀଵ

ൌ െ
𝑇
2

logሺ2𝜋ሻ െ
1
2
 logሺ 𝜎௧ଶሻ െ

1
2
𝜀ଶ௧/𝜎௧ଶ
்

௧ୀଵ

்

௧ୀଵ

 

Then, we maximize 𝐿 with respect to θ = (𝛾, 𝜔, 𝛼ଵ) the function 𝐿. 
 

𝐿 ൌ െ
𝑇
2

logሺ2𝜋ሻ െ
1
2
 logሺ𝜔  𝛼ଵ𝜀௧ିଵ

ଶ ሻ െ
1
2
𝜀ଶ௧/ሺ𝜔  𝛼ଵ𝜀௧ିଵ

ଶ ሻ

்

௧ୀଵ

்

௧ୀଵ

 

Taking derivatives with respect to θ = (ω, α1, γ), where γ is a vector of k mean parameters: 

 
డ

డఠ
ൌ ሺെ1/2ሻ∑ 1/ሺ𝜔  𝛼ଵ𝜀௧ିଵ

ଶ ሻ െ ሺെ1/2ሻ∑ 𝜀௧ଶ/்
௧ୀଵ

்
௧ୀଵ ሺ𝜔  𝛼ଵ𝜀௧ିଵ

ଶ ሻଶ 

 
డ

డఈభ
ൌ ሺെ1/2ሻ∑ 𝜀௧ିଵ

ଶ /ሺ𝜔  𝛼ଵ𝜀௧ିଵ
ଶ ሻ െ ሺെ1/2ሻ∑ 𝜀௧ଶ𝜀௧ିଵ

ଶ /்
௧ୀଵ

்
௧ୀଵ ሺ𝜔  𝛼ଵ𝜀௧ିଵ

ଶ ሻଶ  

 
డ

డ𝜸
ൌ െ∑ 𝑿′௧𝜀௧்

௧ୀଵ /𝜎௧ଶ  (kx1 vector of derivatives) 

 

We form the f.o.c.; that is, we write the first derivative vectors as 
డ

డθ
 and, then, set it equal to 0: 

  
డ

డθ
 = S(yt, θ) = 0   -a (k+2) system of equations.  

The vector of first derivatives is called the score vector, S(yt, θ). 

Take the last f.o.c., the kx1 vector, 
డ

డ𝜸
ൌ 0: 

 
డ

డ𝜸
ൌ െ∑ 𝑿′௧𝜀௧்

௧ୀଵ /𝜎௧,ொ
ଶ  = ∑ 𝑿′௧ሺ𝑦௧ െ  𝑿௧𝜸ொ்

௧ୀଵ ሻ/𝜎௧,ொ
ଶ  = 0  

    ൌ ∑ 𝑿ᇱ
ఙ,ಾಽಶ

ሺ ௬
ఙ,ಾಽಶ

 െ 𝑿
ఙ,ಾಽಶ

்
௧ୀଵ 𝜸ொሻ = 0 

 



The last equation shows that MLE is GLS for the mean parameters, 𝜸: each observation is 
weighted by the inverse of 𝜎௧,ொ. 
 
We have a (k+2) system. It is a non-linear system. The system is solved using numerical 
optimization (usually, with the Newton-Raphson method). ¶ 
 
Technical Note: If the conditional density for 𝜀௧ is well specified and θ0

 
(the true parameter) 

belongs to the parameter space, Ω, then 

𝑻
𝟏
𝟐൫𝜽 െ 𝜽𝟎൯ → 𝑵൫𝟎,𝑨𝟎

ି𝟏൯,   where 𝐴 ൌ 𝑻ି𝟏
𝝏𝑺𝒕ሺ𝒚𝒕,𝜽𝟎ሻ

𝝏𝜽

𝑻

𝒕ୀ𝟏

 

 
A0 

 
is the matrix of second derivatives of the log likelihood, 𝐿. It is called the Hessian. In general, 

it is difficult to numerically compute and make sure it is positive definite (so it can be inverted), 
especially when the dimensions are big. 
 
• There a lot of computational tricks to compute a Hessian that is invertible, the most popular 
algorithm is the Broyden–Fletcher–Goldfarb–Shanno, or “BFGS.” 
 
 
 
ARCH Estimation: MLE – Standard Errors 
Under the correct specification assumption, A0 = B0, where 

𝐵 ൌ 𝑇ିଵ𝐸ሾ𝑆௧ሺ𝑦௧ ,𝜃ሻ, 𝑆௧ሺ𝑦௧,𝜃ሻ′ሿ

்

௧ୀଵ

 

We estimate A0 and B0 by replacing θ0 by its estimated MLE value, θMLE . 
 
The estimator B0 has a computational advantage over A0.: Only first derivatives are needed.  But 
A0 = B0 only if the distribution is correctly specified. This is very difficult to know in practice. 
 
Common practice in empirical studies: Assume the necessary regularity conditions are satisfied. 
 
 
ARCH Estimation: Numerical Optimization 
In general, we have a (k+m x k+m) system; k mean parameters and m variance parameters. But, it 
is a non-linear system. We use numerical optimization, which are methods that search over the 
parameter space looking for the values that maximize the log likelihood function.  
 
In R, the function optim does numerical optimization. It minimizes any non-linear function. It 
needs as inputs:  
- Initial values for the parameters, θ0.  
- Function to be minimized (includes the GARCH process). 
- Data used.  
- Other optional inputs: Choice of method, hessian calculated, etc. 



 
Example: optim(theta0,  log_lik_garch11, data=z, method="BFGS", hessian=TRUE) 
theta0 = initial values 
log_lik_garch11 = function to be minimized. ¶ 
 
• Initial values: 
- Numerical optimization needs initial values for θ, say θ0. It is very common to find that the 
optimization is sensitive to the initial values. It is a good practice to try different sets of initial 
values. 
 
We want to avoid selecting a local maximum: 
 
• Initial values (continuation): 
- Numerical optimization needs initial values for θ, say θ0. It is very common to find that the 
optimization is sensitive to the initial values. It is a good practice to try different sets of initial 
values. 
 
We want to avoid selecting a local maximum: 
 
 

 
 
-  Given the autoregressive structure in 𝜎௧ଶ, and sometimes we have AR(p) in the mean, we need 
to make assumptions about σ0 and the ε0, ..., εq (and ε0, ε1 , ..., εp  if we assume an AR(p) process 
for the mean). 
 
Usual assumptions: σ0 = unconditional SD; ε0 = ε1 = ...= εp= 0. 
  
- Alternatively, we can take σ0 (and ε0, ε1, ..., εp) as parameters to be estimated (it can be 
computationally more intensive and estimation can lose power.) 
 
 



ARCH Estimation: MLE – Example (in R) 
Log likelihood of AR(1)-GARCH(1,1) Model: 
log_lik_garch11 <- function(theta, data) { 
 mu <- theta[1]; rho1 <- theta[2]; omega <- abs(theta[3]); alpha1 <- abs(theta[4]); beta1 <- 
abs(theta[5]);   
chk0 <- (1 - alpha1 - beta1) 
 r <- ts(data) 
 n <- length(r) 
 u <- vector(length=n);  u <- ts(u) 
 u[1] = 0  
for (t in 2:n) 
 {u[t] = r[t] - mu - rho1*r[t-1]}     # this setup allows for ARMA in 
mean 
 h <- vector(length=n);  h <- ts(h) 
 h[1] = omega/chk0     # set initial value for h[t] series 
if (chk0==0) {h[1]=.000001}     # check to avoid dividing by 0 
 for (t in 2:n) 
 {h[t] = abs(omega + alpha1*(u[t-1]^2) + beta1*h[t-1]) 
if (h[t]==0) {h[t]=.00001} }    # check to avoid log(0) 
return(-1*sum(- 0.5 * log(abs(h[2:n])) - 0.5 * (u[2:n]^2)/abs(h[2:n]))) 
}    
# I use optim to minimize a function, to maximize multiply by -1 
 
Example 1: GARCH(1,1) model for changes in CHF/USD. We will use R function optim (mln 
can also be used) to maximize the likelihood function. 
 
PPP_da <- 
read.csv("https://www.bauer.uh.edu/rsusmel/4397/ppp_2020_m.csv",head=TRUE,sep=",") 
x_chf <- PPP_da$CHF_USD    # CHF/USD 1971-2020 monthly data 
T <- length(x_chf) 
z <- log(x_chf[-1]/x_chf[-T]) 
theta0 = c(-0.002,  0.026,   0.001,   0.19,   0.71)   # initial values 
ml_2 <- optim(theta0,  log_lik_garch11, data=z, method="BFGS", hessian=TRUE) 
logL_g11 <- log_lik_garch11(ml_2$par, z)  # value of log likelihood 
logL_g11 
ml_2$par       # estimated parameters  
I_Var_m2 <- ml_2$hessian 
eigen(I_Var_m2)      # check if Hessian is pd. 
sqrt(diag(solve(I_Var_m2)))    # parameters SE 
chf_usd <- ts(z, frequency=12, start=c(1971,1))  
plot.ts(chf_usd)     # time series plot of data 
 
> logL_g11 # Log likelihood value 
[1] –1745.197 
> ml_2$par # Extract from ml_2 function parameters 
[1] -0.0021051742  0.0260003610  0.00012375  0.1900276519  0.7100718082 



> I_Var_m2 <- ml_2$hessian # Extract Hessian (matrix of 2nd 
derivatives) 
> eigen(I_Var_m2) # Check if Hessian is pd to invert. 
eigen() decomposition 
$values # Eigenvalues: if positives => Hessian is pd 
[1] 1.687400e+08 6.954454e+05 7.200084e+03 5.120984e+02 2.537958e+02  
$vectors 
              [,1]         [,2]         [,3]    [,4]        
  [,5] 
[1,]  4.265907e-05  9.999960e-01 -0.0011397586  0.0018331957 -0.0018541203 
[2,] -3.333961e-06 -2.188159e-03 -0.0010048203  0.9769058449 -0.2136566699 
[3,]  9.999998e-01 -4.223001e-05 -0.0003544245  0.0001291633  0.0005770707 
[4,] -3.599974e-06 -1.702277e-03 -0.8603563865 -0.1097470278 -0.4977344477 
[5,] -6.893837e-04  6.416141e-04 -0.5096905472  0.1833226197  0.8405994743 
 
> sqrt(diag(solve(I_Var_m2)))  # Invert Hessian: 
Parameters Var on diag 
[1] 1.203690e-03 4.419049e-02 7.749756e-05 5.014454e-02 3.955411e-02 
> t_stats <- ml_2$par/sqrt(diag(solve(I_Var_m2))) 
> t_stats 
[1] -1.7489333  0.5883701  1.5967743  3.7895984 17.9519078 
 
Summary for CHF/USD changes 
ef,t = [log(St) - log(St-1)] = a0 + a1 

 
ef,t-1 + 𝜀௧,                 𝜀௧It ~ N(0, 𝜎௧ଶ)  

 𝜎௧ଶ ൌ  𝝎   𝜶𝟏 𝜀௧ିଵ
ଶ    𝜷𝟏 𝜎௧ିଵ

ଶ  
 
• T: 562 (January 1971 - July 2020, monthly).  
 
The estimated model for ef,t is given by: 
ef,t =  -0.00211 +  0.02600 ef,t-1, 
 (.0012)  (0.044)  
𝜎௧ଶ = 0.00012    +  0.19003  𝜀௧ିଵ

ଶ    +  0.71007 𝜎௧ିଵ
ଶ .  

 (0.00096)* (0.050)* (0.040)* 

Unconditional σ
2

 = 0.00012 /(1- 0.19003 - 0.71007) = 0.001201201 Log likelihood: 1745.197 
 
Note:  α1 + ß1 = .90 < 1.  (Persistent.) ¶ 
 



 
 

 
 
Example 2: Using Robert Shiller’s monthly data set for the S&P 500 (1871:Jan - 2020:Aug, 
T=1,795), we estimate an AR(1)-GARCH(1,1) model:  
 rt = [log(Pt) - log(Pt-1)] = a0 + a1  rt-1 + 𝜀௧, 𝜀௧It-1 ~ N(0, 𝜎௧ଶ) 
 𝜎௧ଶ ൌ  𝝎   𝜶𝟏 𝜀௧ିଵ

ଶ    𝜷𝟏 𝜎௧ିଵ
ଶ  

 
The estimated model for st is given by: 
rt = 0.338    + 0.278 rt-1, 
 (.08)*  (0.025)*  
𝜎௧ଶ = 0.756    + 0.126  𝜀௧ିଵ

ଶ  + 0.826  𝜎௧ିଵ
ଶ .  

 (0.151)* (0.017)* (0.021)* 
 
Unconditional σ2 = 0.756 /(1 - 0.126 -  0.826) =  15.4630 
Log likelihood: 4795.08 
 
Note:  α1 + ß1 = .952 < 1.  (Very persistent.) 



 
Above, we plot the time-varying variance. Certain events are clearly different, for example, the 
1930 great depression, with a peak variance of 282 (18 times unconditional variance!). The 
covid-19 volatility similar to the 2008-2009 financial crisis recession. ¶ 
 
 
GARCH:  Forecasting and Persistence 
Consider the forecast in a GARCH(1,1) model: 

𝜎௧ାଵ
ଶ ൌ 𝜔  𝛼ଵ𝜀௧ଶ  𝛽ଵ𝜎௧ଶ ൌ 𝜔  𝜎௧ଶ ሺ𝛼ଵ𝑧௧ଶ  𝛽ଵሻ   ሺ𝜀௧ଶ ൌ 𝜎௧ଶ𝑧௧ଶሻ 

 
Taking expectation at time t 
 𝐸௧ሾ𝜎௧ାଵ

ଶ ሿ ൌ 𝜔  𝜎௧ଶሺ𝛼ଵ1  𝛽ଵሻ 
Then, by repeated substitutions: 
 𝐸௧ൣ𝜎௧ା

ଶ ൧ ൌ 𝜔 ∗ ሾ∑ ൫𝛼ଵ  𝛽ଵሻ൧
ିଵ
ୀ  𝜎௧ଶ ሺ𝛼ଵ  𝛽ଵሻ 

 
Assuming (𝛼ଵ  𝛽ଵ) < 1, as j → ∞, the forecast reverts to the unconditional variance:  
  σ2 = ω/(1 – α1 – β1). 
 
When α1 + β1 = 1, today’s volatility affect future forecasts forever: 
 𝐸௧ሾ𝜎௧ା

ଶ ሿ ൌ 𝜎௧ଶ  𝑗𝜔 
 
Example 1: We want to forecast next month (September 2020) variance for CHF/USD changes. 
Recall we estimated 𝜎௧ଶ: 

𝜎௧ଶ =  0.00012 +  0.19003 𝜀௧ିଵ
ଶ +  0.71007 𝜎௧ିଵ

ଶ .  
getting 𝜎ଶଶ:ଽ

ଶ  = 0.003672220 (=𝜎ଶଶ:ଽ = sqrt(0.00367) = 6.1%) 
We based the 𝜎ଶଶ:ଵ

ଶ  forecast on: 
 𝐸௧ൣ𝜎௧ା

ଶ ൧ ൌ 𝜔 ∗ ሾ∑ ሺ𝛼ଵ  𝛽ଵሻሿ
ିଵ
ୀ  𝜎௧ଶሺ𝛼ଵ  𝛽ଵሻ 

 
Then, ሺ𝛼ଵ  𝛽ଵሻ = 0.190 + 0.710 = 0.900 
 𝐸ଶଶ:ଽሾ𝜎ଶଶ:ଵ

ଶ ሿ ൌ  0.00012   0.00367 ∗ ሺ 0.9) = 0.003423  
 
We also forecast 𝜎ଶଶ:ଵଶ

ଶ  



 𝐸ଶଶ:ଽሾ𝜎ଶଶ:ଵଶ
ଶ ሿ ൌ 0.00012 * {1+ (0.9)+ (0.9)2} + 0.00367 * (0.9)3 = 0.00300063 

 
We forecast volatility for March 2021: 
 𝐸ଶଶ:ሾ𝜎ଶଶଵ:ଷ

ଶ ሿ ൌ 0.00012 * {1 + (0.9) + (0.9)2+ …  + (0.9)5} + 0.00367 * (0.9)6 

 = 0.002512659  
 
Remark: We observe that as the forecast horizon increases (j → ∞), the forecast reverts to the 
unconditional variance:  
   𝜔/(1 – α1 – β1) = 0.00012/(1 - 0.9) = 0.0012  
    𝜎 = sqrt(0.0012) = 0.0346   (3.46% ≈ close to sample SD = 
3.36%). ¶  
 
Example 2: On August 2020, we forecast the December’s variance for the S&P500 changes. 
Recall we estimated 𝜎௧ଶ: 
 𝜎௧ଶ =  0.756  +   0.125 𝜀௧ିଵ

ଶ + 0.826  𝜎௧ିଵ
ଶ

, 
getting 𝜎ଶଶ:଼

ଶ  = 43.037841 
 
We based the 𝜎ଶଶ:ଵଶ

ଶ  forecast on: 
 𝐸௧ൣ𝜎௧ା

ଶ ൧ ൌ 𝜔 ∗ ሾ∑ ሺ𝜶𝟏  𝜷𝟏ሻሿ
ିଵ
ୀ  𝜎௧ଶ ሺ𝜶𝟏  𝜷𝟏ሻ 

 
Then, since ሺ𝜶𝟏  𝜷𝟏ሻ = 0.952 

𝐸ଶଶ:଼ሾ𝜎ଶଶ:ଵଶ
ଶ ሿ ൌ 0.756 * {1+ (0.952) + (0.952)2 + (0.952)3} + 

  + 43.037841 * (0.952)4 = 38.02797 
Lower variance forecasted for the end of the year, but still far from the unconditional variance of 
15.4. ¶ 
 
 
GARCH:  Forecasting – Application to VaR 
Example: In September 2020, Swiss Cruises wants to construct a VaR-mean for the USD 1 M 
receivable in 30 days (October). Data 
Receivable: USD 1 M 
St=2020:9 = 1.45 CHF/USD 
ef,t=2020:9 = 0.01934126 
TEt=2020:9 = USD 1M * 1.45 CHF/USD = CHF 1.45M.  
 
𝐸ଶଶ:ଽሾ𝜎ଶଶ:ଵ

ଶ ሿ = 0.003423    sqrt(0.003423) = 0.05851 (5.85%) 
VaR-mean(.99) = CHF 1.45M * ሼ𝐸ଶଶ:ଽൣ𝑒,௧ୀଶଶ:ଵ൧ – 2.33 * sqrt(𝐸ଶଶ:ଽሾ𝜎ଶଶ:ଵ

ଶ ሿ)} 
 

𝐸ଶଶ:ଽൣ𝑒,௧ୀଶଶ:ଵ൧ = -0.00211 + 0.026 * 𝑒,௧ୀଶଶ:ଽ 
  = -0.00211 + 0.026 * 0.01934126 = -0.001607 
 

VaR-mean(.99) = CHF 1.45M * (-0.001607 – 2.33 * sqrt(0.003423)) 
 = CHF -0.1999941 M 
 
Interpretation of VaR-mean: Relative to today’s valuation (or expected valuation, according to 
RWM), the maximum expected loss with a 99% “chance” is CHF -0.20 M. 



 
We also derive this value, using the sample mean and sample SD: 
sample mean = -0.00259 
sample SD = 0.033357 
  VaR-mean(.99)  = CHF 1.45M * * (-0.00259 - 2.33 * 0.033357) =  
  = CHF - 0.1164491 
 
Remark: The GARCH forecast reflects the higher than average uncertainty in 2020:9 (Covid-19, 
presidential elections). ¶ 
 
 
GARCH:  Rugarch Package 
GARCH estimation requires numerical optimization, which is dependent on initial values. The R 
package does a good job at estimating ARMA-GARCH models, allowing for different models 
and performing a lot of specification tests. 
 
You need to specify the model (“specs”) first, for example, you want to estimate an AR(1)-
GARCH(1,1) with a constant in the mean. Then, you estimate the model with the ugarchfit 
command. 
 
Example: We estimate an AR(1)-GARCH(1,1) for the historical U.S. monthly returns (1871 – 
2020, T = 1,797). 
x <- lr_p     # SP500 long run monthly returns 
library(rugarch)    # You need to install package first! 
mod_gar <- ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1, 1)),  
mean.model = list(armaOrder = c(1, 0), include.mean = TRUE)) 
ar1_garch11 <- ugarchfit(spec=mod_gar, data=lr_p) 
 
> ar1_garch11 
*---------------------------------* 
*          GARCH Model Fit        * 
*---------------------------------* 
Conditional Variance Dynamics    
----------------------------------- 
GARCH Model     : sGARCH(1,1) 
Mean Model      : ARFIMA(1,0,0) 
Distribution    : norm  
Optimal Parameters 
------------------------------------ 
         Estimate Std. Error  t value Pr(>|t|) 
mu  0.004695    0.001052   4.4651    8e-06 
ar1 0.277567    0.025120  11.0496    0e+00 
omega 0.000075    0.000015   4.8968    1e-06 
alpha1 0.126715    0.017529   7.2289    0e+00 
beta1 0.826194    0.020600  40.1061    0e+00 
 



 
Robust Standard Errors: 
         Estimate  Std. Error  t value Pr(>|t|) 
mu    0.004695  0.001145   4.1018 0.000041 
ar1    0.277567  0.022948  12.0957 0.000000 
omega  0.000075  0.000021   3.6307 0.000283 
alpha1 0.126715  0.026943   4.7031 0.000003 
beta1 0.826194  0.028409  29.0821 0.000000 
LogLikelihood : 3472.361  
Information Criteria 
------------------------------------ 
                     
Akaike       -3.8591 
Bayes        -3.8438 
Shibata      -3.8591 
Hannan-Quinn -3.8534 
 
Weighted Ljung-Box Test on Standardized Residuals 
------------------------------------ 
                          statistic p-value 
Lag[1]                     0.3178 0.57294 
Lag[2*(p+q)+(p+q)-1][2] 2.5441 0.08393 
Lag[4*(p+q)+(p+q)-1][5]  6.9210 0.02072   Need to add more lags in mean. 
d.o.f=1 
H0 : No serial correlation 
Weighted Ljung-Box Test on Standardized Squared Residuals 
------------------------------------ 
                      statistic p-value 
Lag[1]               0.1915  0.6617 
Lag[2*(p+q)+(p+q)-1][5] 1.1353  0.8284 
Lag[4*(p+q)+(p+q)-1][9]  1.6161  0.9455   No evidence of extra ARCH lags. 
 
 
IGARCH 
Recall the technical detail: The standard GARCH model: 
   𝜎௧ଶ ൌ 𝜔  𝛼ሺ𝐿ሻ𝜀ଶ  𝛽ሺ𝐿ሻ𝜎ଶ  
is covariance stationary if α(1) + β(1) < 1. 
 
But strict stationarity does not require such a stringent restriction 
 
In the GARCH(1,1) model, if α1 + β1 =1, we have the Integrated GARCH (IGARCH) model. 
 
In the IGARCH model, the autoregressive polynomial in the ARMA representation has a unit 
root: a shock to the conditional variance is “persistent.”  
 
Variance forecasts are generated with: 𝐸௧ሾ𝜎௧ା

ଶ ሿ ൌ 𝜎௧ଶ  𝑗𝜔 



  today’s variance remains important for all future forecasts. This is persistence! 
 
Variance forecasts are generated with: 𝐸௧ሾ𝜎௧ା

ଶ ሿ ൌ 𝜎௧ଶ  𝑗𝜔 
 
That is, today’s variance remains important for future forecasts of all horizons.  
 
In practice (see previous Example 2 for the S&P 500 data), it is often found that α1 + β1 are close 
to 1. 
 
 
GARCH: Variations – GARCH-in-mean 
The time-varying variance affects mean returns: 
Mean equation:  𝑦௧ ൌ 𝑋௧𝛾   𝛿 𝜎௧ଶ  𝜀௧,  𝜀௧ ~ N(0, 𝜎௧ଶ) 
Variance equation:  𝜎௧ଶ ൌ 𝜔   𝛼ଵ𝜀௧ିଵ

ଶ   𝛽ଵ𝜎௧ିଵ
ଶ  

 
We have a dynamic mean-variance relations. It describes a specific form of the risk-return trade-
off. 
 
 Finance intuition says that δ has to be positive and significant. However, in empirical work, it 
does not work well: δ is not significant or negative. 
 
 
GARCH: Variations – Asymmetric GJR 
GJR-GARCH model – Glosten, Jagannathan & Runkle (JF, 1993): 

𝜎௧ଶ ൌ 𝜔 𝛼𝜀௧ି
ଶ



ୀଵ

𝛾𝜀௧ି
ଶ ∗ 𝐼௧ି



ୀଵ

𝛽𝜎௧ି
ଶ



ୀଵ

 

where 𝐼௧ିଵ 
= 1  if ε௧ିଵ 

< 0;  
 = 0   otherwise. 
Using the indicator variable 𝐼௧ି, this model captures sign (asymmetric) effects in volatility: 
Negative news (ε௧ିଵ< 0) increase the conditional volatility (leverage effect). 
 
The GARCH(1,1) version: 

𝜎௧ଶ ൌ 𝜔   𝛼ଵ𝜀௧ିଵ
ଶ    𝛾ଵ 𝜀௧ିଵ

ଶ  𝐼௧ିଵ   𝛽ଵ𝜎௧ିଵ
ଶ  

where 𝐼௧ିଵ 
= 1  if ε௧ିଵ 

< 0;  
 = 0   otherwise. 
 
When  ε௧ିଵ 

< 0   𝜎௧ଶ ൌ  𝜔   ሺ𝛼ଵ 𝛾ଵሻ 𝜀௧ିଵ
ଶ   𝛽ଵ𝜎௧ିଵ

ଶ  
 ε௧ିଵ 

> 0     𝜎௧ଶ ൌ  𝜔   𝛼ଵ 𝜀௧ିଵ
ଶ    𝛽ଵ𝜎௧ିଵ

ଶ  
  
This is a very popular variation of the GARCH models. The leverage effect is significant. 
 
There is another variation, the Exponential GARCH, or EGARCH, that also captures the 
asymmetric effect of negative news on the conditional variance. 
 



 
GARCH: Variations – NARCH 
Non-linear ARCH model NARCH – Higgins and Bera (1992) and Hentschel (1995). 
  
These models apply the Box-Cox-type transformation to the conditional variance: 

𝜎௧
ఊ ൌ 𝜔 𝛼|𝜀௧ି െ 𝜅|ఊ



ୀଵ

𝛽𝜎௧ି
ఊ



ୀଵ

 

Special case: γ = 2 (standard GARCH model). 
 
Note: The variance depends on both the size and the sign of the variance which helps to capture 
leverage type (asymmetric) effects.  
 
 
ARCH Estimation: MLE – Regularity Conditions 
Technical Note: The appeal of MLE is the optimal properties of the resulting estimators under 
ideal conditions. However, these ideal conditions, which are called “regularity conditions,” are 
difficult to verify for ARCH models 
 
• Block-diagonality 
In many applications of ARCH models, the parameters can be partitioned into mean parameters, 
θ1, and variance parameters, θ2. Thus, the Information matrix (≈Hessian) is block-diagonal. 
 
Not a bad result: 
– Regression can be consistently done with OLS. 
– Asymptotically efficient estimates for the ARCH parameters can be obtained on the basis of 
the OLS residuals. 
 
But: 
– Conventional OLS standard errors could be terrible.  
– When testing for autocorrelation, in the presence of ARCH, the conventional Bartlett s.e. –T-

1/2–  could seriously underestimate the true standard errors. 
 
 
ARCH Estimation: Non-Normality 
The basic GARCH model allows a certain amount of leptokurtosis. It is often insufficient to 
explain real world data.  
 
Solution: Assume a distribution, other than the normal, that can produce fatter tails in the 
distribution.  
 
• t Distribution - Bollerslev (1987) 
The t distribution has a degrees of freedom parameter which allows greater kurtosis. The 
likelihood function for observation t is:  
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where Γ is the gamma function and v is the degrees of freedom. As υ → ∞,  this tends to the 
normal distribution. 
 
 
ARCH: Testing 
Standard BP test, where we have an ARCH(q) as the alternative H1. Then, we test  
 H0: αଵ= αଶ = ... = α= 0. 
 
Steps: 
– Step 1. (Same as BP’s Step 1). Run OLS on DGP: 
   y = X  + .      Keep residuals, 𝑒୲ 
– Step 2. (Auxiliary Regression). Regress 𝑒௧ଶ on 𝑒௧ିଵ

ଶ ,  ....,  𝑒௧ିଶ    
 𝑒௧ଶ = α + αଵ 𝑒௧ିଵ

ଶ  + .... +  α 𝑒௧ିଶ + 𝑣௧ Keep R2, say 𝑅ଶ
ଶ . 

– Step 3. Compute the statistic:  
 LM = (T – q) 𝑅ଶ

ଶ   
  ௗ  
ሱሮ  χ

ଶ. 

 
Example: We do an ARCH Test with 4 lags, for the AR(1) residuals of log changes in the 
CHF/USD (T = 593):  
yyy <- z;  
T <- length(yyy) 
xx_1 <- z[-T] 
 yy <- z[-1] 
fit2 <- lm(yy ~ xx_1 -1)  
res_d <- fit2$residuals     # Step 1: extract residuals 
 
p_lag <- 4 
 e2_lag <- matrix(0, T-p_lag, p_lag)   # matrix to put lag e^2 
 resid_r2 <- res_d^2 
 a <-1 
 while (a <= p_lag) { 
   e2_lag[,a] <- resid_r2[a:(T-p_lag+a-1)] 
 a <- a+1 
 } 
 
fit_lm2 <- lm(resid_r2[(p_lag+1):T] ~ e2_lag)  # Step 2: Auxiliary Regression 
 r2_e1 <- summary(fit_lm2)$r.squared   # extract R^2 
 lm_t <- (T-p_lag)*r2_e1     # LM test: Sample size * R^2 
 
> lm_t 
[1] 17.08195    Reject H0 (No ARCH) with a p-value of  0.001. ¶ 
 
 
ARCH: Testing – Ignoring ARCH 
In ARCH Models, testing as usual: LR, Wald, and LM tests. Suppose ARCH is detected, but 
ARCH is ignored. What are the consequences of ignoring ARCH? 



 
• Ignoring ARCH 
- Suppose yt  has an AR structure:  
   𝑦௧ = γ0 + γ1 𝑦௧ିଵ + 𝜀௧,   𝜀௧𝐼௧ିଵ ~ N(0, σ2

t).  
with ARCH structure in the error term, but ARCH is ignored. Then, we fit the AR(1) model 
using OLS. 
 
- Simulations find that OLS t-test with no correction for ARCH spuriously reject H0: ϕ1 = 0 with 
arbitrarily high probability for sufficiently large T.   
 
- If White’s (1980) SE are used, the results are better. NW SE help less. 
 
Figure. From Hamilton (2008). Fraction of samples in which OLS t-test leads to rejection of H0: 
ϕ1 = 0 as a function of T for regression with Normal errors (solid blue line) and Student’s t errors 
(dashed  green line).  
 
Note: H0 is actually true & the t-test is evaluated at the 5% level. 

 
 
ARCH: Which Model to Use 
Questions 
1) Lots of ARCH models. Which one to use? 
2) Choice of p and q. How many lags to use? 
 
Hansen and Lunde (2004) compared lots of ARCH models: 
- It turns out that the GARCH(1, 1) is a great starting model.  
- Add a leverage effect for financial series and it’s even better. 
- A t-distribution is also a good addition. 
 
 
RV Models: Intuition 



The idea of realized volatility is to estimate the latent (unobserved) variance using the realized 
data, without any modeling. Recall the definition of sample variance:  

  𝒔𝟐 ൌ ଵ

ሺ்ିଵሻ
∑ ሺ𝒙𝒊 െ 𝒙ഥሻ𝟐𝑻
ୀଵ  

Suppose we want to calculate the daily variance for stock returns. We know how to compute it: 
we use daily information, for T days, and apply the above definition.  
 
Alternatively, we use hourly data for the whole day (with k hours). Since hourly returns are very 
small, ignoring 𝒙ഥ seems OK. We use 𝑟௧,𝒊

ଶ  as the ith hourly variance on day t. Then, we add 𝑟௧,𝒊
ଶ  

over the day: 
  𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒௧ ൌ ∑ 𝑟௧,

ଶ
ୀଵ  

 
In more general terms, we use higher frequency data to estimate a lower frequency variance: 
  𝑅𝑉௧ ൌ ∑ 𝑟௧,𝒊

ଶ
ୀଵ  

where rt,i is the realized returns in (higher frequency) interval i of the (lower frequency) period t.  
 
We estimate the t-frequency variance, using k i-intervals. If we have daily returns and we want to 
estimate the monthly variance, then, k is equal to the number of days in a month. 
 
It can be shown that as the interval i becomes smaller (i → 0),  
  𝑅𝑉௧ → Return Variation [t – 1, t]. 
 
That is, with an increasing number of observations we get an accurate measure of the latent 
variance. 
 
 
RV Models: High Frequency 
Note that RV is a model-free measure of variation –i.e., no need for ARCH-family 
specifications. The measure is called realized variance (RV). The square root of the realized 
variance is the realized volatility (RVol, RealVol): 
   𝑅𝑉𝑜𝑙௧ ൌ 𝑠𝑞𝑟𝑡ሺ𝑅𝑉௧ሻ 
 
Given the previous theoretical result, RV is commonly used with intra-daily data, called high 
frequency (HF) data. 
 
It lead to a revolution in the field of volatility, creating new models and new ways of thinking 
about volatility and how to model it.  
 
We usually associate realized volatility with an observable proxy of the unobserved volatility. 
 
 
RV Models: High Frequency – Tick Data 
As mentioned above, the theory behind realized variation measures dictates that the sampling 
frequency, or k in the RVt formula above, goes to ∞. Then, use the highest frequency available, 
say millisecond to millisecond returns. 
 



Intra-daily data applications are the most common. But, when using intra-daily data, RV 
calculations are affected by microstructure effects: bid-ask bounce, infrequent trading, calendar 
effects, etc. rt,i does not look uncorrelated. 
 
Example: The bid-ask bounce induces serial correlation in intra-day returns, which biases RVt.  
 
The usual solutions: 
(1) Filter data using an ARMA model to get rid of the autocorrelations and/or dummy variables 
to get rid of calendar effects.  
 
Then, used the filtered data to compute RVt. 
 
(2) Sample at frequencies where the impact of microstructure effects is minimized and/or 
eliminated.  
 
We will follow solution (2). 
 
 
RV Models: High Frequency – Practice 
In intra-daily RV estimation, it is common to use 10’ intervals. They have good properties. 
However, there are estimations with 1’ intervals. 
 
Some studies suggest using an optimal frequency, where optimal frequency is the one that 
minimizes the MSE. 
 
Hansen and Lunde (2006) find that for very liquid assets, such as the S&P 500 index, a 5’ 
sampling frequency provides a reasonable choice. Thus, to calculate daily RV, we need to add 78 
five-minute intervals. 
 
Example: Based on TAQ (Trade and Quote) NYSE data, we use 5’ realized returns to calculate 
30’ variances –i.e., we use six 5’ intervals. Then, the 30’ variance, or RVt=30-min, is: 
  𝑅𝑉௧ୀଷି ൌ ∑ 𝑟௧,

ଶୀ
ୀଵ ,   𝑡 ൌ 1,2, . . . . ,𝑇=15 

rt,j is the 5’ return during the jth interval on the half hour t. Then, we calculate 30’ variances for 
the whole day –i.e., we calculate 13 variances, since the trading day goes from 9:30 AM to 4:00 
PM. 
 
The Realized Volatility, RVol, is: 
  𝑅𝑉𝑜𝑙௧ୀଷି ൌ ඥ𝑅𝑉௧ୀଷି 
 
Example: Below, we show the first transaction of the SPY TAQ (Trade and Quote) data (tick-
by-tick trade data) on January 2, 2014.   
 

SYMBOL DATE TIME PRICE SIZE 

SPY 20140102 9:30:00 183.98 500 



SPY 20140102 9:30:00 183.98 500 

SPY 20140102 9:30:00 183.98 200 

SPY 20140102 9:30:00 183.98 500 

SPY 20140102 9:30:00 183.98 1000 

SPY 20140102 9:0:00 183.98 1000 

SPY 20140102 9:30:00 183.98 800 

SPY 20140102 9:30:00 183.98 100 

SPY 20140102 9:30:00 183.98 100 

SPY 20140102 9:30:00 183.97 200 

SPY 20140102 9:30:00 183.98 100 

SPY 20140102 9:30:00 183.97 200 

SPY 20140102 9:30:00 183.98 1000 

SPY 20140102 9:30:00 183.97 100 

SPY 20140102 9:30:00 183.98 1000 

SPY 20140102 9:30:00 183.98 2600 

SPY 20140102 9:30:00 183.98 1000 

SPY 20140102 9:30:00 183.97 400 
 
Example: Below, we show the first transaction of the AAPL TAQ (Trade and Quote) data (tick-
by-tick quote data) on January 2, 2014: 4 AM   
 

SYMBOL DATE TIME BID OFR BIDSIZ OFRSIZ MODE EX 

AAPL 20140102 4:00:00 455.39 0 1 0 12 T 

AAPL 20140102 4:00:00 553.5 558 2 2 12 P 

AAPL 20140102 4:00:01 455.39 561.02 1 2 12 T 

AAPL 20140102 4:00:45 552.1 558 1 2 12 P 

AAPL 20140102 4:00:51 552.1 558.4 1 2 12 P 

AAPL 20140102 4:00:51 552.1 558.8 1 2 12 P 

AAPL 20140102 4:00:51 552.1 559 1 1 12 P 

AAPL 20140102 4:01:14 553 559 1 1 12 P 

AAPL 20140102 4:01:30 553.01 561.02 1 2 12 T 

AAPL 20140102 4:01:43 553.01 559 1 1 12 T 

AAPL 20140102 4:01:44 553.05 559 1 1 12 P 



AAPL 20140102 4:01:49 455.39 559 1 1 12 T 

AAPL 20140102 4:01:49 553.61 559 1 1 12 T 

AAPL 20140102 4:02:02 553.05 559 1 2 12 P 

AAPL 20140102 4:02:04 455.39 559 1 1 12 T 

AAPL 20140102 4:02:04 548.28 559 1 1 12 T 

AAPL 20140102 4:02:33 553.05 558.83 1 2 12 P 

AAPL 20140102 4:02:33 555.17 558.83 2 2 12 P 

AAPL 20140102 4:03:50 555.2 558.83 5 2 12 P 
 
 
RV Models: High Frequency – Working with Tick Data 
Example: We read SPY trade data for 2014:Jan. 
> HF_da <- read.csv("https://www.bauer.uh.edu/rsusmel/4397/SPY_2014.csv", head=TRUE, 
sep=",") 
> summary(HF_da) 
SYMBOL             DATE                TIME              PRICE              SIZE              G127   
SPY:6800865   Min.   :20140102 9:30:00 :  21436 Min.   :176.6    Min.   :      1
 Min.   :0   
                1st Qu.:20140110 16:00:00: 11352 1st Qu.:178.9 1st Qu.:    100
 1st Qu.:0   
                Median :20140121 9:30:01 : 5922  Median :182.6
 Median :    100 Median :0   
               Mean   :20140119 15:59:59: 4090 Mean   :181.4 Mean   :    337
 Mean   :0   
              3rd Qu.:20140128 15:59:55: 3198 3rd Qu.:183.5 3rd Qu.:    300   
3rd Qu.:0   
                Max.   :20140131   15:50:00: 2916 Max.   :189.2 Max.   
:4715350 Max.   :0   
                                    (Other) :6751951                                                 
      CORR           COND               EX          
 Min.   :0.0e+00 @   :3351783  T      :1649158   
 1st Qu.:0.0e+00 F      :2888182 P      :1335135   
 Median :0.0e+00  : 524409 Z      :1182126   
 Mean   :1.9e-04 O     :  18057 D      :1062382   
 3rd Qu.:0.0e+00 4    :   9098 K      : 437900   
 Max.   :1.2e+01 6     :   8142 J      : 356539   
                     (Other):   1194    (Other): 777625 
 
• Now, we calculate using 5’-returns a daily realized volatilitiy for the first 4 days in 2014 
(2014:01:02 - 2014:01:07). Originally, we have T = 1,048,570. 
 
pt <- as.POSIXct(paste(HF_da$DATE, HF_da$TIME), format="%Y%m%d %H:%M:%S") 
library(xts) 
hf_1 <- xts(x=HF_da, order.by = pt)  # Define a specific time series data set 



      # pt pastes together DATE and Time. 
spy_p <- as.numeric(hf_1$PRICE)  # Read price data as numeric 
 
T <- length(spy_5_p) 
spy_ret <- log(spy_p[-1]/spy_p[-T]) 
plot(spy_ret, type="l", ylab="Return", main="Tick by Tick Return (2014:01:02 - 2014:01:07)") 
mean(spy_ret) 
sd(spy_ret) 

 
Very noisy data, with lots of “jumps”: 
Mean tick by tick return: -3.7365e-09 
Tick-by-tick SD: 6.3163e-05 
 
• For the whole month of January 2020: 
 

 
 
> mean(spy_ret) 
[1] -4.796933e-09 
> sd(spy_ret) 
[1] 7.804991e-05 
 
• We plot the autocorrelogram for the TAQ SPY data: 



 
Autocorrelations of series ‘spy_ret’, by lag 
 0  1  2  3 4 5  6   7    8  9 10  
 1.000 -0.469 -0.013 -0.010  0.014 -0.008  0.000 -0.002 -0.001  0.000  0.000 
 
Note: We have only a significant autocorrelation, the 1st-order autocorrelation: -0.459.  
 
 
• We aggregate the tick-by-tick data in 5’ intervals using the function aggregateTrades in the R 
package highfrequency. It needs as an input an xts object (hf_1, for us). 
 
library(highfrequency) 
spy_5 <- aggregateTrades( 
hf_1, 
on = "minutes",   # you can use also seconds, days, weeks, etc. 
k = 5,    # number of units in for “on” 
marketOpen = "09:30:00", 
marketClose = "16:00:00", 
tz = "GMT" 
) 
spy_5_p <- as.numeric(spy_5$PRICE) 
T <- length(spy_5_p) 
spy_5_ret <- log(spy_5_p[-1]/spy_5_p[-T]) 
plot(spy_5_ret, type="l", ylab="Return", main="5-minute Return (2014:01:02 - 2014:01:07)") 
 

 
RVolt=2014:01:02 = 0.0053344 
RVolt=2014:01:03 = 0.0043888 
RVolt=2014:01:04 = 0.0059836 



RVolt=2014:01:05 = 0.0052772 
 
We plot the autocorrelogram for the 5-minute TAQ SPY return data: 

 
> acf_spy_5 <- acf(spy_5_ret, main = "5-minute SPY Data: January 2014") 
> acf_spy_5  
Autocorrelations of series ‘spy_ret’, by lag 
0  1  2  3 4 5  6   7    8  9 10  
1.000 -0.105 -0.024 -0.104  0.018  0.147  0.016 -0.024 -0.088  0.048  0.037 
 
Note: We have a negative 1st-order autocorrelation: -0.105, thought not significant. However, the 
autocorrelation of order 5 is significant.  
 
 
• We plot the 10-minute TAQ SPY return data. Smoothing increases. 

 
 
RVolt=2014:01:02 = 0.005478294 
RVolt=2014:01:03 = 0.004256046 
RVolt=2014:01:04 = 0.006190508 
RVolt=2014:01:05 = 0.005145601 
 
We plot the autocorrelogram for the 10’ TAQ SPY return data: 



 
Note: Now, none of the autocorrelations is significant. The 10-minute returns look independent. 
¶   
 
 
RV Models: High Frequency – TAQ In Practice 
In practice, 10’ returns are common. To form a daily measure for RV, we have 39 10-minute 
returns plus one overnite return (from 16:00 PM to next day 9:30 AM) 
 
We have some technical issues working with tick data: 
- Not all days the stock market is open from 9:30 AM to 16:00 PM, NYSE closes early on certain 
days (Christmas Eve, Thanksgiving).  
- For many stocks, we do have lapses in trading. For these stocks, using 5’ or 10’ intervals may 
not work well.  
- There are many suggested solutions to the problem of infrequent trading. Usual solution: 
interpolation from quote data. 
- We have a lot of (discrete) jumps in the data. 
 
Example: R script to compute monthly realized volatility for MSCI USA daily returns 
MSCI_da <- read.csv("https://www.bauer.uh.edu/rsusmel/4397/MSCI_daily.csv", head=TRUE, 
sep=",") 
x_us <- MSCI_da$USAT <- length(x_us) 
us_r <- log(x_us[-1]/x_us[-T]) 
  
x <- us_r     # US log returns from MSCI USA Index 
T <- length(x) 
rvs=NULL     # create vector to fill with RV 
i <- 1 
k <- 21      # k: observations per period (78 for 5’ data) 
while (i < T - k) { 
s2 <- sum(x[i:(i+k)]^2)    # realized variance   
i <- k + i  
rvs <- rbind(rvs,s2)  
} 
rvol <- sqrt(rvs)    # realized volatility  
mean(rvol)     # mean 
sd(rvol)      # variance 



 
Example: Using daily MSCI USA data we calculate 1-mo Realized Volatility (k=21 days) for 
log returns for the USA MSCI (1970: Jan – 2020: Oct). 
 

 
> mean(rvol)   # average monthly Rvol in the sample   
[1] 0.04326531  very close to monthly S&P Volatility: 4.49% 
> sd(rvol)   # standard deviation of monthly Rvol in the sample 
[1] 0.02592653   dividing by sqrt(T) we get the SE = 0.001 (very small). ¶ 
 
Technical computing points:  
We use k=21 days, which is an average of the trading days per month. Of course, not all months 
have the same amount of trading days. In 2019, February had the fewest (19) and October the 
most (23), but, in 2018, February and September (18) had the fewest and August the most (23). 
For us, k=21 days is an approximation.  
 
To be precise, if we use daily data to calculate a monthly variance, we need to use an exact index 
of trading days, say, K=[k1, k2, k3, ... kJ] where ki is the exact number of trading days in month-
year i.  
 
In addition, for daily data, we should not ignore the mean in the computation of RV. 
 
Example: Below, the while loop in R is modified to incorporate the vector K (c1) of exact 
trading days for each month. 
MSCI_cd <- 
read.table("https://www.bauer.uh.edu/rsusmel/4397/MSCI_d_count_days.txt",header=FALSE) 
c1 <- MSCI_cd[,1]   # Vector with all exact days in a month 
n_c1 <- length(c1)   # Total number of days in sample 
rvs=NULL     # Initialize empty vector to place RVs 
t <- 1     # index for the days for while loop 
tj <- 1     # index for the months for while loop 
x_m = mean(x) 
while (tj  <= n_c1) { 
mj <- c1[tj]    # reading exact number of days for month tj 
xx <- x[t:(t+mj-1)] - x_m   # daily returns (in deviation from mean) per month 
tj 
s2 <- sum(xx^2) # RV for month tj 
t <- t + mj 



tj <- tj + 1 
rvs <- rbind(rvs,s2)   # add RV for month tj to vector rvs 
} 
 
rvol <- sqrt(rvs)    # realized volatility  
> mean(rvol)    # mean 
[1] 0.04285471 
> sd(rvol)    # variance 
[1] 0.02622621 
> rvs_ts <- ts(rvol,start=c(1970,1),frequency=12)  
> plot.ts(rvs_ts,xlab="Time",ylab="RVOL", main="Monthly RVOL for MSCI USA") 
 

 
Note: The results (mean, SD and shape of RV) are very similar, but if used to compare to other 
monthly volatility estimates, these are the correct monthly RVol estimates. ¶ 
 
 
RV Models: Log Approximation Rules 
The log approximations rules for the variance and SD are used to change frequencies for the RV 
and RVol. For example, suppose we are calculating RV based on frequency j, RVt=j; but we are 
interested in the J-period RVt=J. Then, the J-period (with j intervals) realized variance and 
realized volatility can be calculated as  
    𝑅𝑉௧ୀ ൌ 𝐽 ∗  𝑅𝑉௧ୀ 
   𝑅𝑉𝑜𝑙௧ୀ ൌ 𝑠𝑞𝑟𝑡ሺ𝐽ሻ ∗  𝑅𝑉𝑜𝑙௧ୀ 
 
Example: We calculate using 5’ data the daily realized variance, RVt=daily. Then, the annual 
variance can be calculated as  
   𝑅𝑉௧ୀ௨ ൌ 260 ∗  𝑅𝑉௧ୀௗ௬ 
where 260 is the number of trading days in the year. The annualized RVOL is the squared root of 
𝑅𝑉௨: 
  𝑅𝑉𝑂𝐿௧ୀ௨ ൌ 𝑠𝑞𝑟𝑡ሺ260ሻ ∗  𝑅𝑉𝑂𝐿௧ୀௗ௬ 
 
Example: Using daily data we calculate 3-mo Realized Volatility  (k=66 days) for log returns for 
the MSCI (1970: March – 2020: Oct). 
 



 
> mean(rvol)   # average quarterly Rvol in the sample   
[1] 0.07725361   log approximation: sqrt(3) * 0.04327 = 0.07495 (close!) 
> sd(rvol)   # standard deviation of quarterly Rvol in the 
sample 
[1] 0.02592653. ¶ 
 
 
RV Models: Properties 
Under some conditions (bounded kurtosis and autocorrelation of squared returns less than 1), 
RVt is consistent. 
 
Realized volatility is a measure. It has a distribution. 
 
For returns, the distribution of RV is non-normal (as expected). It tends to be skewed right and 
leptokurtic.  
 
Daily returns standardized by RVol measures are nearly Gaussian. 
 
RV is highly persistent. (Check with a LB test.) 
 
Daily RV calculate with intra-daily data, it is found to be more robust than measures using daily 
data, like GARCH. 
 
 
RV Models: ACF and Persistence 
Like all volatility measures, RVOL is highly autocorrelated.   
 
Example: We plot the ACF and PACF for the 1-mo Realized Volatility, based on daily data for 
the monthly USA MSCI data. 



 

 
 Model: AR(2)?  
 
 
RV Models: Forecasting 
We can fit ARMA models to the RVOL series to generate forecasts. 
 
Example: Based on the ACF and PACF, we fit an AR(2) model for the monthly RVOL, 
calculated from monthly data: 
> fit_rvol_ar2 <- arima(rvol, order=c(2,0,0)) 
> fit_rvol_ar2 
Call: 
arima(x = rvol, order = c(2, 0, 0)) 
 
 ar1      ar2   intercept 
      0.5631  0.0967     0.0433 
s.e.  0.0396  0.0396     0.0023 
 
sigma^2 estimated as 0.0004056:  log likelihood = 1568.46,  aic = -3128.92 
 
> checkresiduals(fit_rvol_ar2) 
 
        Ljung-Box test 
 
data:  Residuals from ARIMA(2,0,0) with non-zero mean 
Q* = 12.008, df = 7, p-value = 0.1003 
 
Model df: 3.   Total lags used: 10 
 



 
• AR(2) model seems to pass diagnostic tests. Now, we forecast RVOL. 
fcast_rvol <- forecast(fit_rvol_ar2, h=12, level=.95)    # h=number of step-ahead forecasts 
> fcast_rvol 
    Point Forecast     Lo 95          Hi 95 
632     0.05201688  0.0125419811 0.09149178 
633     0.04937852  0.0040761548 0.09468088 
634     0.04757422 -0.0005822456 0.09573069 
635     0.04630317 -0.0031716903 0.09577804 
636     0.04541302 -0.0046992667 0.09552532 
637     0.04478891 -0.0056334466 0.09521126 
638     0.04435142 -0.0062226287 0.09492546 
639     0.04404473 -0.0066036868 0.09469315 
640     0.04382975 -0.0068551809 0.09451467 
641     0.04367904 -0.0070238175 0.09438190 
642     0.04357339 -0.0071382718 0.09428506 
643     0.04349934 -0.0072166577 0.09421533. ¶ 

 
Note: The VIX index (“fear index”) is a forecast for the next 30-day volatility, derived from S&P 
500 options. The VIX on Sep 30, 2020 was 26.37, that is, the volatility at the end of October is 
expected to be 26.37% annualized or 7.61% monthly, higher than 5.20%, but, well within the 
95% C.I. (More on this later.)  
 
 
RV Models: Forecasting – Using VIX 
Empirical work uses the VIX to calculate the implied volatility, IVt, for the S&P500. The VIX 
index is based on the S&P500 index options (on a panel of S&P 500 option prices), using the 



“model-free” approach tailored to replicate the (annualized) risk-neutral volatility of a fixed 30-
day maturity.  
 

 
 
 
Example: We use VIX to forecast monthly RV based on daily data (1990:May - 2020:Sep). We 
regress 
  RVt+1 = α + β VIXt + εt. 
 
Mid_da <- read.csv("https://www.bauer.uh.edu/rsusmel/4397/Mid1_U_B_data.csv", 
head=TRUE, sep=",") 
v_date <- Mid_da$Code  
VIX <- Mid_da$VIX   # Extract VIX data 
T_rv <- length(rvol)    # End of sample for RVol (2020:Oct) 
rvol_90 <- as.numeric(rvol_ts[245:T_rv])*100 # RVol starting in 1990:May in % 
rvol_0 <- rvol_90[-1]   # remove first observation (RVt+1) 
VIX_m <- VIX/sqrt(12)   # VIX in monthly % 
lm_rvol_f <- lm(rvol_0 ~ VIX_m) 
> summary(lm_rvol_f) 
 
Coefficients: 
 Estimate Std. Error t value Pr(>|t|)     
(Intercept) -0.89301     0.28021   -3.187  0.00156 ** 
VIX_m     0.94997  0.04641   20.469  < 2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 1.967 on 363 degrees of freedom 
Multiple R-squared:  0.5358,    Adjusted R-squared:  0.5345  
F-statistic:   419 on 1 and 363 DF, p-value: < 2.2e-16 
 
Note: In sample, a strong positive predictive relation. 
 



 
Note: There is good match between the two series. RVOL shocks (Financial crisis, Covid) are 
unexpected by IV.  
 
• We also check the contemporaneous relation between RVOL and VIX. 
 
lm_rvol <- lm(rvol_90[-length(rvol_90)] ~ VIX_m) 
> summary(lm_rvol) 
 
 Estimate Std. Error t value Pr(>|t|)     
(Intercept) -1.88538    0.20458  -9.216   <2e-16 *** 
VIX_m    1.12543    0.03388  33.214   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 1.436 on 363 degrees of freedom 
Multiple R-squared:  0.7524,    Adjusted R-squared:  0.7517  
F-statistic:  1103 on 1 and 363 DF,  p-value: < 2.2e-16 
 
Note: A strong contemporaneous relation. RVOL is highly correlated. ¶ 
 
 
RV Models: Variance Risk Premium (VRP) 
The implied volatility of an option, calculated today, or IVt, is a measure of the (“ex ante”) 
expected variance over the remaining life of the option.  
 
The Black-Scholes (BS) and similar models for option prices produce the same option prices as 
would be seen under modified probabilities in a world of investors who were indifferent to risk 
(risk neutral).  
 
IV & other parameters extracted from options market prices embed these modified “risk 
neutral” probabilities, that combine investors' objective predictions of the real world returns 
distribution with their risk preferences.  
 
Under BS assumptions, IV and market volatility are the same. But, BS assumptions do not hold. 
The VRP uses this disparity. 



 
We define the variance risk premium (VRP) as the difference between the “ex-ante” risk neutral 
expectation at time t of the future return variation over the period [t, t+1] time interval and the 
ex-post realized return variation over the [t – 1, t]:  
    VRPt  = IVt − RVt. 
 
It is an ad-hoc definition, we could have defined VRPt based on the expectation at time t for 
RVt+1, in this case Et[RVt+1]. The one-step-ahead forecast can be obtained using an ARMA 
process for RVt.  
 
In practice, using Et[RVt+1] or RVt, does not affect VRPt that much.  
 
The are many ways to calculate IV: based on models, like the BS, or “model free,” similar to 
how we calculated IV, in this case, using changes in option prices for different strike prices and 
computing an average. 
 
Example: We plot IVt(=VIX), RVt & VRPt for the S&P500 Index (shaded blue area are U.S. 
recessions). Data: Monthly 1990-2008. 

 
 
 
 
• Bollerslev et al. (2009) use 5’ intervals to calculate RVt find that VRPt

 
 is a predictor of stock 

market excess returns at different horizons (t+h). That is, they regress: 
  rt+h – rf,t+h = [log(Pt) − log(Pt-1)] = μ + δ VRPt + 𝜀௧ 
 



They find that δ is positive and has a t-stat=1.76 for monthly data (h=1) and a t-stat = 2.86 for 
quarterly data (h=3). The R2 is 1.07% for monthly data and 6.82% for quarterly data. For annual 
data the t-stat is not significant.  
 

 
 
 
Example: We regress excess next-month returns, using the FF Mkt-RF factor as the dependent 
variable, on today’s VRP: 
FF_da <- read.csv("https://www.bauer.uh.edu/rsusmel/4397/FF_5_factors.csv",header=TRUE) 
x_Mkt_RF <- FF_da$Mkt_RF    # FF excess market returns 
T_FF <- length(x_RF)     # size of FF_da 
Mkt_RF <- x_Mkt_RF[323:T_FF]/100  # Obs 332: 1990: May 
vrp <- VIX_m^2 - rvol_90[-length(rvol_90)]^2 # Variance risk premium 
pred_vrp <-lm(Mkt_RF[-1] ~ vrp)    # Predictive regression 
> summary(pred_vrp) 
 
 Estimate Std. Error t value Pr(>|t|)     
(Intercept) 6.655e-03  2.335e-03   2.850  0.00462 ** 
vrp  1.815e-05  6.210e-05   0.292  0.77029     not significant 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.04346 on 363 degrees of freedom 
Multiple R-squared:  0.0002352, Adjusted R-squared:  -0.002519. ¶ 
 
 
Other Models: Parkinson’s (1980) Estimator 
The Parkinson’s (1980) estimator:  
 s2

t = {Σt [ln(Ht) – ln(Lt)]2 /(4ln(2)T)}, 
where Ht is the highest price and Lt is the lowest price. 
 
There is an RV counterpart, using HF data: Realized Range (RR):  
 RRt = {Σj [100 * (ln(Ht,j) – ln(Lt,j))]2 /(4ln(2)}, 
where Ht,j and Lt,j are the highest and lowest price in the jth interval. 
 
These “range” estimators are very good and very efficient. 
 
These estimators can be applied to intra-daily data. The Realized Range works well with 
combined with other models. 



 
 
Stochastic volatility (SV/SVOL) models 
Now, instead of a known volatility at time t, like ARCH models, we allow for a stochastic shock 
to σt, ηt or υt:  
  𝜎௧ ൌ 𝜔  𝛽ଵ𝜎௧ିଵ + η௧, υ௧ ~ 𝑁ሺ0,𝜎ηଶሻ 
 
Or using logs: 
  log 𝜎௧ ൌ 𝜔  𝛽ଵlog 𝜎௧ିଵ + υ௧, υ௧ ~ 𝑁ሺ0,𝜎జଶሻ 
 
The difference with ARCH models: The shocks that govern the volatility are not necessarily the 
shocks to the mean process, εt’s.  
 
Usually, the standard model centers log volatility around ω: 
   log 𝜎௧ ൌ 𝜔  𝛽ଵሺlog 𝜎௧ିଵ – ω) + υ௧, 
Then,  
 E[log(σt)] = ω     
 Var[log(σt)] = κ2 =  συ2/(1 – β2). 
    Unconditional distribution:  log(σt) ~ N(ω, κ2) 
 
Like ARCH models, SV models produce returns with kurtosis > 3 (and, also, positive 
autocorrelations between squared excess returns). 
 
We have 3 SVOL parameters to estimate: φ = (ω, β, συ).  
 
Estimation: The modern approach uses Bayesian methods (MCMC), which are advanced for this 
class. Brooks discusses the estimation of SVOL. 
 
 
 


